
 
 
 

Thomas Rüberg 
 
 

Non-conforming Coupling of Finite and 
Boundary Element Methods in Time Domain 



 
 
 
Monographic Series TU Graz  
Computation in Engineering and Science 
 
 



 
 
 
Monographic Series TU Graz 
 
Computation in Engineering and Science; 3 

 
 
 
 
 
 
 
Thomas Rüberg 
 
_______________________________________________________ 
 
Non-conforming Coupling of Finite and 
Boundary Element Methods in Time Domain 
 
________________________________________________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This work is based on the dissertation Non-conforming Coupling of Finite and Boundary 
Element Methods in Time Domain, presented by T. Rüberg at Graz University of 
Technology, Institute of Applied Mechanics in December 2007.  
Supervisor: M. Schanz (Graz University of Technology) 
Reviewer: M. Schanz (Graz University of Technology), O. Steinbach (Graz University of 
Technology) 



 
 
 
Bibliographic information published by Die Deutsche Bibliothek. 
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; 
detailed bibliographic data are available at http://dnb.ddb.de. 
 

 

 

 

 

 

 

 

 

 

 

 

 

© 2008 Verlag der Technischen Universität Graz 

 

Cover photo  Vier-Spezies-Rechenmaschine 

by courtesy of the Gottfried Wilhelm Leibniz Bibliothek – 

Niedersächsische Landesbibliothek Hannover 

 

Layout   Wolfgang Karl, TU Graz / Universitätsbibliothek  

Printed   by TU Graz / Büroservice  

 

 

 

Verlag der Technischen Universität Graz 

www.ub.tugraz.at/Verlag 
ISBN: 978-3-902465-98-6 

 

 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of reprinting, translation, reproduction on 
microfilm and data storage and processing in data bases. For any kind of use the 
permission of the Verlag der Technischen Universität Graz must be obtained. 
 



Abstract

The combination of finite and boundary element methods for the numerical solution of
coupled problems has a long tradition. It has proved to be the method of choice for several
applications among which are the acoustic-structure coupling or the soil-structure interac-
tion. In this work, the concept of combining these two approximation methods is carried
forward to dynamic problems by developing a coupling framework in which the local
discretization method can be chosen independently. In fact, a Lagrange multiplier domain
decomposition approach is preferred which allows for the most flexible combination of dis-
cretization methods within the same solution algorithm. Therefore, Dirchlet-to-Neumann
maps are realized on the discrete level for the static case or at each time step for the dy-
namic case. Moreover, the treatment of nonconforming interface meshes, i.e., interface
discretizations which do not have coincident nodes or equal interpolation orders, is in-
cluded easily into this approach. The considered physical models are the acoustic wave
equation and the linear elastodynamic system together with their static limits, Laplace
equation and elastostatics.

Zusammenfassung

Die gekoppelte Verwendung der Methode der finiten Elemente und der Methode der Ran-
delemente als numerische Näherungsverfahren hat sich als sinnvolle Wahl für viele Prob-
lemstellungen erwiesen. Zum Beispiel wird diese Kombination häufig im Bereich der
Akustik-Struktur Kopplung oder der Boden-Bauwerk Interaktion eingesetzt. In der vor-
liegenden Arbeit wird diese Methodik weiterentwickelt, indem ein Kopplungsalgorith-
mus formuliert wird, der den unabhängigen Einsatz beider Verfahren zur Anwendung
auf statische oder dynamische Aufgaben in sowohl zwei als auch drei Raumdimensio-
nen ermöglicht. Dafür werden lokale Dirichlet-Neumann-Abbildungen in der diskreten
Formulierung für die jeweilige Methode realisiert. Dieses geschieht bei der Behandlung
dynamischer Aufgaben in jedem Zeitschritt. Das hier vorgestellte Verfahren erlaubt es
darüber hinaus, dass die Vernetzung der Trennflächen des gekoppelten Problems nicht
zusammenpassen müssen. Das bedeutet, dass auf der jeweiligen Seite solch einer Trenn-
fläche nicht nur das Diskretisierungsverfahren sondern auch die Netze und die zugehörigen
Ansatzordnungen unabhängig gewählt werden können. Die betrachteten physikalischen
Modelle sind die skalare Wellengleichung und die lineare Elastodynamik einschließlich
der statischen Grenzfälle der Laplace-Gleichung beziehungsweise der linearen Elasto-
statik.
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Notation

