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ABSTRACT

Modeling in biomechanics plays an important role in simulating biological functions and
has great potential to aid medical clinicians in determining the cause of a disease, the
type of treatment or by aiding in the training of a surgical procedure. Cardiovascular
diseases (CVDs) are the leading cause of mortality today. This work therefore aims at
developing a framework for modeling CVDs, such as cerebral aneurysms or heart diseases
with increased myofiber dispersion as seen in, e.g., hypertrophic cardiomyopathy.

To this end, a three-dimensional growth model of a human saccular cerebral aneurysm is
presented that includes the anisotropy of the medial layer. It is shown that including fibers
in the media reduces the maximum principal stress, thickness increase and shear stress in
the aneurysm wall. It is also shown that the axial pre-stretch has a large impact on the
stress levels and thickness increase in the aneurysm wall.

In addition, the constituents needed for the numerical implementation of a structurally
based constitutive law describing the behavior of passive myocardium is shown. A com-
parison is made between this invariant based model and a commonly used Green-Lagrange
strain component based model and it is shown that using material parameters retrieved
when both models is fitted using a simple shear mode experiment, the invariant based
model is better suited to predict the stress in the myocardium for other modes of deforma-
tion. The passive cardiac model is coupled together with an evolution equation responsible
for generating the active stress. A model of the left ventricle (LV) is presented where pres-
sure is calculated as a response to the change in the ventricular volume in order to ensure
physiologically realistic pressure-volume loops. The influence of myocardial fiber and
sheet distribution is investigated by using two different setups, a generic setup and one
based on experiments. The results implies that spatial heterogeneity may play a critical
role in mechanical contraction of the LV and that geometrical descriptions of deformation
are needed when evaluating the accuracy of a ventricular model.

Further, a novel approach to model the dispersion of both the fiber and sheet orientations
evident in, especially diseased, myocardium is presented. Analytical and numerical simu-
lations show that the dispersion parameter has great effect on myocardial deformation and
stress development. The results also show that the dispersion has a significant impact on
pressure-volume loops of an LV, and in future simulations the presented dispersion model
for myocardium may advantageously be used together with models of, e.g., growth and re-
modeling of various cardiac diseases. In cases where fiber-reinforced models are extended
to include the effect of distributed fiber orientations, neither the mathematical nor physi-
cal motivation for tension-compression fiber switching is clear, and in fact several choices
exist for the material modeler. Therefore, methods to study such switching mechanisms
is explored by analyzing six potential switching cases. Two different permeations of the
dispersed fiber-reinforced model is proposed, depending on whether one can assume that
the fibers are (nearly) uncoupled or strongly coupled to the isotropic ground matrix.
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1. INTRODUCTION AND MOTIVATION

1.1. Biomechanical Modeling

The world health organization (WHO) has stated that cardiovascular disease (CVD) is the
leading cause of death in world. In Europe, for example, CVD comprises nearly half of
all deaths (48 %) while in the United States nearly one of every third death (32.8 %) is at-
tributed to CVD. Also in China, over one third of every death (35.8 %) is caused by some
form of CVD [1–3]. The health care costs of CVD is estimated to be e 110 billion in the
European Union alone, which is about 10 % of the total health care cost. Adding to that is
another e 83 billion in indirect costs that includes production losses and informal care [1].
To put these staggering costs in perspective, NASA estimates that the cost to launch a
space shuttle is about e 340 million (US$ 450 million) [4]. Thus, the total costs for CVD
in the European Union alone is equivalent to nearly 570 space shuttle launches per year.
The need for improvements in identification, understanding and treatment of CVD’s is,
therefore, of utmost importance. To this goal, biological mechanisms that underly CVD
needs to be studied, e.g., chemical, electrical and mechanical mechanisms. In this thesis,
we have developed a framework that includes electrophysiology and that can easily be
extended to incorporate ionic cellular models. The focus, however, lies on the mechani-
cal mechanisms in biomaterials. It is known that the mechanics of biological systems has
been studied since the antiquity with Aristotle’s book ‘On the Motion of Animals’ approx-
imately 350 B.C., but it is with Fung’s early works in the 1960’s and 70’s that modern
day biomechanical modeling and the phrase biomechanics is born [5]. Today, modeling in
biomechanics plays an important role in simulating biological functions and has great po-
tential to aid medical clinicians in determining the cause of a disease, the type of treatment
or by aiding in the training of a surgical procedure. Furthermore, through mechanobiol-
ogy we know that mechanical stimulus on cells and tissue may affect biological processes.
Thus, by modeling the progression of biological and mechanical processes, biomaterials
can be better understood and phenomenon such as growth and remodeling as well as the
development of various diseased states may be studied.

The most widely used framework for modeling soft tissue biomechanics is continuum me-
chanics, in which the discrete particles of a biological material, e.g., atoms and molecules
on a micro scale or sometimes even cells and fibers on an intermediate scale, is considered
to be a continuum and the material behavior of each particle is translated to the overall
behavior of the continuum. Continuum mechanical models can, therefore, be used on a
range of spatial scales, from individual cells to entire organs. Therefore, Section 1.2 offers

1



2 1. Introduction and Motivation

a brief overview of the necessary continuum mechanical framework that is used through-
out this thesis. To model any type of biological tissue, it is also essential to understand the
responses and underlying structure of the material. The following two Sections 1.3 and
1.4, therefore, describe the constituents and material behavior of two fascinating materi-
als that are studied in this thesis, namely cerebral aneurysms and ventricular myocardium.
However, as the focus of this thesis is dedicated to myocardial mechanics, this will be
mirrored in the introduction.

1.2. Continuum Mechanical Framework

The basic relations in kinematics, stress, constitutive equations, incompressibility, invari-
ant formulations and strong and weak forms of a boundary-value problem, needed for the
completeness of this thesis, are covered in this section. For a more complete background
on nonlinear continuum mechanics see the book by Holzapfel [6] and references therein.

1.2.1. Kinematics

A continuum body B = {Pk}, where the mass and volume of the body is at least piecewise
continuous, consists of a set of discrete points Pk. At a given time t, the body occupies a
region Ω(t) set in a reference frame, ϕ(O,ei), with origin O and orthonormal basis vectors
ei, i = {1,2,3}, in a three-dimensional Euclidean space, as seen in Fig. 1.1. At some
reference time t0, a point P set in a reference region Ω0 can be described by the position
vector X(P, t0). Here, t0 = 0 is denoted as the initial time and the region Ω0(t0) as the
initial (undeformed) configuration. At any time t > t0 the body B may have transformed
to occupy the current (deformed) configuration Ω(t). The position of the point P in the
current configuration can be described by the position vector x(P, t) = χ(X, t), where χ

denote the motion of body B. Thus, the deformation gradient

F(X, t) =
∂ χ(X, t)

∂X
(1.1)

is used to described the deformation of the body B. Using infinitesimal volume elements
dV and dv in the reference and current configurations, respectively, the volume change of a
body may be described by J = dv/dV . The volume change can also be retrieved using the
determinant of the deformation gradient, i.e. J = detF(X, t) > 0, where J is the Jacobian
determinant.

The deformation gradient is also used to transform a vector (e.g., a fiber) a0 with length
|a0| = 1 in the reference configuration to its deformed counterpart a in the current con-
figuration by a = Fa0. The length of the deformed fiber is now |a| = λ which is called
the stretch ratio or just the stretch. Through the deformation, the deformation gradient
has rotated and stretched the undeformed vector to its deformed counterpart which is the
motivation behind the polar decomposition of F into

F = RU = vR, (1.2)
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Figure 1.1.: Deformation of a continuum body B from the reference configuration Ω0 to the de-
formed configuration Ω.

where R is a rotation tensor and U and v are the right and left stretch tensors, respectively.
Thus, F is decomposed into a pure stretch and a pure rotation in which a line element at X
may first be stretched by U and then rotated to x by R, or first rotated to x by R followed
by the stretch v. The unique and proper orthogonal R has the properties RTR = I and
detR = 1, where I is the second-order identity tensor. The unique and positive definite
stretch tensors are symmetric, i.e. U = UT and v = vT, and the square of these tensors
are

C = FTF = U2 and b = FFT = v2, (1.3)

which are called the right and left Cauchy-Green stretch tensors, respectively. Using these
stretch tensors, the well known Green-Lagrange strain-tensor is now given by

E =
1
2
(C− I), (1.4)

which describes the strain in Ω0 while the Euler-Almansi strain-tensor is given by

e =
1
2
(I−b−1), (1.5)

which describes the strain in Ω. The push-forward and pull-back operations are defined,
respectively, for covariant tensors as

χ∗(•)[ = F−T(•)[F−1 and χ
−1
∗ (•)[ = FT(•)[F, (1.6)

and for contravariant tensors as

χ∗(•)] = F(•)]FT and χ
−1
∗ (•)] = F−1(•)]F−T. (1.7)

Examples of covariant tensors are E[, C[, e[ and (b−1)[ while examples of contravariant
tensors are (C−1)], b] and many of the common stress tensors.



4 1. Introduction and Motivation

1.2.2. Stress measures

Considering an infinitesimal surface ds with a unit vector n normal to the surface on a
part of the deformed body Ω and an infinitesimal force df, the Cauchy traction vector t is
obtained through the relation df = tds. Cauchy’s stress principle states further that

t = σσσn, (1.8)

where σσσ is the second-order Cauchy stress tensor which is symmetric, i.e. σσσ = σσσT. That
σσσ is symmetric will be shown in Section 1.2.3. The often used engineering (first Piola-
Kirchhoff) stress tensor, P, may be retrieved using the Nanson’s formula

P = JσσσF−T (1.9)

and is, in general, not symmetric but instead fulfills the relation PFT = FTP. Other conve-
nient stress measures that are often used are the symmetric Kirchhoff stress tensor

τττ = Jσσσ (1.10)

or the symmetric second Piola-Kirchhoff stress tensor obtained using the Piola transfor-
mation

S = F−1P = JF−1
σσσF−T. (1.11)

The stress tensors S and τττ are both related using the pull-back and push-forward opera-
tors

S = χ
−1
∗ (τττ]) = F−1

τττF−T and τττ = χ∗(S]) = FSFT, (1.12)

respectively.

1.2.3. Balance laws

Based on experience, basic axioms are formulated called the balance laws. These laws
relate the state variables of the continuum to influences of actions outside the continuum.

Reynolds’ transport theorem. To formulate the balance laws, we first need to state the
Reynolds’ transport theorem. Let Ω be a closed spatial boundary region with a smooth
boundary ∂Ω. Also, assume we have a spatial scalar field φ = φ(x, t) that is continuously
differentiable in both x and t. Taking the time derivative of a volume integral of φ , i.e.

D
Dt

∫
Ω

φ(x, t)dv, (1.13)

where V is the volume of Ω, is not straightforward as the region Ω depends on time. The
quantities are, therefore, transformed to the referential configuration Ω0 with volume V0,
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which is time independent, i.e. x = χ(X, t) and dv = J(X, t)dV . Now, using the chain-rule,
(1.13) can be reformulated as

D
Dt

∫
Ω

φ(x, t)dv =
D
Dt

∫
Ω0

φ(χ(X, t), t)J(X, t)dV

=
∫

Ω0

[
∂φ(χ(X, t), t)

∂ t
J(X, t)+φ(χ(X, t), t)

∂J(X, t)
∂ t

]
dV

=
∫

Ω0

[
φ̇(χ(X, t), t)J(X, t)+φ(χ(X, t), t)J(X, t)divv

]
dV

=
∫
Ω

[
φ̇(x, t)+φ(x, t)divv

]
dv, (1.14)

where ∂J/∂ t = Jdivv is used and v(x, t) is a vector function in Ω. Equation (1.14) is called
the Reynolds’ transport theorem, which we here rewrite in another useful form. Utilizing
that the material time derivative of φ(x, t) is

φ̇(x, t) =
∂φ(x, t)

∂ t
+gradφ ·v, (1.15)

we can further reformulate (1.14)4 as

D
Dt

∫
Ω

φ(x, t)dv =
∫
Ω

(
∂φ(x, t)

∂ t
+gradφ ·v+φ(x, t)divv

)
dv

=
∫
Ω

{
∂φ(x, t)

∂ t
+div [φ(x, t)v]

}
dv, (1.16)

and using the divergence theorem on (1.16)2, yields the well known Reynolds’ transport
theorem as

D
Dt

∫
Ω

φ(x, t)dv =
∫
Ω

∂φ(x, t)
∂ t

dv+
∫

∂Ω

φ(x, t)v ·nds, (1.17)

where the first term on the right hand side of (1.17) denotes the rate of change of φ(x, t)
within the region Ω, while the second term denotes the rate of the outward normal flux of
φ(x, t)v out of Ω across the surface ∂Ω and ds is an area element.

Conservation of mass. The mass m in a closed system can neither be created nor de-
stroyed and is thus an invariant during motion for all times. This may be shown as

ṁ =
Dm
Dt

=
D
Dt

∫
Ω

ρm(x, t)dv = 0, (1.18)
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where ρm(x, t) is the spatial mass density. Using the Reynolds’ transport theorem (1.14),
ṁ can be rewritten as

ṁ =
∫
Ω

[ρ̇m(x, t)+ρm(x, t)divv]dv, (1.19)

and using the localization theorem it follows that

ρ̇m(x, t)+ρm(x, t)divv = 0 or
∂ρm(x, t)

∂ t
+div[ρm(x, t)v]. (1.20)

The continuity of mass equation relates the mass density ρm0(X) in the reference configu-
ration to the mass density ρm(x, t) = ρm(χ(X, t), t) in the current configuration as

ρm0(X) = ρm(χ(X, t), t)J(X, t). (1.21)

Balance of linear and angular momentum. The balance of linear and angular momen-
tum states that the change in linear momentum for a region Ω equals the external forces
acting on that region and that the change in angular momentum equals the external mo-
ments acting on that region. In addition, the balance between external forces and moments
and the rate of change in linear and angular momentums are valid for all parts of the con-
tinuum body. Let bF = bF(x, t) be body forces, t = t(x, t,n) be contact forces acting on a
unit area with the surface normal n and v = v(x, t) be a velocity field. In the following,
the arguments of the tensors are dropped for notational simplicity. The balance of linear
momentum takes the form

D
Dt

∫
Ω

ρmvdv =
∫
Ω

ρmbF dv+
∫

∂Ω

tds, (1.22)

and the balance of angular momentum takes the form

D
Dt

∫
Ω

r×vdv =
∫
Ω

r×ρmbF dv+
∫

∂Ω

r× tds, (1.23)

where r is the position vector associated with the infinitesimal volume element. Through
the relations (1.22) and (1.23), and in comparison with Eq. (1.17), it is seen that if bF =
000 in the region Ω and t = 000 on the surface ∂Ω, the linear and angular momentum are
conservative quantities in Ω. If instead v = 000, the sum of internal and external forces and
moments vanish, which is the condition in the classical statics equilibrium equations.

Cauchy’s equations of motion. By using Cauchy’s stress principle t=σσσn, see Eq. (1.8),
and the divergence theorem, it is straightforward to show for the second term on the right
hand side of (1.22) that ∫

∂Ω

tds =
∫

∂Ω

σσσnds =
∫
Ω

divσσσ dv. (1.24)
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Substituting this into (1.22) and using the relation

D
Dt

∫
Ω

ρmvdv =
∫
Ω

ρmv̇dv (1.25)

yields Cauchy’s first equation of motion as∫
Ω

(divσσσ +bF−ρmv̇)dv = 000. (1.26)

As (1.26) holds (point-wise) for any volume V , it may also be rewritten in its local form
as

divσσσ +bF = ρmv̇. (1.27)

If there is no acceleration of the body, i.e. v̇ = 000, Eq. (1.27) becomes

divσσσ +bF = 000, (1.28)

which is the classical Cauchy’s equation of static equilibrium. Using the Cauchy stress
principle on the second term on right hand side of Eq. (1.23) and using the divergence
theorem yields ∫

∂Ω

r× tds =
∫

∂Ω

r×σσσnds =
∫
Ω

(r×divσσσ +EEE : σσσ
T)dv, (1.29)

wereEEE is the third order permutation tensor. Using (1.29) together with (1.25), the equation
for angular momentum (1.23) can be rewritten as∫

Ω

r× (ρmv̇−divσσσ −bF)dv =
∫
Ω

EEE : σσσ
T dv, (1.30)

which using (1.27) and the fact that (1.30) holds (point-wise) for any volume V , becomes

EEE : σσσ
T = 000. (1.31)

Through Eq. (1.31) it is easy to show that the relations σ12−σ21 = 0, σ13−σ31 = 0 and
σ23−σ32 = 0 must hold, which is satisfied if and only if

σσσ = σσσ
T, (1.32)

i.e. the Cauchy stress tensor is symmetric. The symmetry of the Cauchy stress tensor is
thus retrieved using the angular momentum and is referred to as Cauchy’s second equation
of motion.
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1.2.4. Constitutive equations

The relation between the deformation of a material, say represented by F, and the stress in
the material, say represented by σσσ or P, is given by the constitutive relations. If we further
consider hyperelastic materials, there must exist a Helmholtz free-energy (strain-energy)
scalar-valued function Ψ(F). A stress constitutive equation for a hyperelastic material can
then be postulated as

P =
∂Ψ(F)

∂F
, (1.33)

or

σσσ = J−1 ∂Ψ(F)
∂F

FT. (1.34)

There are many restriction on the constitutive equations. For example, it must be and
invariant under rigid body motion (material objectivity), it must fulfill the balance laws
(consistency) and it must be possible to write a function with a unique solution given
initial values and boundary conditions (determinism). For a strain-energy function there is
also the restriction that no energy is stored in the material if there is no deformation, i.e.

Ψ(F = I) = 0. (1.35)

Also, the strain energy must be positive (or zero) for all deformations, i.e.

Ψ(F)≥ 0. (1.36)

In addition, the volume of a body can not be infinitely expanded or reduced to zero volume,
i.e. the strain energy must go towards +∞ according to

Ψ(F)→+∞ as detF→+∞, (1.37)
Ψ(F)→+∞ as detF→+0. (1.38)

Changing the frame of reference from ϕ(O,ei) to ϕ̂(Ô, êi) by using x̂ = c(t) + Q(t)x,
where c(t) is a vector from O to Ô and Q(t) is the rigid body rotation between ϕ and ϕ̂ ,
it can be shown by using Eq. (1.1) that F̂ = QF and that Ĉ = C. As the strain-energy of a
body B is indifferent to the observer, the principle of material frame indifference (material
objectivity) implies that

Ψ(F̂) = Ψ(QF) = Ψ(F), (1.39)

which must hold for all proper ortogonal rotations Q. Using Q = RT and Eq. (1.2) it is
also follows that the strain-energy function may fulfill the relation

Ψ(F) = Ψ(U) = Ψ̃(C). (1.40)

Recalling Eq. (1.4), the material stress constitutive relations may be written in terms of C
or E as

P = 2F
∂Ψ(C)

∂C
and P = F

∂Ψ(E)
∂E

, (1.41)



1.2. Continuum Mechanical Framework 9

S = 2
∂Ψ(C)

∂C
and S =

∂Ψ(E)
∂E

, (1.42)

or

σσσ = 2J−1F
∂Ψ(C)

∂C
FT and σσσ = J−1F

∂Ψ(E)
∂E

FT. (1.43)

1.2.5. Incompressibility and near incompressibility

Many soft biological tissues exhibit an incompressible, or nearly incompressible, behavior.
As shown in [6], the strain-energy function for an incompressible material may be obtained
by introducing the hydrostatic pressure ph as

Ψ = Ψ(F)− ph(J−1), (1.44)

where ph is determined from the boundary conditions. The Cauchy stress and the second
Piola-Kirchhoff stress tensors for an incompressible material are thus, e.g., using Ψ(C),

σσσ = 2F
∂Ψ(C)

∂C
FT− phI and S = 2

∂Ψ(C)

∂C
− phC−1, (1.45)

respectively. Although the formulations in (1.45) are convenient to use in an analytical
setting, in a computational setting it is often more advantageous to use a compressible
formulation, where the (near) incompressibility of biological tissues is achieved through
a penalization of the volumetric terms. To separate the strain-energy function into a vol-
umetric (volume changing) and an isochoric (volume preserving) term, a multiplicative
decomposition of the deformation gradient is performed according to

F = (J1/3I)F, (1.46)

where J1/3I is associated with the volumetric deformation and F is associated with the
isochoric deformation. The isochoric right and left Cauchy-Green tensors may also be
retrieved using F by

C = FTF = J−2/3C and b = FFT = J−2/3b, (1.47)

respectively. Often the strain energy function may be decoupled, as Ψ(C) = Ψvol(J)+
Ψiso(C), where the subscripts vol and iso stands for the volumetric and isochoric parts,
respectively.

This enables an additive split of the second Piola-Kirchhoff stress tensor into a purely
volumetric and a purely isochoric contribution according to

S = Svol +Siso, (1.48)

where

Svol = 2
∂Ψvol(J)

∂C
= JphC−1 and Siso = 2

∂Ψiso(C)

∂C
= J−2/3DevS, (1.49)
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and where the hydrostatic pressure ph and the fictitious second Piola-Kirchhoff stress ten-
sor S are defined by

ph =
dΨvol(J)

dJ
and S = 2

∂Ψiso(C)

∂C
, (1.50)

and where the Lagrangian deviatoric operator is defined by the relation Dev(•) = (•)−
(1/3)[(•) : C]C−1 so that DevS : C = 0 is fulfilled, (the symbol : denotes the double
contraction operation).

In terms of the Cauchy stress tensor, the same procedure is only possible for isotropic mate-
rials, where the decoupled strain-energy function may be formulated as Ψ(b) = Ψvol(J)+
Ψiso(b) and where an additive split of the Cauchy stress tensor leads to σσσ = σσσvol +σσσ iso.
However, since none of the materials covered in this theses are isotropic, those terms will
not be explicitly given here.

The Cauchy stress tensor for an anisotropic nearly incompressible material is instead given
by a push-forward transformation, using (1.7), of the second Piola-Kirchhoff stress tensor,
S = Svol +Siso, according to

σσσ = J−1
χ∗(S]) = 2J−1F

(
∂Ψvol(J)

∂C
+

∂Ψiso(C)

∂C

)
FT (1.51)

which yields the components

σσσvol = pI and σσσ iso = J−1F(P : S)FT, (1.52)

where the projection tensor P = I− 1/3C−1⊗C is used and I is the fourth-order identity
tensor, (the symbol ⊗ denotes the dyadic (tensor) product operation).

The elasticity tensor, needed in computational solutions of nonlinear boundary-value prob-
lems, is in terms of E, C or Ψ(C) retrieved as

C=
∂S(E)

∂E
= 2

∂S(C)

∂C
= 4

∂ 2Ψ(C)

∂C∂C
. (1.53)

In a decoupled form, C= Cvol +Ciso may be obtained, e.g., using (1.53)2, by

Cvol = 2
∂Svol

∂C
and Ciso = 2

∂Siso

∂C
. (1.54)

The elasticity tensor in the deformed configuration, labeled C, may be obtained using the
Piola transformation of C on each large index according to

C = J−1
χ∗(C), or in index notation cabcd = J−1FaAFbBFcCFdDCABCD. (1.55)
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1.2.6. Invariant formulation

For an isotropic hyperelastic material the strain-energy function may be written in terms
of the principal invariants as

Ψ(C) = Ψ(I1, I2, I3), (1.56)

where these invariants are given by

I1(C) = trC = λ
2
1 +λ

2
2 +λ

2
3 , (1.57)

I2(C) =
1
2
[(trC)2− trC2] = λ

2
1 λ

2
2 +λ

2
1 λ

2
3 +λ

2
2 λ

2
3 , (1.58)

I3(C) = detC = λ
2
1 λ

2
2 λ

2
3 . (1.59)

For an anisotropic material with a directionally dependent orientation, say in a fiber family
direction a0, a pseudo-invariant I4 may be formulated as

I4 = Fa0 ·Fa0 = a0 ·Ca0 = C : A0 = λ
2
a , (1.60)

where A0 = a0⊗ a0 is a structure tensor and λa is the stretch in the fiber direction. The
invariant I4 is thus equal to the square of the stretch in the direction of the fiber family. An
additional invariant for the fiber family a0 is given by

I5 = a0 ·C2a0 = C2 : A0, (1.61)

although this invariant has no physical interpretation. If an additional fiber family is
present, say in the direction g0, the equivalent invariants to (1.60) and (1.61) are given
by

I6 = C : G0 = λ
2
g and I7 = C2 : G0, (1.62)

where λg is the stretch in the direction of the second fiber family and G0 = g0⊗g0. Further,
a coupling invariant between these two fiber families may be defined as

I8 = a0 ·Cg0. (1.63)

A hyperelastic anisotropic material with two fiber families may thus be represented by the
strain-energy function Ψ = Ψ(C,A0,G0) = Ψ(I1, . . . , I8) and the stress response may thus
be retrieved as

S = 2
∂Ψ(I1, . . . , I8)

∂C
= 2

8

∑
a=1

∂Ψ(I1, . . . , I8)

∂ Ia

∂ Ia

∂C
, (1.64)

using the chain-rule. For some deformation modes, all eight invariants are not independent
why the number of invariants used may be reduced. Also, through (1.47)1, the isochoric
counterpart of the invariants are simply retrieved as, e.g., Ī4 = C : A0 = J−2/3I4.
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1.2.7. Strong and weak form of a boundary-value problem

The mechanical response of biological tissues is usually computed using the wak, finite
element, formulation of the boundary value problem. In this section the used strong and
corresponding weak formulations are presented. Thes are valid for passive cardiac as well
as arterial mechanical simulations.

In left ventricular mechanical problems, the following static mechanical equilibrium mixed
boundary-value problem, in the material (reference) configuration, is often posed,

Div(FS) = 0 in Ω0 (1.65a)

FSN =−pJ(F−1)TN on ∂Ω0t1 (1.65b)
FSN = 0 on ∂Ω0t2 (1.65c)
u(X) = 0 on ∂Ω0u1 (1.65d)

where Div(•) denotes the divergence operator with respect to the reference configuration
and N is the surface normal of the body Ω0. Equation (1.65b) is the natural boundary con-
dition where a pressure p is applied (the surface ∂Ω0t1 is usually defined as the endocardial
surface of the LV). Equation (1.65c) is the natural boundary condition which is traction free
(the surface ∂Ω0t2 is usually defined as the epicardial surface of the LV) and (1.65d) is the
essential condition of a zero displacement surface (the surface ∂Ω0u1 is often defined as
the basal plane of an LV represented by a truncated ellipsoidal model). Also other more
complex boundary conditions may be used where, e.g., the entire surface ∂Ω0u1 is not
displacement free or where displacements are prescribed in certain directions.

The pressure loading (1.65b) is a follower load, i.e. it is deformation dependent, and is, in
general, not conservative and can then not be derived from a potential [7]. The principal
of minimum potential energy is therefore not applicable as the basis for the finite element
solution method. Instead, the weak formulation is derived directly from the strong formu-
lation, i.e. the equations in (1.65), in the following manner; let φφφ = φφφ(X) be a suitable
vector-valued test function that satisfy homogeneous prescribed displacement boundary
conditions, i.e. φφφ = 0, on ∂Ω0u1. By forming the inner product of Eq. (1.65a) with φφφ and
integrating over the domain Ω0, the weak equilibrium equations are obtained. By using
the identity

φφφ ·Div(FS) = Div
[
(FS)T

φφφ
]
−Tr

[
(FS)TGradφφφ

]
, (1.66)

we get ∫
Ω0

Div(FS) ·φφφ dv =
∫

Ω0

Div
[
(FS)T

φφφ
]

dv−
∫

Ω0

Tr
[
(FS)TGradφφφ

]
= 0. (1.67)

Further, by using Gauss’ divergence theorem∫
Ω0

Div
[
(FS)T

φφφ)
]

dv =
∫

∂Ω0

[
(FS)T

φφφ
]
·NdA, (1.68)
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we get ∫
Ω0

Tr(SFTGradφφφ)dv−
∫

∂Ω0

FSN ·φφφ dA = 0, (1.69)

where the relations S = ST and [(FS)Tφφφ ] ·N = (FSN) ·φφφ are used. Given the load p (and
potential boundary displacements), as well as the necessary material data specifying the
material function in, e.g., (1.48) and (1.49), we obtain the weak equilibrium formulation
by finding the displacement u such that∫

Ω0

Tr
[
S(FTGradφφφ)S] dv+

∫
∂Ω0t1

pJ(F−1)TN ·φφφ dA = 0 in Ω0 (1.70a)

u(X) = 0 on ∂Ω0u1 (1.70b)

is satisfied. Note that only the symmetric part, denoted (•)S, will remain of FTGradφφφ using
a Cartesian decomposition. Furthermore, the discrete equations can instead be written in
terms of the displacements as F(u) = 0, which is nonlinear in u. By using an incremental
iterative Newton-Raphson procedure, the solution u, for a given p (and potential boundary
displacements), is found. The total Lagrangian formulation in (1.70) may be used as a
foundation for the finite element equations formed using, e.g., the multipurpose finite el-
ement software FEAP, but is often pushed forward to an updated Lagrangian formulation
in the spatial (deformed) configuration, see [7, 8] for more details.

Regardless of which material that is studied, or which numerical solution scheme that is
used to model it, the constitutive models should try to capture the material behavior to
‘some’ desired accuracy, and thus it is essential to understand the underlying mechanics of
the material that is studied. The following two sections, therefore, describe the constituents
and material behavior of a cerebral aneurysm and of the myocardium.

1.3. Cerebral Aneurysms

A cerebral aneurysm is an unhealthy dilation of the arterial vessels in the brain. In con-
trast to abdominal aneurysm, which are fusiform in shape, cerebral aneurysms are often
saccular, or berry shaped. They are present in 2–5 % of the general population and if
ruptured have a high mortality and morbidity rate [9]. However, most often a cerebral
aneurysm grows in a stable manner and only ruptures in 1.3 % cases per year [10]. Cere-
bral aneurysms are generally found at arterial bifurcations, with the majority at the anterior
part of the Circle of Willis [11].

1.3.1. Arterial wall

The artery surrounding the aneurysm is often healthy and consists of three layers as seen in
Fig. 1.2, the intima which is the innermost layer, the media which is the middle and thickest
layer and the adventitia which is the outermost layer. In healthy or young arteries, the
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Figure 1.2.: Diagram showing the components of a healthy artery and the three layers intima, media
and adventitia (left panel). Mechanically separated medial and adventitial layers (right panel) into
a stiff medial tube, shown on the left side, and the limp adventitia, shown to the right, adapted
from [12].

intimal layer is a very thin sheet consisting of endothelial cells laying on a basal membrane
and is often considered not to carry any load. With age or disease, however, it becomes
significantly thicker and the no-load carrying assumption is no longer valid [13]. The
media is a relatively thick layer and consists of smooth muscle cells, elastin and collagen
fibrils. The smooth muscles can contract and thus alter the diameter and flow through the
artery. The collagen fibrils are arranged in a helical pathway, but with a small pitch, making
them nearly circumferential in orientation [12]. The media is fairly stiff even at a load-free
configurations, as seen in Fig. 1.2. The adventitia is composed mainly of collagen which
are arranged in a helical structure to reinforce the arterial wall. The adventitia is soft
at low loads, or a load-free state, as seen in Fig. 1.2, but stiffens significantly at higher
loads and is thus thought to protect the artery from rupture at instances of increased blood
pressure [12].

In addition, the arterial wall is residually stressed. However, as shown by Holzapfel et
al. [14], each layer of the artery is stressed in different directions. Thus, a single material
parameter, such as the opening angle suggested by Liu and Fung [15], is not enough to
characterize the three-dimensional residual stress state of arteries.

1.3.2. Evolving aneurysm

Structural changes in arterial walls and, more specifically, structural evolution of devel-
oping aneurysms have been addressed in several studies. Different approaches are used,
but the continuous turnover of collagen fibers is widely accepted to be the driving mech-
anism in the development of aneurysms. Humphrey and Rajagopal [16] suggest a general
theoretical framework for growth and remodeling of soft tissues, incorporating collagen
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turnover. This framework is utilized by Baek et al. [17], who model aneurysm growth and
assume that the collagen production rate is governed by the current in-plane wall stress of
the aneurysm. They also assume that the orientation of newly deposited collagen is gov-
erned by a specific criterion, based on the principal stresses or stretches in the aneurysm
wall, and the outcome for different criteria is evaluated. Driessen et al. [18] also model
collagen remodeling in an artery wall. In that study, the collagen fibers are assumed to be
aligned in a few fiber directions, and these alignments are assumed to evolve depending on
the principal stretches in the material.