General Notation

a,b, . . . ,α,β , . . . scalar values
a,b, . . . ,α,β , . . . vectors (first-order tensors)
A,B, . . . higher-order tensors
a,b, . . . ,α,β m×1-matrices
A,B, . . . ,Σ, . . . m×n-matrices
A,B, . . . linear operators
a[i] component of a, 1≤ i≤ m
A[i, j] component of A, 1≤ i≤ m, 1≤ j ≤ n
A[i, j] component of A, 1≤ i≤ m, 1≤ j ≤ n
a ·b scalar product of a and b
a×b vector product of a and b
A : B double contraction of A and B
trA trace of A
A> transpose of A
detA determinant of A
∇ Nabla operator, ∇[i] = ∂/∂xi, i = 1, . . . ,d
∇a gradient of a
∆a Laplacian of a, ∆a = ∇ ·∇a
∇ ·a divergence of a
∇×a curl of a
ȧ, ä first and second time derivative of a(t)
δA first variation of the functional A
f̂ (s) Laplace transform of f (t), f̂ (s) =

∫
∞

0 f (t)exp(st)dt
Ω closure of the set Ω

g∗h convolution
∫ t

0 g(t− τ)h(τ)dτ

Special symbols

(a,b), [a,b] open and closed intervals between a and b
〈u,v〉 L2-scalar product of u and v
a(u,v) bilinear form
at(u,v) parametrized bilinear form
a vector of acceleration coefficients

iii



A finite element stiffness matrix
Ã finite element dynamic stiffness matrix
Bε(x) d-dimensional ball with center x and radius ε

B boundary element mass matrix
c fluid wave speed
c1, c2 compression and shear wave speeds
C integral free term
C discretized integral free term
C(r) connectivity matrix of subdomain Ω(r)

d Cartesian dimension of the problem
E Young’s modulus
f generalized force term
f body force vector
f finite element force vector
fD, fN force vectors due to prescribed Dirichlet and Neumann data
F, G FETI matrices for the dual problem
gD, gN prescribed Dirichlet and Neumann data
gFE, gBE finite and boundary element discretized boundary force term
G Gram determinant
h mesh width
H(t) Heaviside function
I identity tensor
I identity operator
J Jacobi matrix of coordinate transformation
J(r) indices of subdomains sharing an interface with Ω(r)

K j(z) modified Bessel function of second kind and j-th order
K double layer operator
Kt time-dependent double layer operator
K discretized double layer operator
K̃ := C+K abbreviation
K kinetic energy
` linear momentum
`(v) linear form
`(v) parametrized linear form
logz natural logarithm of z
L elliptic partial differential operator of second order
M finite element mass matrix
n unit outward normal vector
N0 f Newton potential
Nt f time-dependent Newton potential
N basis of null space
O(g) asymptotic behavior (Landau notation)
p0, ptotal , p equilibrium pressure, total pressure, and pressure fluctuation

iv



q (acoustic) flux
qΓ := T u generalized normal derivative
qΓ,h approximation of qΓ

R zero energy modes
S Steklov-Poincaré operator
Sh(Ωh) finite element space
Sh(Γh) boundary element space
SFE, SBE finite and boundary element discretizations of S
t time, t ∈ [0,∞)
tn := n∆t time point on time grid
Tr boundary trace operator
T generalized conormal derivative (traction operator)
u unknown function
u(r) restriction of u to Ω(r)

u∗(x,y) fundamental solution
uΓ := Tru boundary trace of u
u(0+) limit τ → 0 of u(τ) from above
u0, u1 prescribed initial states of u and its first time derivative u̇
uh, uΓ,h approximation of u and uΓ

u displacement field
u coefficient vector of approximation of u
un coefficients of approximation of u at t = tn
uI, uΓ coefficients of u belonging to the interior and to the boundary

of Ωh
U potential energy
v vector of velocity coefficients
V single layer operator
Vt time-dependent single layer operator
V discretized single layer operator
x, y points in global coordinates
xi i-th coordinate direction, 1≤ i≤ d
x(ξ ) coordinate transformation
x∗` `-th collocation point
α rigid body mode amplitudes
β , γ parameters of the Newmark method
Γ := ∂Ω boundary
ΓD, ΓN boundary parts with prescribed Dirichlet and Neumann data
Γh boundary of Ωh
Γ(r) boundary of subdomain Ω(r)

Γ(rp) interface shared by Ω(r) and Ω(p)