Watton et al. [19] model aneurysm growth by assuming that collagen fibers are continu-
ously attached in a pre-stretched state and configured such that the strain in these fibers at
systole is constant. Kroon and Holzapfel [20] presented a theoretical model for the growth
of a saccular cerebral aneurysm. The growth model was assessed for an axisymmetric
problem, where the aneurysm was described as a circular membrane hinged along the
boundary and exposed to an inflation pressure. The aneurysm wall was assumed to consist
of a number of distinct collagen fiber layers. The continuous turnover of collagen in the
layers was responsible for the growth of the aneurysm, and the collagen production in the
layers was driven by a deformation measure. A parameter study was performed to outline
the general behavior of the model, and a stability analysis was provided. In Chapter 2 of
this thesis, this model is used to investigate the influence of an anisotropic medial layer on
an evolving cerebral aneurysm and the effects of axial in situ stretch.

1.4. Cardiac Mechanics

The heart is a complex organ which essentially acts as an electro-mechanical pump of
blood. It is comprised of four chambers, the right and left atrium and the right and left
ventricles. Oxygen poor blood enters the right atrium from the superior and inferior vena
cava, as well as the coronary sinus. The right atrium pumps the blood through the tricus-
pid valve into the right ventricle which in turn pumps the blood through the pulmonary
valve and pulmonary trunk into the pulmonary artery and lungs where the blood gets re-
oxygenated. Oxygen rich blood enters the left atrium from the pulmonary veins and pumps
it through the mitral valve to the left ventricle. Finally, the left ventricle pumps the blood
through the aortic valve into the aorta where it continues throughout the body via the aortic
tree. The heart itself is supplied by blood from the right coronary artery which is attached
to the aortic branch.

The heart wall is comprised of three layers, the endocardium which is the innermost layer,
the myocardium which is the middle layer and the epicardium which is the outermost
layer. The heart is enclosed in a fluid which is contained in a doubled-walled sac (the
pericardium), which keeps the motion of the heart frictionless against the surrounding
tissue, where the innermost layer of the pericardium is connected to the epicardium which
is a thin protective layer of connective tissue. Also the endocardium is a very thin layer
but is comprised of cells similar to the endothelial cells of arteries. The myocardium, on
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Figure 1.3.: Simplified model showing the basic organization of a sarcomere (top) and a represen-
tation of the major proteins of a sarcomere (bottom), adapted from [21].

the other hand, is by far the thickest of the three layers. It is comprised of striated muscle
cells (myocytes), which work together to generate the contraction of the heart and is thus
responsible for the large pumping force.

1.4.1. Contractile unit

Each myocyte is built up of myofibrils which in turn contains several sarcomeres. The
sarcomeres, shown in Fig. 1.3, are the basic building blocks of the cardiac muscle and
are what causes the heart to contract by sliding actin and myosin filaments (thin and thick
filaments, respectively) along each other. In order for sliding to be achieved, calcium
ions have to bind to the tropomyosin (on troponin-C molecules) which covers the actin
filaments, thus altering the tropomyosin and exposing binding sites where cross-bridges
can be formed between myosin heads and the actin filament. The myosin heads are bound
to an adenosine diphosphate (ADP) and a phosphate ion in the resting position (a resting
position is when the myosin head is not attached to the actin filament, but where the myosin
head is in a high-energy configuration). The exposure of the binding site on the actin
filament causes the myosin head to connect, forming a cross-bridge, and loose the attached
phosphate. The remaining ADP is released causing the myosin head, still attached to the
actin filament, to move in a power-stroke that also moves the actin filament. After the
power-stroke, an adenosine triphosphate (ATP) molecule is attached to the myosin head,
causing a release of the cross-bridge. The myosin head now hydrolyze the ATP into ADP



1.4. Cardiac Mechanics 17

and a phosphate ion, causing a recovery stroke in which a release of energy moves the
head back to its resting, but high-energy, configuration. This sequence of power-strokes
and recovery strokes are repeated until the calcium ions are removed and the binding sites
on the actin filaments are again covered by the tropomyosin.

The increase in calcium in a myocyte, responsible for the contraction, is triggered by a
phenomenon called calcium-induced calcium release. An action potential travels through
gap junctions to the contractile unit where it travels through the T-tubules in the Z-band
(seen in Fig. 1.3 top panel). There, the potential triggers a flux of calcium ions through
L-type calcium channels into the cell. Inside the cell, the sarcoplasmic reticulum con-
tains a large storage of calcium ions and it has the possibility to sense the flux increase of
calcium ions to the cytosol. When the sarcoplasmic reticulum senses this increase, it trig-
gers an additional release of its stored calcium ions which can then bind to the troponin-C
molecules. During muscle relaxation, the calcium ions in the cytosol are again retained in
the sarcoplasmic reticulum.

The action potential is generated by the pacemaker cells located at the sinoatrial node in
the right atrium. The pacemaker cells are modified myocytes which do not contract, but
instead spontaneously discharge. The action potential travels from the sinoatrial node to
the myocytes via a fast conduction network called the Purkinje system (PS). The Purkinje
fibers comprising this complex three-dimensional system are modified myocytes which
end at Purkinje-ventricular junctions. These sites may be viewed as point sources of elec-
trical wavefronts to the myocardium. The electrical wavefront in the myocardium travels
at different speeds determined by the structure of the myocardium (as described in Sec-
tion 1.4.2) and is fastest along the myocyte fiber direction and slowest in the sheet-normal
direction.

1.4.2. Structural organization of the myocardium

In general, myocyte orientation in the LV follows a right-handed helical pathway from the
endocardium towards the mid-wall, and a left-handed helical pathway from the mid-wall
towards the epicardium [22–24], as shown in Fig. 1.4 (a). As described by, e.g., Hort [26],
the myocytes are further bundled into layers that are four to six cells thick creating sheets
as shown in Fig. 1.4 (b). The orientation of the sheets vary both transmurally and in the
apico-basal direction [24, 25, 27, 28]. Labeling the local myocyte direction as the fiber
direction, we may thus characterize the myocardium as an orthotropic material with a
fiber, sheet and sheet-normal direction labeled f, s and n, respectively.

In addition, the fiber alignment in the helical pathway is quite strong in a healthy heart
where the angular dispersion (AD) is only ∼ 12-15◦. In a diseased heart, e.g., with hy-
pertrophic cardiomyopathy (HCM), the AD may locally increase to ∼ 25◦ [29–31]. An
increased disarray in both collagen and muscle fiber orientation is also found in other
diseases, such as myocardial infarction [32–34]. Experiments have further shown that in
healthy hearts, the sheet direction is also locally dispersed [35–37] and although it has not
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(a) DTMRI (b) Confocal microscopy

Figure 1.4.: Fiber and sheet orientation in the ventricular wall: (a) diffusion tensor magnetic
resonance imaging (DTMRI) showing the helical structure of the myocyte orientation, adapted
from [24]; (b) confocal microscopy showing the sheet structure (top) and the transmural change in
the fiber structure (bottom), adapted from [25].

been studied in as great detail as that of the fiber direction, it may still play a significant
role in the function of myocardium [38]. However, further experiments quantifying the
sheet dispersion on diseased human hearts are needed as no data is available today.

1.4.3. Modeling cardiac mechanics

In its simplest form, the heart can be considered to act as a pump generating pressure and
blood flow. This inspired early work to model the tension in the heart wall using the law
of Laplace for thin walled spheres [39]. Although this method provides an easy way to
calculate wall stresses based on pressure and dimension, it does not capture any mechan-
ical properties of the myocardium. Small strain theory was later used in an attempt to
capture the distribution of stresses within the ventricular wall [40], but as the deformations
in many biological tissues can exceed 50–100 %, small strain theory has been shown to
yield unrealistic stress values [41]. Nonlinear finite deformation theory has now become
the common setting. Used together with the finite element method (FEM), it is possible
to solve the complex boundary-value problem associated with the heart. It has enabled
the incorporation of complex geometrical description, anisotropic fiber reinforcement and
many different constitutive models.

Constitutive models for myocardium. For myocardium, constitutive models often as-
sumed that the tissue is hyperelastic and thus can be characterized by a strain-energy func-
tion, as shown in Section 1.2.4. Models for myocardium that includes the muscle fiber
response are either i) transversely isotropic models or ii) orthotropic models. As pointed
out in an excellent review of cardiac models by Holzapfel and Ogden [42], the transversely
isotropic models does not capture the orthotropic behavior of myocardium, but they may
nevertheless be useful as they often contain fewer material parameters which may be more
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easily determined in vivo [43]. Common transversely isotropic models are the exponential
Fung-type models (based on [44]), e.g., the model developed by Omens et al. [45],

Ψ(E) =
1
2

a[exp(Q)−1], (1.71)

where
Q = b1E2

ff +b2(E2
ss +E2

nn +E2
sn)+2b3(E2

fs +E2
fn), (1.72)

or the model by Costa et al. [46] where Q changes to

Q = 2b1(Eff +Ess +Enn)+b2E2
ff +b3(E2

ss +E2
nn +2E2

sn)+2b4(E2
fs +E2

fn), (1.73)

and f, s and n pertain to the fiber, sheet and sheet-normal directions, respectively.

For models that can capture the orthotropic behavior of myocardium, a common exponen-
tial Fung-type models is, e.g., the model developed by Costa et al. [47], where Ψ(E) is
given by (1.71) and Q takes the form

Q = bffE2
ff +bssE2

ss +bnnE2
nn +bfsE2

fs +bfnE2
fn +bsnE2

sn. (1.74)

The advantage of this model is that it only has 7 material parameters, however, although
interpretations for the material parameters where attempted by Costa et al. [47], those pa-
rameters are all coupled through a in (1.71), which means that their individual parameter
interpretation is questionable. Other orthotropic models are motivated by equi-biaxial ten-
sion tests, e.g., the so-called pole-zero model develped by Hunter et al. [48],

Ψ(E) =
kffE2

ff
|aff−|Eff||bff

+
kfnE2

fn
|afn−|Efn||bfn

+
knnE2

nn
|ann−|Enn||bnn

+
kfsE2

fs
|afs−|Efs||bfs

+
kssE2

ss
|ass−|Ess||bss

+
knsE2

ns
|ans−|Ens||bns

. (1.75)

Here the material parameters are more easily related to the principal directions of the ma-
terial, however, the obvious drawback is that the model needs 18 material parameters, see
Schmid et al. [49, 50] for a discussion on the fit of these models to the experimental data
of Dokos et al. [51].

Both the orthotropic ‘Costa’ model and the ‘pole-zero model’ uses the material strain to
define the strain-energy function, and through the relations 2Eii = I4 i, where i ∈ {f,s,n}
and 2Ei j = I8 i j, where i 6= j, they may be seen as a special case of the model developed by
Holzapfel and Ogden [42], which uses the strain (and pseudo) invariants according to

Ψ(I1, I4f, I4s, I8fs) =
a

2b
{exp[b(I1−3)]−1}+ ∑

i=f,s

ai

2bi
{exp[bi(I4 i−1)2]−1}

+
afs

2bfs
[exp(bfsI2

8fs)−1]. (1.76)

This model is micro-structurally based with only 8 material parameters and each term in
the strain-energy function has a clear physical interpretation, see [42] for details.
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Myocardial stress. Constitutive models are used to determine the passive stress in the
myocardium, i.e. the stress in the tissue due to the deformation. This deformation, in turn,
originates from the contraction of the myocytes and is often modeled using either the active
strain approach or the active stress approach, see [52,53] for a review of these approaches.
In the active strain approach, the deformation gradient F is multiplicatively decomposed
into an active part Fa, described by a constitutive relations that does not store energy, and
an elastic part Fe, described by a passive constitutive model [54, 55]. In the active stress
approach, the stress tensor σσσ (defined in Section 1.2.5) is additively decomposed into an
active stress tensor σσσ a and a passive stress tensor σσσp [56, 57]. The active stress can be
modeled in several ways. A popular approach is to use a cellular tension model calculated
either from the ionic concentrations [58, 59] or directly from the electrical potential [60].
It has also been proposed to additively separate the strain-energy function Ψ into an active
part Ψa and a passive part Ψp [61]. However, as pointed out by Skallerud et al. [62],
such a function Ψa is not a true strain-energy function but merely a term that generate the
active stress tensor, see Trayanova and Rice [63] for an excellent review of active cardiac
electro-mechanical models and coupling.

Cardiac electro-physiology. The myocardium is often approximated as a continuous
media of electrical activation and repolarization. Two common models describing this
behavior are the reaction-diffusion equations referred to as the bidomain or monodomain
models [64]. Through a conductivity tensor present in these models, with the eigenaxes in
the fiber, sheet and sheet-normal directions, the wavefront of electrical activation spreads
with a ratio 3:2:1 along the three axis, respectively [65–67]. To generate the action po-
tential, many generic models are based on the famous Hodgkin-Huxley model for currents
in an axon [68], which was reduced to a two-variable model in the FitzHugh-Nagumo
model [69]. Phenomenological models, such as the Fenton-Karma or the Mahajan mod-
els [70, 71], are also used because of the simplicity to fit these models directly to experi-
mental data, see Clayton et al. [72] for a review of models for cardiac tissue electrophysi-
ology.

Electro-mechanical coupling. To couple the multi-scale tissue models and the biophys-
ical models a variety of techniques are available. Perhaps the simplest and most often used
technique is the weakly coupled approach [73]. In this approach, it is assumed that the
mechanics has a limited influence on the electrophysiology so the electrical quantities are
first calculated separately and then relevant parameters are fed into a mechanical simula-
tion of deformation and stress. The main advantages of the weakly coupled approach is
its simplicity, stability and low computation time [74]. In the strongly coupled approach
it is instead assumed that the mechanical quantities influence the electrophysiology. The
mechanical quantities are, therefore, continuously passed back to the electrical simula-
tion which enables the modeling of subtle effects such as myocardial mechano-electrical
feedback [60, 75]. The strongly coupled approach is more complex than the weakly cou-
pled approach and it is prone to numerical instabilities, although those issues are being
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addressed [58, 76], see Nordsletten et al. [77] for a review on issues of coupling the multi-
physics models to cardiac mechanics.

Pressure calculations. The pressure volume relation in cardiac ventricular simulations
are often modeled to follow the classical pressure volume loops as defined by experiments,
see, e.g., [78]. This entails that the follower type pressure load p is calculated in five
consecutive steps. The first step is an initialization load, where the pressure is increased
linearly to the end diastolic pressure. This represent the filling of blood into the ventricle,
which at this point is in a relaxed state. The second step involves an isochoric (volume
preserving) contraction as both the mitral and aortic valves are considered to be closed
while the ventricle is contracting. The third load step is the ejection phase. This represent
the release of blood from the ventricle as the aortic valve opens. The fourth load step is
again an isochoric deformation, this time as the ventricle is relaxing, while the aortic valve
is closed to hinder regurgitation (back-flow). In the fifth and final step, the pressure and
volume is increasing again as the mitral valve opens and blood enters the ventricle. In
simtulations of several heart beats, the cycle then starts over from the second load step.

The first and fifth load steps are usually simulated using a linear increase of pressure. The
two isochoric loads, steps 2 and 4, may be calculated iteratively for each time step to keep
the volume V constant using pn+1 = pn +(Vn+1−Vn)/Cp as described in [79], where Cp
is a penalty parameter. The value of Cp is then set to give a computationally efficient
convergence for the isochoric solution.

The ejection phase, load step 3, is often calculated using the 2, 3 or 4-element Windkessel
models. The two element Windkessel model [80], for example, is described as

C
dp
dt

+
p
R
=−dv

dt
, (1.77)

where C and R relate to arterial compliance and resistance, respectively. Most often C
and R are considered constants, and do not account for the nonlinear behavior of arter-
ies [81, 82]. Equation (1.77) may, e.g., be solved iteratively as described in Kerckhoffs
et al. [83], or alternatively, to achieve both the isochoric deformation and the Windkessel
deformations, the pressure and volume change can directly be prescribed in the finite de-
formation elasticity equations, i.e., make them part of Eq. (1.70).

1.5. Organization of the Thesis

The thesis is a compilation of five scientific papers, which focus on different computa-
tional aspects in biomechanics. The papers span from modeling the growth of a cerebral
aneurysm to simulating the behavior of the left ventricle with an emphasis on the material
behavior. The papers are presented in the following chapters:
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2. ‘Influence of Medial Collagen Organization and Axial In Situ Stretch on Saccular
Cerebral Aneurysm Growth’, T.S.E. Eriksson, M. Kroon and G.A. Holzapfel, ASME
Journal of Biomechanical Engineering, 131:101010 (7 pages), 2009

The study focuses on the influence of an anisotropic medial layer on an evolving
cerebral aneurysm. The middle cerebral artery is modelled as a two-layered cylin-
der, where the layers correspond to the media and the adventitia. Local and instant
loss of media is considered responsible for the aneurysm growth. The adventitia is
composed of several distinct layers with collagen fibers that are the only load bearing
constituent in the aneurysm wall. Their production and degradation are depending
on the stretch of the wall and are also responsible for the growth of the aneurysm.
The anisotropy of the medial layer is modeled using a strain-energy function valid
for an elastic material with two families of fibers. The results shows that includ-
ing fiber reinforcement in the medial layer reduces the maximum principal stress,
thickness increase and shear stress in the aneurysm wall. A variation of the initial
fiber angles is shown to have little effect whereas the axial in situ stretch has a much
larger effect in terms of shape and stresses in the aneurysm wall.

3. ‘Tensors Needed for Finite Element Implementation of an Invariant Based Constitu-
tive Model for Passive Myocardium’, T.S.E. Eriksson and G.A. Holzapfel

The study focuses on the constituents needed for implementation of an invariant
based orthotropic model for passive myocardium. The stress and elasticity tensors
are shown together with a fit of the model to experimental data. A comparison
is made between the proposed invariant based model and a commonly used Green-
Lagrange strain based model and it is shown that using material parameters retrieved
when both models are fitted to a simple shear mode experiment, the proposed model
is better suited to predict the stress in the myocardium for other modes of deforma-
tion. In addition, the finite element implementation is used on a model of the left
ventricle and it is shown that passively increasing the pressure on the endocardial
wall results in steep stress gradients through the wall thickness. This suggests that
residual stresses may need to be included in future models.

4. ‘Influence of Spatial Heterogeneity in Tissue Orthotropy upon Mechanical Contrac-
tion in the Left Ventricle’, T.S.E. Eriksson, A.J. Prassl, G. Plank and G.A. Holzapfel

The study focuses on spatial heterogeneity in myocardial tissue. A coupled model
of the left ventricle is presented where pressure is calculated as a response to change
in internal volume. The passive behavior is modeled as a hyperelastic material using
an orthotropic strain-energy function and an evolution equation is used to generate
the active stresses. The influence of myocardial fiber and sheet distributions is in-
vestigated by using two different fiber and sheet distribution setups, a generic setup
and one based on experiments. It was found that spatial heterogeneity may play a
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critical role in mechanical contraction of the LV and that geometrical descriptions of
deformations are needed when evaluating the accuracy of a ventricular model.

5. ‘Modeling the Disarray in Cardiac Fiber and Sheet Orientations’, T.S.E. Eriksson,
A.J. Prassl, G. Plank and G.A. Holzapfel

The study focuses on a novel approach to model the disarray of both fiber and sheet
orientations in cardiac tissue. A material structure parameter describing the relation
between an isotropic invariant and a directionally dependent invariant is fitted to
experimental data of angular disperison in both the fiber and sheet direction. The
parameter is used to model the dispersion in myocardial tissue by augmenting an
invariant based orthotropic strain-energy function and in a structure tensor used to
determine the direction of active stress. Simulations shows that dispersion has a
large effect on myocardial stress and deformation development as well as on pressure
volume loops of a left ventricle.

6. ‘On Tension-Compression Switching in Dispersed Fiber-Reinforced Constitutive Mod-
els’, T.S.E. Eriksson, D.M. Pierce and G.A. Holzapfel

The study focuses on tension-compression switching of a dispersed fiber-reinforced
constitutive model. Large-strain, fiber-reinforced constitutive models are commonly
used for solving complex boundary-value problems in the context of the finite ele-
ment method. Although the mathematical and physical motivation for including a
tension-compression fiber ‘switch’ may be clear when using models which do not in-
clude fiber dispersion, neither the mathematical nor physical motivation for tension-
compression fiber switching is so clear for cases where fiber-reinforced models are
extended to include the effect of distributed fiber orientations. Here we explore
methods to study such switching mechanisms by analyzing six potential switching
cases, and draw some conclusions about the mathematical robustness and physical
interpretation of the different possible approaches. We propose using two differ-
ent permeations of the dispersed fiber-reinforced models, depending on whether one
can assume that the fibers are (nearly) uncoupled or strongly coupled to the isotropic
ground matrix.

The following conference proceedings and accepted (extended) abstracts where also part
of the thesis:

• W. Rachowicz, A. Zdunek and T.S.E. Eriksson: Application of the adaptive FEM to
computational biomechanics. 6th European Congress on Computational Methods in
Applied Sciences and Engineering (ECCOMAS), Vienna, Austria, September 10–
14, 2012.

• G.A. Holzapfel, T.S.E. Eriksson, A.J. Prassl and G. Plank: An electro-mechanically
computational model for the myocardium including fiber and sheet disarray. 23rd
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International Congress of Theoretical and Applied Mechanics, Beijing (ICTAM),
China, August 19–24, 2012.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A structurally motivated model for
myocardial fiber and sheet disarray. 8th European Solid Mechanics Conference
(ESMC), Graz, Austria, July 9–13, 2012.

• C. Augustin, E. Hoetzl, T.S.E. Eriksson, A.J. Prassl, G.A. Holzapfel, O. Steinbach
and G. Plank: Application of advanced bidomain solver techniques to cardiac elec-
tromechanics. 8th European Solid Mechanics Conference (ESMC), Graz, Austria,
July 9–13, 2012.

• G.A. Holzapfel, T.S.E. Eriksson and M. Unterberger: Structurally-based computa-
tion of the biomechanical response of cardiovascular tissues. 11th International Con-
ference on Computational Plasticity. Fundamentals and Applications (COMPLAS
XI), Barcelona, Spain, September 7–9, 2011.

• W. Rachowicz, A. Zdunek and T.S.E. Eriksson: Application of hp-adaptive FEM
to medical diagnostics. Higher Order Finite Element and Isogeometric Methods
(HOFEIM), Krakow, Poland, June 27-29, 2011.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A coupled model for the left ventri-
cle including regional differences in structure and function, Proceedings in Applied
Mathematics and Mechanics (PAMM), 11:85–86, 2011.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A coupled model of the left ventricle
including regional differences in structure and function. 82nd Annual Meeting of the
Internatonal Association of Applied Mathematics and Mechanics (GAMM), Graz
University of Technology, Austria, April 18-22, 2011.

• T.S.E. Eriksson, R. Höller, G. Plank and G.A. Holzapfel: New material model for the
passive response of the myocardium: numerical realization and new experimental
data. 6th World Congress on Biomechanics, Singapore, August 1-6, 2010.

• T.S.E. Eriksson, G. Plank and G.A. Holzapfel: A new invariant-based constitutive
model for the passive response of the myocardium and constituents needed for FE
implementation. 1st International Conference on Material Modelling (ICMM), Dort-
mund, Germany, September 15–17, 2009.



2. INFLUENCE OF MEDIAL COLLAGEN ORGANIZATION AND
AXIAL IN SITU STRETCH ON SACCULAR CEREBRAL
ANEURYSM GROWTH

Abstract A model for saccular cerebral aneurysm growth, proposed by Kroon and
Holzapfel (J. Theor. Biol., 2007, 247:775–787; J. Biomech. Eng., 2008, 130:051012),
is further investigated. A human middle cerebral artery is modeled as a two-layer cylin-
der, where the layers correspond to the media and the adventitia. The immediate loss of
media in the location of the aneurysm is taken to be responsible for the initiation of the
aneurysm growth. The aneurysm is regarded as a development of the adventitia, which
is composed of several distinct layers of collagen fibers perfectly aligned in specified di-
rections. The collagen fibers are the only load bearing constituent in the aneurysm wall;
their production and degradation depend on the stretch of the wall and are responsible for
the aneurysm growth. The anisotropy of the surrounding media was modeled using the
strain-energy function proposed by Holzapfel et al. (J. Elasticity, 2000, 61:1–48) valid for
an elastic material with two families of fibers. It was shown that the inclusion of fibers in
the media reduced the maximum principal Cauchy stress and the maximum shear stress in
the aneurysm wall. The thickness increase of the aneurysm wall due to material growth
was also decreased. Varying the fiber angle in the media from a circumferential direction
to a deviation of 10◦ from the circumferential direction did, however, only show a little
effect. Altering the axial in situ stretch of the artery had a much larger effect in terms
of the steady-state shape of the aneurysm and the resulting stresses in the aneurysm wall.
The peak values of the maximum principal stress and thickness increase, both became
significantly higher for larger axial stretches.

2.1. Introduction

Saccular cerebral aneurysms are detected in less than 5% of the human population, and
are usually diagnosed in elder people between the fifth and the seventh decade. High
blood pressure, which is rather specific for man, appears to have some influence on the
development of cerebral aneurysms [84]. A subarachnoid hemorrhage due to the rupture
of an intracranial aneurysm is a devastating event associated with high rates of morbidity
and mortality. Approximately 12% of patients die before receiving medical attention, 40%
of hospitalized patients die within one month after the event, and more than one third of
those who survive have major neurological deficits [85].

25
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Cerebral aneurysms generally form and grow at arterial bifurcations in connection to the
Circle of Willis, where the internal elastic membrane is partially destroyed, and where
the media is diminished [11]. Approximately 80% of all these aneurysms occur at one of
three main sites, i.e. the carotid/posterior communicating respectively anterior choroidal
artery junction, the anterior communicating artery, and the middle cerebral artery main
bifurcation [86].

Determination of the structure of the aneurysm wall is a necessary precursor to establish
suitable constitutive relations for this type of tissue. For this purpose, experimental in-
vestigations of aneurysmal tissue, for example, in terms of tensile testing and histological
examinations, are necessary, but theoretical modeling may also provide important insights.
Structural changes of artery walls and, more specifically, structural evolution of develop-
ing aneurysms have been addressed in previous theoretical studies [16–20, 87]. Kroon
and Holzapfel [20, 87] proposed a theoretical model for the growth of a saccular cerebral
aneurysm. In this model, the aneurysm wall was assumed to consist of a number of distinct
collagen fiber layers. The continuous turnover of collagen in the layers was responsible
for the growth of the aneurysm, and the collagen production in the layers was governed by
the embedded fibroblasts.

In the present paper, this aneurysm model is further developed. A realistic 3D setting
is now employed in the form of a human middle cerebral artery. More specifically, the
middle cerebral artery is modeled as a two-layer cylinder, where the layers correspond to
the media and the adventitia. The constitutive behavior of the adventitia is governed by the
aneurysm growth model, and the media is modeled as a neo-Hookean material reinforced
by two families of collagen fibers [12]. The structural integrity of an artery or aneurysm is
to a large extent determined by the organization of the collagen fabric. The collagen of the
adventitia or an aneurysm wall is mainly Type I [11,88], whereas the collagen of the media
is mainly of Type III [89, 90]. In a previous study, the influence of the organization of the
Type I collagen fabric of the adventitia was investigated [87]. Instead, the present study
focuses on the influence of the orientation of the medial collagen on aneurysm growth. In
addition, the consequences of different axial in situ stretches are studied. The influence is
quantified in terms of stress distributions, wall thickness distributions and aneurysm shape
at steady-state.

A short review of the aneurysm growth model is given in the next section. The current
problem is then formulated, followed by a presentation of the numerical model and the
numerical results. Finally, a discussion and some concluding remarks are provided.

2.2. Growth Model of a Saccular Cerebral Aneurysm

The saccular cerebral aneurysmal wall is considered to be the development of the adventi-
tia of the originally healthy parent artery. The aneurysm wall is modeled as a hyperelastic
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material and is characterized by a strain-energy function Ψ. The only load-bearing con-
stituent is the collagen that is produced by fibroblasts, spread throughout the collagen
network. The aneurysm wall is assumed to consist of n distinct and discrete layers of col-
lagen fibers that can be considered as plies forming a laminate. The collagen fibers within
layer i are perfectly aligned in direction φi, and as the fibroblasts are aligned in the same
direction as the collagen fibers, newly produced collagen will be deposited at this angle
as well during the growth process. The collagen mass production rate per unit reference
volume, say ṁi, depends on both the stretching of individual fibroblasts and the prolifera-
tion of fibroblasts which are taken to be governed by the global stretching of the aneurysm
wall. The mass production rate in layer i at time t is [20]

ṁi(t) = β0Cα
i , (2.1)

where β0 is the normal mass production rate in a reference configuration of a healthy artery
considered to be the density of fibroblasts multiplied by the collagen production rate per
fibroblast [17]. In (2.1) Ci is a scalar defined as Ci =C : A(φi), where C is the right Cauchy-
Green tensor, A(φi) = M⊗M is a structure tensor and the unit vector M has components
cosφi and sinφi, [12]. Thus, Ci is the projection of C in the direction φi of the fibers, and
the influence of Ci on the mass production rate ṁi(t) is modulated by the exponent α .

Fiber deposition occurs at time tdp and at any time between −∞ and current time t. The
related deformation gradient is then F(tdp)=R(tdp)U(tdp), where R(tdp) is the rotation ten-
sor, with detR(tdp) = 1, and U(tdp) is the right stretch tensor at time tdp, with U = UT, [6].
Decomposing the current deformation gradient at t yields F(t)=R′(t, tdp)Uloc(t, tdp)U(tdp),
where Uloc(t, tdp) is the current local material stretch to which collagen, deposited at time
tdp, is exposed, and R′(t, tdp) is another rotation tensor. Thus, the local right Cauchy-Green
tensor Cloc is

Cloc(t, tdp) = U2
loc(t, tdp) = U−1(tdp)C(t)U−1(tdp), (2.2)

where C(t) = FT(t)F(t) = U(t)2.

Collagen fibers are deposited by the fibroblasts with a pre-stretch λpre. An expression of
the resulting deformation of individual fibers is, therefore, made according to

Cfib = λ
2
preCloc : A(φi). (2.3)

A simple polynomial characterizes the strain-energy function ψfib per unit mass stored in
the collagen fibers, namely

ψfib = µc(Cfib−1)3, Cfib ≥ 1, (2.4)

where µc > 0 is a positive material parameter that is governed by the stiffness of collagen
fibers. The fibers are considered to have no stiffness in compression (Cfib < 1) so that ψfib
is only active when the fibers are in tension.
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Figure 2.1.: Middle cerebral artery modeled as a two-layer cylinder (media and adventitia). The
cylindrical structure (top right figure) constitutes the reference configuration of the posed problem.

The initial thickness of each collagen layer Hadv/n is assumed to be the same for all n
layers, where Hadv is the total initial thickness of the adventitia. The total strain energy Ψ

for all plies is integrated according to

Ψ(t) =
1
n

n

∑
i=1

Ψi(t) =
1
n

n

∑
i=1

t∫
−∞

g(t, tdp)ṁi(tdp)ψfib(t, tdp)dtdp, (2.5)

where the turnover of collagen is accounted for by the use of a pulse function g(t, tdp),
which is equal to 1 for tdp ∈ [t− tlf, t] and 0 otherwise; tlf is the life-time of the collagen
fibers.

2.3. Problem Formulation

2.3.1. Model geometry, boundary and loading conditions

The intima is not considered to contribute significantly to the mechanics of the arterial
wall. Hence, the artery is modeled as a two-layered cylinder, i.e. media and adventitia,
see Fig. 2.1. Due to symmetry only one quarter of a cylinder needs to be modeled. The
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model geometry is first defined as a plane sheet with a total thickness of Hmed +Hadv and
side lengths πR0 and λLL. The thicknesses of the media and the adventitia are denoted by
Hmed and Hadv, respectively. Aneurysm growth is initiated by the removal of the media in
a circular region, characterized by the radius Ran, as shown in Fig. 2.1. The angle between
the exposed adventitia in this circular region, plane B3, and the cut in the remaining media,
plane B2, is 135◦. This plane sheet is then mapped onto a cylindrical surface with outer
radius R0. In that mapping, the geometry is also scaled in the X3-direction by a factor 1/λL,
giving the cylindrical structure the length L. Thus, the cylindrical structure, as shown at
the top right in Fig. 2.1, constitutes the reference configuration of the posed problem.

The external loading imposed on the model aneurysm consists of an internal pressure p
and an axial stretch λL. Boundary conditions in terms of tractions t and prescribed dis-
placements u are thus imposed at time t = 0+ according to (accounting for symmetry)

B1,B2,B3 : tn =−p, X1 =−R0 : u1 = 0, X2 = 0 : u2 = 0,

X3 = 0 : u3 = 0, X3 = L : u3 = (λL−1)L, (2.6)

where B1, B2, B3 are the surfaces defined in Fig. 2.1 on which the pressure acts and tn is
the normal component of the traction vector t.

2.3.2. Stress response

Aneurysm growth is initiated by a local loss of media. This damage process occurs in a
loaded state in which the artery is exposed to a blood pressure and an axial in situ stretch.
Subsequently we model the following process: (i) a healthy (undamaged) artery is exposed
to an (internal) pressure p and an axial stretch λL; (ii) a local loss of media occurs in a
region defined by the radius Ran; (iii) growth of the aneurysm starts. In order to model this
process, the reference geometry is initially defined as a plane sheet with length λLL and
with a circular damage zone; and this plane sheet is then scaled in the axial direction by
the factor 1/λL (and mapped onto a cylindrical shape) to obtain the mentioned reference
configuration.