Γs skeleton of domain partitioning
δ (x) Dirac delta distribution
∆t size of time step

v



ε strain tensor
κ fluid bulk modulus
λ ,µ Lamé constants
λ Lagrange multiplier
λh, λ approximation of λ and the coefficient vector
ν Poisson ration
ξ reference coordinates
Π potential
ρ0, ρtotal , ρ equilibrium density, total density, and density fluctuation
σ stress tensor
τe e-th element of a triangulation
ϕ , ψ trial functions
χ CFL number
ωn integration weight of convolution quadrature method
ω rotation tensor
Ω domain
Ωh computational domain
Ω(r) r-th subdomain
Ω(M), Ω(S) master and slave subdomains
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1 INTRODUCTION

The use of numerical approximation methods for the analysis of engineering problems has
gained more and more interest in the recent past. The finite element method is clearly the
method which is most widely employed in the field of structural mechanics. Among its
alternatives, there is the boundary element method which can be basically considered as a
numerical approximation scheme of boundary integral representations.

Finite element methods in their current state of development are applicable to various kinds
of physical problems, which can be highly nonlinear or exhibit anisotropic and inhomo-
geneous material behavior. Moreover, standard finite element discretizations of boundary
value problems with symmetric positive operators yield symmetric positive definite system
matrices which are sparsely populated. Therefore, many efficient solution procedures for
these systems of equations have been designed. But finite element methods are commonly
restricted to the treatment of bounded domains and often perform weakly in situations
where a good resolution of high stress concentrations is required, unless the scheme is
adaptive.

The boundary integral representations of boundary value problems can only be established
if a fundamental solution for the underlying partial differential operator is available. There-
fore, boundary element methods are in principle restricted to a certain class of problems
only. The treatment of, for instance, elastoplastic problems requires an enormous addi-
tional effort which usually defeats the advantages of the method. Another drawback of
the method are the fully populated system matrices which severely restrict the size of
applications in terms of their degrees of freedom. Many promising techniques have been
developed for a data sparse representation of the system matrix which reduce the numerical
complexity of the method. On the other hand, a boundary element solution exactly fulfills
the considered partial differential equation inside the domain. Therefore, this method is
useful if a high precision of the solution and its derivatives at specific points is required.
Moreover, unbounded domains are represented exactly by the boundary integral represen-
tation and the method is thus very powerful when problems in media of infinite extent are
considered. Especially in the case of dynamic problems, this feature is of great benefit
because spurious wave reflections which pollute the solution in case of classical finite ele-
ment approaches can be excluded. Finally, a great advantage of the method is the fact that
only the surface of the considered domain has to be discretized. Especially in the case of
complex three-dimensional geometries the volume discretization needed for a finite ele-
ment approach can be too demanding such that a boundary element method prevails.

In comparison, one can establish the point of view that these two discretization methods,
namely finite element and boundary element methods, are rather mutually exclusive, i.e.,
each performs well where the other one is inappropriate. The conclusion is to exploit this

1



2 1 Introduction

fact and combine these two methods in such a way that the respective advantages can be
used. But care has to be taken in designing a coupled solution strategy where both methods
are employed. Each of these approximation schemes has its specific structural peculiarities
which complicate the structure of the software. Especially the different characters of the
resulting system matrices and the consequently different solution procedures have to be
considered carefully. At last, the application of different discretization methods to subdo-
mains with possibly different physical behavior is restrained if the interface discretizations
are required to be spatially conforming. If only coincident nodes of the interface discretiza-
tions together with equal orders of approximation are possible, a flexible combination of
these different methods is impeded significantly.

In this work, a coupling strategy is developed which employs the approximation schemes
of finite and boundary element methods in a very flexible manner. The range of each
method is exclusively restricted to each subdomain and the coupling is established by
means of Lagrange multipliers. Therefore, the respective characteristics of each method
can be handled independently. Moreover, due to the use of Lagrange multiplier fields the
treatment of nonconforming interface discretizations is straightforward.

1.1 State of the Art

It follows a brief overview of the current state of research in the fields touched in this
work. This list is of course not intended to be exhaustive. In order to improve legibility,
the following is arranged in paragraphs according to specific subtopics which possibly
causes overlaps in the references.

Finite Element Methods. For the time being, the method of finite elements is being
used for the numerical solution of boundary value problems for more about five decades.
It dominates in the field of structural mechanics but also in other engineering disciplines
and sciences it is the method of choice for numerical approximations. The textbooks of
Bathe [6] and Hughes [49] provide good introductions to the method itself and several
specializations of it. Strang and Fix [110] were among the first to give a concise mathe-
matical analysis of the method. Whereas this book is basically concerned with the classical
finite element method, the concepts of h- and p-adaptivity are given for instance by Sz-
abó and Babuška [112]. Some physical problems, as for instance incompressible elasticity
or Stokes flow (see Brezzi and Fortin [10] or Bathe [6]), are formulated by a coupled
set of partial differential equations or in combination with algebraic equations and their
discretization leads to mixed finite element methods. The mathematical analysis of these
methods can be found in the book of Braess [9] among others.

Finite element methods are not only applicable to elliptic boundary value problems but also
to initial boundary value problems, e.g., the acoustic wave equation or the elastodynamic
system, which are the two dynamic models considered in this work. The classical approach
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to such problems is to use the finite element framework for the spatial discretization of the
dynamic problem such that a system of ordinary differential equations is obtained. This
can then be tackled by time integration methods like the famous Newmark method [72].
A survey of dealing with initial boundary value problems by means of finite elements and
time integration methods is given by Hughes [49] and Hulbert [50]. At last, it has to
be emphasized that finite element methods are established for the treatment of nonlinear
problems as for instance plasticity or large deformations, see Simo and Hughes [101].

In this work it is not intended to make use of the latest developments in finite element re-
search but employ the method in its classical formulation. Here, the main interest does not
lie in the method itself but in its combination with boundary element methods for the so-
lution of coupled problems. However, in view of the numerical treatment of more compli-
cated physical phenomena, the classical finite element method used in the following could
be easily replaced by a more enhanced and up-to-date version of it. Especially, the use
of fast iterative solvers (e.g., preconditioned conjugate gradient methods) would greatly
reduce the numerical complexity of the finite element part of this work. An overview of
such algorithms for sparse finite element system matrices is given by Saad [95].

Boundary Element Methods. Another numerical approximation method, almost as old
as the finite element method, is the boundary element method which is based on boundary
integral representations of the considered boundary value problem. Despite their obvious
benefits of reducing the computational domain by one dimension and the harmonic exten-
sion to the interior of the domain, boundary element methods have been living a shadowy
existence in comparison to the finite element method. This is mainly due to the numerical
difficulties with singular integrals and fully populated system matrices. An engineering
point of view of the underlying complexity is given by Watson [117]. Nevertheless, the
method has survived as a niched method especially useful for several problems such as the
treatment of unbounded domains. A good engineering introduction to the method is the
book of Gaul et al. [33]. A thorough mathematical analysis, on the other hand, can be found
in the books of Steinbach [107] and Sauter and Schwab [96]. Hsiao and Wendland [48]
provide an overview of the mathematical state of the art of boundary element analysis.
Among other variants, the collocation and the Galerkin method are the most prominent
numerical techniques applied to boundary integral equations in order to obtain systems of
simultaneous equations. Whereas the former lacks mathematical rigor but still exists as
the most direct approach in the engineering community, the latter Galerkin method gains
more and more interest also outside the mathematical community because it does not only
come up with convergence proofs but also with system matrices which are manageable
by iterative solvers in a robust way. In this work, a modified collocation approach is cho-
sen which can be found for instance in the thesis of Steinbach [103], where comparisons
between Galerkin and collocation methods are given, too.

Boundary element methods have also been successfully applied to dynamic problems as
for instance by Mansur [70] who made use of time-domain fundamental solutions. By
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means of the convolution quadrature method of Lubich [67, 68], Laplace domain funda-
mental solutions are sufficient means for the treatment of time-domain problems. This
approach has been used by Schanz and Antes [99, 100] and extended by Schanz [98] to
poroelastodynamic wave propagation. A survey of time-domain boundary element meth-
ods is given in the publication of Costabel [13]. The convolution quadrature method is the
method of choice in this work for the used time-domain boundary element method.

It has to be added that so-called fast boundary element methods have made an enormous
advance in the recent past. Among those are the fast multipole method going back to the
early works of Greengard and Rokhlin [39] (see also Greengard [38] and the overview of
Nishimura [73]) and the panel clustering of Hackbusch and Nowak [43]. Moreover, the
adaptive cross approximation of Bebendorf and Rjasanow [7] provides an efficient setup
of a data sparse matrix representation leading to fast solution techniques. The algebra of
such data sparse matrix representations has been developed by Hackbusch [42].