The adventitia of a healthy artery (and the aneurysm wall) is not able to withstand any
(or very little) bending, whereas the media of healthy arteries has a significant bending
stiffness. Therefore, the adventitia is modeled as a membrane and the media as a three-
dimensional continuum (tetrahedral solid elements). The adventitia is built up of n layers
with distinct collagen fiber angle φi for each layer i, where i = 1, . . . ,n. The fiber angles are
defined by the 2D reference coordinate system ζ1-ζ2, as shown in Figs 2.1,2.2, in which
ζ1 follows the circumferential direction of the artery and ζ2 the axial direction; X3 and
ζ1-ζ2 is a local coordinate system defined in every point on the artery surface. As shown
in Fig. 2.2, the fiber distribution is uniform and the fiber direction φ1 is taken to coincide
with the ζ1-axis, see Fig. 2.1.
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Figure 2.2.: Uniform fiber distribution in the aneurysm wall shown for eight layers; the coordinate
system ζ1-ζ2 corresponds to the tangential and axial directions, as shown in Fig. 2.1.

For the strain-energy function (2.5) that governs the constitutive response of the adventitia
the in-plane second Piola-Kirchhoff stress components Sαβ are given as

Sαβ =
2
n

n

∑
i=1

∂Ψi

∂Cαβ

=
2
n

n

∑
i=1

t∫
−∞

g(t, tdp)ṁi(tdp)
∂ψfib

∂Cαβ

dtdp, α,β = 1,2, (2.7)

where Cαβ are the components of the 2D right Cauchy-Green tensor, and indices α and
β pertain to the local 2D in-plane reference coordinate system ζ1-ζ2 in the plane of the
adventitial membrane.

When modeling the media, the components are smooth muscle cells, elastin and collagen
(Type III), [91,92]. Elastin and smooth muscle cells are expected to have a fairly linear re-
sponse. As both the smooth muscle cells and the collagen tend to be aligned approximately
in the circumferential direction, the total response of the media is, in general, anisotropic,
see [13, 89, 93–95]. In order to model the anisotropic mechanical behavior of the media,
the strain-energy function as proposed by Holzapfel et al. [12] was adopted. Thus,

Ψmed =
µM

2
(I1−3)+

k1,med

2k2,med
∑

i=4,6
{exp[k2,med(Ii−1)2]−1}, (2.8)

where the parameter µM denotes the shear modulus of the media describing the isotropic
non-collagenous matrix material (mainly elastin and passive response of smooth muscle).
The anisotropic part is related to the response of the collagen and described by k1,med and
k2,med, where k1,med > 0 is a stress-like parameter and k2,med > 0 is dimensionless. They
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Figure 2.3.: Orientations a01 and a02 of two families of fibers in the media symmetrically disposed
with respect to the cylinder axis. The parameter β is the angle between the collagen fiber and the
circumferential direction ζ1.

do not depend on the geometry or fiber angle; those effects are instead introduced through
the invariants I4 and I6, and are defined as

I1 = C : I, I4 = C : A1, I6 = C : A2. (2.9)

The structure tensors A1 and A2 are

A1 = a01⊗a01, A2 = a02⊗a02, (2.10)

where the column matrices [a01] = [cosβ , sinβ , 0]T and [a02] = [cosβ , −sinβ , 0]T col-
lect the components of the unit vectors a01 and a02, respectively, with 2β being the angle
between the collagen fibers, as shown in Fig. 2.3. The principal values of the second
Piola-Kirchhoff stress that corresponds to the media are calculated as [6],

Sa =
1
λa

∂Ψmed

∂λa
, (2.11)

where the three principal directions are indexed a = 1,2,3.

A stress measure that is physically relevant for the aneurysm wall is the co-rotated Cauchy-
like stress measure σ?

αβ
, [6]. The in-plane membrane stress is defined as

σ
?
αβ

=
1
J?

U?
αγS?

γδ
U?

δβ
=

2
λ3J?

U?
αγ

1
n

n

∑
i=1

∂Ψi

∂C?
γδ

U?
δβ

, (2.12)

where α and β again pertain to the local 2D in-plane reference coordinate system. The
deformation tensor C? with components C?

γδ
are given as C?(t) = Cloc(t, tdp = t − tlf),
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where C?(t) = U?2(t) and J?(t) = detU?(t). This is the deformation experienced by the
‘oldest’ and most stretched fibers in the aneurysm wall. The components S?

γδ
are seen

as modified second Piola-Kirchhoff stress components that result from a differentiation
of the strain-energy function with respect to C?

γδ
. In addition, the thickness change of

the membrane (due to material growth) is introduced as λ3, which is defined as the ratio
between the current and initial aneurysm wall thickness. This ratio is estimated as

λ3 =
1

nλ1λ2

n

∑
i=1

mi

m0
, (2.13)

where λ1 and λ2 are the total principal in-plane stretches of the membrane, and mi and
m0 denote the current and reference collagen mass content, respectively. It is important to
emphasize that it is the production of new tissue that is described by the entity λ3 and not
an actual stretching. Thus, material parameters that need to be supplied are: β0µctlf, α ,
λpre, n, φ1, . . . ,φn (adventitia); µM, k1,med, k2,med (media).

In the half-closed interval t ∈ (−∞,0], the modeled reference configuration is unloaded
which for the adventitia corresponds to a uniform deformation C = I, where I is the
2D identity tensor. A uniform deformation in turn corresponds to a constant collagen
production rate ṁi(t ≤ 0) = β0, a constant fiber deformation of Cfib(t ≤ 0) = λ 2

pre, and
a constant strain energy per unit reference volume, i.e. Ψ(t ≤ 0) = µcβ0(λ

2
pre− 1)3tlf.

At time t = 0+, prescribed boundary conditions are imposed and the aneurysm starts to
evolve.

2.3.3. Model specification, numerics

The considered model geometry is according to a healthy human middle cerebral artery [96,
97]: R0 = 1.2 mm, Hmed = 0.25 mm, Hadv = 0.30 µm. The size of the damage region,
where the media is absent, is characterized by the radius Ran set to be πR0/2. On the basis
of investigations conducted by Monson et al. [96], material stiffness parameters are set
to µM = 0.3 MPa and β0µctlf = 14 MPa (in [96] there is a substantial variation in results
and the parameters chosen are from test specimens with a relatively low stiffness). The
parameters k1,med and k2,med are based on material parameters for a carotid artery from
a rabbit [98], for which kr

1,med = 2.3632 kPa, kr
2,med = 0.8393, µ r

M = 3.0 kPa, where the
superscript ‘r’ stands for ‘rabbit’. The non-dimensional parameter is taken to be the same
for a human middle cerebral artery as for the rabbit (k2,med = kr

2,med), whereas k1,med for a
human cerebral artery is estimated by assuming that the relation

k1,med

µM
≈

kr
1,med

µ r
M

(2.14)

holds, leading to the estimation k1,med = 0.24 MPa. The length of the (quarter) model is
L = 8R0, which is considered to be sufficient in order for the ends of the artery not to have
any influence on the stress distribution in the aneurysm wall.
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The stability properties of the aneurysm model were investigated by Kroon and Holzapfel
[20]. It was found that the stabilization of the evolving aneurysmal wall was drastically
increased when the parameter α was in the range 1.5 < α < 2. Therefore, in the present
study α is set to 1.7, as most aneurysms do grow in a stabilizing manner. It was also found
that the pre-stretching of fibers in the aneurysm wall λpre should be set to a relatively low
value when compared to the in situ stretch of arteries. Hence, the pre-stretch is, therefore,
set to λpre = 1.02. The influence of the number of layers n in the media was also investi-
gated by Kroon and Holzapfel [20, 87], and it was found that as long as n≥ 4, the number
of layers does not influence the model behavior to a large degree. Hence, the number of
layers n is, therefore, set to n = 8.

The internal pressure p is set to 7 kPa which is in accordance to the internal pressure for
human carotid arteries [99]. The axial in situ stretch of human arteries depends on the
location and is in the range 1.0-1.5 [100,101]. An in situ mean stretch for cerebral arteries
of 1.31 was found by Monson et al. [102]. Three axial stretches are investigated, namely
λL = 1.0, λL = 1.2 and λL = 1.4.

The open source finite element analysis program FEAP [8] is used to analyze the problem,
and the growth model of the aneurysm was implemented as a user membrane element.
Three different finite element meshes are used in the study pertaining to the different ax-
ial stretches. The resulting mesh sizes are 13 492, 13 608, and 13 886 finite elements.
Collapsed, 4-node, bi-linear, membrane elements are used to model the adventitia which
includes the developing aneurysm wall, and 4-node, tri-linear, tetrahedral solid elements
are used for the media. On the surfaces B1,B2, B3, surface pressure elements are used
to impose the pressure p which acts on the deformed configuration. In the region of the
aneurysmal expansion, the mesh is refined and the elements there have a characteristic
size of πR0/80 which is sufficient to obtain converging results. In the solution scheme, a
time-independent procedure calculating the steady state solution directly, is used.

2.4. Numerical Results

In the present numerical study we investigate the influence of the medial collagen organi-
zation, i.e. the fiber angle β , and the axial in situ stretch λL of the artery on the growth of
the saccular cerebral aneurysm.

2.4.1. Influence of medial collagen organization

In Fig. 2.4 the distributions of the maximum principal Cauchy stress σ∗1 are displayed.
Solutions are shown for the cases with β = 0◦, 5◦, 10◦ (Figs 2.4(a)–(c)), and, as a reference,
the solution with no medial collagen fibers is also included (Fig. 2.4(d)). The axial stretch
is λL = 1.2. For all cases the stress distribution varies smoothly over the aneurysm surface
with a peak value at the fundus. When fibers are included in the media, the peak value
is lower when compared to a model without fibers. For an axial stretch of λL = 1.2 and
β = 0◦, the maximum principal stress reaches a peak value of 0.622 MPa (Fig. 2.4 (a)).
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Figure 2.4.: Distributions of maximum principal Cauchy stress σ∗1 (axial in situ stretch λL = 1.2).
The fiber angle of the medial collagen varies according to: (a) β = 0◦; (b) 5◦; (c) 10◦; in (d)
no collagen fibers are included in the media, and the related aneurysm size is noticeably larger.
Including collagen fibers in the media decreases the peak stress of 7.2%. The peak values are at the
fundus.

When the fiber angle in the media is increased to 5◦ and 10◦, the maximum principal
stress becomes 0.624 MPa for both cases (Figs 2.4 (b),(c)). This is a very small change
when compared to the model without medial fibers, where the maximum principal stress is
0.670 MPa (Fig. 2.4 (d)). Thus, including collagen fibers in the media decreases the peak
stress of 7.2% compared to the solution without medial fibers. The size of the aneurysm
does not differ much between the cases with fibers (Figs 2.4(a)–(c)), but the aneurysm
without medial fibers is noticeably larger.

The corresponding distributions of the steady-state thickness change λ3, i.e. according to
Eq. (2.13), are shown in Fig. 2.5. For the three cases β = 0◦; 5◦; 10◦ the largest thickness
increase is 4.34 and occurs at the fundus (Figs 2.5 (a)–(c)). This value is lower when
compared to the case with no fibers in the media (Fig. 2.5 (d)) which has a thickness
increase of 4.56 at the fundus.

The maximum in-plane Cauchy shear stress τ for the four investigated cases is plotted in
Fig. 2.6. The maximum values are 0.093 MPa, 0.094 MPa and 0.095 MPa for the cases
with fibers in the media, as shown in Figs 2.6 (a)–(c), respectively. These values are all
lower compared to the case with no fibers in the media, which experienced a maximum
shear stress of 0.102 MPa (Fig. 2.6 (d)). The peak values do not appear at the fundus but
are located close to the neck at the long side of the aneurysm, as can be seen in Fig. 2.6.
The largest shear stress are about 15% of the largest maximum principal stresses. The
minimum values are located between the fundus and the neck in the plane X2 = 0. It
may be noted that the maximum shear stress quantifies the difference between the two
in-plane principal stresses. Thus, we may conclude that the maximum difference between
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Figure 2.5.: Distributions of the thickness increase λ3 (axial in situ stretch λL = 1.2), i.e. according
to Eq. (2.13). The fiber angle varies: (a) β = 0◦; (b) 5◦; (c) 10◦; in (d) no fibers are included in the
media. The largest thickness increases occur at the fundus; 4.34 for (a)–(c) and 4.56 for (d).

the principal stresses is about 0.2 MPa and occurs close to the neck of the aneurysm. We
emphasize that the stress distributions in Fig. 2.6 are symmetric with respect to the X1-X3-
plane, even though this is not obvious from Fig. 2.6.

2.4.2. Influence of axial in situ stretch

In this part of the study a constant fiber angle β = 0◦ is used, and solutions for three dif-
ferent axial stretches λL = 1.0, 1.2 and 1.4 are compared. For the different axial stretches,
the maximum principal Cauchy stress σ∗1 (again occurring at the fundus) is found to be
0.580, 0.622, 0.626 MPa, as shown in the Figs 2.7 (a)–(c), respectively. The difference in
the resulting steady-state geometry of these three cases are clearly shown in Fig. 2.7. No
axial stretch (λL = 1.0) results in a more spherical shape (Fig. 2.7(a)), whereas an axial
stretch of λL = 1.4 results in a more elliptic shape (Fig. 2.7(c)).

The thickness increases λ3 for the cases with the three axial stretches reach values of 4.07,
4.34 and 4.55 at the fundus, see Figs 2.8 (a)–(c), respectively. However, the maximum
thickness increase is not always at the fundus. For λL = 1.4, for example, the maximum
value of λ3 is not located in the aneurysm but rather in the intact artery close to the neck
of the aneurysm. The value of the maximum thickness increase in that point is 5.64.

The resulting maximum in-plane Cauchy shear stress τ reaches the maximum values 0.115,
0.0933, 0.116 MPa, respectively (Figs 2.9 (a)–(c)). As can be seen, the maximum shear
stress is lowest for λL = 1.2, whereas the peak values are almost identical for λL = 1.0 and
λL = 1.4. The location of the maximum value also changes when altering the stretch. The
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Figure 2.6.: Distributions of maximum in-plane Cauchy shear stress τ (axial in situ stretch λL =
1.2). The fiber angle varies: (a) β = 0◦; (b) 5◦; (c) 10◦; in (d) no fibers are included in the
media. The peak values are located close to the neck at the long side of the aneurysm (0.093,
0.094, 0.095 MPa for (a)–(c) and 0.102 MPa for (d)). The minimum values are located between the
fundus and the neck in the plane X2 = 0.

Figure 2.7.: Distributions of maximum principal Cauchy stress σ∗1 (fiber angle β = 0◦). The axial
stretch varies: (a) λL = 1.0; (b) 1.2; (c) 1.4. The peak values are at the fundus. No axial stretch
results in a more spherical shape, whereas an axial stretch of 1.4 results in a more elliptic shape.

location of the maximum values for λL = 1.0 and 1.2 is at the long side of the aneurysm,
whereas it is on the short side for λL = 1.4, see Fig. 2.9.

2.5. Discussion

In the process of saccular cerebral aneurysm growth several stages can be identified. Dur-
ing the initial stage, wall shear stress, which are induced by the blood flow, act on the intima
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Figure 2.8.: Distributions of the thickness increase λ3 (fiber angle β = 0◦). The axial stretch varies:
(a) λL = 1.0; (b) 1.2; (c) 1.4. The increase in λ3 is not always at the fundus. For λL = 1.4 the
maximum value of λ3 is located in the intact artery close to the neck of the aneurysm, with value
5.64.

and may cause degradation of the media and the internal elastic lamina of the artery. As
a result, an increased load has to be carried by the adventitia, which is triggered to dilate.
If this process is continued, this dilatation may develop into a saccular aneurysm. In the
present aneurysm model, processes that relate to fluid dynamics and mechanochemical
processes leading to aneurysm growth initiation are not considered explicitly. Instead, an
initial and instant loss of the media and the internal elastic lamina is assumed to occur initi-
ating aneurysm growth. In previous works, the proposed aneurysm growth model has been
assessed for axisymmetric growth [20] and also for a more realistic 3D setting in the form
of a human middle cerebral artery [87]. In the present paper the saccular aneurysm growth
model is extended to include collagen fibers in the media of the parent artery surrounding
the aneurysm. A parameter study is performed to investigate the influence of collagen fiber
organization in the media and axial in situ stretch of the artery on the on aneurysm growth.
The driving mechanism for the aneurysm growth is the continuous turnover of collagen
fibers in the aneurysm wall. The model response is quantified in terms of the principal
Cauchy stresses, the thickness increase of the aneurysm wall and the maximum in-plane
Cauchy shear stresses. The model parameters are chosen on the basis of experiments and
previous numerical results.

By introducing fibers in the media, the size of the developed aneurysm decreased notice-
ably. However, in terms of aneurysm size, there was no significant difference between
the models with different medial fiber angles. It was also noted that the maximum stress,
appearing at the fundus of the aneurysm, decreased by introducing fibers in the media.
Fibers add stiffness to the vessel and, thereby, reduce the compliance at the boundary be-
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Figure 2.9.: Distributions of maximum in-plane Cauchy shear stress τ (fiber angle β = 0◦). The
axial stretch varies: (a) λL = 1.0; (b) 1.2; (c) 1.4. The maximum value is lowest for λL = 1.2,
whereas the peak values are almost identical for λL = 1.0 and 1.4. The location of the maximum
values for λL = 1.0 and 1.2 is at the long side of the aneurysm and on the short side for 1.4.

tween the aneurysm and the artery. With a decreased boundary compliance, the resulting
aneurysm size becomes smaller and the aneurysm wall stresses decrease. By increasing
the fiber angle β the peak value of the maximum principal Cauchy stress σ?

1 increases
somewhat. When β increases, the compliance in the circumferential direction of the artery
increases, and this results in a slightly wider aneurysm neck. This may in turn explain why
the aneurysm wall stress increases with increasing β .

The most drastic change in the aneurysm geometry is, however, seen by altering the axial
stretch imposed on the model. The case with no axial stretch (λL = 1.0) produced a berry-
shaped aneurysm with a very sharp neck. For the largest stretch investigated (λL = 1.4),
the neck was much less pronounced, and the aneurysm clearly became less berry-shaped.
Due to the loss of media in the aneurysm region, there is a localization in the remaining
media below the aneurysm. The reference geometry and the modeling method correspond
to an instant loss of media in a circular damage region. The size of this damage region
is defined by the radius Ran which is independent of the axial stretch. However, it should
be noted that the level of applied axial stretch will still affect how strong the localization
becomes in the remaining media below the aneurysm. The character of this localization
will strongly affect the shape of the aneurysm, where a higher axial stretch tends to enhance
the localization and make the aneurysm more ellipsoidal.

The axial in situ stretch of arteries is known to vary, and the values used here are in accor-
dance with clinical observations [102]; λL = 1.31 has been observed for cerebral arteries.
The axial in situ stretch had a stronger influence on the maximum principal stress in the
aneurysm than the fiber angle; higher stretches resulted in higher stresses. The surface
area of the aneurysm on which the internal pressure acts is larger for larger axial stretches,
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which explains the higher stresses. The stress, however, is also influenced by the thick-
ness increase of the aneurysmal wall, which is larger for higher axial stretches and thereby
reduces the stress to some extent. The strength of cerebral aneurysmal tissue has been
experimentally estimated to 0.5-2.0 MPa [103, 104]. The peak stresses in our model for
the various axial stretches and the medial collagen fiber angles are 0.58-0.63 MPa, and are
of the same order.

Adding fibers in the media reduced the maximum thickness at the fundus from 137 µm
(λ3 = 4.56) to 130 µm (λ3 = 4.34) for λL = 1.2. As the thickness increase is governed
by the total stretch of the material (with respect to the reference configuration) and as
the inclusion of medial fibers reduced the aneurysmal stretching by stiffening the borders
between aneurysm and artery, this is an expected outcome. Changing the fiber angle in
the media resulted in a minimal increase in stretch and, thereby, a minimal increase in
thickness of the adventitia, whereas increasing the axial stretch of the artery resulted in
relatively large stretches in the aneurysm, leading to increasing thickness. For the lowest
axial stretch considered (λL = 1.0), the thickness was 122 µm, and for the largest (λL =
1.4) 137 µm. The thickness increases are in the range of experimentally determined values
[104], where the thickness of larger cerebral aneurysms is between 116 and 212 µm.

In summary, saccular cerebral aneurysm growth has been modeled. In particular, the influ-
ences of the medial collagen organization (fiber angles) and the axial in situ stretch on the
aneurysm growth have been investigated. The previously proposed aneurysm model was
extended to include fibers in the media of the parent artery surrounding the aneurysm, and
a parameter study was performed by changing the collagen fiber angle in the media and
the axial in situ stretch of the artery. When collagen fibers were included in the media, the
peak stress in the aneurysm was reduced by 7.2% (compared to a case without fibers). In-
creasing axial stretch led to increasing steady-state aneurysm wall stresses. The numerical
results predicted by the model are in good agreement with experimental data documented
in the literature. The present study indicates that improved estimations of the mechanical
properties of the medial collagen and, in particular, of the axial in situ stretches of arteries
are necessary for a refined prediction of aneurysm growth.
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3. TENSORS NEEDED FOR FINITE ELEMENT
IMPLEMENTATION OF AN INVARIANT BASED
CONSTITUTIVE MODEL FOR PASSIVE MYOCARDIUM

Abstract In this paper constituents needed for implementation of a new structurally
based constitutive law describing the behavior of passive myocardium is shown. The
model aims at capturing the orthotropic behavior of passive myocardium with respect to its
three orthogonal fiber, sheet and sheet-normal directions. Both the structure of the mate-
rial model, in particular the separation of invariants into separate terms, and the coordinate
frame independence caused by the invariants, leads to stress and elasticity tensors which
may be implemented in a finite element software with relative ease when compared, for
example, a material model based on Green-Lagrange strain components. The analytical
Cauchy and second Piola-Kirchhoff stress expressions of the model are also shown for
uniaxial, biaxial and simple shear deformation modes. The model is fitted against exper-
imental data of passive myocardium and a near perfect fit is shown. The sensitivity of
the material parameters retrieved from the fit is examined where parameter bs is found to
be the most sensitive for the fit against a simple shear test. In addition, a comparison is
made between the newly proposed invariant based model and a commonly used Green-
Lagrange strain based model. Using material parameters retrieved when both models was
fitted against a simple shear mode experiment, the newly proposed model was better suited
to predict the stress in myocardium for a biaxial deformation when compared to experi-
mental data. The finite element implementation was tested on a model with an ellipsoidal
geometry which is a commonly used geometrical model to represent the left ventricle of
the heart. In the geometrical model, the fiber, sheet and sheet-normal directions were in-
cluded and for a simple case with internal pressure, a gradient of the fiber stress component
is evident through the wall thickness which suggests that also residual stresses may need
to be included in a future model describing the heart. It is also shown that the gradient is
steeper if all fibers are all aligned in the circumferential direction of the ellipsoid which
also results in a much larger deformation at the apex.

3.1. Introduction

Heart failure is the major cause of morbidity and mortality in the industrialized world.
A large percentage of patients suffers from dilated cardiomyopathy and many of these
individuals develop left ventricular dyssynchrony where the electrical activation sequence
of the heart, which orchestrates mechanical contraction, is disturbed. This entails a less
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synchronized and thus less efficient mechanical contraction of the ventricles which impairs
the heart’s ability to drive blood through the circulatory system.

Inquiries into these regulatory mechanisms by experimental means are hampered by the
inability of currently available methodology to simultaneously record electrical and me-
chanical activity in 3D with sufficient spatio-temporal resolution. Further, the multi-scale
nature of the phenomenon exacerbates the reintegration of disparate experimental data into
comprehensive models of cardiac electromechanics. For instance, the regulation of active
tension generation occurs at cellular and subcellular spatial scales, however, important
regulatory input is provided via mechanical deformation of the myocardial walls, which is
governed by spatial scales at the tissue and organ level.

Computational modeling almost naturally suggests itself as a complementary approach to
tackle these multi-scale challenges by facilitating the explicit representation of interactions
across multiple temporal and spatial scales within a single comprehensive computational
model. Such biophysically detailed multiscale models of ventricular electromechanics
may play a pivotal role in the quest of conceiving better therapeutical strategies by en-
abling basic research to fully elucidate underlying mechanisms with high spatio-temporal
resolution. Although the cardiac modeling community was striving for developing such
modeling tools since more than three decades [105], the methodological complexities in-
volved and the lack of adequate computational resources prevented major progress for
many years.

Over the past few years, multi-scale computational models of ventricular electrical ac-
tivity have been routinely used in numerous studies [106–108] where models have been
discretized at a paracellular resolution [109, 110] using highly detailed representations of
cellular dynamics with integrated models of excitation-contraction coupling and mitochon-
drial energetics [111]. In comparison, a fairly small number of studies employed organ
level models of ventricular cardiac mechanics, and, even less frequent, models of ventric-
ular electromechanics. In most of the cardiac organ level mechanics studies researchers
resorted to simplifications by using electrical-only models to predict effects on mechan-
ical performance [112], by employing simplified models of cellular dynamics [75, 113]
and active tension [114], by simplified representation of organ geometry [113,115] and by
neglecting orthotropic properties of tissue structure [75, 113] and, finally, by largely ne-
glecting the impact of pathological alterations onto ventricular electromechanics, although
execptions do exist [116]. Evidence of the progress made in the field of computational
modeling is the introduction of models into clinical application as an additional modality
which supports clinical decisions in treating ischemic heart disease [117], the assessment
of effects of heart surgery [118] and ventricular pacing [114, 116, 119]. Undoubtedly, de-
spite the computational complexity of the current state of the art, current models are still in
their infancy and, clearly, many of the physiological mechanisms which are aimed at to be
modeled need to be further investigated. Nonetheless, these studies provide a first glimpse
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into future applications and nicely highlight the high potential and the predictive power of
biophysically detailed multi-scale models of ventricular electromechanics.

From an organ level modeling point of view, the constitutive laws which describe the
mechanical properties of the myocardial wall are of pivotal importance for quantitatively
realistic predictions of deformation feedback which serves as input to cellular regulatory
loops. In this context the fibrous and laminar arrangement of intracellular and extracellular
matrices composing the myocardial wall is of particular importance. There is accumulat-
ing evidence that rotationally isotropic material descriptions overly simplify biophysical
reality. This notion is strongly supported by the observation that such models fail to
quantitatively reproduce myocardial wall thickening during systole [120]. Further, it is
becoming increasingly more apparent that local variations in material properties are an
imporant factor in itself to understand the fundamental mechanisms underlying ventricular
mechanics. For instance, a recent experimental study demonstrated that myocardial wall
thickening is highly heterogeneous despite the absence of any heterogeneity in systolic
fiber shortening [121]. These findings support the hypothesis put forward in earlier studies
by numerous authors [120, 122, 123] that rearrangement of laminar sheets of fibers, and
thus, the presence of tissue orthotropy, is a key contributor which amplifies systolic fiber
shortening into adequate myocardial wall thickening. Finally, the constitutive descrip-
tions are not only spatially varying throughout the heart, they are also temporally varying
due to pathologies such as myocardial infarction [124] or dilated cardiomyopathy [125].
Such events clearly alter passive mechanical tissue properties significantly as a disease
progresses.

It is expected that current advances made in computational modeling and the advent of
the next generation petaflops supercomputers will help to leverage a new generation of
electromechanically coupled multi-scale models of the ventricles which, eventually, enable
novel investigations of cardiac function at an unprecedented level of physiological detail.
At the very core of coupling organ level mechanics to cellular signaling is a mechancally
sound representation of the constitutive material parameters of the myocardium which
allow accurate prediction of stresses throughout the myocardial wall. The present study
describes a numerical realization of a recently published novel constitutive law for the
myocardial wall which is a further important step towards predictive computational models
of ventricular electromechanics.

Passive myocardium has been found to be a nearly incompressible, pseudo-elastic and
anisotropic material [126], with a hyperelastic stress response often modeled by a strain-
energy function [47]. The myocytes in the myocardium of the left ventricle of the heart
is in general organized in a right-handed helical pathway from the endocoardium towards
the midwall, and a left-handed helical pathway from the midwall towards the epicardium,
[22–24]. Furthermore, the myocytes are bundled and form layers with a direction that
vary through the thickness of the ventricle wall, [24, 25, 27, 28]. This organization of the
myocyte, in both a fiber and sheet direction, is responsible for the twisting motion of the
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heart during systole [127]. Orthotropic models are available that have shown a good fit
against experimental data. However, as the material parameters are coupled in many of
those models, for instance the model proposed by Costa et al. [47], it is often difficult to
find a clear physical interpretation what those material parameters relate to. For models
with uncoupled material parameters, as for instance the Pole-Zero model proposed by
Hunter et al. [128], the problem is the total number of parameters, in this case 18. Such a
high number of material parameters may lead to non-uniqueness when fitting the model to
experimental data.

For a recent review of both transversally isotropic and orthotropic constitutive models
describing the passive behavior of myocardium, see Holzapfel and Ogden [42], where a
structurally based constitutive model for myocardium was introduced that includes the or-
thotropic structure of the myocardium and for which the material parameters have a clear
physical interpretation. In this paper the full expression of the constituents needed for
implementation of this model in a finite element framework is shown. Also, analytical
expressions needed for fitting the model to experimental data as well as the fit against two
available experiments is shown. Further, the model is compared to the often used consti-
tutive model showed by Costa et al. [47], and an example is made calculating the stress
response when applying internal pressure on an ellipsoidal geometry which represents the
left ventricle of the heart.

3.2. Material Model

As described earlier, myocardium, the material in the left ventricle midwall, may be char-
acterized by a strain-energy function, Ψ, where the deformation has a hyperelastic stress
response. In this section the volumetric and isochoric expressions of the newly proposed
model for left ventricular myocardium [42] is shown together with the resulting stress and
elasticity tensors in both the Lagrangian and Eulerian description.

3.2.1. Volume-preserving continuum mechanical framework

We introduce the deformation gradient F and its multiplicative decomposition into a volume-
changing part J1/3I and a volume-preserving part F so that F = J1/3F, where J = detF > 0
is the volume ratio, and I is the second-order unit tensor (see, for example, [6]). The right
and left Cauchy-Green tensors follow as C = J2/3C and b = J2/3b, respectively, where
C = FTF and b = FFT denote the modified tensor quantities. Additionally we are intro-
ducing three modified invariants as

Ī1 = TrC, Ī4a = a0 · (Ca0), Ī8ab = a0 · (Cb0) = b0 · (Ca0), (3.1)

where a0 and b0 are unit vectors along the undeformed directions. The related derivatives
of Ī1, Ī4a and Ī8ab with respect to C are given by

∂ Ī1

∂C
= I,

∂ Ī4a

∂C
= a0⊗a0,

∂ Ī8ab

∂C
=

1
2
(a0⊗b0 +b0⊗a0), (3.2)
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where the symbol ⊗ denotes the (dyadic) tensor product. The three invariants I1, I4a and
I8ab are defined in an analogous way to (3.1) and read I1 = TrC, I4a = a0 · (Ca0) and
I8ab = a0 · (Cb0) = b0 · (Ca0) so that the relations

Ī1 = J−2/3I1, Ī4a = J−2/3I4a, Ī8ab = J−2/3I8ab (3.3)

hold.

3.2.2. Strain-energy function for the passive mechanical response of the
myocardium

Myocardial tissue is an orthotropic material with fiber, sheet and sheet-normal directions
denoted by the direction vectors f0, s0 and n0, respectively, as shown in Fig. 3.1.

Figure 3.1.: Orthotropic myocardial tissue showing the vectors in the fiber, sheet and sheet-normal
directions (f0, s0, n0).

We postulate here a unique decoupled representation of the strain-energy function Ψ (per
unit reference volume). It is based on the kinematic assumption as introduced above, and
is of the specific form

Ψ = Ψvol(J)+Ψiso(Ī1, Ī4f, Ī4s, Ī8fs), (3.4)

where Ψvol and Ψiso are given scalar-valued functions of J and the modified invariants
Ī1, Ī4f, Ī4s, Ī8fs, respectively. Note that these invariants are according to (3.1) where a0 and
b0 are replaced by f0 and s0, as shown in Fig. 3.1. The two scalar-valued functions then
describe the volumetric and isochoric elastic responses of the material.