The fast multipole algorithm has been successfully used by Of [74] for elastostatics and
by Fischer and Gaul [31] for acoustics. Finally, the recent book of Rjasanow and Stein-
bach [94] gives many details on these fast boundary element methods and shows several
applications of the adaptive cross approximation.

The boundary element part in this work plays a larger role than the finite element method
simply due to its significantly more involved implementation. Nevertheless, it has not been
the primal aim to develop a boundary element method according to the latest mathemati-
cal standards but to use it in the coupling algorithm. As before, the formulations are here
such that the used nonsymmetric collocation approach can be replaced in a future work
by a more robust symmetric Galerkin method without altering the coupling framework.
The mentioned fast boundary element methods could be incorporated in the same man-
ner. Moreover, preconditioned iterative solution procedures, as presented, for instance,
by Steinbach [104], could be introduced for the acceleration of the presented boundary
element solver.

Coupled solution strategies. The idea of spatially subdividing the domain under consid-
eration has a long history, see, for instance, the book of Przemieniecki [87] for the concept
of substructuring or the book of Toselli and Widlund [114] for a mathematical overview
of non-overlapping Schwarz methods. The partitioning could be physically motivated or
aimed to increase the efficiency of the solution procedure or both. Especially the here pre-
sented combination of finite and boundary element methods is commonly carried out for
both reasons. The underlying physics might require the use of boundary element methods
(unbounded domains, high stress resolution, etc.) but most likely more efficiency is gained
by using a finite element method in regions where the boundary element method is not
required. On the other hand, local nonlinearities might demand the use of finite elements.
This idea of making the optimal use of both methods goes back to Zienkiewicz et al. [121]
and has since then been often applied to coupled problems. The engineering works of von
Estorff and Hagen [23] and of Fischer and Gaul [31] are just two of many examples for this
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approach. On the other hand, the monograph of Steinbach [106] and the overview article
of Stephan [108] contain the mathematical background of the coupling of boundary with
finite element methods.

The former of these references also falls into the context of domain decomposition methods
which are commonly understood as efficient solution procedures by means of partitioning.
At the beginning of the last decade, Farhat and Roux [28, 29] introduced the method of
finite element tearing and interconnecting (FETI) which provides a robust and parallel
solution algorithm. This method has been modified to fourth order and dynamic problems
by Farhat et al. [24]. It has been transferred to boundary element coupling by Langer and
Steinbach [61] and by the same authors to the combination of finite and boundary element
methods [62]. An overview of the mathematical analysis of FETI can be found in the book
of Toselli and Widlund [114]. The extension of the original FETI idea to an all-floating
variant is given by Of [74], but in the context of boundary element methods. Similarly,
Dostál et al. [20] have developed such an extension for the original FETI method.

FETI methods and their relatives are commonly designed for matching interface discretiza-
tions, i.e., spatial discretizations which have matching nodes and approximation orders
across the interfaces of the partitioning. A relaxation of this constraint became famous in
the context of so-called mortar methods, see, e.g., the monograph of Wohlmuth [119].

In this work, the FETI method is chosen as a framework within which the considered nu-
merical approximation methods can be combined in the most independent fashion. More-
over, without changing the structure of the method, nonmatching interface discretizations
are allowed for by changing the approximation of the Lagrange multiplier fields. Such
a combination of the mortar methods with the FETI-framework has been proposed for
instance by Stefanica [102].

1.2 One-dimensional Example

This section conveys the basic concepts of the used numerical methods and their combined
application to the case of a simple rod subjected to an axial force. At first the static and
then a dynamic situation is regarded. Finally, the dynamic case for an unbounded rod is
considered. The explanations are condensed to some important items and are not intended
to be exhaustive.

1.2.1 Static case

In figure 1.1, a simple problem from basic structural analysis is given. A rod is fixed at
one end and subjected to an axial force F at its other end. Under the assumptions of small
deformations and constant stiffness, the governing equation is

−EAu′′(x) = 0 . (1.1)
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u = 0
F

Ω = (0, `)

Figure 1.1: Rod loaded with an axial force.

Ω = {x|0 < x < `} is the domain of the problem and boundary points x = 0 and x = `.
EA is the extensional stiffness and N(x) = EAu′(x) denotes the axial force. The boundary
conditions are

u(0) = 0 and N(`) = F .

The analytical solution for the displacement function u(x) is easily obtained by integra-
tion

u(x) =
F

EA
x .

Now, two different numerical approaches for the solution to the given problem are consid-
ered.