The function Ψvol is treated as a penalty function enforcing the incompressibility constraint
J = 1. We use here

Ψvol =
µK

2
(J−1)2, (3.5)

where µK is the bulk modulus, which serves as a user-specified penalty parameter. With
increasing µK the violation of the constraint is reduced. If the restriction on the value
µK→ ∞ is taken, the constraint condition is exactly enforced, and then (3.4) represents a
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functional for an incompressible material with J = 1. The specification of the strain-energy
function Ψiso is based on the formulation of Holzapfel and Ogden [42], and has the form

Ψiso =
a

2b
{exp[b(Ī1−3)]−1}

+ ∑
i=f,s

ai

2bi
{exp[bi(Ī4 i−1)2]−1}+ afs

2bfs
[exp(bfsĪ2

8fs)−1]. (3.6)

As discussed in [42], the eight material parameters a, b, af, bf, as, bs, afs and bfs are all
positive and the terms containing the directionally dependent invariants are included in Eq.
(3.6) only if Ī4f > 1 and Ī4s > 1 is fulfilled.

3.2.3. Stress tensors

According to the form of the strain-energy function (3.4) the second Piola-Kirchhoff stress
tensor S = 2∂Ψ/∂C is also separated into a purely volumetric part (Svol) and a purely
isochoric (Siso) part, i.e. S = Svol +Siso. The volumetric part is

Svol = JphC−1 where ph =
dΨvol(J)

dJ
= µK(J−1) (3.7)

is the hydrostatic pressure, and the function (3.5) has been introduced. From (3.6), by using
the chain rule, the isochoric second Piola-Kirchhoff stress tensor takes on the form

Siso = 2
∂Ψiso

∂C
= 2

(
ψ1

∂ Ī1

∂C
+ψ4f

∂ Ī4f

∂C
+ψ4s

∂ Ī4s

∂C
+ψ8fs

∂ Ī8fs

∂C

)
, (3.8)

where we have introduced the definitions

ψ1 =
∂Ψiso

∂ Ī1
=

a
2

exp[b(Ī1−3)], (3.9)

ψ4 i =
∂Ψiso

∂ Ī4 i
= ai(Ī4 i−1)exp[bi(Ī4 i−1)2], i = f,s, (3.10)

ψ8fs =
∂Ψiso

∂ Ī8fs
= afsĪ8fs exp(bfsĪ2

8fs), (3.11)

which are the derivatives of (3.6) with respect to the four modified invariants Ī1, Ī4f, Ī4s and
Ī8fs. For (3.8) we have to specify the derivatives of the modified invariants with respect
to C. For the first modified invariant Ī1 = J−2/3TrC we may write by using the product
rule

∂ Ī1

∂C
=−1

3
J−2/3C−1TrC+ J−2/3I = J−2/3[I− 1

3
(TrC)C−1] = J−2/3DevI, (3.12)

where Dev(•••) = (•••)− (1/3)[(•••) : C ]C−1 is the deviatoric operator in the Lagrangian de-
scription so that Dev(∂Ψiso/∂C) : C = 0. Next we need to specify the term ∂ Ī4f/∂C. By
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using Ī4f = J−2/3I4f and by taking into consideration that ∂ I4f/∂C = f0⊗ f0 we get

∂ Ī4f

∂C
= J−2/3 ∂ I4f

∂C
+ I4f

∂J−2/3

∂C
= J−2/3f0⊗ f0 + I4f(−

1
3

J−2/3C−1)

= J−2/3(f0⊗ f0−
1
3

I4fC−1) = J−2/3(f0⊗ f0−
1
3

Ī4fC
−1
)

= J−2/3Dev(f0⊗ f0). (3.13)

In an analogous manner we may write

∂ Ī4s

∂C
= J−2/3Dev(s0⊗ s0),

∂ Ī8fs

∂C
=

1
2

J−2/3Dev(f0⊗ s0 + s0⊗ f0). (3.14)

Hence, by substituting (3.12)–(3.14) into (3.8) and by adding (3.7)1 we get the explicit
expression for the second Piola-Kirchhoff stress tensor, i.e.

S = JphC−1 +2J−2/3[ψ1DevI+ψ4fDev(f0⊗ f0)+ψ4sDev(s0⊗ s0)

+
1
2

ψ8fs Dev(f0⊗ s0 + s0⊗ f0)]. (3.15)

In order to get the spatial version of this expression, we need to perform a push-forward
operation of the second Piola-Kirchhoff stress tensors to the current configuration which
is σσσ = J−1F(Svol +Siso)FT. By using (3.15) and b = J2/3b it is straightforward to get the
Cauchy stress tensor σσσ as

σσσ = phI+2J−1[ψ1 devb+ψ4f dev(f⊗ f)+ψ4s dev(s⊗ s)

+
1
2

ψ8fs dev(f⊗ s+ s⊗ f)], (3.16)

where we have introduced the spatial vectors

f = Ff0, s = Fs0, (3.17)

describing the fiber and sheet vectors in teh spatial configuration repsectively and dev(•••) =
(•••)− (1/3)[(•••) : I ]I is the deviatoric operator in the Eulerian description.

3.2.4. Elasticity tensor in the Lagrangian description

The elasticity tensor in the Lagrangian description is also separated into its volumetric and
isochoric parts, i.e.

C= 2
∂S
∂C

= Cvol +Ciso, (3.18)

where the volumetric part may be expressed as

Cvol = 2
∂ (JphC−1)

∂C
= J p̃hC−1⊗C−1−2JphC−1�C−1, (3.19)
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with p̃h = ph + Jdph/dJ and C−1�C−1 =−∂C−1/∂C (for details see [6]).

Due to the additive composition of the terms in (3.6), the isochoric part Ciso of the elasticity
tensor also becomes a sum,

Ciso = 2
∂Siso

∂C
= ∑
i=1,4f,4s,8fs

CĪi
iso, (3.20)

where the superscript refers to the invariant that is included in the tensor expression (3.15).
Thus, by using the product rule we obtain the four expressions

CĪi
iso = 4

∂

∂C

(
ψ i

∂ Īi

∂C

)
= 4ψ ii

∂ Īi

∂C
⊗ ∂ Īi

∂C
+4ψ i

∂ 2Īi

∂C∂C
, i = 1,4f,4s,8fs, (3.21)

where the four terms ∂ Īi/∂C are provided in (3.12)–(3.14) and where the definition ψ ii =
∂ 2Ψiso/∂ Īi∂ Īi is introduced. With the strain-energy function (3.6) we get the specifications
for ψ ii, i.e.

ψ11 =
∂ 2Ψiso

∂ Ī1∂ Ī1
=

ab
2

exp[b(Ī1−3)], (3.22)

ψ4 j 4 j =
∂ 2Ψiso

∂ Ī4 j∂ Ī4 j
= a j[1+2b j(Ī4 j−1)2]exp[b j(Ī4 j−1)2], j = f,s, (3.23)

ψ8fs8fs =
∂ 2Ψiso

∂ Ī8fs∂ Ī8fs
= afs(1+2bfsĪ2

8fs)exp(bfsĪ2
8fs). (3.24)

In addition, in (3.21)2 we need to specify the second derivative of the modified invariants
with respect to C. For the modified invariant Ī1 we obtain with (3.12)3 that

∂ 2Ī1

∂C∂C
=

∂ (J−2/3DevI)
∂C

= − 1
3

J−2/3C−1⊗DevI− 1
3

J−2/3
(

I⊗C−1 +TrC
∂C−1

∂C

)
= − 1

3
J−2/3(C−1⊗DevI+DevI⊗C−1)+

1
3

J−2/3I1P̃, (3.25)

where
P̃= C−1�C−1− 1

3
C−1⊗C−1 (3.26)

is a modified projection tensor of fourth-order [6]. In an analogous manner we may derive
the second derivative of Ī4f with respect to C, i.e.

∂ 2Ī4f

∂C∂C
=−1

3
J−2/3[C−1⊗Dev(f0⊗ f0)+Dev(f0⊗ f0)⊗C−1]+

1
3

J−2/3I4fP̃, (3.27)
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and ∂ 2Ī4s/∂C∂C which we get by writing s instead of f in Eq. (3.27). Finally, taking the
derivative of (3.14)2 with respect to C in an analogous way, we get

∂ 2Ī8fs

∂C∂C
= − 1

6
J−2/3[C−1⊗Dev(f0⊗ s0 + s0⊗ f0)

+Dev(f0⊗ s0 + s0⊗ f0)⊗C−1]+
1
3

J−2/3I8fsP̃. (3.28)

Hence, substituting (3.12)3 and (3.25)3 into (3.21)2 we get the final expression for the
isochoric elasticity tensor with respect to the isotropic invariant, i.e.

CĪ1
iso = 4J−4/3

ψ11DevI⊗DevI− 4
3

J−2/3
ψ1(C

−1⊗DevI+DevI⊗C−1− I1P̃). (3.29)

Using (3.13)5 and (3.27) in (3.21)2 gives

CĪ4f
iso = 4J−4/3

ψ4f4fDev(f0⊗ f0)⊗Dev(f0⊗ f0)

− 4
3

J−2/3
ψ4f[C

−1⊗Dev(f0⊗ f0)+Dev(f0⊗ f0)⊗C−1− I4fP̃], (3.30)

while the isochoric elasticity tensor CĪ8fs
iso follows from (3.21)2 by means of (3.14)2 and

(3.28), i.e.

CĪ8fs
iso = J−4/3

ψ8fs8fsDev(f0⊗ s0 + s0⊗ f0)⊗Dev(f0⊗ s0 + s0⊗ f0)

− 2
3

J−2/3
ψ8fs[C

−1⊗Dev(f0⊗ s0 + s0⊗ f0)

+Dev(f0⊗ s0 + s0⊗ f0)⊗C−1−2I8fsP̃]. (3.31)

Note that the elasticity tensor CĪ4s
iso is simply achieved by writing s instead of f in eq. (3.30).

Hence, with the relations (3.29)–(3.31) we have now an explicit expression for the iso-
choric elasticity tensor (3.20)2 expressed in terms of material quantities.

3.2.5. Elasticity tensors in the Eulerian description

The elasticity tensor C in the Eulerian description may be calculated by using the push-
forward operation of C, i.e. [C]abcd = FaAFbBFcCFdD[C]ABCD, so that C = Cvol + Ciso, which
is the analogue of eq. (3.18)2. In the following we show each term of the Eulerian elasticity
tensor.

The volumetric elasticity tensor Cvol in the Eulerian description may be written as the push-
forward operation of (3.19)2 which is

Cvol = J(p̃hI⊗ I−2phI), (3.32)
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where I is the fourth-order unit tensor. It is also straightforward to provide the spatial
version of (3.20)2, i.e. the isochoric elasticity tensor

Ciso = ∑
i=1,4f,4s,8fs

C
Īi
iso, (3.33)

with the four contributions which may be derived from (3.29)-(3.31). By using the modi-
fied left Cauchy-Green tensor b = FFT and the definitions (3.3) and (3.17) we obtain the
isochoric elasticity tensors which are needed in (3.33), i.e.

C
Ī1
iso = 4ψ11devb⊗devb− 4

3
ψ1(I⊗devb+devb⊗ I− Ī1P), P = I− 1

3
I⊗ I, (3.34)

C
Ī4f
iso = 4ψ4f4fdev(f⊗ f)⊗dev(f⊗ f)

− 4
3

ψ4f[I⊗dev(f⊗ f)+dev(f⊗ f)⊗ I− Ī4fP], (3.35)

C
Ī8fs
iso = ψ8fs8fsdev(f⊗ s+ s⊗ f)⊗dev(f⊗ s+ s⊗ f)

− 2
3

ψ8fs[I⊗dev(f⊗ s+ s⊗ f)+dev(f⊗ s+ s⊗ f)⊗ I−2Ī8fsP]. (3.36)

Note that in this form the volume ratio J does not appear explicitly.

3.3. Analytical Expression of the Stress Tensor

When implementing a new material model in a finite element framework, the implemen-
tation itself needs to be verified. For that reason, analytical expressions of the material
model is presented in this section. Expressions are shown for uniaxial deformation, biax-
ial deformation and simple shear. The same analytical expressions may also be used for
retrieving the material parameters of the model by fitting them to experimental data.

3.3.1. General analytical expression for incompressible material

For an incompressible material there is no change of volume which means the volume ratio
J = 1 and there is no deviatoric part. The analytical expression of the Cauchy stress shown
in (3.6) is thus

σσσ = phI+2(ψ1 b+ψ4f f⊗ f+ψ4s s⊗ s)+ψ8fs (f⊗ s+ s⊗ f). (3.37)

Here, ph is the hydrostatic pressure and may be seen as a Lagrange multiplier for the
volume constraint. It is determined by the boundary conditions. Using

[b] =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 and
[f] = [f1 f2, f3]

T

[s] = [s1,s2,s3]
T

[n] = [n1,n2,n3]
T

(3.38)
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the components of the symmetric Cauchy stress tensor (3.37) are

σ11 = ph +2(ψ1b11 +ψ4ff2
1 +ψ4ss2

1 +ψ8fsf1s1), (3.39)

σ22 = ph +2(ψ1b22 +ψ4ff2
2 +ψ4ss2

2 +ψ8fsf2s2), (3.40)

σ33 = ph +2(ψ1b33 +ψ4ff2
3 +ψ4ss2

3 +ψ8fsf3s3), (3.41)
σ12 = 2(ψ1b12 +ψ4ff1f2 +ψ4ss1s2)+ψ8fs(f1s2 + f2s1), (3.42)
σ13 = 2(ψ1b13 +ψ4ff1f3 +ψ4ss1s3)+ψ8fs(f1s3 + f3s1), (3.43)
σ23 = 2(ψ1b23 +ψ4ff2f3 +ψ4ss2s3)+ψ8fs(f2s3 + f3s2). (3.44)

If not stated otherwise in the following, the undeformed fiber, sheet and sheet-normal
directions are assumed to coincide with the global cartesian axis, [f0] = [1, 0, 0]T, [s0] =
[0, 1, 0]T and [n0] = [0, 0, 1]T. Further, we are assuming the material is incompressible and
we are considering a plain stress state.

3.3.2. Uniaxial stretch

For a uniaxial stretch, λff in the f0 direction, the deformation gradient and left Cauchy
Green tensor are

[F] =

λff 0 0
0 1/

√
λff 0

0 0 1/
√

λff

 , [b] =

λ 2
ff 0 0

0 1/λff 0
0 0 1/λff

 , (3.45)

Remembering that the terms correlating to the fiber and sheet direction in the strain energy
function are only active if they are in tension, i.e., λs < 1, ψ4s = 0, the components of the
Cauchy stress are

σ11 = 2ψ1(λ
2
ff−1/λff)+2ψ4fλ

2
ff, (3.46)

σ22 = ph +2ψ1(1/λff) = 0, (3.47)
σ33 = ph +2ψ1(1/λff) = 0, (3.48)
σ12 = σ13 = σ23 = 0, (3.49)

where ph have been calculated from (3.47) or (3.48) and inserted in (3.46). The derivatives
used in (3.46)–(3.48) are

ψ1 =
a
2

exp[b(λ 2
ff +

2
λff
−3)] and ψ4f = af(λ

2
ff−1)exp[bf(λ

2
ff−1)2]. (3.50)

3.3.3. Biaxial stretch

For an equibiaxial stretch, λff and λss in the f0 and s0 directions respectively, the deforma-
tion gradient and left Cauchy Green tensor are

[F] =

λff 0 0
0 λss 0
0 0 1/(λffλss)

 and [b] =

λ 2
ff 0 0

0 λ 2
ss 0

0 0 1/(λffλss)
2

 . (3.51)
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The components of the Cauchy stress tensor are

σ11 = 2ψ1(λ
2
ff−

1
λ 2

ffλ
2
ss
)+2ψ4fλ

2
ff, (3.52)

σ22 = 2ψ1(λ
2
ss−

1
λ 2

ffλ
2
ss
)+2ψ4sλ

2
ss, (3.53)

σ33 = ph +2ψ1
1

λ 2
ffλ

2
ss
= 0, (3.54)

σ12 = σ13 = σ23 = 0, (3.55)

where ph is calculated from (3.54) and inserted into (3.52) and (3.53). The derivatives used
in (3.52)–(3.54) are

ψ1 =
a
2

exp[b(λ 2
ff +λ

2
ss +

1
λ 2

ffλ
2
ss
−3)], (3.56)

ψ4f = af(λ
2
ff−1)exp[bf(λ

2
ff−1)2], (3.57)

ψ4s = as(λ
2
ss−1)exp[bs(λ

2
ss−1)2]. (3.58)

3.3.4. Simple shear

For an analytical expression of simple shear, γ in the 21-plane, i.e. shearing the X2 plane
in the X1 direction (see Fig. 3.2), the deformation gradient and corresponding left Cauchy
Green tensor are

[F] =

1 γ 0
0 1 0
0 0 1

 , [b] =

1+ γ2 γ 0
γ 1 0
0 0 1

 . (3.59)

This deformation gradient is valid for both plain strain and plain stress. It is volume
preserving (isochoric), i.e. J = det(F) = 1, exactly.

Adding some complexity to the analytical case, the undeformed fiber and sheet directions
may vary with an angle α with respect to the global X1-axis, as shown in Fig. 3.2. The
direction vectors for the fiber, sheet and sheet-normal axes are then

[f0] =

 cosα

sinα

0

 , [s0] =

 −sinα

cosα

0

 , [n0] =

 0
0
1

 , (3.60)

and the deformed direction vectors are

[f] =

 cosα + γ sinα

sinα

0

 , [s] =

 −sinα + γ cosα

cosα

0

 , [n] =

 0
0
1

 . (3.61)
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Figure 3.2.: Shear of a square block in the 21-plane with γ . The fiber direction is at angle α with
respect to the global 1-axis, and the sheet axis is perpendicular to the fiber axis.

Using s = sinα , c = cosα for a more simple notation, the Cauchy stress components, as
shown in (3.39)–(3.44), are now

σ11 = 2 [ψ1γ
2 +ψ4f(c+ γs)2 +ψ4s(−s+ γc)2 +ψ8fs(c+ γs)(−s+ γc)], (3.62)

σ22 = 2(ψ4fs2 +ψ4sc2 +ψ8fssc), (3.63)
σ33 = ph +2ψ1 = 0, (3.64)

σ12 = 2[ψ1γ +2ψ4fs(c+ γs)+2ψ4sc(−s+ γc)]+ψ8fs(2γsc+2c2−1), (3.65)
σ13 = σ23 = 0. (3.66)

Again, ph is calculated from (3.64) and is inserted in (3.62) and (3.63). For the special
case where α = 0 the stress components are

σ11 = 2(ψ1γ
2 +ψ4sγ

2 +ψ8fsγ), (3.67)
σ22 = 2ψ4s, (3.68)
σ33 = 0, (3.69)
σ12 = 2(ψ1 +ψ4s)γ +ψ8fs, (3.70)
σ13 = σ23 = 0, (3.71)

and for this case the derivatives used in (3.67), (3.68) and (3.70) are

ψ1 =
a
2

exp(bγ
2), (3.72)

ψ4f = 0, (3.73)

ψ4s = asγ
2 exp(bs γ

4), (3.74)

ψ8fs = afsγ exp(bfs γ
2). (3.75)

These equations may be used for both validating an implementation of the proposed model
in a finite element software as well as when fitting the model against experimental data to
retrieve material parameters as shown in the next section.
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Figure 3.3.: Six possible shear directions of a cube with respect to fiber, sheet and sheet-normal
directions f0, s0, n0 aligned in the global X1, X2, X3 coordinate system.

3.4. Model Fit to Experimental Data

To verify that our model describes the behavior of myocardial tissue, it is fitted against
experimental data using the nonlinear least squares MATLAB lsqnonlin function. Using
the large-scale option in this function, it is possible to set lower bounds on the fitting
procedure which may be needed, as previously described in Section 3.2.2 and [42], to
ensure that all material parameters are larger than zero.

3.4.1. Fit to a simple shear experiment

Plain stress, shear tests was performed by Dokos et al. [51], where cubic pieces was ex-
cised from porcine myocardium. In the experiments, the fiber, sheet and sheet-normal
directions of the myocardial cubes were identified and positioned in the global X1, X2
and X3 directions respectively. Thus, the undeformed direction vectors are f0 = [1, 0, 0]T,
s0 = [0, 1, 0]T and n0 = [0, 0, 1]T. The cubes were then sheared in all six possible shearing
directions as shown in Fig. 3.3. The shear stress corresponding to shear displacement were
shown for each direction, see for instance Fig. 6 in [51]. Note however, that the ordering of
the labels (fs) and (fn) in that figure is inconsistent with other figures in their paper. This is
corrected by switching the roles of these labels in the fitting procedure. We are assuming
the deformation mode is simple shear, and thus the analytical equations for the shear stress
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Figure 3.4.: Fit to data presented by Dokos et al. [51] where cubes of myocardial tissue was sheared
in 6 different directions according to: fiber to sheet (fs); fiber to sheet-normal (fn); sheet to fiber
(sf); sheet to sheet-normal (sn); sheet-normal to sheet (ns) and sheet-normal to fiber (nf).

are

σ
(fs)
12 = 2(ψ1 +ψ4f)γ +ψ8fs, (3.76)

σ
(fn)
13 = 2(ψ1 +ψ4f)γ, (3.77)

σ
(sf)
21 = 2(ψ1 +ψ4s)γ +ψ8fs, (3.78)

σ
(sn)
23 = 2(ψ1 +ψ4s)γ, (3.79)

σ
(ns)
32 = 2ψ1γ, (3.80)

σ
(nf)
31 = 2ψ1γ. (3.81)

It may be noted that the expressions (3.78) and (3.70) are the same as it is the same case.
The fit of the stress Eqs. (3.76)-(3.81) is shown in Fig. 3.4 and as may be seen the procedure
leads to a near perfect fit with the corresponding values in Table 3.1. Except for (3.80) and
(3.81), the expressions for shear stress all look different and thus individual stresses may
be calculated for all shear stresses. The small difference between the stresses of (3.80) and
(3.81), as seen in the test performed by Dokos et al. [51], motivates that they have a similar
expression. However, if a variation is needed, it could easily be achieved by adding the
following additional term to (3.6),

Ψ8sn =
asn

2bsn
[exp(bsnĪ2

8sn)−1]. (3.82)

This term would lead to the addition ψ8sn, to equations (3.79) and (3.80) which result in a
total separation of all values, see [42] for more details. The meaning of the indices for the
invariant and material parameters in (3.82) are consistent with those previously shown.
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a b af bf as bs afs bfs
experimental type (kPa) (-) (kPa) (-) (kPa) (-) (kPa) (-)

shear 0.330 9.242 18.535 15.972 2.564 10.446 0.417 11.602
biaxial 2.280 9.726 1.685 15.779 0.000 0.000 - -

Table 3.1.: Material parameters retrieved when fitting the model against shear experimental data
by Dokos et al. [51] shown in Fig. 3.4 and biaxial experimental data by Yin et al. [129] shown in
Fig. 3.5.

3.4.2. Fit to a biaxial experiment

A biaxial test was made by Yin et al. [129], and the result is shown in Fig. 4 in that paper,
where they expressed the the second Piola Kirchhoff stress tensor S as a function of the
Green-Lagrange strain E = (C− I)/2. Described briefly, they cut slices of myocardial
tissue, identified the fiber direction, and stretched the slices in the fiber and cross-fiber
direction. They also varied the stretch ratio between the two directions of stretch, here
labeled v = Eff/Ess. Since I8fs = 0, always in a biaxial test (when stretching in the fiber
and sheet direction, with [f0] = [1,0,0] , [s0] = [0,1,0]), the ψ8fs term may be excluded
from the stress formulation, and using the pull-back operation S = JF−1σσσF−T to retrieve
the second Piola-Kirchhoff stress tensor from the Cauchy stress tensor (3.52) and (3.53),
the following non-zero components are obtained

S11 = 2ψ1(1−
λ 2

nn

λ 2
ff
)+2ψ4f and S22 = 2ψ1(1−

λ 2
nn

λ 2
ss
)+2ψ4s, (3.83)

where λnn = (λffλss)
−1. Expressing the stretch λi, i ∈ {ff,ss,nn}, in the Green-Lagrange

strain Eff, results in

λ
2
ff = 2Eff +1, λ

2
ss = 2Eff/v+1 and λ

2
nn =

1
(2Eff +1)(2Eff/v+1)

. (3.84)

The non-zero second Piola-Kirchhoff stress components, in terms of Green-Lagrange strains,
are then

S11 = 2ψ1

[
1− 1

(2Eff +1)2(2Eff/v+1)

]
+2ψ4f, (3.85)

S22 = 2ψ1

[
1− 1

(2Eff +1)(2Eff/v+1)2

]
+2ψ4s, (3.86)

where the derivatives used in Eqs. (3.85) and (3.86) are

ψ1 =
a
2

exp
{

b
[

2(Eff +Eff/v)+
2

(2Eff +1)(2Eff/v+1)
−1
]}

, (3.87)

ψ4f = 2afEff exp
(
bf 4E2

ff
)
, (3.88)

ψ4s = 2as
Eff

v
exp
(

bs 4
E2

ff
v2

)
. (3.89)
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Figure 3.5.: Solid curves represent the fit to data presented by Yin et al. [129], where the circles,
squares and triangles represent data points at varying ratios v = Eff/Ess.

These equations were fitted against the biaxial test by Yin et al. [129], and the fit is shown
in Fig. 3.5. The corresponding values of the material parameters are shown in Table 3.1 and
as seen, the value for as = 0, which implies that the material parameters are expressed for a
transversally isotropic material. This shows that to retrieve accurate material parameters a
biaxial fit alone may not be sufficient to describe the orthotropic behavior which we know
is evident in myocardium. Furthermore, due to the size of the specimen in a biaxial fit it
is, to the authors knowledge, not possible to extract a test specimen that is aligned in both
the fiber and sheet direction. Therefore, without knowing the underlying variation of the
sheet structure in the specimen tested, it is, therefore, not really possible to fit a model that
has a specified sheet direction incorporated.

3.4.3. Comparison to available model

A commonly used orthotropic model for the passive behavior of myocardial tissue that has
been shown to give a good fit against experimental data, [49,50,130], is a Fung-type model
based on Green-Lagrange strains, shown by Costa et al. [47],

Ψ(E) =
C
2
[exp(Q)−1], (3.90)

Q = c1E2
ff + c2E2

ss + c3E2
nn +2c4EfsEsf +2c5EsnEns +2c4EfnEnf. (3.91)

To compare this Costa-model with our new model, we use the same fitting procedure
against the experimental data presented by Dokos et al. [51] as was shown previously in
Section 3.4.1. The Cauchy stress is calculated (for J = 1) by

σσσ = F
∂Ψ(E)

∂E
FT, (3.92)
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Figure 3.6.: Fit to data presented by Dokos et al. [51]. The fit of the Costa model is shown with
dashed curves, and the fit of our new proposed model is shown with solid curves.

and the fit of this equation on all experimentally retrieved shear stresses is shown in Fig. 3.6
with the corresponding material parameters shown in Table 3.2. We omit here to write the
full expression of the equations used for the fit. As seen in Fig. 3.6 the Costa model is
also capable of capturing a near perfect fit against these experimental data. A very simple
measure of the goodness of fit is the R2 value, which is calculated as R2 = 1.0−SSreg/SStot,
where SSreg is the sum of squares of the distances of the data points to the best fitted curve
and SStot is the sum of squares of the distances from the data points to a horizontal line
through the mean of all data points. An R2 value of 1 means a perfect fit, and an R2 value
of 0 means that the curve have no fit at all.

The overall fit of our model using this measure gives R2 = 0.981344 and for the Costa
model R2 = 0.955929. Our model shows a slightly higher R2 value then the Costa model,
but both models are well within the expected error in measurements of the experiment and
thus it is not possible to say which model fits the material behavior best with this measure.

C c1 c2 c3 c4 c5 c6
(kPa) (-) (-) (-) (-) (-) (-)

1.193 62.354 27.947 14.021 2.236 0.000 0.698

Table 3.2.: Material parameters retrieved when fitting the Costa model shown in [47], to the data
by Dokos et al. [51].

Ultimately, the perfect set of material parameters for a constitutive material model is able to
predict, for example, the stress in another state of deformation then in the experiment from
which the material parameters were retrieved. We therefore use the material parameters,
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Figure 3.7.: Analytical stress for a biaxial deformation using our model (solid curves) and the Costa
model (dashed curves). Various experimental values from biaxial tests [45, 131–133] are plotted
where triangles represent stresses in the fiber direction and circles represent stresses in the sheet
direction.

retrieved from the shear experiment and shown in Table 3.1 and 3.2, for our model and the
Costa model, and calculate the analytical stress for a biaxial deformation where a unit cube
is stretched equally in the fiber and sheet direction and is free to deform in the sheet-normal
direction.

The analytical stress for both models is shown in Fig. 3.7 and there is a clear difference
in the predicted stress response for the two models. To the authors knowledge, there have
been no experiments made quantifying the biaxial stress-strain relationship for porcine
myocardium in the fiber and cross-fiber direction. Instead in Fig. 3.7 the experimental
values of the stresses in the fiber and cross-fiber direction for different materials are plotted
as triangles and circles respectively. The materials tested and shown here are bovine,
rabbit, rat and canine [45, 131–133]. Our model predicts much more conservatively the
stresses in the fiber and sheet direction and when compared to the data from Yin et al. [129],
the stress in the fiber direction is about three times that what Yin reported, σf ∼ 3σYin

f ,
and in the sheet direction it is almost exactly the same as their reported values for the
cross-fiber direction, σs ∼ σYin

s . Whereas for the Costa model, the predicted fiber stress is
about twelve times that of the reported values, σCosta

f ∼ 12σYin
f , and for the sheet direction

about fourteen times those reported, σCosta
s ∼ 14σYin

s . One needs to remember that the
material parameters were retrieved from shear tests on porcine myocardium [51] and the
comparison is again canine myocardium [129] which are two different materials. However,
for all experiments found in the literature our model is more accurate then the Costa model
by an order of magnitude, as shown in Fig. 3.7.
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Figure 3.8.: Dispersion of one hundred best fitted material parameters when individually varying
the experimental data points arbitrary by ±0-2% in: (a) simple shear experiment by Dokos et
al. [51]; (b) biaxial experiment by Yin et al. [129].

3.5. Model Sensitivity

In this section a brief investigation into how sensitive the model response is to individual
changes of the material parameters is presented as well as the sensitivity of the fit. As a
measure of the sensitivity when fitting the material parameters, the stress datapoints used
as input parameters for the fit of the model are changed randomly with ±0-2% of its
original value, and the model is fitted again. This may also be considered as the sensitivity
to a poorly performed experiment. A plot of the material parameters from one hundred
such fits are shown in Fig. 3.8(a), where the fit against the data by Dokos et al. [51] shows
that the material parameter bs is the most sensitive. For the fit against the data by Yin et
al. [129], shown in Fig. 3.8(b), the material parameter bf shows the highest sensitivity.

Another example showing the model sensitivity is made by changing the material parame-
ters retrieved from the fit against both experiments individually by ±10% of their original
value, and look at the respective response in the change in peak stress. As seen in Table 3.3,
the peak stress for σns and σnf have the largest change for the shear experiment, about 25%,
when changing the material parameter b. For the biaxial experiment, the largest change in
stress is in the σ11 direction, by about 36%, when changing the material parameter bf.

3.6. Ellipsoidal Model

In order to predict the response of the LV, the constitutive euqation is implemented into
a FE software. The correctness of the implementation is verified using the material test
cases. A geometrical model that is often used in computational modelling of the left ven-
tricle is an ellipsoid truncated at the base [23, 127, 134, 135]. Here we use such a model to
test the implementation of the passive material model (3.6).
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Peak stress change in % for a 10% change in the material parameter

Shear stress Biaxial stress
Material parameter σfs σfn σsf σsn σns σnf σ11 σ22

a ±0.9 ±1.2 ±2.5 ±5.7 ±10.0 ±10.0 ±0.2 ±2.2

b
+2.3 +3.0 +6.3 +14.5 +25.5 +25.5 +0.6 +8.5
−1.9 −2.4 −5.0 −11.5 −20.3 −20.3 −0.5 −6.1

af ±7.0 ±8.8 - - - - ±9.8 -

bf
+7.5 +9.4

- - - -
+36.3

-−6.8 −8.5 −26.5

as - - ±1.9 ±4.3 - - - ±7.8

bs - -
+1.5 +3.4

- - -
+20.8

−1.4 −3.2 −16.4

afs ±2.1 - ±5.6 - - - - -

bfs
+2.0

-
+5.5

- - - - -−1.8 −5.0

Table 3.3.: Material parameters retrieved from the fit to the shear data from Dokos et al. [51] and
biaxial data from Yin et al. [129] are changed individually by ±10% and the corresponding change
in the peak stress values are shown.

The ellipsoid is characterized by its major and minor radii, ai,o and bi,o respectively, where
the indexes ‘i,o’ stands for inner or outer surface of the ellipsoid. The geometry of the
ellipsoid is described using prolate spheroidal coordinates ξ1, ξ2 and ξ3, see Fig. 3.9.
Those may be be expressed in a cartesian coordinate system by

x1 = d coshξ1 cosξ2, (3.93)
x2 = d sinhξ1 sinξ2 cosξ3, (3.94)
x3 = d sinhξ1 sinξ2 sinξ3, (3.95)

where d is the focal length, defined as d2
i,o = a2

i,o− b2
i,o. The inner radii chosen are ai =

42 mm and bi = 19 mm, and the outer radii are ao = 47 mm and bo = 28 mm, consistent
with the data for a canine heart shown in [136] and references therein. The longitudinal
coordinate ξ2 varies from 2o to 120o in 15 steps and the circumferential coordinate ξ3
varies from 0o to 180o, also in 15 steps. Using (3.95), ξ1 is simply calculated with the
relation a = d coshξ1 or b = d sinhξ1 and is determined in 4 steps between the inner and
outer values, ξ1i and ξ1o. This leads to an ellipsoidal model with 14 elements in the
longitudinal direction, 15 elements in the circumferential direction and 5 elements through
the thickness in the radial direction. The geometrical model consists of 1350 nodes and
1050 hexahedral elements.
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Figure 3.9.: Ellipsoidal geometrical model representing the left ventricle of the heart. A section
is removed in the figure as well as selected elements, enabling visualization of sheet and fiber
directions. The orientation of the fiber directions are shown in red, projected at the surface of five
elements with a norm in the ξ1-direction. The sheet directions are shown in blue projected on the
surface of five elements with a norm in the ξ3-direction.

To have an easily interpretable geometrical model, the fiber and sheet directions are set
to vary linearly throughout the material. The fiber direction varies between +60o and
−60o in the ξ2-ξ3 plane and the sheet direction vary between +85o and −85o in the ξ1-ξ2
plane, both going from the subepicardial side towards the subendocardial side. The fiber
directions are shown in red in Fig. 3.9, and the sheet directions are projected on the cut
surface and shown in blue in the same figure. Bear in mind that the sheet direction is in
fact orthogonal to the fiber direction. Internal pressure is applied as a follower load on 210
pressure elements located on the inner surfaces of the subepicardial elements. All nodes
located at the base of the ellipsoid is fixed against translation in all directions. Three pres-
sure levels are shown which are in accordance with the physiological pressure levels for
the canine left ventricle, [137–140]. The pressure levels are 7 mmHg which was reported
for end diastole, 116 mmHg as reported for end systole and an intermediate pressure of
70 mmHg.

The result of the simulation is shown in Fig. 3.10, where contour plots of the stress com-
ponent in the fiber direction is shown, and in Fig. 3.11, where the shear stress component
between the fiber and sheet direction is shown as contour plots. Contour plots for the stress
in the sheet direction is omitted as they show zero values for all pressure levels. For (d) in
Figs. 3.10 and 3.11 the initial geometry is changed with respect to the fiber direction. In-
stead of a varying fiber angle from the epicardium to the endocardium as described earlier,
we now set the fiber angle to zero degrees, i.e. the fibers are in the circumferential direction
for all elements, and a pressure of 116 mmHg is applied. Notable first of all, in Fig. 3.10
is the much higher displacement at the apex when comparing (d) with (c). Also the stress
gradient for (d) is much steeper than for (c). Evident in Fig. 3.11(a)–(c) is a difference
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Figure 3.10.: Contour plots of the fiber stress component ψ4f for different levels of internal pres-
sure. The pressure levels for (a) to (c) are 7, 70 and 116 mmHg, respectively. In (d) the fiber angle
with respect to the circumferential direction is set to zero throughout the thickness of the ellipsoidal
and the pressure level is 116 mmHg.

of positive and negative values of the shear stress. The difference is on either side of the
midwall element where the fiber angle is in the circumferential direction and where the
shear stress component is zero. This is also seen in Fig. 3.11(d) where the fiber direction
is circumferential for all element and thus the shear stress component is zero throughout
the geometry.

3.7. Concluding Remarks

In this paper we have shown the full expressions of the stress and elasticity tensors needed
for implementing the recently proposed constitutive model for passive myocardium. We
have shown that relatively simple expression of the stress and elasticity tensor may be
derived as the invariants in the strain energy function comprising the material model are
all separated in different terms. Such simple expressions are easy to implement in any
finite element software. Basing the model on invariants, not only contributes to the simple
implementation, but also ensures coordinate frame independence and thus only locally
preferred directions of the material is needed when calculating the stress and elasticity
tensor.

Analytical expressions for three modes of deformation was presented which may be used,
not only to verify the implementation of the model, but also when fitting the model to ex-
perimental data which was shown for a simple shear and a biaxial experiment. The model
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Figure 3.11.: Contour plots of the shear stress component ψ8fs for different levels of internal pres-
sure. The pressure levels for (a) to (c) are 7, 70 and 116 mmHg, respectively. In (d) the fiber angle
with respect to the circumferential direction is set to zero throughout the thickness of the ellipsoidal
and the pressure level is 116 mmHg.

has a near perfect fit against the shear experiments and a reasonable fit against the biaxial
experiment. As already discussed by Holzapfel and Ogden [42], the quality of the biax-
ial experiment is limited and there is a need for more complete experimental data. The
sensitivity of the material parameters of the constitutive model was investigated and the
parameters in the exponents were the most sensitive. For the simple shear deformation
the model was most sensitive in the sheet-normal to sheet and sheet-normal to fiber direc-
tion, which is reasonable as those directions of shear have the lowest stress and are only
governed by the isotropic part of the strain-energy function and thus only by two mate-
rial parameters. In the comparison made between our newly proposed model and that of
Costa et al. [47], both models displays a near perfect fit against experimental shear data of
porcine myocardium. But, when using the material parameters retrieved from that fit, our
model seems to be better at predicting the stress for a biaxial mode of deformation. This
is a statement made with caution as the species, and thus the materials, are not the same
in the comparison. The reason for this is that, to the authors knowledge, there exists no
biaxial experiments of porcine myocardium in the literature today. However, looking at the
range of stress values retrieved from biaxial experiments found in the literature for differ-
ent species, our model is closer on all by an order of magnitude than that of the model by
Costa et al. [141] and it is unlikely that stress values from a biaxial experiment on porcine
myocardium will be that much higher.

In a numerical example the results of internal pressure on an ellipsoidal geometry was
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investigated. A stress gradient through the thickness of the ellipsoid was found which is
natural when applying internal pressure. It may be noted, however, that in vivo the situa-
tion is different as it is not pressurized from within and extended outwards, but rather it is
the active compression of the wall that leads to an increase in pressure on the endocardial
surface. Furthermore, a strong stress gradient in a living tissue might be physically unreal-
istic and would be compensated by the residual stresses that are evident in the ventricular
wall [141]. Interestingly, the stress gradient is less steep when the fiber direction in the
wall varies through the thickness as is seen when comparing (c) and (d) in Fig. 3.10. An
explanation for this may be that the fiber angles generate a twisting motion in different
direction at the subepicardial and subendocardial site and therefore the shear stress evident
in Fig. 3.11(c) as opposed to (d), leads to the reduction of the stress gradient through the
thickness. The large difference in the displacement at the apex may be explained by the
lack of a fiber component in the longitudinal direction anywhere in the geometry for (d),
together with the much lower stiffness in the sheet direction than the fiber direction due to
a lower value of the material parameter as compared to af. The kink seen at the base of
the ellipsoid in Figs. 3.10(d) and 3.11(d) arises from the boundary condition on the nodes
at the base. This is not evident in Figs. 3.10(c) and 3.11(c) as the displacements are not as
large due to the fiber orientation, as discussed earlier.

With internal pressure on the ellipsoid and a sheet angle that varies through the thickness,
the sheet component of stress was found to be near zero. This is not surprising when
only applying internal pressure, since the wall thickness will decrease with an increasing
pressure. This results in a compression in the sheet direction and thus the sheet component
of the stress is set to zero in accordance to the requirement for material stability previously
explained in Section 3.2.2.
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4. INFLUENCE OF MYOCARDIAL FIBER/SHEET
ORIENTATIONS ON LEFT VENTRICULAR MECHANICAL
CONTRACTION

Abstract At any point in space the material properties of the myocardium are charac-
terized as orthotropic, that is, there are three mutually orthogonal axes along which both
electrical and mechanical parameters differ. To investigate the role of spatial structural
heterogeneity in an orthotropic material, electro-mechanically coupled models of the left
ventricle (LV) were used. The implemented models differed in their arrangement of fibers
and sheets in the myocardium, but were identical otherwise: (i) a generic homogeneous
model, where a rule-based method was applied to assign fiber and sheet orientations, and
(ii) a heterogeneous model, where the assignment of the orthotropic tissue structure was
based on experimentally obtained fiber/sheet orientations. While both models resulted in
pressure-volume loops and metrics of global mechanical function that were qualitatively
and quantitatively similar and matched well with experimental data, the predicted deforma-
tions were strikingly different between these models, particularly with regard to torsion.
Thus, the simulation results strongly suggest that heterogeneous structure properties are
playing an important non-negligible role in LV mechanics and, consequently, should be
accounted for in computational models.

4.1. Introduction

The capability of the heart to efficiently pump blood around the circulatory system is of
vital importance. The underlying electro-mechanical function is governed by an interwo-
ven cascade of events that interact across a broad range of spatial and temporal scales.
Comprehensive, biophysically-detailed computer models of these multi-scale and multi-
physics phenomena play an important role in a better understanding of integrated electro-
mechanical function in health and disease. A key factor in such models is the accurate
representation of the myocardial tissue structure, in particular of the left ventricle (LV),
which is the main pumping chamber.

In the LV the prevailing myocyte orientations, usually referred to as fibers, follows a right-
handed helical pathway from the endocardium towards the mid-wall, and a left-handed
helical pathway from the mid-wall towards the epicardium, see, e.g., [22, 24]. In addition
to this transmural change in the inclination angle of the fiber, termed ‘fiber rotation’, my-
ocytes are bundled and form layers of four to six cells, which are referred to as laminae or
sheets. Sheet orientations vary as well, not only transmurally, but also in the apico-basal

67
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direction [24, 27]. At any point in space, the LV is characterized by an orthotropic mate-
rial with three preferred eigendirections, oriented along fibers, transverse to the fibers but
within a sheet, and orthogonal to the sheets.

Orthotropic material properties in the LV influence both the spread of electrical activa-
tion and re-polarization and the mechanical response to pressure load and active con-
traction. Electrically, wavefronts travel fastest along the fibers and slowest in the sheet
normal direction, with velocity ratios of roughly 3 : 2 : 1 along the three axes [67]. Via
electro-mechanical coupling these spatio-temporal patterns of electrical activity trigger
active stress transients in the myocytes, which are either modeled as active stresses or
strains [52] acting along the orientation of the fibers in a current configuration [58]. The
resulting mechanical deformations are then largely determined by both the passive hyper-
elastic orthotropic properties of the tissue and the generated active stresses.

Many numerical studies of ventricular mechanics use a simple generic rule-based approach
to define the fiber and sheet angles, see, e.g., [22, 43, 53, 111, 113, 119, 142–145]. In these
studies, the fibers often vary linearly between the endocardium and the epicardium. When
orthotropic models are used, the sheet angles either follow the radial direction or also vary
linearly between the endocardium and the epicardium. It is with good reason that these
studies have chosen such a simple fiber/sheet structure; as it is often difficult to obtain
good detailed fiber/sheet data in vivo. However, it has been shown that using fiber/sheet
angles that do not vary linearly through the thickness yields more realistic mechanical
responses [23, 146].

In the present study we investigate the mechanical effect of models when based on ex-
perimentally obtained fiber/sheet orientations and on generic rule-based fiber/sheet ori-
entations, as frequently used in the literature. We compare the two model results and
use an invariant-based orthotropic constitutive equation [42]. A weakly coupled electro-
mechanical model of the LV is employed where the LV anatomy is approximated as a
truncated ellipsoid [73, 113]. The model is equipped with two sets of fiber and sheet ar-
rangements. In the first arrangement, a generic rule-based dataset is used where fiber/sheet
angles vary linearly in the transmural direction, as seen previously in, e.g., [22, 43, 53,
111, 113, 119, 142–145]. Several values for the linear change of fiber/sheet angles are
examined. In the second arrangement, an experimentally-obtained dataset is used [24],
where fiber/sheet angles vary spatially throughout the LV. Simulation results reveal that
the generic fiber-sheet setup predicts an incorrect torsion up to five times larger than what
is observed experimentally [147,148], as opposed to an experiment-based orthotropic setup
where the torsion is found to be close to the expected range. However, lumped parameter
results such as PV loops and cardiac output show only a small difference between the two
setups.
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4.2. Material and Methods

4.2.1. Electrophysiological modeling

The spread of electrical activation and re-polarization is described by the mono-domain
equation

βmCm
∂Vm

∂ t
+βmIion(Vm,ηηη) = ∇ · (gm∇Vm)+ Itr, (4.1)

where βm is the membrane surface to volume ratio, Cm is the membrane capacitance, Vm is
the transmembrane potential, Iion is the density of the total ionic current which is a function
of Vm and a set of state variables, ηηη , Itr is a transmembrane stimulus current, and gm is the
mono-domain conductivity tensor given by

gm = gm,f (f0⊗ f0)+gm,s (s0⊗ s0)+gm,n (n0⊗n0) , (4.2)

with the eigenaxes f0 oriented along the fibers, s0 perpendicular to the fibers, but within
a laminar sheet, and n0 perpendicular to the sheets, and diag(gm,f,gm,s,gm,n) are the cor-
responding conductivities along the tensor axes. The model by Mahajan et al. [71], as
developed for the rabbit ventricular myocytes, is employed to describe cellular dynam-
ics.

4.2.2. Active and passive mechanical modeling

The Cauchy stress tensor σσσ is additively decomposed by

σσσ = σσσp +σσσ a, (4.3)

where σσσp refers to passive stresses, and σσσ a are active stresses intrinsically generated by
the myocytes.

Passive stress component

With regard to the mechanical deformation the myocardium is characterized as an or-
thotropic material with the eigenaxes f0, s0 and n0 in the Lagrangian description. Using
the multiplicative decomposition of the deformation gradient F, into a volumetric J1/3I
and an isochoric F part so that F = (J1/3I)F, where J = detF > 0 is the volume ratio, the
Lagrangian direction vectors are transformed into their isochoric Eulerian counterparts by
f = Ff0, s = Fs0 and n = Fn0. An orthotropic, invariant-based strain-energy function [42]
is used for describing the nonlinear passive behavior of the myocardium, which yields a
frame-independent stress tensor. The strain-energy function described in [42] is here ex-
tended to include the multiplicative decomposition of the deformation gradient. Hence,
the strain-energy function Ψ = U(J) +Ψiso(Ī1) +Ψaniso(Ī4f, Ī4s, Ī8fs) is separated into a
volumetric function U(J) and two volume preserving functions Ψi, i∈ {iso,aniso}, which
relate to the isotropic and the anisotropic behavior, respectively. A standard volumetric
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function U(J) = µK ln(J)2/2 is used, where the bulk modulus µK serves as a penalty pa-
rameter for enforcing incompressibility. The volume preserving functions Ψiso and Ψaniso
are described as

Ψiso =
a

2b
{exp[b(Ī1−3)]−1}, (4.4)

and
Ψaniso = ∑

i=f,s

ai

2bi
{exp[bi(Ī4 i−1)2]−1}+ afs

2bfs
[exp(bfsĪ2

8fs)−1], (4.5)

respectively, where in total eight material parameters (a, b, a(f,s, fs) and b(f,s, fs)) are needed
to describe the isochoric orthotropic material behavior. By using the modified volume-
preserving right Cauchy-Green tensor C = FTF, the isochoric invariants in (4.4) and (4.5)
are defined as Ī1 = tr(C), Ī4f = f0 · (Cf0), Ī4s = s0 · (Cs0) and Ī8fs = f0 · (Cs0). As shown in
[42], necessary conditions on (4.4) and (4.5) for material stability are a, b, a(f,s, fs),b(f,s, fs)≥
0 and Ī4f, Ī4s > 1. If any of the invariants are less than one, the term containing it is dropped
from Eq. (4.5). The passive Cauchy stress tensor is then given by σσσp = 2J−1F(∂Ψ/∂C)FT,
which results into

σσσp = phI+2J−1[ψ1devb+ψ4fdev(f⊗ f)+ψ4sdev(s⊗ s)+
1
2

ψ8fsdev(f⊗ s+ s⊗ f)],
(4.6)

where ph = dU(J)/dJ is used, b = FFT is the isochoric modified left Cauchy-Green tensor
and dev(•) = (•)− (1/3)[(•) : I]I is the deviatoric operator in the Eulerian description [6].
Furthermore, in (4.6), the definitions

ψ i =
∂Ψ

∂ Īi
, i = 1, 4f, 4s, 8fs (4.7)

have been used.

Active stress component

The active stress tensor σσσ a is defined as

σσσ a = J−1Sa(f̂⊗ f̂), (4.8)

where Sa is an active second Piola-Kirchhoff stress component, and f̂ = f/|f| is the normal-
ized fiber direction vector. Following [60], in this study Sa is calculated using the single
ordinary differential equation of the form

Ṡa = ε(Vm)(kSa∆Vm−Sa), (4.9)

where ε(Vm) is a delay function controlling the rate of activation and relaxation of Sa,
and kSa regulates the amplitude of Sa as a function of the deviation of the transmembrane
potential Vm from the myocyte resting potential Vr, i.e. ∆Vm = Vm−Vr. Instead of the
Heaviside function proposed in [60], we follow [144] and use a smoother delay function

ε(Vm) = ε0 +(ε∞− ε0)exp{−exp[−ζr(Vm−Vs)]}, (4.10)
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where ε0 and ε∞ are upper and lower bounds for the transmembrane potential Vm � Vs
and Vm � Vs, respectively, where Vs is a given phase shift, and ζr is the transition rate.
Note, however, that there is an erratum in the delay function shown in Eq. (23) of [60].

Figure 4.1.: (a) Transmembrane potential Vm, dotted curve, and corresponding delay in the active
stress value using ε∞ > ε0, dash-dotted curve, and ε∞ < ε0, solid curve; for clarity the values are
scaled in the image; (b) shape of the delay function ε(Vm) using ε∞ > ε0, dash-dotted curve, and
ε∞ < ε0, solid curve, when shifted by Vs =−30 mV with the parameter ζr = 0.3 mV−1

With the choice ε∞ = 10ε0 an electro-mechanical delay between an upstroke of the action
potential and the peak active stress, as illustrated in Figure 2 in [60], cannot be obtained.
In order to reproduce the reported time course of Sa the relation ε∞ < ε0 must hold. The
authors in [144] have used the original parameter relation, i.e. ε∞ = 10ε0, resulting in a
delay function that goes from lower to higher values and, thus, to an active stress transient
with non-physiologically short electro-mechanical delay (see Figure 3 in [144]). The re-
sulting differences in the shape of ε(Vm) and the active stress transients are illustrated in
Figure 4.1.

4.2.3. Geometry

A simplified LV geometry is modeled as an ellipsoid truncated at the base using pro-
late spheroidal coordinates ξ1, ξ2 and ξ3, see Figure 4.2. Using the focal position di =√

a2
i −b2

i , i ∈ {endo,epi}, where ai and bi are the polar and equatorial axes for the endo-
cardial and epicardial borders, respectively, the prolate spheroidal coordinates is expressed
in a Cartesian coordinate system by x1 = di sinhξ1 sinξ2 cosξ3, x2 = di sinhξ1 sinξ2 sinξ3
and x3 = di coshξ1 cosξ2. Epicardial and endocardial dimensions are chosen as aepi =
19.3 mm, bepi = 12.7 mm and aendo = 18.0 mm, bendo = 6.9 mm, respectively, to arrive at a
good match with an available image-based rabbit LV geometry [132]. The ξ2-angle has a
maximum value of 120◦ at the endocardial surface. When going in the ξ1-direction along
the epicardial surface the maximum ξ2-angle is decreased so that the basal surface remains
flat in the global X3-direction.

Model I – Generic fiber-sheet setup

In model I a generic fiber-sheet setup is implemented. Fibers rotate linearly from αendo at
the endocardial border to αepi at the epicardial border along the transmural axis ξ1, with
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Figure 4.2.: Ellipsoidal model representing a rabbit LV with both the global X1, X2 and X3 coordi-
nates and the prolate spheroidal coordinates ξ1, ξ2 and ξ3; where aendo, bendo, aepi, bepi are the polar
and equatorial axes, and dendo and depi are the focal positions for the endocardial and epicardial
borders, respectively. The plane separating the basal and apical regions is half of the LV height h.
The septal region lies in the X1,X2 quadrant, the anterior region lies in the X1,−X2 quadrant, the
lateral region lies in the −X1,−X2 quadrant and the posterior region lies in the −X1,X2 quadrant.
The fiber and sheet directions (Lagrangian form) are characterized by f0 and s0, respectively. The
inclination angle, measured in the (ξ2,ξ3) plane, and the sheet angle, measured in the (ξ1,ξ2) plane,
are characterized by α and β , respectively.

the inclination angle α measured in the (ξ2,ξ3) plane, see Figure 4.2. Similarly, a linear
rotation of sheet angles from βendo at the endocardial border to βepi at the epicardial border
is imposed in the transmural direction ξ1 with the sheet angle β measured in the (ξ1,ξ2)
plane, see Figure 4.2. Since both fiber and sheet orientations vary only along the transmural
direction ξ1, this setup is homogeneous in the circumferential and longitudinal directions
ξ2 and ξ3. We, therefore, label this setup as homogeneous. Different combinations of
fiber/sheet orientations, taken from the existing literature, is examined, see, e.g., [22, 43,
53, 111, 113, 119, 142–145]. The cases examined in this study are as follows:

(i) αendo =−60◦, αepi =+60◦, βendo = 0◦, βepi = 0◦,

(ii) αendo =−45◦, αepi =+45◦, βendo = 0◦, βepi = 0◦,

(iii) αendo =−60◦, αepi =+85◦, βendo = 0◦, βepi = 0◦,

(iv) αendo =−60◦, αepi =+60◦, βendo =−85◦, βepi =+85◦,

(v) αendo =−45◦, αepi =+45◦, βendo =−85◦, βepi =+85◦,
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(vi) αendo =−60◦, αepi =+85◦, βendo =−45◦, βepi =+45◦.

We have here attempted to cover values which are commonly used in the literature, includ-
ing sheet directions that are aligned in the radial direction ξ1 (i.e. β = 0◦) and inclination
angles α which lead to a non-symmetry, as seen in the cases (iii) and (vi).

Model II – Experimentally-based LV fiber-sheet setup

To study the influence of structural heterogeneity, a fiber-sheet setup, which is based on
experimental data, is implemented in model II. The fiber and sheet orientations are here as-
signed to fit the diffusion MRI data of Rohmer et al. [24] (Figure 4.3), which reported fiber
and sheet angles in eight different regions corresponding to four circumferential segments
of the LV, septal, anterior, lateral and posterior in each of the two apico-basal segments,
basal and apical.

Figure 4.3.: Fiber and sheet angles through the wall thickness of the LV starting from the endo-
cardium, adapted from [24].

A linear weighting function is used in between these regions to ensure a smooth transition
of fiber and sheet angles. In contrast to model I, model II is spatially heterogeneous
in all directions, not only in the transmural direction. We, therefore, label this setup as
heterogeneous.

Torsion

To analyze the torsion of the LV we define the long axis to be aligned with the main
direction of the septal wall and the short axis to be perpendicular to the long axis, and
chosen to be close to the endocardial apex. Aligning the centroid of the cavity in the short
axis images, taken from end diastolic and end systolic volumes, the torsion is calculated
by tracking the movement of the mesh between these two configurations.
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4.2.4. Material parameters

The mono-domain bulk conductivities in Eq. (4.2) are chosen to be gm,f = 0.204Sm−1,
gm,s = 0.102Sm−1 and gm,n = 0.037Sm−1, which lead to conduction velocities of 0.6ms−1,
0.4ms−1 and 0.2ms−1 along the principal tensor axes. Standard values of Cm = 1µF cm−2

and βm = 1400 cm−1 are chosen for the membrane capacitance and the membrane surface
to volume ratio, respectively.

Mechanical material parameters are summarized in Table 4.1. Passive material parameters
are adapted from [42] where the constitutive model was fitted to experimental data reported
by Dokos et al. [51]. Active material parameters are in part adapted from [60] and in part

Passive stress Active stress Pressure term

µK = 3333 kPa kSa = 0.50 kPa mV−1 C = 0.2 ml mmHg−1

a = 0.333 kPa Vr =−86.796 mV R = 750 mmHg ms ml−1

b = 9.242 (-) Vs =−80.0 mV Cp =−900 mmHg ml−1

af = 18.535 kPa ε0 = 1.0 ms−1

bf = 15.972 (-) ε∞ = 0.1 ms−1

as = 2.564 kPa ζr = 0.1 mV−1

bs = 10.446 (-)
afs = 0.417 kPa
bfs = 11.602 (-)

Table 4.1.: Material parameters used in both analytical and numerical calculations. The parameters
for the passive state are adapted from [42], the parameters for the active state are adapted from [60],
and the pressure term is chosen to give a realistic pressure-volume response.

to achieve an electro-mechanical delay of 110 ms between the peak action potential and
the peak active stress [149], which leads the parameter relation of the delay function to
be ε∞ = ε0/10. The pressure parameters (see Section 4.2.6) are tuned such that realistic
pressure-volume loops are obtained, and to keep the pressure calculations numerically
stable.

4.2.5. Numerical solution

The finite element method is employed for the spatial discretization of the mono-domain
equation (4.1). Two overlapping finite element meshes of the same ellipsoidal LV geom-
etry are generated, a fully structured coarser hexahedral mesh for solving the mechanics,
and a fully unstructured hybrid mesh with an average resolution of ∼200 µm, using an
image-based mesh generation technique [150], as implemented in the commercial mesh
generator Tarantula (CAE Software Solution, Eggenberg, Austria) for solving the electrics.
In both meshes, fiber and sheet orientations are interpolated onto the barycenters of the fi-
nite elements. The mechanical mesh consists of 5406 nodes and 5310 hexahedral mixed
Q1/P0 finite elements (see, e.g., [151]), whereas the electrical mesh consists of 1054146
nodes and 1201507 hybrid finite elements using linear weighting functions [152].
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Using overlapping grids of different resolutions is a natural choice when considering the
vastly different constraints imposed by the physics of the electrical and the mechanical
problems. Electrical transients are fast and act on time scales in the µs range, which
translates into steep depolarization wavefronts of small spatial extent in the sub-millimeter
range, thus necessitating the use of fine spatial resolutions�250 µm to compute solutions
with reasonable accuracy. On the other hand, mechanical processes tend to occur at larger
space and slower time scales, and, thus, coarser spatial discretizations can be used. In the
weakly coupled approach applied in this study, Eq. (4.1) is solved on the electrical mesh
first, and electrical quantities required for computing the active stress transients, i.e. Vm,
are then transferred to the integration points of the mechanical mesh.

The temporal discretization of the mono-domain equations relies on an implicit-explicit
(IMEX) scheme where the diffusion term is treated implicitly and the reaction term ex-
plicitly, using a time step of 20 µs. The linear system is solved in parallel by employing a
block Jacobi pre-conditioner with an iterative Conjugate Gradient solver, using an Incom-
plete LU (ILU(0)) factorization as a sub-block pre-conditioner [153]. The system of ODEs
in the model by Mahajan et al. [71] is solved using the Rush-Larsen method [154] with
several optimizations [111]. The Cardiac Arrhythmia Research Package (CARP) [155],
which is built on top of the MPI-based library PETSc [153], is employed to solve Eq. (4.1).
Numerical aspects have been described in detail elsewhere [156]. The equations (4.3) to-
gether with (4.6) and (4.8) are implemented and solved using the finite element software
FEAP [8]. Both grids are partitioned for parallel execution using parMETIS [157].

4.2.6. Initial values and boundary conditions

Electrics

An initial state vector is computed for the model by Mahajan et al. [71] by pacing a single
cell at a pacing cycle length of 350 ms until arriving at a stable limit cycle. The state
vector ηηη is then used to populate the LV model. Transmembrane current injection applied
to the endocardial surface at t = 0 ms initiates a transmural activation wavefront. With
this protocol, the whole endocardium activates synchronously. Electrical activation delays
within the endocardium, as observed in the presence of a Purkinje system, and remains
unaccounted for. Here 350 ms of activity is simulated to cover one full depolarization and
re-polarization cycle throughout the entire LV.

Mechanics, circulatory components and pressure-volume loops

All finite elements on the endocardial surface of the LV are subjected to a follower pressure
load p. Displacement boundary conditions (BCs) are imposed over the entire base of the
LV, i.e. where ξ2 = ξ2max for all ξ3 and ξ1 (the subindex max denotes the maximum
coordinate value), preventing any movement in the ξ2-direction. Additional displacement
BCs are imposed on a subset of nodes which are located in the basal plane along the
epicardial surface, i.e. where ξ1 = ξ1max, ξ2 = ξ2max and for all ξ3, to restrict the movement
in the ξ3-direction. These BCs are summarized in Table 4.2.
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BC Coordinates Description

tn =−p ξ1 = ξ1min for all ξ2, ξ3 Endocardial surface

uξ2 = 0 ξ2 = ξ2max for all ξ1, ξ3 Basal surface

uξ3 = 0
ξ1 = ξ1max for all ξ3

Outer boundary at
ξ2 = ξ2max the basal surface

Table 4.2.: Mechanical boundary condition (BC) for the LV in terms of prescribed traction t and
displacement u. The component tn of t is the normal to the endocardial surface on which the
pressure p acts. The components uξ1 , uξ2 , uξ3 of u are the displacements in the directions ξ1, ξ2, ξ3
shown in Figure 4.2, where the index max and min denotes the maximum and minimum possible
coordinate in the respective direction.

The endocardial pressure load p is calculated in five consecutive steps (i)–(v): (i) ini-
tialization phase with linear increase in p to the end diastolic pressure (EDP); before the
electrical activation has started, the pressure increases first linearly from 0 to 20 mmHg,
which is considered the EDP [78]. (ii) Isochoric LV contraction phase: electrical activa-
tion starts the isochoric contraction phase where both mitral and aortic valves are closed.
Following [79] this is implemented by using the iteration

pn+1 = pn +(Vn+1−Vn)/Cp, (4.11)

where Cp serves as a penalty parameter that is chosen to give a robust convergence. The
iteration is considered to be converged using the criterion ‖Vn+1−Vn‖/‖Vn‖ < 0.01. (iii)
Ejection phase where p reaches 95 mmHg [78]. The ejection phase starts in response to
the opening of the aortic valve. The pressure is modeled using a two element Windkessel
model described as

C
dp
dt

+
p
R
=−dV

dt
, (4.12)

where C and R relate to the arterial compliance and resistance, respectively. (iv) Isochoric
LV relaxation phase: when dV/dt becomes positive (reversed blood flow), the aortic valve
closes. The pressure at the instant of flow reversal is considered the end systolic pressure
that starts isochoric relaxation, again modeled by using the pressure iteration given through
Eq. (4.11). (v) Filling phase with linear pressure increase to EDP: finally, when p dropped
to 12.5 mmHg [78], the mitral valve opens and passive filling starts. Again, this phase is
modeled as a linear increase of p up to EDP.

The specific parameters C, R and Cp used in the subsequent analyses are provided in Ta-
ble 4.1.

4.2.7. Lumped parameters

The average thickness of the LV wall is calculated using the Gauss divergence theorem.
Defining hed and hes as the wall thickness corresponding to end diastolic volume (EDV)
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and the end systolic volume (ESV), respectively, the fractional thickening hf is calculated
as hf = 100 · (hes− hed)/hed. As a coarse measure for examining incompressibility the
fractional change in the myocardial volume, say Vf, is calculated as Vf(t) = 100 ·(Vwall(t)−
V 0

wall)/V 0
wall, where Vwall(t) and V 0

wall are the volumes of the myocardial wall at time t and in
the initial unloaded configuration, respectively. The largest change in the volume fraction
Vf(t) is denoted by V max

f , which may be used as an approximate metric to gauge how
well the incompressibility constraint is enforced in the simulation. Furthermore, stroke
volume SV is defined as SV=EDV−ESV, cardiac output CO is defined as CO= SV ·HR,
where HR is the heart rate, and the ejection fraction EF is defined as EF = 100 ·SV/EDV.
Although only one heart beat is simulated, HR is assumed to follow the simulated activity
time of 350 ms, giving a HR of about 171 beats per minute.