Finite element method. The simplest approach is the use of finite elements with piece-
wise linear shape functions. One such element with its nodal displacements and forces is
shown in figure 1.2. In the given case, the element matrix relation then becomes

EA
h

(
1 −1
−1 1

)(
u1
u2

)
=
(

F1
F2

)
with the element length h. The chosen linear approximation yields an exact solution to the
given problem, as long as the right hand side of equation (1.1) is zero.

1 2

F1 F2

u1 u2

h

Figure 1.2: Finite element for the rod.

Boundary integral method. Note that for one-dimensional problems the term boundary
element method is not really applicable for the obvious reason that the boundary is made up
of two points only and there is no need for discretization. Even the term boundary integral
is inauspicious since due to the same reason the integration reduces to a point evaluation.
Nevertheless, it will be kept for the sake of distinction.

The following results are according to the lecture notes of Antes [4] (see also the book of
Hartmann [45]). The solution to the differential equation (1.1) with a unit point load at y
is the so-called fundamental solution

u∗(x,y) =− 1
2EA
|y− x| .
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The corresponding axial force solution is then

N∗(x,y) = EA
∂

∂y
u∗(x,y) =

1
2
−H(y− x)

with the Heaviside function H(x), H(x) = 0 for x < 0 and H(x) = 1 for x > 0. By means
of these functions the axial displacement u(x) inside the rod can be expressed by the rep-
resentation formula

u(x) = [u∗(x,y)N(y)]`y=0− [N∗(x,y)u(y)]`y=0 .

Letting x tend to the limits 0 and ` yields a relation using boundary values only(
u(0)
u(`)

)
=

`

2EA

(
0 −1
1 0

)(
N(0)
N(`)

)
+

1
2

(
1 1
1 1

)(
u(0)
u(`)

)
,

where the limits of the Heaviside function H(x) have been taken from the right and the left
side of the discontinuity, limx→0+ H(x) = 1 and limx→0−H(x) = 0, respectively. Rearrang-
ing the terms of the above equation gives

`

2EA

(
0 −1
1 0

)(
N(0)
N(`)

)
=

1
2

(
1 −1
−1 1

)(
u(0)
u(`)

)
.

Solving this equation for the axial forces [N(0), N(`)]> and using the relation between
internal axial forces and nodal forces at the boundary points

F0 =−N(0) and F̀ = N(`) ,

the map from boundary displacements to nodal forces is

EA
`

(
1 −1
−1 1

)(
u0
u`

)
=
(

F0
F̀

)
.

Note the equivalence between this expression and the finite element matrix equation re-
sulting for one element for the whole rod, i.e., h = `.

Two-domain formulation. The given problem is now subdivided in two subdomains Ω1
and Ω2 each of equal length H = `/2 as indicated in figure 1.3. The left subdomain Ω1

1 2 3 1 2

Ω1 Ω2 F
λ

Figure 1.3: Division in 2 subdomains of the statically loaded rod.

is discretized with two finite elements of length h = H/2 = `/4 and the right subdomain
is treated by the above presented boundary integral formulation. Ω1 has two degrees of
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freedom, u(1)
2 and u(1)

3 , where the former belongs to the interior of the subdomain and

the latter to its right boundary. Note that u(1)
1 is not a degree of freedom but prescribed

with zero due to the given boundary conditions. The right subdomain has two degrees of
freedom, u(2)

1 and u(2)
2 , both of course on the boundary. In both subdomains, equation (1.1)

has to hold. In addition, the solution has to obey the interface conditions

u(1)
3 = u(2)

1 and N(1)
3 +N(2)

1 = 0 ,

which are the continuity of the displacement field and the equilibrium at the interface,
respectively. These conditions will be incorporated by means of a Lagrange multiplier λ ,
which - physically speaking - is the interface force. The system of equations for Ω1 now
reads

4EA
`

(
2 −1
−1 1

)(
u(1)

2

u(1)
3

)
=
(

0
λ

)
and for Ω2

2EA
`

(
1 −1
−1 1

)(
u(2)

1

u(2)
2

)
=
(
−λ

F

)
.

These two systems can be assembled in a global system of equations with local degrees of
freedom u( j)

i and the Lagrange multiplier λ


8EA/` −4EA/`
−4EA/` 4EA/` −1

2EA/` −2EA/` 1
−2EA/` 2EA/`

−1 1




u(1)

2

u(1)
3

u(2)
1

u(2)
2
λ

=


0
0
0
F
0

 ,

where the zero entries are not shown. The additional last line of this system ensures the
continuity of the displacements at the interface. The direct solution of this system gives as
expected the nodal values of the exact solution.