4.3. Results

4.3.1. Validation of the implementation

To test the numerical framework, an analytical test case is designed and explored. A unit
myocardium tissue cube with mean material directions is considered. The cube has the
fiber, sheet and sheet-normal directions along the global coordinate system (X ,Y,Z), and
the material directions are according to [f0] = [1,0,0]T, [s0] = [0,1,0]T and [n0] = [0,0,1]T,
as shown in Figure 4.4(a). The cube can freely deform, and it is subjected to an active stress
Sa resulting in a contraction in the global X-direction, i.e. the fiber direction. The material
is assumed to be incompressible and, therefore, the cube must expand in the global Y and
Z-directions. Thus, the corresponding deformation gradient is F = diag(λf,λs,λn), where
the stretch λf in the fiber direction is λf < 1 and the stretches in the sheet and sheet-normal
directions are λs > 1 and λn > 1, respectively. As the unit cube is free to deform, the stress

Figure 4.4.: (a) Deformation of a unit cube before deformation and after activation in the fiber di-
rection (X), shown in gray; (b) stretch responses as a function of the membrane potential Vm. Fiber,
sheet and sheet-normal stretches are illustrated by solid, dashed and dotted curves, respectively,
and the circles show the corresponding finite element results.

at equilibrium is zero for all components of the Cauchy stress matrix and the Lagrange
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multiplier ph is readily determined from the relation σ33 = 0. Using the condition of a
volume preserving incompressible material (J = detF= 1), the following nonlinear system
of equations may be obtained as

σ11 = 2ψ1(λ
2
f −λ

2
n )+2ψ4fλ

2
f +Sa = 0, (4.13)

σ22 = 2ψ1(λ
2
s −λ

2
n )+2ψ4sλ

2
s = 0, (4.14)

λfλsλn = 1. (4.15)

Keeping in mind that ψ4f vanishes if λf < 1 (see [42]), which is always the case in this
particular example, the system of Eqs. (4.13)–(4.15) can be solved for λf, λs and λn for
a given value of the active stress Sa. This system is solved using the MATLAB function
fsolve() (Matlab R2012a, The Mathworks, Nantucket, USA). The material parameters used
are taken from Table 4.1. The same problem is solved with FEAP, using Q1/P0 finite ele-
ments, and the resulting stretches are compared to the analytical solution for several values
of the active stress Sa computed using a linear increase of the transmembrane potential Vm
from the resting potential Vm = Vr to Vm = +50 mV. The results are summarized in Fig-
ure 4.4(b) and show a good agreement between the analytical result and the numerical
solution; the different stretches in the figure are abbreviated by λ .

4.3.2. Effect of fiber/sheet arrangement upon mechanical contraction

To study the effect of the arrangement of fibers and laminae, pressure-volume (PV) loops
are computed for a full cardiac cycle by using the models I and II. Both models are
subjected to the same stimulation protocol and boundary conditions; the only difference is
the fiber and sheet arrangement.

The PV loops predicted by the models I and II are in good agreement with those observed
experimentally [78]. Figure 4.5(a) shows a comparison between model II and experimental
data. Volume transients for this comparison are normalized to account for the difference
in the initial LV volumes. Figure 4.5(b) compares the PV loops predicted by model I
(case (i), Section 4.2.3, chosen as a representative case for the generic distributions), and
model II. Overall, both models predict very similar PV loops. The only minor difference
is that model II exhibits a noticeably larger EDV while no significant differences are found
in ESV. Moreover, no major differences are observed in other lumped metrics that char-
acterize the mechanical performance globally. A comparison of the parameters hf, V max

f ,
HR, SV, EF and CO is summarized in Table 4.3, again using case (i), Section 4.2.3, as a
representative case for model I. The stroke volume SV is slightly lower with model I, and
thus, since HR is the same, CO is lower too. The relatively small change in the volume
fraction V max

f of the wall indicates that the chosen bulk modulus is large enough to enforce
the prescribed incompressibility constraint.

While PV loops and some other metrics of the global mechanical function are qualitatively
and quantitatively similar, in several other aspects the model predictions are strikingly
different. In the model I the apex moves only along the apico-basal direction, aligned with
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Figure 4.5.: (a) Comparison of pressure-volume (PV) loops between model II and experimental
data [78]. Volume transients for this comparison are normalized to account for the difference in the
initial LV volumes; (b) comparison of PV loops between the models I and II. As a representative
case for model I the fibers and sheets vary linearly between αendo = −60◦, αepi = +60◦ while
βendo = βepi = 0◦, respectively (case (i), Section 4.2.3).

Result Model I Model II Experiment

hf (%) 33 29 35.2a

V max
f (%) −0.42 −0.51 −7.2b

HR (bmp) 171 171 198c

SV (ml) 2.7 3.1 1.8c

EF (%) 61 63 53c

CO (l/min) 0.46 0.53 0.421c

Table 4.3.: Comparison of results between the models I, II and the experimental data: hf = frac-
tional thickening, V max

f = largest change in volume fraction of the wall, HR = heart rate, SV =
stroke volume, EF = ejection fraction, CO = cardiac output. Experimental values are taken from:
a [158]; baverage value of the through-the-thickness volume change [159]; c [160].

the global X3-direction in our setup, whereas in the model II a significant shift of the apex
towards the septal wall occurs, see Figure 4.6(b). A significant quantitative difference is
observed with regard to torsion. While the average torsion, measured in the short axis
plane, predicted by model II is 4.5◦ (Figure 4.6(c)), a vastly larger torsion is predicted
by the generic fiber and sheet setups used in model I, which results in, e.g., a torsion of
51◦ for case (i), Section 4.2.3 (see Figure 4.6(d)). A summary of the torsion which results
from all generic fiber/sheet setups is shown in Table 4.4, where the values range from 33–
72◦. The radial contractions from EDV to ESV, i.e. the local changes of the endocardium
and epicardium in the radial direction visible in Figure 4.6(c)-(d), are analyzed along the
septal-lateral and posterior-anterior directions. In both models I and II, this contraction
is quite similar and match experimental data quite well [161], except in the septal-lateral
direction at the epicardial border where model II is significantly closer to the experimental
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Figure 4.6.: Geometries at EDV shown by dashed curves, and at ESV shown by solid curves filled
with gray areas: (a) the short axis plane is perpendicular to the long axis plane, which is always
aligned with the main direction of the septal wall; (b) the outlined epicardial surface viewed from
the apex towards the base of the LV. The apex in both EDV and ESV are marked with a circle and
show the movement of the apex towards the septal region; (c) torsion at the short axis plane for the
model II. The average torsion is 4.5◦; (d) torsion at the short axis plane for the model I, case (i)
(Section 4.2.3). The torsion is the same for all regions and is 51◦.

values than model I (all cases).

Case (i) Case (ii) Case (iii) Case (iv) Case (v) Case (vi)

51◦ 72◦ 35◦ 47◦ 62◦ 33◦

Table 4.4.: Resulting torsion using the cases as outlined in Section 4.2.3.

A further fundamental difference is observed with regard to the first principal stress σI .
Model I predicts a higher stress in the mid-myocardial band, whilst model II predicts
a gradient of stress from lower to higher transmurally from endocardium to epicardium.
This is illustrated in Figure 4.7, which visualizes σI in a cross section through the septal
and lateral wall, again using case (i), as a representative case for model I.
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Figure 4.7.: First principal stress σI: (a) in model I; (b) in model II.

4.4. Discussion

A computational model of LV electro-mechanics has been used to investigate the influence
of spatial heterogeneity of the structural (orthotropic) components on mechanical contrac-
tion. Two models (I and II) are designed so that they differed only in terms of the fiber
and sheet arrangements. As in virtually all recent modeling studies of ventricular electro-
mechanics, see, e.g., [58, 60, 113], several simplifying assumptions are made, which may
result in model predictions that deviate from experimental observations in one or the other
aspect. While these shortcomings warrant caution when drawing general physiological
conclusions, it is possible to study whether a given factor is a relevant contributor to the
overall response of the system or not.

Although the notion that tissue orthotropy and its spatial structural heterogeneity may play
an important role in ventricular mechanics is widely accepted [77], most organ-scale mod-
eling studies reported in the literature refrained from accounting the inherent heterogene-
ity. To the best of our knowledge, there are only a handful of studies that model the LV
as an orthotropic material, see [42] for a review. In fact, most of the modeling studies
represent both electrophysiology and mechanics of the ventricles as transversely isotropic
materials and, thus, ignore the influence of orthotropy. One reason for this may be the
inherent difficulty in the measurements of electrical conductivity and mechanical stress,
which has led to an ongoing debate on the ‘exact’ ratios between the eigenvalues and the
material parameters along the axes f0, s0 and n0. However, due to the convincing evi-
dence provided by various studies using histological [28, 36, 66] and MRI-based imaging
techniques [24, 162], and measuring the mechanical properties of the passive ventricular
myocardium [51], there is a broad consensus that electrical and mechanical properties of
cardiac tissue are best characterized as orthotropic.

In this work we studied the relative influence of heterogeneous orthotropic fiber/sheet
structures on mechanical contraction. While the predictions of both models (homoge-
neous and heterogeneous) are similar and matched fairly well with the experimental data
in terms of most lumped system parameters such as PV loops, strikingly different mechan-
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ical responses are observed in several other aspects. Most notably, this is the case with
torsion, which turns out to be significantly smaller when the structure is considered as
heterogeneous.

The simulation results strongly suggest that heterogeneity of the fiber/sheet structure plays
an important (non-negligible) role in the mechanical LV contraction and, consequently,
should be accounted for in computational models.

4.4.1. Effects of structural heterogeneity

Simulations using model I predicted a torsion which is much higher than the average tor-
sion of 4.5◦ predicted by model II. For example, case (i) (Section 4.2.3), predicted an end
systolic torsion of 51◦. Experimental measurements suggest that the end systolic torsion is
in the range of∼ 8-12◦ [147,148]; hence model II slightly underestimates torsion whereas
model I led to a significant overestimation.

When compared to physiological measurements both models suffered from shortcomings.
The pronounced torsion predicted by model I may be attributed to the simplified repre-
sentation of the LV geometry and the absence of the right ventricle, which would likely
restrain torsion significantly, particularly in the septal region. On the other hand, despite
the more realistic end systolic torsion in model II, it led to some non-physiological pre-
dictions that are not present in model I. In particular, model II predicted a longitudinal
elongation of the LV, which is in contradiction to the longitudinal shortening, as it is ob-
served in experiments [163]. Potential reasons are: (i) the fiber angles according to Rohmer
et al. [24], as used in the model II, tend to be smaller than those observed in histological
studies [22] upon which most approaches are built upon. Thus, due to the reduced fiber
component along the long axis of the LV the maximum active stress generated, regulated
by the parameter kSa , was not sufficiently large and the cavitary pressure of the LV may
have been the dominating factor; (ii) the mapping of orthotropic data from an anatomi-
cally realistic model onto a simplified ellipsoidal model may have led to distortions due to
the geometrical differences between an idealized ellipsoid and a real ventricular geome-
try. This difficulty could be circumvented by using a dataset that provides both anatomical
accurate representations of the ventricles obtained via high-resolution MRI, and structural
information acquired by, e.g., diffusion tensor MRI. A further potential discrepancy stems
from the fact that the complex trabeculation of the endocardium remains unaccounted for
in our model, a limitation that is shared with all other modeling studies on ventricular
mechanics; (iii) the mean values as presented in [24] are used and they are linearly inter-
polated, however, the noise and variance in these data are big. The data were averaged over
large sectors of the ventricles – more detailed data on a per voxel base is not available.

A further difference between the models is the first principal stress σI , as illustrated in
Figure 4.7. This seems to be an indirect effect of the reduced torsion in the model II,
which, in turn, attenuated the influence of the applied boundary conditions.



4.4. Discussion 83

Stroke volume SV, ejection fraction EF and cardiac output CO are all close to experimen-
tally obtained values, as seen in Table 4.3. Thus, similar to the argument concerning the
PV loops, with these values it is only possible to partially differentiate between, or de-
termine the accuracy of, the models. The discrepancy between experimentally observed
and simulated values for the compressibility of wall volume V max

f is explained by the fact
that ventricular vascularization is not represented in the model. While myocardial tissue
is nearly incompressible and, therefore, it is modeled as an incompressible material, the
ventricles as a whole are not since the wall volume reduces during systole due to blood
being squeezed out of the coronary arteries [159].

4.4.2. Limitations of the study

In our models we have made a few simplifying assumptions and these have to be consid-
ered when interpreting the reported results. One limitation is the use of a stylized geom-
etry in which the LV anatomy is approximated by an ellipsoidal shape. Further, a mono-
ventricular, not a bi-ventricular geometry is used, thus, the LV is modeled in absence of the
right ventricle. Apart from the simplified representation of the macro-anatomy, the com-
plex structure of the ventricular endocardium, consisting of structures such as trabeculae
and papillary muscles, is approximated by a smooth endocardial surface. Unlike in elec-
trophysiological modeling studies, where these structures are included in models [110],
there have not been any reports yet in the mechanical modeling. Most likely this is due
the significant increase in mesh density required to resolve these finer anatomical details,
which entails a substantial increase in computational costs [164]. Considering the lim-
ited performance of current solver techniques used in modeling ventricular mechanics it
suggests that this is not feasible yet.

In the literature a simplified phenomenological model of electro-mechanical coupling is
proposed where the generated active stress depends only on the transmembrane potential
[60,144], ignoring all major physiological factors implicated in the process of active stress
generation such as calcium transients, the interactions of calcium with myofilaments and
metabolic aspects as well as length and velocity dependencies [63]. Finally, as in most
previous studies [43, 73, 79], the electrical and mechanical models are weakly coupled.
While strongly coupled approaches are likely to be key when subtle electro-mechanical
effects have to be captured, most modeling studies opted for implementing a weak coupling
approach. This is mainly due to the increased complexity of computation schemes and
potential problems with numerical instabilities, although those issues are being addressed
[58].

In this study, we have focused on the heterogeneity of the myocardial structure compo-
nents. Another factor which may alter the simulation results significantly is a heterogene-
ity of the myocardial material parameters. Such varying material properties, both transmu-
rally, longitudinally and circumferentially could be included in a future study. However,
due to the lack of experimental data available on regional-specific myocardial material
properties such a study is not feasible at the moment. Despite the numerous limitations,
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which are shared with most contemporary modeling studies on cardiac electro-mechanics
the relative difference due to a change in the myocardium structure, namely the use of rule-
based versus experiment-based data on fiber and sheet arrangements, is a clear indication
that heterogeneity in the orthotropic structure property is a relevant factor and as such it
should be accounted for in computational models of ventricular mechanics.
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5. MODELING THE DISPERSION IN CARDIAC FIBER AND
SHEET ORIENTATIONS

Abstract We present an approach to model the dispersion of fiber and sheet orientations
in the myocardium. By utilizing structure parameters an existing orthotropic and invariant-
based constitutive model developed to describe the passive behavior of the myocardium is
augmented. Two dispersion parameters are fitted to experimentally-observed angular dis-
persion data of the myocardial tissue. Computations are performed on a unit myocardium
tissue cube and on a slice of the left ventricle (LV) indicating that the dispersion parameter
has an effect on the myocardial deformation and the stress development. The use of fiber
dispersions relating to a pathological myocardium had a rather big effect. The final ex-
ample represents an ellipsoidal model of the LV indicating the influence of fiber and sheet
dispersions upon contraction over a cardiac cycle. While only a minor shift in the pressure-
volume loops between the cases with no dispersions and with fiber and sheet dispersions
for a healthy myocardium was observed, a remarkably different behavior is obtained with
a fiber dispersion relating to a diseased myocardium. In future simulations this dispersion
model for myocardial tissue may advantageously be used together with models of, e.g.,
growth and remodeling of various cardiac diseases.

5.1. Introduction

The left ventricle (LV) is the main pumping chamber of the heart supplying blood through
the circulatory system to the entire body. The LV builds up the necessary pressure by active
contraction where the electrical activation of the heart triggers a cascade of events leading
to a shortening of the cardiac myocytes. Myocytes are arranged in a highly organized
fashion, following a right-handed helical pathway from the endocardium towards the mid-
wall, and a left-handed helical pathway from the mid-wall towards the epicardium [22–24].
This prevailing myocyte orientation is usually referred to as ‘fiber orientation’. In addition,
fiber bundles are arranged into laminar sheets of four to six cell layers, where the prevailing
sheet orientation also varies in the transmural and apico-basal directions [24,25,27,28]. At
any point in the LV, the structural arrangement of myocytes is reflected by three orthogonal
directions along which both electrical and mechanical material parameters are different,
thus requiring to model the electrical and mechanical responses of the myocardium as an
orthotropic material. These preferred directions are along the fibers, transverse to the fibers
but within a laminar sheet, and perpendicular to the sheets; these directions are thus called
the fiber, sheet and sheet-normal directions, respectively.

85
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In a healthy heart, the fiber alignment follows very closely this helical structure with only
small angular dispersion (AD) in the range of ∼ 12-15◦, whereas in a diseased heart such
as hypertrophic cardiomyopathy (HCM) or myocardial infarction (MI) the AD may locally
increase by ∼ 65% (at foci points within the septal wall) [29–31] or ∼ 50% (at the site of
infarction) [32–34]. Furthermore, the dispersion of the fibers has been shown to have a
circular distribution, they are not located in plane [165]. Less is known about the struc-
tural arrangement of laminae. Due to the importance of sheet orientation in myocardial
wall thickening it has been speculated that the dispersion of sheet orientations may play
a significant physiological role [38]. There are a few studies available discussing quite a
large dispersion of the sheet structure, even in healthy hearts [35–37]. Although to our
knowledge there are no experimental reports available that quantify sheet dispersion in the
diseased myocardium, it is likely the case that dispersion is also elevated when compared
with healthy conditions. To the authors’ knowledge there are no recently published biome-
chanical cardiac models available that consider dispersion, the latest are [23, 31]; none of
them include sheet dispersion. Hence, the present study focuses on the development of
an approach to model fiber and sheet dispersions using an invariant-based framework. A
previously published orthotropic and invariant-based model which characterizes the non-
linear passive behavior of myocardium [42] is here augmented with structure parameters
allowing the quantification of the degree of dispersion based on measured fiber and sheet
angle data. The structure parameters are based on a distribution function developed for the
collagen structure of arteries [166], and is here used for the fiber and sheet dispersions.

Cardiac simulations have electrical and mechanical components rendering the modeling
to a multi-physics problem. Electro-mechanical models need high spatio-temporal resolu-
tion, making the entire problem computationally expensive; advanced numerics and highly
optimized parallel implementations are needed to keep simulations tractable. Therefore,
a natural choice is the use of overlapping grids of different resolution because the con-
straints differ significantly between the imposed physics of the electrical and the mechani-
cal problem. The electrical transients are fast, acting on time scales in the µs range, which
translates into steep depolarization wavefronts of small spatial extent in the sub-millimeter
range, thus requiring the use of fine spatial resolutions� 250µm to compute solutions with
reasonable accuracy. On the other hand, mechanical processes tend to occur at larger space
and slower time scales, and, thus, coarser spatial discretizations can be used. The electro-
mechanical coupling of the spatio-temporal patterns of the electrical activity and the active
stress transients in the myocytes are either modeled as active stresses or strains [52] acting
along the fiber’s orientation in an Eulerian description [58]. The resulting mechanical de-
formations in our model is largely determined by the passive hyperelastic properties of the
tissue and the generated active stresses both incorporating the dispersed structure of the
tissue.

Our simulation indicates that the dispersion has a relevant influence on the mechanical
response of the myocardium both during passive deformation and active contraction, by
reducing the stress response and changing the deformation pattern. When including the
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Figure 5.1.: Schematic representation of the structure of the myocardium showing the fiber-
reinforced laminar composite that comprises the averaged fiber, sheet and sheet-normal directions
in a continuum model, characterized by f0, s0 and n0, respectively.

dispersion parameter in a ventricular simulation incorporating electrical activation the
pressure volume loop is considerably altered. Since the degree of dispersion is signifi-
cantly elevated under various cardiac pathologies there is a need to consider dispersion
when modeling myocardial tissue in diseased states.

5.2. Modeling Framework

5.2.1. Kinematics

The structure of the myocardium may be described by three orthogonal direction vectors
f0, s0 and n0 corresponding to the mean fiber, sheet and sheet-normal directions, respec-
tively, in the Lagrangian description (Fig. 5.1). In a continuum setting, this fiber and sheet
direction vectors are considered as averaged quantities over several fibers and sheets.

The isochoric Eulerian counterpart of these direction vectors are given by the relations
f̄ = J−1/3Ff0, s̄ = J−1/3Fs0 and n̄ = J−1/3Fn0, where F is the deformation gradient and
J = detF > 0 is the volume ratio. The displacement field u between the two points X and x
at time t is given by u = x−X(x, t). The circular dispersion of the fiber and sheet direction
vectors around their mean orientations may be modeled using the structure tensors

Hf = κfI+(1−3κf)f0⊗ f0, Hs = κsI+(1−3κs)s0⊗ s0, (5.1)

h̄f = κfb̄+(1−3κf)f̄⊗ f̄, h̄s = κsb̄+(1−3κs)s̄⊗ s̄, (5.2)

as similarly described in [166], where Hi are the Lagrangian structure tensors and h̄i =
J−2/3FHiFT are the isochoric Eulerian structure tensors where i ∈ {f,s} correlates to the
fiber and sheet directions. The second-order identity tensor is denoted by I while the
modified isochoric left Cauchy Green tensor is denoted by b̄ = J−2/3FFT.

The formulation of the dispersion parameters κi is described in detail in [166]. Briefly,
the range of valid values for κi are ∈ [0,1/3], where κi = 0 means perfect alignment and
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κi = 1/3 means isotropy. A formulation of κi may be derived through the probability
density function (PDF) ρi(Θ), using the relation

κi =
1
4

π∫
0

ρi(Θ)sin3
ΘdΘ, (5.3)

where Θ is the distribution angle centered around Θ = 0. The PDF used is given by

ρ(Θ) = 4

√
b

2π

exp{b[cos(2Θ)+1]}
erfi(
√

2b)
, (5.4)

where b is a concentration parameter and erfi(x) = −i erf(x) denotes an imaginary error
function. The function ρ(Θ) is the standard π-periodic von Mises PDF, normalized by

1
4π

∫
ω

ρ(Θ)dω = 1, (5.5)

where ω is the unit sphere.

The values for κi may thus be fitted to the histograms of the dispersion of fiber and sheet
angles for the myocardial tissue. To fit the PDF (5.4) to histogram data (fiber angles), the
fiber angle Θ is shifted to Θ̄ to center around Θ = 0◦ (the bar on the Θ variable denotes the
shifted value), and the maximum likelihood method in Matlab, i.e. mle(), is used together
with a custom function describing Eq. (5.4). The parameter b is thus retrieved with a 95%
confidence interval, and by using (5.3), the parameters κi are obtained.

The fit of the PDF to the fiber dispersion is shown in Fig. 5.2 for both a healthy myocar-
dial tissue (see Fig. 5.2(a)), and a diseased tissue (see Fig. 5.2(b)), where the dispersion
data were adapted from [29]. The fit of the PDF to the sheet dispersion is only shown
for a healthy sub-epicardium (see Fig. 5.2(c)), where the dispersion data were adapted
from [35]. To the authors’ knowledge the structure of sheet orientations in a diseased
myocardium has never been investigated. The fitting produced the dispersion parameters
κf = 0.00765 and κs = 0.0249 for the healthy myocardial tissue, and κf = 0.0886 for the
diseased tissue; compare with Fig. 5.2.

In the proposed framework, the dispersion parameters for the fiber and sheet directions are
uncoupled, and we assume that the mean orientation of these directions are kept orthogo-
nal. Furthermore, the dispersion of the sheet-normal direction is not considered; it is ex-
cluded to match the strain-energy function developed in [42], as shown in Section 5.2.2.

5.2.2. Constitutive relations

The anisotropy, generated by the preferred directions of the material (Fig. 5.1), can be
modeled by using the isochoric invariants Ī4f = f0 ·Cf0, Ī4s = s0 ·Cs0 and Ī4n = n0 ·Cn0,
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(b) Diseased fiber dispersion(a) Healthy fiber dispersion

(c) Healthy sheet dispersion

Figure 5.2.: Fit of histogram data for fiber and sheet dispersions adapted from [29, 35] : (a) fiber
dispersion in a healthy tissue (κf = 0.00765); (b) fiber dispersion in a diseased tissue (κf = 0.0886);
(c) sheet dispersion in a healthy tissue (κs = 0.0249).

where C = J−2/3C is the modified right Cauchy-Green tensor and C = FFF denotes the
right Cauchy-Green tensor [6].

By using the first invariant of C, namely Ī1 = C : I, we may define the two modified
invariants Ī∗4f and Ī∗4s as a linear combination of Ī1, Ī4f and Ī4s. Thus,

Ī∗4 i = κiĪ1 +(1−3κi)Ī4 i, i ∈ {f,s}, (5.6)

similar to [166–168]. To characterize the orthotropic behavior of the myocardium we
modify the strain-energy function suggested by Holzapfel & Ogden [42], by writing

Ψ =U(J)+Ψp(Ī1, Ī∗4f, Ī
∗
4s, Ī8fs), (5.7)

where Ī8fs = f0 ·Cs0 is the modified invariant which couples f0 with s0, U is a volumetric
function, and Ψp is an isochoric strain-energy function describing the passive behavior of
the myocardium. For the volumetric function we use

U(J) =
µK

2
(lnJ)2, (5.8)
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where µK servers as a user-specified penalty parameter. In an analogous manner to [42]
the isochoric strain-energy function for the passive myocardium tissue is given by

Ψp =
a

2b
{exp[b(Ī1−3)]−1}+ ∑

i=f,s

ai

2bi
{exp[bi(Ī∗4 i−1)2]−1}+ afs

2bfs
[exp(bfsĪ2

8fs)−1].

(5.9)

Note that in the limiting case, where κi = 0, the original model, as described in [42], is
retrieved.

The material parameters needed in (5.8) and (5.9) are µK, a, b, a( f,s, fs) and b( f,s, fs), and
the two dispersion parameters κf and κs. The passive Cauchy stress tensor is given by
σσσp = 2J−1F(∂Ψ/∂C)FT, and by using the notation

ψ j =
∂Ψp

∂ Ī j
, j = 1,8fs, ψ

∗
4 i =

∂Ψp

Ī∗4 i
, i = f,s, (5.10)

this results into

σσσp = phI+2J−1[ψ1 devb+ ∑
i=f,s

ψ
∗
4 i devhi +

1
2

ψ8fs dev(f⊗ s+ s⊗ f)], (5.11)

where ph = dU(J)/dJ is used, and dev(•) = (•)− (1/3)[(•) : I]I denotes the deviatoric
operator in the Eulerian description [6].

The evolution of an active second Piola-Kirchhoff stress term Sa, which originates from
[60], is given by

∂Sa

∂ t
= ε(Vm)(kSa∆Vm−Sa), (5.12)

where ε(Vm) is a delay function controlling the rate of activation and relaxation of Sa.
The parameter kSa regulates the amplitude of Sa, ∆Vm = Vm−Vr is the difference in the
transmembrane potential where Vm is the current action potential and Vr is the myocyte
resting potential. A smooth delay function ε = ε(Vm), as proposed in [144], is used, which
is given by

ε(Vm) = ε0 +(ε∞− ε0)exp{−exp[−ζr(Vm−Vs)]}, (5.13)

where ε0 and ε∞ are the limiting values of the delay function when the action potential Vm is
larger or lower than a given phase shift Vs. Further, the transition rate of the delay function
is controlled by the parameter ζr. However, in contradiction to what is written in [144],
the relation between the limiting values must follow ε0 > ε∞ in order to achieve the delay
of peak active stress with respect to the upstroke of the action potential. An active second
Piola-Kirchhoff stress tensor Sa is retrieved by introducing a dispersed structure tensor Ĥa
according to

Sa = SaĤa, (5.14)
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where
Ĥa =

κf

1−2κf
C−1 +

1−3κf

1−2κf
I−1
4f f0⊗ f0, (5.15)

with I4f = J2/3Ī4f. The active Cauchy stress tensor σσσ a is now retrieved by the push-forward
operation according to σσσ a = J−1FSaFT which yields

σσσ a = J−1Saĥa, (5.16)

where
ĥa =

κf

1−2κf
I+

1−3κf

1−2κf
f̂⊗ f̂, (5.17)

where f̂ = f/|f| is the normalized fiber direction vector. The structure tensor (5.15) is
formulated so that (5.17) may be seen as a normalization of (5.2)1 where the length change
of the mean fiber orientation does not affect the magnitude of the applied stress so that the
condition f̂ · ĥaf̂ = 1 holds, which together ensures that (5.16) is a true Cauchy stress tensor.
The Cauchy stress tensor σσσ is now simply given by the additive decomposition

σσσ = σσσp +σσσ a. (5.18)

The elasticity tensors needed for implementing the passive stress σσσp in the finite element
package FEAP [8] have previously been shown in [166], and for the active stress σσσ a the
elasticity tensor in the Lagrangian and the Eulerian descriptions is shown in the Appendix
A.1.

5.2.3. Modeling electro-mechanically coupled myocardial tissue

The computation of electrical activation and re-polarization and their coupling to passive
tissue mechanics is here briefly described. The spread of electrical activation and re-
polarization is described by a reaction-diffusion equation referred to as the mono-domain
equation, given by

βCm
∂Vm

∂ t
+β Iion(Vm,ηηη) = ∇ · (gm∇Vm)+ Itr, (5.19)

where β is the membrane surface to volume ratio, Cm is the membrane capacitance, Vm is
the transmembrane potential, Iion is the density of the total ionic current which is a function
of Vm and a set of state variables ηηη , Itr is the transmembrane stimulus current, and gm is
the mono-domain conductivity tensor with the eigenaxes ζ = f along the fibers, ζ = s
perpendicular to the fibers, but within a laminar sheet, and ζ = n is perpendicular to the
sheets. No dispersion parameters are here included in the formulation of the electrical
activation. The eigenvalues of gm are chosen as the harmonic mean of the intracellular and
interstitial conductivities, which renders the mono-domain equation axially equivalent to
the more general bi-domain equation [169, 170].
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We employ the finite element method for the spatial discretization of the mono-domain
equation (5.19). A ventricular geometry is modeled using two overlapping finite ele-
ment meshes, a fully structured coarser hexahedral mesh for solving the mechanics, and a
fully unstructured hybrid mesh with an average resolution of ∼200 µm, using an image-
based mesh generation technique [150], as implemented in the commercial mesh gener-
ator Tarantula (CAE Software Solution, Eggenberg, Austria) for solving electrics. Fiber
and sheet orientations are interpolated onto the barycenters of the finite elements in both
meshes. Both grids were partitioned for parallel execution using parMETIS [157]. By
treating the diffusion terms implicitly and the reaction terms explicitly, the temporal dis-
cretization of the mono-domain equation relies on an implicit-explicit (IMEX) scheme,
using the time step of 20 µs. Blocked Jacobi pre-conditioner with an iterative Conjugate
Gradient (CG) solver is used to solve the linear system in parallel, using an Incomplete LU
(ILU(0)) factorization as a sub-block pre-conditioner [153].

The electrical and mechanical models are weakly coupled, i.e. the solution of the electrical
quantities (5.19) is calculated on a static mesh first, using the Cardiac Arrhythmia Research
Package (CARP) [155], which is built on top of the MPI-based library PETSc [153]. Nu-
merical aspects of this approach have been described in detail elsewhere [156]. Relevant
parameters, i.e. Vm, required for computing the active stress transients are transferred to the
integration points of the mechanical mesh and fed into a separate subsequent simulation of
deformation and stress analysis using FEAP [8].

In this study, however, the electrical quantities are either calculated according to (5.19), as
it is the case in the model of a left ventricle, Section 5.3.5, or the transmembrane potential
Vm is prescribed directly as an input to the mechanical deformation analysis.

5.3. Representative Numerical Examples

To illustrate the effect of the myocardial model considering dispersion five representative
numerical examples are carried out. In order to elucidate how the dispersion parameters
κf and κs influence the myocardium model behavior they are appropriately modified; for
example, isotropic fiber distribution was considered while keeping a small dispersion in
the sheet orientation and vice versa. Such relations between fiber and sheet dispersion are
non-physiological, but are used to provide more insight into the proposed model.

The five examples are as follows: (i) in Section 5.3.1 a unit cube of myocardial tissue
is electrically activated to generate active tension. The influence of the dispersion on the
mechanical deformation (stretch) is studied by varying the dispersion parameters κf and
κs; (ii) a second example, see Section 5.3.2, aims to predict the influence of the dispersion
on simple shear; (iii) a FE model of a cube of myocardial tissue is used in Section 5.3.3 to
investigate the relative influence of electrically-generated active stress in the presence of
dispersion of the fiber orientation; (iv) in Section 5.3.4 a passive inflation experiment on a
ventricular section is performed to study the transmural change in stress as a function of
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Figure 5.3.: (a) Deformation of a unit cube when activated in the fiber direction; analytical results
along the fiber, sheet and sheet-normal directions using different values for the distribution param-
eters κf in (b) and κs in (c). The fiber, sheet and sheet-normal responses are shown by solid, dashed
and dotted curves, respectively, and the circles show the FE results for comparison reasons using
either κf = 1/6, see (b), or κs = 1/6, see (c). Using the limiting case κf = 1/3 or κs = 1/3 , the
dash-dotted curves show the stretch responses for all three f, s and n-directions, see (b), and for the
s and n-directions, see (c).

the altered dispersion parameters related to the fiber and sheet directions; (v) an electro-
mechanically coupled LV model is used in Section 5.3.5 to study the influence of fiber and
sheet dispersions upon contraction on pressure-volume loops over a cardiac cycle where
dispersion parameters are chosen to account for both healthy and pathological conditions.
The related numerical results were obtained by using mixed Q1/P0 displacement/pressure
finite elements.
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Passive stress

µK = 3333 kPa a = 0.333 kPa b = 9.242 (-)
af = 18.535 kPa bf = 15.972 (-)
as = 2.564 kPa bs = 10.446 (-)
afs = 0.417 kPa bfs = 11.602 (-)

Active stress

kSa = 0.50 kPa mV−1 Vr =−86.796 mV Vs =−80.0 mV
ε0 = 1.0 ms−1 ε∞ = 0.1 ms−1 ζr = 0.1 mV−1

Table 5.1.: Material parameters used for both analytical and numerical calculations, except for the
dispersion values of κf and κs which are provided in the respective section. The material parameters
for the passive tissue behavior are taken from [42], while the parameters for the active stress are
taken from [60].

5.3.1. Electrically activated cube with dispersion

A unit myocardium tissue cube with mean material directions is considered. By intro-
ducing a global coordinate system (X1, X2, X3) the material directions are according to
[f0] = [1,0,0]T, [s0] = [0,1,0]T and [n0] = [0,0,1]T. The cube is fixed against rigid body
movement but can otherwise freely deform. The reference configuration of the cube is
shown by the dashed lines in Fig. 5.3(a). The cube is activated by increasing the trans-
membrane potential Vm generating a contraction in the fiber direction. The corresponding
deformation gradient is given by F = diag(λf,λs,λn), where λf, λs and λn are the stretches
in the fiber, sheet and sheet-normal directions, respectively. Since the activation in the fiber
direction leads to a contraction of the fiber, the stretches follow the relations λf < 1, λs > 1
and λn > 1. A deformed configuration (at Vm = 50 mV, with κf = κs = 0) is shown by the
solid lines in Fig. 5.3(a). The components of the Cauchy stress tensor σσσ = σσσp +σσσ a can
now be calculated from (5.11) and (5.16) by using J = 1. Thus,

σ11 = ph +2[ψ1 +ψ
∗
4f(1−2κf)+ψ

∗
4sκs]λ

2
f +Sa, (5.20)

σ22 = ph +2[ψ1 +ψ
∗
4fκf +ψ

∗
4s(1−2κs)]λ

2
s +Sa

κf

1−2κf
, (5.21)

σ33 = ph +2(ψ1 +ψ
∗
4fκf +ψ

∗
4sκs)λ

2
n +Sa

κf

1−2κf
, (5.22)

σ12 = σ13 = σ23 = 0. (5.23)

Since the cube can freely deform, the stress components σ11, σ22 and σ33 are zero, and ph
may be determined by, e.g., σ33 = 0. The unknowns are the stretches λf, λs and λn. By the
use of the incompressibility condition λfλsλn = 1, the nonlinear system (5.20)–(5.22) can
be solved with respect to λf, λs and λn by using the function fsolve() in Matlab. The given
values are the dispersion parameters κf and κs, and the active stress Sa which is computed
from the given transmembrane potential Vm.
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(a) (b)

Figure 5.4.: (a) Simple shear deformation of a unit cube with the deformation gradient F = I+
γf0⊗ s0; (b) Cauchy stress σ11 versus the amount of shear γ for values κf between 1/8 and 1/3.
The circles show FE results for comparison reasons using κf = 1/8.

With the material parameters from Table 5.1, and a linear increase in the transmembrane
potential from Vm =Vr to Vm =+50 mV, the resulting stretches can be plotted as a function
of the transmembrane potential Vm, see Figs. 5.3(b) and 5.3(c) for different sets of the
dispersion parameters κf and κs. The fiber, sheet and sheet-normal responses are shown
by solid, dashed and dotted curves, respectively (the stretches in Fig. 5.3 are abbreviated
by λ ). In addition, a comparison is shown with finite element (FE) results obtained for the
same model setup where κf = 1/6 in Fig. 5.3(b) and κs = 1/6 in Fig. 5.3(c) (the FE results
are shown as circles). For the limiting case κf = 1/3 the active stress acts in all direction,
and due to the incompressibility the cube cannot deform, resulting in a straight line at
λ = 1 for all directions, as shown by the dash-dotted line in Fig. 5.3(b). For the limiting
case κs = 1/3 (the sheet direction is isotropic) the stretch responses in the sheet and sheet-
normal directions are shown by the dash-dotted curves in Fig. 5.3(c). Note that the sheet
and sheet-normal responses are indistinguishable. For κs = 1/3 the material model can be
viewed as transversely isotropic.

5.3.2. Influence of dispersion on simple shear

Consider the same unit myocardium tissue cube with the same material directions as for-
mulated in the previous example but subjected to a simple shear deformation in the 21-
plane caused by the deformation gradient F = I+ γf0⊗ s0 (see Fig. 5.4(a)). Thereby, γ

denotes the amount of shear. In addition, let us consider a plane stress state throughout
the myocardium tissue in the sense that the face of the cube normal to the direction n0
is free of surface traction (σ13 = σ23 = σ33 = 0). For that particular set-up the nonzero
Cauchy stress components can be derived from (5.11) and (5.16). After some lengthy but
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straightforward computation we obtain

σ11 = 2{ψ1γ
2 +ψ

∗
4f[1+(γ2−3)κf]+ψ

∗
4s(1−2κs)γ

2 +ψ8fsγ}+Sa
1−3κf

1−2κf
, (5.24)

σ22 = 2ψ
∗
4s(1−3κs), (5.25)

σ12 = σ21 = 2[ψ1 +ψ
∗
4fκf +ψ

∗
4s(1−2κs)]γ +

1
2

ψ8fs. (5.26)

Note that although the applied active stress is dispersed along the fiber direction there are
no components of the active stress in the two other orthogonal directions (s0 and n0). The
Cauchy stress σ11 is shown in Fig. 5.4(b) as a function of the amount of shear γ for values
κf between 1/8 and 1/3 (isotropy). As can clearly be seen from the plots an increased fiber
dispersion decreases the Cauchy stress σ11. In this example the active stress is zero in the
reference configuration and increases with the increase of shear. Also here a comparison
is shown with FE results (the circles in Fig. 5.4(b)) where κf = 1/8.

5.3.3. Influence of myocyte dispersion on the mechanical tissue response

The influence of the myocyte dispersion on the mechanical tissue response is shown by
using the same unit myocardium tissue cube (with 10 mm size) as in the previous examples.
The cube is discretized by 10×10×10 finite elements with fixed displacement boundary
conditions in all degrees of freedom on the faces of the cube at X2 = 0 and X2 = 10 mm.

The dispersion parameter κs was set to zero. Four different values for κf are used (0, 0.1,
0.2, 0.3) whilst keeping κs constant. The cube is activated by a potential of Vm =+30 mV
and the corresponding first principal stress σI is shown in Fig. 5.5. As can be seen in
the figure, an increase in the κf-value towards isotropy lowers the value of σI, and also
decreases the contraction in the fiber direction. This is due to the increased dispersion of
the fiber direction which leads to an increase in active stress components along the X2 and
X3-directions, and due to the incompressibility of the material which reduces the influence
of the active stress in the fiber direction in that particular example.

5.3.4. Passive inflation of a ventricular section

A left ventricular slice model is generated by approximating the cross section of the LV by
a cylinder, as illustrated in Fig. 5.6(a). Two models, say A and B, of the same geometry
but with different fiber and sheet arrangements are created. In model A, the average fiber
angle α varies from +60◦ to −60◦ and the average sheet angle β varies from +85◦ to
−85◦ transmurally from the epicardium to the endocardium, where the fiber and sheet
angles α and β are defined in Fig. 5.6(b). In Model B, the fiber and sheet angles are
assumed to be zero. The slice geometry is meshed with 400 hexahedral finite elements
which are fixed against translation in the ξ2-direction at the cut surfaces, and in the ξ3-
direction at the epicardial border to hinder rigid body movements. No electrical stimulus
was applied, i.e. the tissue remained electrically quiescent and thus no active stresses were
generated. Instead, the slice is passively inflated by applying a pressure load of 100 mmHg
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Figure 5.5.: Cube of myocardial tissue subjected to an active stress corresponding to a potential of
+30 mV with the dispersion parameters κf = {0, 0.1, 0.2, 0.3} and κs = 0. The images illustrate
the corresponding first principal stress σI.

to the endocardial surface in 200 incremental load steps of equal size. The influence of
the dispersion parameters κf and κs on the distribution of the first principal stress σI is
investigated by either using the dispersion parameters for healthy and diseased tissues, as
provided in Fig. 5.2, or by using the dispersion parameters κf = 0.2 (strongly dispersed)
and κs = 0 (perfect alignment), and vice versa.

In Fig. 5.7 the resulting first principal Cauchy stress σI at the applied pressure load of
100 mmHg is shown for different dispersion parameters. Figure 5.7(a) shows the stress
distribution by using the dispersion parameters for a healthy myocardium resulting in a
band of higher stresses in the middle region of the myocardium. This band is noticeably
reduced by using the dispersion parameters for the fibers related to a diseased myocardium,
as shown in Fig. 5.7(b). Instead, stresses are more spread out radially, and at the endocar-
dial border stresses are higher relative to the setup of Fig. 5.7(a). This suggests that the
fiber dispersion alone induces a radial stress gradient where the highest stresses arise at
the inner wall, as commonly seen in, e.g., pressurized thick-walled isotropic tubes. This
is exactly the case when using aligned sheets and a pronounced fiber dispersion, as can
be seen in Fig. 5.7(c). In the opposite case, i.e. with fiber alignment and a pronounced
sheet dispersion, there is an increased stress gradient visible in the middle region of the
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(b)(a)

Figure 5.6.: (a) Coordinate system of a LV model and a section of the LV; (b) average fiber orienta-
tion defined by the angle α in the (ξ2, ξ3)-plane and average sheet orientation defined by the angle
β in the (ξ1, ξ2)-plane. The arrows point in the positive directions of the angles.

myocardium, as seen in Fig. 5.7(d).

For the sake of comparison, for model B the first principal Cauchy stress σI at 100 mmHg
was computed and the related results are shown in the Figs. 5.7(e) and (f) for two sets
of dispersion parameters. For the case of a higher dispersion parameter κf (relates to a
diseased myocardium) the first principal Cauchy stress is slightly higher at the endocardial
border. This effect is not so pronounced when comparing Fig. 5.7(a) with (b).

5.3.5. LV model indicating the influence of fiber and sheet dispersions upon
contraction

To study the influence of fiber and sheet dispersions upon contraction over a cardiac cycle
an ellipsoidal model of a LV was constructed; the dimensions correlate with a rabbit LV
[132]. The coordinates of the LV are described in prolate spheroidal coordinates with
the axes ξ1, ξ2 and ξ3, pointing in the radial, longitudinal and circumferential direction,
respectively. The coordinate system is illustrated in Fig. 5.6(a). The arrangements of the
fibers and the sheets correspond to the model A, as described in Section 5.3.4. Pressure
boundary conditions, as imposed by the ventricular deformation and the response of the
vascular system, are applied on the endocardial surface. The pressure p in the cavity is
governed as follows:

(i) Non-physiological initial phase with linear pressure increase starting from p = 0 to
the end diastolic pressure (EDP) (p = 20 mmHg).

(ii) Isochoric LV compression phase, p increases from EDP up to 95 mmHg.

(iii) Ejection phase where the pressure-volume relationship is governed by a Windkessel
model, i.e.

C
dp
dt

+
p
R
=−dV

dt
, (5.27)

until reversed blood flow.
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(a)Model (b)Model

(d)Model(c)Model

(e)Model (f) Model

Figure 5.7.: Distribution of the first principal stress σI at applied pressure load of 100 mmHg in
a section of a ventricular model. Models A and B pertain to different fiber and sheet-orientations;
model A:−60◦≤α ≤+60◦ and−85◦≤ β ≤+85◦; model B: α = β = 0 (α and β denote fiber and
sheet angles, respectively, as defined in Fig. 5.6(b)). For some dispersion parameters see Fig. 5.2.

(iv) Isochoric LV relaxation phase, p drops down to 12.5 mmHg.

(v) Filling phase with linear pressure increase to EDP.

In the steps (ii) and (iv), the pressure p is computed using the iterative relation pn+1 =
pn+(Vn+1−Vn)/Cp to keep the cavitary volume V of the LV constant, where Cp serves as
a penalty parameter [79]. In the step (iii), where a two-element Windkessel model is used,
the parameters C and R relate to the arterial compliance and the resistance, respectively.
The values for C and R are chosen to generate pressure-volume (PV) loops which match
with experimental data of rabbits [78]. Parameters required for calculating the pressure
are: C = 0.2 ml mmHg−1, R = 700 mmHg ms ml−1 and Cp =−900 ml mmHg−1. The pa-
rameters used to describe both active and passive mechanical behaviors of the model are
summarized in Table 5.1, except for κf and κs which correspond to the dispersion param-
eters given in Fig. 5.2. The mechanical boundary conditions for the LV are described in
Table 5.2. The mesh consists of 5310 hexahedral (mixed) finite elements used to solve
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BCs Coordinates Description

tn =−p ξ1 = ξ1min for all ξ2, ξ3 Endocardial surface

uξ2
= 0 ξ2 = ξ2max for all ξ1, ξ3 Basal surface

uξ3
= 0 ξ1 = ξ1max for all ξ3

Outer boundary at
ξ2 = ξ2max the base surface

Table 5.2.: Mechanical boundary conditions (BCs) for the LV in terms of the prescribed traction
t, where tn is a component of t normal to the endocardial surface on which the pressure p acts,
and the displacement u with components uξ1 , uξ2 , uξ3 in the direction of the coordinates given in
Fig. 5.6(a).

the mechanics and of 1201507 linear hybrid finite elements to solve the electrics [152].
The model by Mahajan et al. [71] is employed to describe cellular dynamics, where the
system of ODEs is solved using the Rush-Larsen algorithm [154] with several optimiza-
tions [111]. The model was initialized by pacing a single cell at a pacing cycle length of
350 ms until a stable limit cycle was observed.

The state vector ηηη at the end of this pre-pacing procedure was used to populate the LV
model with an initial state vector ηηη0. Transmembrane current injection applied to the
endocardial surface at t = 0 ms initiated the propagation of the action potentials at the en-
docardium to approximate a predominantly transmural activation sequence, as induced by
activation via the Purkinje system. In this approximation the whole endocardium was
activated synchronously, electrical activation delays within the endocardium remained
unaccounted for. We simulated 350 ms of activity to cover one depolarization and re-
polarization cycle over the entire LV. This spread of electrical activation and re-polarization
is modeled using Eq. (5.19).

By using the dispersion parameters that relate to the healthy and the diseased tissue, as seen
in Fig. 5.2, the resulting deformations are quite different. This is illustrated at both the end
diastolic volume (EDV) and the end systolic volume (ESV), as shown in the Figs. 5.8(a)
and (b), respectively. Thereby, the distribution of the magnitude of the difference |uH−uD|
between the displacements is shown (H stands for healthy tissue and D for diseased). The
resulting pressure-volume (PV) loops obtained from the simulations for different sets of
dispersion parameters are shown in Fig. 5.8(c); also the case for no dispersion is illustrated
(κf = κs = 0). While only a minor shift in the PV loops between the cases with no dis-
persions and with fiber and sheet dispersions for a healthy myocardium was observed, a
remarkably different behavior is obtained with a fiber dispersion κf relating to a diseased
myocardium; thereby the end diastolic and systolic volumes are much larger.
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EDV ESV

Figure 5.8.: Magnitude of the difference |uH−uD| between the displacements (H stands for healthy
tissue and D for diseased) for (a) the end diastolic volume (EDV) and (b) the end systolic volume
(ESV). (c) Pressure-volume loops for different sets of dispersion parameters κf and κs.

5.4. Discussion

There are several reports in the literature which provide evidence for the presence of dis-
persion in the fiber and the sheet orientation in myocardial tissues. Under healthy condi-
tions dispersion is rather mild, but under certain pathologies such as HCM [165, 171, 172]
dispersion can be quite pronounced. In the vast majority of modeling studies, however,
dispersion and its influence upon the mechanical response of the myocyardium has been
largely ignored. In this study, a mechanical model of myocardial tissue has been proposed
which explicitly accounts for the dispersion of fibers and sheets. By changing two scalar
(dispersion) parameters, introduced as κf and κs, the dispersion along the fiber and the



102 5. Modeling the Dispersion in Cardiac Fiber and Sheet Orientations

sheet direction can be steered independently, thus allowing mechanistic investigations of
pathological changes. The independence of the fiber and sheet directions is a reasonable
approximation, despite the microstructural interaction. An approach which couples the
fiber and sheet orientations is feasible, however, specific data are missing. The dispersion
parameters κf, κs determine the blend between the isotropy (characterized by the invariant
I1) and the transverse isotropy (characterized by the invariants I4f, I4s). Thus, together,
they give a dispersed orthotropic structure response where an increased dispersion leads to
a more isotropic active and passive mechanical response.

The analytical and numerical examples investigated in this study suggest that dispersion
may be an important factor in cardiac electro-mechanics. The increase in the dispersion
along the fiber direction showed the most striking effect. This is illustrated in, e.g., Fig. 5.5
where the increase in the dispersion reduces contraction and the first principal stress. The
enforced incompressibility condition is responsible for this reduced contraction, as can be
seen from the analytical expressions (5.20)–(5.22) and (5.24)–(5.26). From a physiological
point of view there is also an interpretation. As the dispersion increases, the orientation of
myocytes, which are responsible for active contraction, becomes more evenly distributed.
When dispersion is large enough, there is no preferred myocyte orientation anymore. This
would entail an isotropic contraction, which is, however, impossible without altering the
volume. Moreover, besides distributing the direction of active contraction, fiber dispersion
also has a major impact on the passive myocardial response. This is illustrated in the
Fig. 5.7(a) through (c) where the fiber dispersion is increased in a ventricular slice model.
During passive inflation of the slice the first principal stress changes from being elevated in
a mid-myocardial band for low fiber dispersion to being elevated at the endocardial border
for high fiber dispersion. This shift is similar to what is commonly seen when inflating a
thick-walled tube.

Although the effects of dispersion in the fiber direction on the mechanical myocardial
response is more striking, numerical results indicate that increases in the sheet disper-
sion lead to significant alterations in the model behavior as well. The overall material re-
sponse changes gradually from orthotropic towards transversely isotropic where the sheet
response becomes indistinguishable from the sheet-normal response. This can be seen ei-
ther in the analytical part of the first example discussed in Section 5.3.1, see eqs. (5.21) and
(5.22), where κs = 1/3 gives identical expressions for the Cauchy stresses σ22 and σ33, or,
alternatively, from Fig. 5.3(c) where the behavior is identical along the sheet and sheet-
normal directions. The difference in the passive stress response between a (nearly) trans-
versely isotropic and an orthotropic material can be appreciated by comparing Fig. 5.7(d)
with Fig. 5.7(a), where the stress in the middle region of the myocardial is even more ele-
vated for the (nearly) transversely isotropic material. This large difference in the stress
response also highlights the importance of the orthotropic structure as a factor which
has to be considered when simulating ventricular electro-mechanical problems. Resid-
ual stresses, however, has not been included in the simulation, why the particular stress
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distribution, as shown in Fig. 5.7, should not be considered as the true stress in a ventricle.
It merely shows how the fiber and sheet dispersions affect the stress distribution.

Section 5.3.5 illustrates the numerical results for an electro-mechanically coupled model
of a LV from a rabbit for a healthy and a pathological myocardium. While the effects of
using fiber and sheet dispersion parameters for the healthy myocardium were fairly minor,
the use of fiber dispersions relating to a pathological myocardium had a rather big effect.
As can be seen by comparing the pressure-volume (PV) loops in Fig. 5.8(c), a significant
shift of the entire PV loop towards larger end diastolic and end systolic LV cavity volumes
occurred. While the PV loops show that there is a difference in volume of the ventricular
lumen, Figs. 5.8(a) and (b) also illustrate that the remaining ventricular wall undergoes
different patterns of deformation when using different dispersion parameters.

In summary, our modeling results identified the fiber and sheet dispersions as important
determinants for the electro-mechanics of the myocardium. Distributed fiber and sheet
orientations should be considered for more reliable predictions of, e.g., stress, deformation
and volume change, in particular when compared with experimental data obtained from a
pathological myocardium.

Limitations of the study. Due to the lack of structural data of pathological myocardium
it is difficult to find suitable comparisons on which we may validate our approach. There-
fore, we have focused on the description of the dispersion model and have attempted to
show the related mechanisms. Once adequate structural data exist, future work is needed
to validate and modify the model if necessary.

The fit of the histogram data to the PDF assumes a bell-shaped data distribution. This
may not be suitable in pathological cases with increased fiber dispersion. As shown in
Fig. 5.2(b), which displays the fiber dispersion of a HCM-diseased tissue, there may exist
two predominant myocyte orientations in the region of interest. It is certainly possible
to retrieve individual dispersion parameters, however, the increased dispersion obtained
from the HCM sample was only seen within small focal islands throughout the myocar-
dial wall [29, 30]. To appropriately account for the bimodal distribution of orientations,
higher spatial resolutions would be required than those commonly used within FE studies,
including this study. Since the spatial extent of a single finite element in the models used
exceeds the size of a focal island in which increased dispersion can be found, we opted to
only use one average direction which corresponds to a fit of the bell-shaped function over
both predominant orientations.

In the LV model discussed in Section 5.3.5, the dispersion parameters corresponding to the
tissue diseased by HCM were used throughout the entire LV wall. This is not a realistic
assumption as the dispersion in the smaller focal islands seems only to be approximately
25% of the overall LV volume [29, 30]. Available data show sheet and fiber dispersions
averaged over all islands found in a given ventricle, but no data on the spatial distribution
and morphology of such islands are available. Therefore, simulation results show an overly
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diseased case which can be considered as a limiting case for the dispersion effects. How-
ever, the focus of this study is mainly on the description of the modeling procedure and the
potential effects of fiber dispersion, and not on the development of a model that strives for
a perfect patho-physiological match for a HCM-diseased LV. In future higher resolution
FE-modeling studies, dispersion parameters may easily be set to vary from finite element
to element, however, by considering the paucity of available data on the spatial dispersion
variation such a detailed investigation would appear to be premature. Experimental stud-
ies which characterize spatial and morphological aspects of the dispersion over the entire
myocardium in health and disease are, therefore, of utmost need to provide a more solid
basis for a more detailed study aiming to provide more specific predictions.

Furthermore, in the LV model the parameters κf and κs affected only the mechanical re-
sponse of the LV, but not the electrical activation sequence since dispersion remained un-
accounted for in the mono-domain equation. That is, the orthotropy in the propagation of
the action potential in the LV model was governed by the mean orientation of the fibers
and the sheets. A consideration of the dispersion in the electrical model would also reduce
the orthotropy. However, the chosen activation sequence, which approximates a normal
beat where the entire endocardium is activated almost simultaneously, leads to a strongly
transmural activation where effects of electrical orthotropy are strongly attenuated. Under
such conditions the consequence of electrical dispersion is minor and can be neglected,
particularly when considering the rather large uncertainty in the experimental reports on
conductivity values, which vary up to 300% [173].
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6. ON TENSION-COMPRESSION SWITCHING IN DISPERSED
FIBER-REINFORCED CONSTITUTIVE MODELS

Abstract Large-strain, fiber-reinforced constitutive models are commonly used for solv-
ing complex boundary value problems in the context of the finite element method. In such
models which do not include fiber dispersion, the mathematical and physical motivation for
including a tension-compression fiber ‘switch’ (e.g., in which some portion of the model
is not used if the fibers are in compression) is clear. In cases where fiber-reinforced mod-
els are extended to include the effect of distributed fiber orientations (i.e. models which
include a parameter intended to capture fiber dispersion about a principal fiber direction,
e.g., Gasser, Ogden and Holzapfel, Journal of the Royal Society Interface, 3:15-35, 2006)
neither the mathematical nor physical motivation for tension-compression fiber switching
is so clear, and in fact several choices exist for the material modeler. Here we explore
methods to study such switching mechanisms by analyzing six potential switching cases,
and draw some conclusions about the mathematical robustness and physical interpretation
of the different possible approaches. We propose using two different permeations of the
dispersed fiber-reinforced models, depending on whether one can assume that the fibers
are (nearly) uncoupled or strongly coupled to the isotropic ground matrix.

6.1. Introduction

Fiber-reinforced constitutive models for soft tissue materials are commonly used for solv-
ing complex large-strain boundary value problems using the finite element method. Such
materials are often considered to be hyperelastic and are modeled using a strain-energy
function in the framework of continuum mechanics. Because soft biological tissues are
commonly reinforced with collagen fibers, fiber-reinforced constitutive models play a cru-
cial role in, e.g., determining the mechanical state of biological tissues.

The directions of collagen fiber-reinforcement in soft biological materials generally vary
inhomogeneously within the tissues, and fibers are often bundled together to create fiber-
families, in which the fibers are (to some degree) dispersed around a mean, or principal,
fiber direction. Several models for fiber-reinforced materials are presented in the me-
chanics literature that incorporate a principal fiber direction, e.g., [174, 175], and many
models have been presented for specific biological tissues, e.g., arteries [12, 176, 177],
myocardium [42, 47, 128], and cartilage [178, 179]. Some of these models have been ex-
tended to further incorporate a measure of dispersion in the fibers orientations (i.e. they
capture the distribution of the fiber orientations about a principal direction of reinforce-
ment) [31, 166, 168, 180–183].

105
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Although it is fairly straightforward to model fiber behavior under tension, it is not so clear
what to do once the fibers go into compression. While a fiber, say a collagen fiber found
in arterial tissue, bears load while in tension, it may buckle under compression and would
thus not bear any compressive load alone. A common approach is to view the fiber as
a tension-only quantity and superimpose this behavior with an isotropic matrix material
which may handle compressive loads.

This approach is used in, e.g., the strain-energy function developed by Holzapfel, Gasser
and Ogden [12], which is separated into two terms related to matrix and fiber behaviors
of arterial tissue, i.e. Ψ = Ψm +Ψf, respectively. Here, the matrix material is considered
to be isotropic and incompressible and can be modeled as a neo-Hookean material Ψm =
µ(I1− 3)/2, where µ is the shear modulus in the reference configuration and I1 = trC is
an isotropic invariant of the right Cauchy-Green tensor C = FTF. The behavior of arterial
tissue related to the collagen fiber structure is modeled using a directionally dependent
pseudo-invariant I4 = C : A0 = λ 2

f (the square of the stretch in the fiber direction), where
A0 = a0⊗a0 is a material structure tensor for the fiber reinforcement with direction a0 in
the reference configuration.

Assuming that the embedded collagen fibers are not highly-constrained in the matrix ma-
terial, these fibers buckle under compression and thus the overall material response in
compression is isotropic and captured by Ψm alone. Simplifying the strain-energy func-
tion for the fibers given in [12] to account for only one fiber family, Ψf may be written
as

Ψf =

Ψt
f =

k1

2k2

{
exp
[
k2(I4−1)2]−1

}
if I4 > 1,

Ψc
f = 0 if I4 ≤ 1,

(6.1)

where the superscript t and c stand for tension and compression respectively, k1 > 0 is a
stress-like material parameter and k2 > 0 is a dimensionless parameter, both which control
the nonlinear, equilibrium fiber fabric response. As discussed, e.g., in [12, 42], for both
convexity and strong ellipticity to be fulfilled in tension, the material parameters in Ψf must
fulfill the relations k1 > 0 and k2 > 0. Beyond the physical motivation for the compression
‘switch’ (the fibers buckle), there is also a mathematical reason for switching to Ψc

f =
0 in compression. Strong ellipticity can not be guaranteed without this switch, which
may have a negative impact on numerical stability of the corresponding finite element
implementations of the constitutive equations.

As the strain-energy function Ψ is separated into two terms, the Cauchy stress tensor

σσσ = 2F
∂Ψ

∂C
FT− phI, (6.2)

can similarly be separated into σσσ =σσσm+σσσ f− phI, where σσσm is the matrix contribution, σσσ f
is the fiber contribution and phI is a term used to enforce incompressibility via a Lagrange
multiplier ph (a non-physical penalty parameter) and the second order identity tensor I.
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Thus, assuming a neo-Hookean matrix contribution, the stress tensors σσσm and σσσ f can be
written as

σσσm = 2F
∂Ψm

∂C
FT = µb, (6.3)

and

σσσ f = 2F
∂Ψf

∂C
FT =

{
σσσ t

f = 2k1(I4−1)exp[k2(I4−1)2]A if I4 > 1,

σσσ c
f = 0 if I4 ≤ 1,

(6.4)

where b = FFT is the left Cauchy-Green tensor and A = FA0FT = Fa0⊗ Fa0 = a⊗ a
is an Eulerian structure tensor associated with the fibers (characterized by the reference
direction vector a0, |a0|= 1) with direction a in the Eulerian configuration.

In order to visualize the effects of fiber-term switching from tension to compression, we
compare the Cauchy stresses σσσ = σσσm +σσσ f− phI and σ̃σσ f = σσσ f− phI under uniaxial de-
formation of an incompressible material with the fiber orientation a0 in the global 11–
direction. The material is stretched/compressed by λf in the global 11–direction and is free
to deform (i.e. traction free) in the 22 and 33–directions. Thus the deformation gradient
is F = diag(λf,λ

−1/2
f ,λ

−1/2
f ) which assumes both transverse (in-plane) isotropy and ma-

terial incompressibility, i.e. detF = 1. The Lagrange multiplier p is determined from the
33–component of the stress tensor.

Without loss of generality, the material parameters are chosen for a representative case as
µ = 5 kPa, k1 = 10 kPa and k2 = 15 [-], and are not matched to any experimental material
data. In Fig. 6.1(a) we compare the 11–components of the stresses (coincident with the
fiber direction by design); the fiber stress σ̃σσ f does not contribute to the total stress while
the fibers are in compression, i.e. at λf < 1. In compression the total stress tensor σσσ is
instead completely governed by the matrix contribution which yields the appropriate neg-
ative stresses. In Fig. 6.1(b) we show the invariants I1 and I4 during tension-compression
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Figure 6.1.: Uniaxial tension-compression results for the fiber-reinforced model presented in [12]:
(a) Cauchy stresses in the fiber direction for σσσ and σ̃σσ f; (b) invariants relating to isotropy, I1, and
fiber-reinforcement, I4; (c) strain-energy potentials, both the total Ψ and the fiber contribution Ψf.

loading in the fiber direction. It is apparent that I4 ≤ 1 at λf ≤ 1, while I1 = 3 at λf = 1, and
I1 > 3 otherwise. In Fig. 6.1(c) we show the corresponding strain-energy response. Thus,
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setting the fiber-component of the strain-energy function to zero during compression, i.e.
Ψc

f = 0 when I4 ≤ 1, is motivated in part from physical considerations and in part from
numerical considerations.

For constitutive models with distributed fiber orientations, cf. [31, 166, 180–182], stability
of the fiber-terms in compression is still problematic, but a physical motivation to switch
off fiber terms is now less clear. With fibers dispersed from the principal direction, single
fibers oriented far from this principal direction may be in tension while the principal fiber
direction is in compression (see, e.g., [167] for a related discussion on a dispersed model in
tension). It must be noted though that such an assumption requires a very large dispersion
or a very large compressions, both which are often outside the physiological range.

Nevertheless, a non-trivial choice must be made on how to handle compression in mod-
els with distributed fiber orientations. Here we analyze such a model, which includes a
mixture of isotropic and transversely isotropic terms, for six different tension-compression
switching assumptions. In Section 6.2 we outline our mathematical methods, in Section
6.3 we show results, and in Section 6.4 we provide a discussion and conclusion.

6.2. Mathematical methods

We examine the popular fiber dispersion model developed by Gasser, Holzapfel and Ogden
[166]. It includes a dispersion parameter κ , based on the circular von Mises probability
density function, which admits a physical interpretation. This dispersion parameter κ takes
values in the range κ ∈ [0,1/3] and is used in the combined pseudo-invariant

I∗4 = κI1 +(1−3κ)I4, (6.5)

which is a mixture of the isotropic invariant I1 and the directionally dependent pseudo-
invariant I4.