Partitioned solution. When solving the above equation, one will make use of the sepa-
rate local systems of equations. Solving the first system (the finite element approach) for
the interface displacement gives

u(1)
3 =

`

2EA
λ .

The second system (the boundary integral approach) cannot be directly solved for the
interface displacement. Trying to eliminate u(2)

2 from the system yields the relation

λ = F .

Obviously, the right subdomain does not have any displacement boundary conditions and,
therefore, the local solution to equation (1.1) is not unique. Any rigid body motion could
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be added to the solution without violation of the force boundary condition. Nevertheless,
the previous result λ = F is the solvability condition of the local problem. Moreover, such
a subdomain, whose local problem is not uniquely solvable, is commonly called floating
subdomain [29].

From linear algebra it is known that the solution to the right subsystem can be expressed
by (

u(2)
1

u(2)
2

)
=

`

2EA

(
1 0
0 0

)(
−λ

F

)
+
(

1
1

)
α .

Here, (1, 1)> contains the rigid body mode of the system and α is the unknown amplitude
of that mode. The matrix on the right hand side is a generalized inverse of the singular sys-
tem matrix and the vector (1, 1)> represents its kernel. Hence, the interface displacement
of subdomain Ω2 becomes

u(2)
1 =− `

2EA
λ +α .

Using the expressions for the local interface displacements together with the continuity
equation −u(1)

3 +u(2)
1 = 0 and the solvability condition λ = F , results in a system for the

unknown Lagrange parameter and the rigid body mode amplitude(
−`/EA 1

1 0

)(
λ

α

)
=
(

0
F

)
.

Once this system is solved, the local problems are uniquely defined and every degree of
freedom can be determined. In this simple case, one gets

λ = F and α =
F`

EA
,

where λ has the value of the axial force at the interface. By means of these values, the
interface displacements become

u(1)
3 = u(2)

1 =
F`

2EA

corresponding to the exact solution. The computation of the remaining degree of freedom,
u(1)

2 = F`/4EA, is then straightforward.

1.2.2 Dynamic case — bounded domain

The example shown in figure 1.4 is similar to the static case, but now the load is applied
instantaneously after t = 0 and held constant. Therefore, F(t) = F0H(t) with the Heaviside
function H(t) as previously introduced. Assuming again small deformations, a constant
Young’s modulus E, and a constant mass density ρ , the governing equation is

ü(x, t)− c2u′′(x, t) = 0 , (1.2)
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u(t) = 0
F(t) = F0H(t)

Ω = (0, `)

Figure 1.4: Rod loaded with a unit step force.

where c2 = E/ρ . c is the wave velocity, the speed at which a disturbance propagates
through the rod. Note the notational difference between the temporal derivative u̇ and the
spatial derivative u′. The solution is now sought in the domain Ω = {x |0 < x < `} and the
time interval (0,∞). This equation is equipped with boundary conditions

u(0, t) = 0 and N(`, t) = F0H(t) ∀t ∈ (0,∞)

(remember N(x, t) = EAu′(x, t)) and vanishing initial conditions

u(x,0) = 0 and u̇(x,0) = 0 ∀x ∈Ω .

The solution to this initial boundary value problem is given in equation (B.1) of the ap-
pendix B.1 and is shown in figure B.1(a). Note that this function resembles a D’Alembert
solution, since it is a linear combination of functions describing disturbances propagating
in positive and negative x-direction, i.e., f (ct−x) and f (ct +x), respectively. The solution
for the axial force N(x, t) is then obtained by taking the derivative.

Finite element method. The treatment of this dynamic problem with a classical finite
element approach leads to the semi-discrete system of equations [49]

ρAh
6


2 1
1 4 1

. . .
1 4 1

1 2




ü1
ü2
...

üN−1
üN

+
EA
h


1 −1
−1 2 −1

. . .
−1 2 −1

−1 1




u1
u2
...

uN−1
uN

=


f1
f2
...

fN−1
fN


and all vector coefficients are functions of time. A short notation has the form

Mü(t)+Au(t) = f(t)

with the mass matrix M and the stiffness matrix A which is already known from the static
problem. Such systems of ordinary differential equations are commonly solved by time-
stepping schemes. Here, a standard Newmark method with a displacement-based imple-
mentation is used (parameters β = 0.25 and γ = 0.5) and yields at every time step i in
abbreviated form the system

Ãui = f̃i .