We generalize the presentation of the constitutive model from [166] to include six switch-
ing cases, which encompass different possible pseudo-invariants to trigger the tension-
compression changes (Table 6.1, column 2; subsequently labeled as Table 6.12) and dif-
ferent possible strain-energy formulations for use in generalized compression Ψci∗

f , where
the superscript i denotes the Case number, i.e. i ∈ {0, . . . ,6} (Table 6.14). Note that each
Case thus represent a different material model. The combined invariant I∗4 replaces I4 in
(6.1) according to

Ψ
∗
f =

Ψt∗
f =

k1

2k2

(
exp
[
k2(I∗4 −1)2]−1

)
if (Table 6.12) > 1,

Ψci∗
f = (Table 6.14) if (Table 6.12)≤ 1,

(6.6)

where again, for simplicity, we consider only one fiber direction. Note that when κ = 0 the
fibers are perfectly aligned and Ψt∗

f =Ψt
f(I4), but when κ = 1/3 the distribution is isotropic
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and Ψt∗
f = Ψt∗

f (I1). As discussed in [166], for numerical stability (6.6) in tension needs to
be modified for use in compression. Therefore, we investigate six possible switching cases
shown in Table 6.1, where cases 1, 2 and 3 use as a ‘switch’ I4 ≤ 1, and cases 4, 5 and
6 use the combined invariant I∗4 ≤ 1 as a ‘switch’. A zeroth case, where Ψ∗f = Ψt∗

f for
both tension and compression, i.e. no switch in compression, is also shown for illustrative
purposes.

Case i Switch Ici Ψci∗
f σσσ ci∗

f

0 - I∗4
k1

2k2

{
exp
[
k2(I∗4 −1)2

]
−1
}

2k1(I∗4 −1)exp[k2(I∗4 −1)2]h

1 I4 ≤ 1 κI1
k1

2k2

{
exp
[
k2(κI1−1)2

]
−1
}

2k1(κI1−1)exp[k2(κI1−1)2]κb

2 I4 ≤ 1 − 0 0

3 I4 ≤ 1
1
3

I1
k1

2k2

{
exp
[

k2(
1
3

I1−1)2
]
−1
}

2k1(
1
3

I1−1)exp[k2(
1
3

I1−1)2]
1
3

b

4 I∗4 ≤ 1 κI1
k1

2k2

{
exp
[
k2(κI1−1)2

]
−1
}

2k1(κI1−1)exp[k2(κI1−1)2]κb

5 I∗4 ≤ 1 − 0 0

6 I∗4 ≤ 1
1
3

I1
k1

2k2

{
exp
[

k2(
1
3

I1−1)2
]
−1
}

2k1(
1
3

I1−1)exp[k2(
1
3

I1−1)2]
1
3

b

Table 6.1.: Six possible choices for tension-compression switching of the dispersed fiber-reinforced
constitutive model presented in [166]. The columns represent: the Case number, the criteria for
tension-compression switching, the invariant term used in compression, the corresponding strain-
energy function for compression and the corresponding Cauchy stress for compression, N.B., all
Cases use the same combined invariant, strain-energy and corresponding Cauchy stress in tension.
Case zero, shown for comparative purposes, does not switch from tension to compression.

As seen in Table 6.14, exclusion of directional (i.e. fiber orientation) dependence for the
strain-energy function in compression may be achieved by simply removing I4 from the
equation, as shown in Cases 1 and 4, or by assigning κ = 1/3 for the dispersion parameter,
as shown in Cases 3 and 6, or alternatively, and in accordance with (6.1), the entire strain-
energy function associated with the fibers may be removed (i.e. Ψci∗

f = 0), as shown in
Cases 2 and 5. Note that all Cases use the same combined invariant, strain-energy and
corresponding Cauchy stress in tension.

It is now straightforward to write the Cauchy stress for the fiber contribution as

σσσ
∗
f = 2F

∂Ψ∗f
∂C

FT =

{
σσσ t∗

f = 2k1(I∗4 −1)exp[k2(I∗4 −1)2]h if (Table 6.12) > 1,

σσσ ci∗
f = (Table 6.15) if (Table 6.12)≤ 1,

(6.7)
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where h = κb+(1−3κ)a⊗a is an Eulerian structure tensor incorporating the dispersed
fiber structure.

We examine two loading conditions: uniaxial tension-compression in the principal fiber
direction and simple shear (with a range of principal fiber directions). We use the mate-
rial parameters from Section 6.1 (i.e., k1 = 10 kPa and k2 = 15 [-]), with the additional
dispersion parameter κ [-] that is allowed to vary in the uniaxial tension-compression de-
formation state, and is set arbitrary to 0.15 in the shear deformation state. Given (6.7), we
can determine the Cauchy stress analytically in terms of the applied deformations, i.e. the
applied stretch λf or the shear γ . Full expressions for these stresses are given in Appendix
B.1. For the uniaxial tension-compression loading state, we investigate the six switching
cases in terms of (i) Cauchy stresses and (ii) the combined tension-compression invariant.
For the simple shear loading state the switching cases are investigated in terms of (iii) the
Cauchy stresses only.

6.3. Results

(i) The Cauchy stress – uniaxial tension-compression. Fig. 6.2 compares the fiber
component of the Cauchy stress σ̃σσ

∗
f = σσσ∗f − phI which aligns with the 11–direction by

design, i.e. σ̃∗ff = [σ̃σσ∗f ]11, for Cases 0–6. The solid black line in Fig. 6.2(a)–(f) highlight
the stress behavior at κ = 0.15 for illustrative purposes. The effect of dispersion in ten-
sion is shown in all cases (the behavior in tension is always the same) where increasing
values of κ decreases the tensile stress response (although it is always positive for λf > 1).
Case 0, as seen in Fig. 6.2(a), is used as a reference to show the effect of not changing the
strain-energy function used in compression from that used in tension. For low κ-values
and increased compressive stretches (λf increasingly < 1) the stress response will first turn
strongly negative followed by a large positive stress. For very large values of κ the stress
response will only be negative. Fig. 6.2(b) illustrates both cases 1 and 4 as they give a
nearly identical stress response. Following the black line in compression, Cases 1 and 4
show a large positive stress in compression until λf ∼ 0.3 where it becomes negative. For
Case 2, Fig. 6.2(c), the stress in compression is always zero. For Case 3, Fig. 6.2 d), the
compressive stress is always negative and independent of the κ-value, and increased com-
pression leads to increasingly negative stresses. In Fig. 6.2(e), Case 5, we see the effects
of using I∗4 ≤ 1 as a switch. The stress in compression for Case 5 is zero until λf ∼ 0.3
where it turns negative, and note that increasing κ shifts the point where Case 5 yields
negative stresses towards lower levels of compression. Lastly, following the black line for
Case 6 in Fig. 6.2(f) shows that the fiber stress will drop to large negative values when ini-
tially compressed, but that further increasing compression will cause the stress to increase
again.

(ii) The combined invariant – uniaxial tension-compression. Fig. 6.3(a)–d) compares
the combined invariant I∗4 for cases 0, 1, 3 and 4, respectively. A black line is again used
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Figure 6.2.: Cauchy stress results in the fiber direction under uniaxial tension-compression for six
possible choices of tension-compression switching for the dispersed fiber-reinforced constitutive
model presented in [166]. Cases 0–6 shown in (a)–(f), respectively, cf. Table 6.15. A solid black
line follows the stress results at κ = 0.15.

to highlight the behavior when κ = 0.15. Two transparent planes are used as reference
planes. The horizontal plane indicates I∗4 = 1 and the vertical plane indicates λf = 1. Case
0, seen in Fig. 6.3(a), shows the behavior of the combined invariant when going from
tension to compression. Clearly, I∗4 > 1 may occur even at a large compression depending
on the value of κ . Following the black line, as a representative case, I∗4 > 1 occurs at
λf ∼ 0.3, which corresponds to the compression level when Cases 0, 1, 4 and 5 show
negative stresses along the same line (cf. Fig. 6.2(a), (b) and (e)). Following the black line
in Fig. 6.3(b) further shows that I∗4 makes a sharp decrease for Case 1 at λf = 1 to I∗4 ∼ 0.45.
Increasing the level of compression yields larger values of I∗4 and again at λf ∼ 0.3, I∗4 > 1,
similar to Case 0. The behavior seen in Fig. 6.3 d) for Case 4, is nearly identical to Case 1,
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Figure 6.3.: Combined invariant results for 4 possible choices of a combined tension-compression
invariant undergoing uniaxial tension-compression for Cases 0, 1, 3 and 4, cf. Table 6.13: (a)
behavior of the combined invariant without using any switch, i.e. Ic0 = I∗4 ; (b) combined invariant
Ic1 = κI1 for Case 1; (c) combined invariant Ic3 = 1/3I1 for Case 3; d) combined invariant Ic4 = κI1
for Case 4, with switching determined by I∗4 ≤ 1; N.B., all Cases use I∗4 for the combined invariant
in tension. A solid black line follows the combined invariant results at κ = 0.15.

except for a jump in the values of I∗4 around λf ∼ 0.3 that is seen when following the black
line. For Case 3, however, I∗4 is always ≥ 1, in both tension and compression as seen in
Fig. 6.3(c).

(iii) The Cauchy stress – simple shear. As Cases 0, 1, 4 and 6 clearly demonstrate non-
physical stress responses in uniaxial compression (cf. Fig. 6.2 (a), (b) and (f)), only Cases
2, 3 and 5 are investigated further in simple shear. Depending on the initial orientation
of the fiber direction, simple shear (with applied displacement γ) may result in tension
or compression of the Eulerian fiber direction. The stretch is shown in Fig. 6.4(a) as a
function of shear γ and the angle α between the fiber and the 11–direction (cf. inset in
Fig. 6.4(a)). When the angle is zero, i.e. fibers are aligned in the shear direction, there is
no stretch in the fiber direction regardless of the amount of shear. As the angle increases
from zero, however, the stretch also increases with shear until α ∼ 52◦, where λf ∼ 1.28,
after which it decreases again. At α > 90◦, low values of γ may yield λf < 1 whereas
large values of γ yields λf > 1. For α ∼ 142◦ the largest compressive stretch, λf ∼ 0.78,
is found at γ = 0.5 and for 142◦ < α < 180◦ only compressive stretches are seen (while
γ ≤ 0.5). In Fig. 6.4(b), (c) and d), the Cauchy stress in the Eulerian fiber direction is
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Figure 6.4.: Stretch and Cauchy stress results in the fiber direction with varying Lagrangian fiber
angle α and shear γ under simple shear deformation in the 1–2 plane for Cases 2, 3 and 5, cf.
Table 6.15: (a) stretch in the fiber direction for all cases (inset defines simple shear γ on a unit cube
and fiber angle α); Cauchy stress in the deformed fiber direction σff for: (b) Case 2; (c) Case 3; d)
Case 5; Closeup of Cauchy stress in the deformed fiber direction σff when α = 0◦±4◦ for: (e) Case
3; (f) Case 5. N.B., positive stresses are normalized by the modulus of the maximum fiber stress
|σmax

ff | while negative stresses are normalized by the modulus of the minimum fiber stress |σmin
ff |

for visual clarity.

shown for Cases 2, 3 and 5, respectively. In Fig. 4, positive stresses are normalized by
the modulus of the maximum fiber stress |σmax

ff | while negative stresses are normalized
by the modulus of the minimum fiber stress |σmin

ff | for visual clarity (as the difference
in magnitude between positive and negative stress values is very large). As the Cauchy
stress is zero in compression by design for Case 2, only one peak is seen in Fig. 6.4(b).
Here the maximum value of the Cauchy stress in tension is 124 kPa and is centered around
α ∼ 52◦. Because all cases have the same behavior in tension, the maximum tensile stress
for all cases is identical. Case 3 has a minimum compressive stress of −0.146 kPa at
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α ∼ 142◦ as seen in Fig. 6.4(c). In Case 5, shown in Fig. 6.4 d), the stress is mostly zero in
compression. At closer inspection, however, for very large initial fiber angles, i.e. where
180◦ > α > 175◦, a small positive stress peak is seen (0.450 kPa) even as the principal
fiber direction is in compression. This is illustrated in the closeup of the fiber stress at
α = 0◦± 4◦ for Case 5 seen in Fig. 6.4(f). However, looking at a similar closeup of the
fiber stress for Case 3 in Fig. 6.4(e), we also see small positive stresses.

6.4. Discussion

Large-strain models for dispersed fiber-reinforced materials in, e.g., soft tissue biomechan-
ics, need to solve the problem of switching the form of the fiber potential used in compres-
sion from that used in tension, to provide a consistent physical interpretation and to ensure
both numerical stability and robustness. Cases 1 and 2, and models with similarities to
Case 3, are often used approaches to deal with fiber compression, cf. [166, 182, 184]. In
the dispersion models investigated here, Cases 3, 4 and 6 have, to the authors’ knowledge,
not previously been used or investigated in the mechanics literature (a model similar to
Case 5 is employed in [185]).

The ‘switch’ used in Cases 4, 5 and 6, I∗4 ≤ 1, correctly switches when λf = 1 for a uniaxial
deformation, and is motivated by the comparison of (6.1) and (6.6). However, in contrast
to the relation I4 < 1 which is always true in fiber compression, the relation I∗4 ≮ 1 for
large fiber compressions, as seen in Fig. 6.3(a). The combined invariant I∗4 may become
positive in compression because under increasingly large compression (λf increasingly
< 1), I1 becomes� 3 while I4 is only < 1, as seen in Fig. 6.1(b). At which compression
point the combined invariant will shift from negative to positive depends on the value of
the dispersion parameter κ . With progressively larger values of κ , i.e. larger dispersion,
I∗4 > 1 will occur at progressively lower levels of compression in the fibers. Hence, with
this switching approach the dispersion parameter κ has a non-physical and ambiguous
meaning (cf. Cases 4–6), as it reflects both the fiber dispersion and some arbitrary switch
whereby, e.g., negative/positive fiber stresses may occur in compression. For this reason,
we believe that the switch parameter I∗4 ≤ 1 should only be used under loading conditions
which do not trigger I∗4 > 1 while λf < 1.

Perhaps the most startling results in this study are the positive stresses generated in com-
pression for Cases 1 and 4 in uniaxial tension-compression and for Case 5 in simple shear
(while the principal fiber direction is in compression). Clearly in the uniaxial case, when
compressing a fiber reinforced material in the principal fiber direction, a positive stress in
the direction of compression is not physiologically relevant, but it is seen nonetheless in
Fig. 6.2(b) for Cases 1 and 4. The reason for the positive stress in these two cases is clear
when looking at the combined invariants Ic1 = Ic4 = κI1, in compression. For any value
of κ 6= 1/3, Fig. 6.3(b) and d) show that I∗4 < 1 at λf = 1, which leads to σ̃σσ

c1∗
f > 1 and

σ̃σσ
c4∗
f > 1 according to (6.7). This occurrence violates a fundamental requirement that the
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reference configuration should be stress-free, i.e. here we see that Ψ∗f (F = I) 6= 0 and thus
σ̃σσ
∗
f (F= I) 6= 0, which should not be, cf. [6]. The condition requiring a stress-free reference

state is naturally fulfilled for Cases 2 and 5, where Ψc2∗
f =Ψc5∗

f = 0 gives σ̃σσ
c2∗= σ̃σσ

c5∗= 0,
cf. Fig. 6.2(c), (e) and 6.4(a), (c). Similarly, this condition is fulfilled for Case 3, whereby
in compression the dispersion parameter is set to κ = 1/3, and thus Ψ∗f (F = I) = 0 as
Ic3(F = I) = 1.

The reason for positive stresses for Case 5 in simple shear (while the principal fiber di-
rection is in compression) is perhaps not clear. For α close to (but less than) 180◦, the
isotropic response projected in the fiber direction is actually positive as seen, e.g., in Case
3 Fig. 6.4(e), or when using a neo-Hookean strain-energy function for this deformation
(not shown here). The positive stress in Case 5 may be physiological as it incorporates
a positive stress response for small perturbations of the principal fiber angle around 0
(equivalently 180◦), given some level of dispersion. However, κ still has a dual meaning,
the same as was seen for Case 5 in uniaxial tension-compression. Thus, in Case 5, κ deter-
mines both the degree of dispersion and the amount of shear required to generate positive
stresses while the principal fiber direction is in compression. Therefore, it is less clear
what the parameter κ represents for Case 5.

Although not shown here, using different material parameters in (6.6), within the required
range (k1 > 0 and k2 > 0), only changes the magnitude of the stress response or the com-
pression point where, e.g., I∗4 > 1 may occur. It does not alter the trends shown or the
conclusions drawn from this analysis. We have shown that Cases 2 and 3 generate the most
desirable results, both in terms of a physically consistent morphological interpretation, ro-
bustness and also consistency in the interpretation of the structural parameter κ . We imple-
mented both of these models in the finite element analysis software FEAP [8], and verified
that they yield numerically stable results identical to those shown in Fig. 6.2(c), d) and
6.4(a), (b). Case 2, in the physical interpretation, corresponds to the situation wherein the
fibers buckle under compression and are essentially uncoupled to the ground matrix (and
furthermore, are not cross-linked). Thus, when the principal direction of fiber reinforce-
ment is in compression the dispersed fibers have no stiffness and do not store strain-energy.
Case 3, conversely, corresponds to another situation, wherein a matrix-fiber bonding does
exist, and which results in an isotropic positive fiber potential (the dispersed fibers store
strain-energy) even in compression.

We have further shown that Case 5 may be used with caution. Although it may yield nega-
tive stresses in uniaxial deformation at some arbitrary (but high) level of compression, such
levels are rarely reached in the physiological applications where the model is most often
used. In effect, Case 5 will thus render an equal stress response as Case 2. However, as
seen in Fig. 6.4(f), Case 5 may advantageously be used to capture positive stress responses
for small perturbations of the principal fiber direction around some critical angle where the
principal fiber direction switches between tension and compression and where, e.g., Case
2 would instantly set the stress values to zero. Case 5, using I∗4 ≤ 1 as the switch, may
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thus be advantageous for numerical convergence in, e.g., a FE simulation, but as we have
shown that this effect is regulated by the dispersion parameter κ , it is unclear how (or if)
this phenomenon has a physical interpretation.

As a final note on numerical stability, we investigated the convexity and ellipticity of the
strain-energy functions shown here in Appendix B.2. Therein we show that the strain-
energy function, proposed by Gasser, Holzapfel and Ogden [166], and also used here, is
locally convex in C for both tension and compression. However, from two simple examples
we also show that ellipticity can not be guaranteed in general for incompressible models
that couple the invariants I1 and I4. Nevertheless, the strain-energy function (6.6) has been
implemented in the FE framework FEAP [8], and for all types of deformations tested it
has remained stable. Future investigations are needed to determine the conditions under
which ellipticity is lost.
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A. APPENDIX FOR CHAPTER 5

A.1. Elasticity Tensors for the Active Stress

Using the definition M0 := f0⊗ f0 and the abbreviation (5.15), (5.14) may be written as

Sa = Sa

(
κf

1−2κf
C−1 +

1−3κf

1−2κf
I−1
4f M0

)
. (A.1)

The Lagrangian elasticity tensor is given by Ca = 2∂Sa/∂C which leads to

Ca = 2
Sa

1−2κf

[
κf

∂C−1

∂C
+(1−3κf)

∂ I−1
4f M0

∂C

]
. (A.2)

Using the derivative ∂ (I−1
4f M0)/∂C =−I−2

4f M0⊗M0, (A.2) can be written as

Ca = 2
Sa

1−2κf

[
κf

∂C−1

∂C
− (1−3κf)I−2

4f M0⊗M0

]
, (A.3)

and by using the push-forward operation of Ca according to

[Ca]abcd = J−1FaAFbBFcCFdD[Ca]ABCD, (A.4)

this leads to
Ca =−2

Sa

J(1−2κf)

[
κfI+(1−3κf)M̂⊗M̂

]
, (A.5)

where the fourth-order identity tensor I, defined in index notation as [I]abcd = (δacδbd +
δadδcd)/2, is introduced from the push-forward of the relation ∂ (C−1)/∂C according to
FaAFbBFcCFdD

[
∂ (C−1)/∂C

]
ABCD = −[I]abcd and the definition M̂ := FI−1

4f M0FT = f̂⊗ f̂
has been used.
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B.1. The Stress Equations as a Function of Applied Stretch λf or
Applied Shear γ

As all stress components shown in the following are related to the fiber part of the stress,
i.e. σ̃σσ f or σ̃σσ

∗
f , the subindex f is not shown on a component level to simplify notation. The

subindex ff, however, is used and denotes the component of the stress tensor aligned in the
deformed fiber direction.

In uniaxial tension in the 11–direction, the corresponding deformation gradient is F =

diag(λf,λ
−1/2
f ,λ

−1/2
f ) when the fiber [a0] = [1,0,0]T aligned in the 11-direction (meaning

that σ̃ff = σ̃11). Using (6.4), the only non-zero component of σ̃σσ f = σσσ f− phI in tension is

σ̃
t
11 = 2k1

(
λ

2
f −1

)
exp[k2

(
λ

2
f −1

)2
]λ 2

f , (B.1)

where p is determined from σ̃33 = 0, and in compression σ̃ c
11 = 0. Using (6.7), the only

non-zero component of σ̃σσ
∗
f = σσσ∗f − phI in tension is

σ̃
t∗
11 = 2k1[(1−2κ)λ 2

f +2κλ
−1
f −1]exp{k2[(1−2κ)λ 2

f

+2κλ
−1
f −1]2}[(1−2κ)λ 2

f −κλ
−1
f ], (B.2)

where p is determined from σ̃∗33 = 0. In compression the Cauchy stresses in the 11-
direction are instead

σ̃
c1∗
11 = 2k1[κ

(
λ

2
f +2λ

−1
f

)
−1]exp{k2[κ(λ

2
f +2λ

−1
f )−1]2}κ(λ 2

f −λ
−1
f ), (B.3)

σ̃
c2∗
11 = σ̃

c5∗
11 = 0, (B.4)

σ̃
c3∗
11 = 2k1[1/3(λ 2

f +2λ
−1
f )−1]exp{k2[1/3(λ 2

f +2λ
−1
f )−1]2}1/3(λ 2

f −λ
−1
f ), (B.5)

σ̃
c4∗
11 = σ̃

c1∗
11 , (B.6)

σ̃
c6∗
11 = σ̃

c3∗
11 , (B.7)

where the superscript ci, i ∈ {1, . . . ,6} represent the six cases shown in Table 6.1. Case 0
in compression equals the formulation in tension shown in (B.2), i.e. σ̃ c0∗

11 = σ̃ t∗
11.

Similarly, during simple shear the deformation gradient is

[F] =

 1 γ 0
0 1 0
0 0 1

 ,
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and with the fiber direction [a0] = [cos(α),sin(α),0]T in the Lagrangian description, the
33-direction is stress free and is used to determine p. The non-zero components of σ̃σσ

∗
f in

tension are

σ̃
t∗
11 = 2ψ

t∗
4
[
κγ

2 +(1−3κ)A2
1
]
, (B.8)

σ̃
t∗
12 = σ̃

t∗
21 = 2ψ

t∗
4 [κγ +(1−3κ)A1 sin(α)], (B.9)

σ̃
t∗
22 = 2ψ

t∗
4 (1−3κ)sin2(α), (B.10)

where A1(γ,α) := γ sin(α)+ cos(α) is used to shorten notation, and ψ t∗
4 = ∂Ψt∗/∂ I∗4 is

given by

ψ
t∗
4 = k1

[
κ(γ2 +3)+(1−3κ)A2−1

]
exp
{

k2
[
κ(γ2 +3)+(1−3κ)A2−1

]2}
, (B.11)

where A2(γ,α) := (γ sin(α)+cos(α))2+sin2(α) is used to shorten notation, N.B., A2 = I4
for this deformation. Depending on Table 6.12, the value used to determine if the fiber
direction is in compression is thus either A2 ≤ 1 or I∗4 = κ(γ2 + 3)+ (1− 3κ)A2 ≤ 1. To
determine the Cauchy stresses in compression, it is necessary to derive the derivatives
of the strain-energy functions with respect to the combined invariants for Cases 1–6 in
compression, i.e. ψci∗

ci = ∂Ψci∗/∂ Ici, for i = 1,2, . . . ,6:

ψ
c1∗
c1 = ψ

c4∗
c4 = k1

[
κ(γ2 +3)−1

]
exp{k2

[
κ(γ2 +3)−1

]2}, (B.12)

ψ
c2∗
c2 = ψ

c5∗
c5 = 0, (B.13)

ψ
c3∗
c3 = ψ

c6∗
c6 = k1

[
1/3(γ2 +3)−1

]
exp{k2

[
1/3(γ2 +3)−1

]2}. (B.14)

Now, for Cases 1–6, the 11-component of the Cauchy stresses in compression are

σ̃
c1∗
11 = σ̃

c4∗
11 = 2ψ

c1∗
c1 κγ

2, (B.15)

σ̃
c2∗
11 = σ̃

c5∗
11 = 0, (B.16)

σ̃
c3∗
11 = σ̃

c6∗
11 = 2ψ

c3∗
c3 1/3γ

2, (B.17)

and the 12-components (equally the 21-components) are

σ̃
c1∗
12 = σ̃

c4∗
12 = 2ψ

c1∗
c1 κγ, (B.18)

σ̃
c2∗
12 = σ̃

c5∗
12 = 0, (B.19)

σ̃
c3∗
12 = σ̃

c6∗
12 = 2ψ

c3∗
c3 1/3γ, (B.20)

and finally, the 22-direction components of the Cauchy stresses are all zero for all cases
in compression, i.e. σ̃ ci∗

22 = 0. The projection of the stress tensor in the fiber direction, i.e.
σ̃σσ
∗
f : a⊗a, yields the following fiber component of the stress in tension

σ
t∗
ff = 2ψ

t∗
4 {A2

1[γ
2
κ +(1−3κ)A2

1]

+2sin(α)A1[(1−3κ)sin(α)A1 + γκ]+ (1−3κ)sin4(α)}, (B.21)
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and in compression

σ
c1∗
ff = σ

c4∗
ff = 2ψ

c1∗
4 κγ

[
γA2

1 +2A1 sin(α)
]
, (B.22)

σ
c2∗
ff = σ

c5∗
ff = 0, (B.23)

σ
c3∗
ff = σ

c6∗
ff = 2ψ

c1∗
4 1/3γ

[
γA2

1 +2A1 sin(α)
]
. (B.24)

To summarize, (B.1) and σ̃ c
11 = 0 are used to generate Fig. 6.1, (B.2) and (B.3)–(B.7)

are used to generate Fig. 6.2, while (B.11) and (B.12)–(B.14) together with (B.21) and
(B.22)–(B.24) are used to generate Fig. 6.4.

B.2. Convexity and Ellipticity of Distributed Functions

In this section, convexity of Eq. (6.6) and ellipticity of models that include a coupling
between invariants I1 and I4 are investigated. First considering tension only, the function
T (I∗4 ) := k1/(2k2)

(
exp[k2(I∗4 −1)2]−1

)
is defined, which has the relations

∂T (I∗4 )
∂C

= T ′(I∗4 )H and
∂ 2T (I∗4 )
∂C∂C

= T ′′(I∗4 )H⊗H, (B.25)

where the primes denotes the differentiation of T (I∗4 ) with respect to I∗4 and H is the La-
grangian distributed structure tensor given by

H =
∂ I∗4
∂C

= κI+(1−3κ)A0, (B.26)

where I is the second order identity tensor. Local convexity requires that

M :
∂ 2T (I∗4 )
∂C∂C

: M≡ T ′′(I∗4 )[H : M]2 ≥ 0 (B.27)

for all second order tensors M (cf. Holzapfel and Ogden [42]). Thus, T (I∗4 ) is convex in C
provided that T ′′(I∗4 )≥ 0. The second derivative of T (I∗4 ) with respect to I∗4 is

T ′′(I∗4 ) = k1 exp[k2(I∗4 −1)2]
[
1+2k2(I∗4 −1)2] , (B.28)

and for k1 > 0 and k2 > 0, the inequality T ′′(I∗4 )≥ 0 is fulfilled showing that T (I∗4 ) is a con-
vex function. In fact, T (I∗4 ) is convex both in tension and in compression. However, given
that tension-compression switching is necessary to obtain physically reasonable stresses
(cf. Fig. 6.2 (a)), it remains to investigate convexity in compression for Case 3, (as all
other cases are either zero or do not generate reasonable stresses in compression). We
define a function S(I1) := k1/(2k2)

(
exp[k2(1/3I1−1)2]

)
, which has the relations

∂S(I1)

∂C
= S ′(I1)I and

∂ 2S(I1)

∂C∂C
= S ′′(I1)I⊗ I, (B.29)
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where the primes denote differentiation of S(I1) with respect to I1. Again, local convexity
requires that

M :
∂ 2S(I1)

∂C∂C
: M≡ S ′′(I1)(tr M)2 ≥ 0, (B.30)

for all second order tensors M, which is fulfilled when S ′′(I1)≥ 0. The second derivative
of S(I1) is

S ′′(I1) = k1 exp[k2(1/3I1−1)2]
[
1+2k2(1/3I1−1)2] , (B.31)

and for k1 > 0 and k2 > 0, the inequality S ′′(I1)≥ 0 is fulfilled showing that S(I1) is locally
convex.

To demonstrate ellipticity in a 3-D general setting is very challenging. Given an incom-
pressible strain-energy function Ψ̂(I1, I4), it was shown by Merodio and Ogden [186] (cf.
Eq. 2.50 therein), that for 2-D plain strain, ellipticity is fulfilled in terms of the principal
stretches λ1 and λ2 if

2ψ̂11(λ
2
1 −λ

2
2 )

2n2
1n2

2 + ψ̂1(λ
2
1 n2

1 +λ
2
2 n2

2)

+4ψ̂14(λ
2
1 −λ

2
2 )n1n2(n1a1 +n2a2)(n2a1−n1a2)

+2ψ̂44(n1a1 +n2a2)
2(n2a1−n1a2)

2 + ψ̂4(n1a1 +n2a2)
2 > 0, (B.32)

where ψ̂i j, i, j ∈ {1,4} are the differentiation of Ψ̂ with respect to the invariants I1 and
I4, respectively, n1 and n2 are the components of a unit vector n, and a1 and a2 are the
components of an Eulerian fiber direction vector a = FA0 (see [186] for details). The
relation in (B.32) is here separated into three functions that correlate to the differentiation
of Ψ̂, namely F(ψ̂1, ψ̂11)+G(ψ̂14)+H(ψ̂4, ψ̂44)> 0.

For an isotropic material, only F(ψ̂1, ψ̂11) is non-zero and through manipulation of this
function, Merodio and Ogden [186] showed that the relations

ψ̂1 > 0, and 2(I1−3)ψ̂11 + ψ̂1 > 0 (B.33)

can be used to show that ellipticity holds for 2-D plain strain. Given that ellipticity holds
for isotropy, i.e.F(ψ̂1, ψ̂11)> 0, and by assuming that I1 and I4 are uncoupled, they further
showed that the fiber reinforcement is elliptic if H(ψ̂4, ψ̂44)> 0. Again, through manipu-
lation ofH, it became evident that the relations

ψ̂4 ≥ 0, and ψ̂4 +2I4ψ̂44 ≥ 0 (B.34)

are sufficient conditions to show ellipticity of the fiber reinforcement. It remains to inves-
tigate if a similar relation can be found when ψ̂14 6= 0, i.e. a coupled function (in terms of
I1 and I4) is used. The relation

G(ψ̂14) = 4ψ̂14(λ
2
1 −λ

2
2 )n1n2(n1a1 +n2a2)(n2a1−n1a2)≥ 0 (B.35)
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must then be fulfilled for all allowable combinations of n and a, where the components of
n must obey n2

1 + n2
2 = 1 (n is a unit vector). We can relate the deformed fiber direction

vector a to an angle α by a1 = λ1 cosα and a2 = λ2 sinα and I4 may now be written as
I4 = a2

1 + a2
2. Similarly, the components of the surface vector n are related to an angle β

(representing the 2D direction) through components n1 = cosβ and n2 = sinβ . From the
incompressibility condition, λ1λ2 = 1, the deformations are related by λ if λ1 = λ and
λ2 = 1/λ . Simple calculations using two sets of values for α , β and λ show that (B.35)
is not easily fulfilled. For example, defining G := G(ψ̂14)/ψ̂14 for a shorter notation, with
α = 45◦ and β = 40◦ we have

G < 0 if λ = 1.09 (I4 > 1), (B.36)

G > 0 if λ = 1.10 (I4 > 1), (B.37)

while for α = 125◦ and β = 130◦ we have

G < 0 if λ = 1.09 (I4 < 1), (B.38)

G > 0 if λ = 1.10 (I4 < 1). (B.39)

A coupled strain-energy function has to meet the requirement that G(ψ̂14)≥ 0 for all defor-
mation modes while the sign of G varies, independent of whether I4 > 1 or I4 < 1, i.e. ψ̂14
has to change sign (seemingly) arbitrarily, and independent of the stretch in the fiber di-
rection. Considering the difficulty in constructing such a strain-energy function, it is likely
impossible in most (if not all) coupled models to guarantee ellipticity either for tension or
compression in 2-D plain strain. For example, defining Ψ̂(I1, I4) := (6.6)1, the combined
second derivative is

ψ̂14 = k1κ(1−3κ)exp[k2(I∗4 −1)2][1+2k2(I∗4 −1)2], (B.40)

which is ≥ 0 for all deformation modes, thus showing that (B.35) can not be fulfilled.
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