Commonly, the computed unknowns ui are then used to calculate the velocity and acceler-
ation coefficients for the current time step. All these are, in turn, used to compute the new
pseudo force term f̂i+1 and so forth. Hence, the history information and the inertia terms
are entirely contained in the current right hand side f̂i.
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Boundary integral method. The fundamental solution of the equation (1.2) for the dis-
placements and the corresponding axial forces are given by (cf. Antes [3])

u∗(x,y, t,τ) =
1

2ρAc
H(c|t− τ|− |y− x|)

N∗(x,y, t,τ) =−1
2

δ (t− τ−|y− x|/c)sign(y− x) .

They represent the responses to a point load at location y and time τ . δ (x) denotes the
Dirac delta distribution and sign(x) is simply the sign of the argument. By means of these
functions, the dynamic representation formula can be established

u(x, t) =
t∫

0

[u∗(x,y, t− τ)N(y,τ)−N∗(x,y, t− τ)u(y,τ)]`y=0 dτ ,

which comprises a convolution in time. Using the properties of the Heaviside function H(t)
and the Dirac distribution δ (x), this relation can be used to express the time behavior of
the boundary displacements

u(0, t) = u(`, t− `/c)+
1

ρAc

 t−`/c∫
0

N(`,τ)dτ−
t∫

0

N(0,τ)dτ


u(`, t) = u(0, t− `/c)+

1
ρAc

 t∫
0

N(`,τ)dτ−
t−`/c∫
0

N(0,τ)dτ

 .

(1.3)

It is implicitly assumed that the problem has a quiescent past, i.e., u(t) = 0 and N(t) = 0
for t ≤ 0. For the given problem, these equations could be solved analytically and would
yield the exact solution as shown above. For simplicity, a trapezoidal rule with step size ∆t
for the numerical solution of the integrals is used instead and gives the system of equations
for the i-th time step

2ρAc
∆t

(
1 0
0 1

)(
ui,0
ui,`

)
=
(

Fi,0
Fi,`

)
+
(

Fi−1,0
Fi−1,`

)
+

2ρAc
∆t

(
1 0
0 1

)(
ui−1,0
ui−1,`

)
+

2ρAc
∆t

(
0 1
1 0

)(
ui−nc,0−ui−1−nc,0
ui−nc,`−ui−1−nc,`

)
+
(

0 1
1 0

)(
Fi−nc,0 +Fi−1−nc,0
Fi−nc,` +Fi−1−nc,`

)
.

The axial force N has been again replaced by the corresponding nodal forces F0 and F̀ .
A remark on the used notation has to be made. nc is the number of time steps until the time
point `/c, at which the disturbance has traveled once through the whole rod. Therefore,
the notation ()i−nc simply denotes a shift of the index i by the number nc. According to
the assumption of a quiescent past, values with an index less than zero can be neglected.
Obviously, the subscripts 0 and ` refer to the boundary points x = 0 and x = `. A shorter
writing for the above is given by

Sui = fi +hi ,
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i.e., the boundary displacements are mapped on the nodal forces plus some history term.
Note that S resembles a Dirichlet-to-Neumann map and will reappear in the later presented
coupling algorithms in chapter 4.

Two-domain formulation. As in the static case, the dynamic problem will be formulated
in two subdomains. One will be discretized by finite elements and the other handled by
the described boundary integral method. Again a Lagrange multiplier function λ (t) is

1 2 3 4 . . . N 1 2

Ω1 Ω2 F(t) = F0H(t)
λu(t) = 0

Figure 1.5: Division in 2 subdomains of the dynamically loaded rod.

used to ensure the interface conditions of continuity and equilibrium. Figure 1.5 shows
the constellation, where the left side is discretized with N−1 finite elements. The global
system of equations then becomes for the i-th time step

 Ã 0 B
0 S C

B> C> 0


u

(1)
i

u
(2)
i
λi

=

 f̃i
fi +hi

0

 . (1.4)

The matrices B = (0, 0, . . . , 0,−1)> and C = (1, 0)> are used for the interface conditions.
The partitioned solution of the local problems is equivalent to the static case with the
important difference that one does not have to take care of floating subdomains because the
local problems are uniquely solvable due to the initial conditions of the system. Obviously,
equation (1.2) has no rigid body modes as trivial solutions.

Example. The given problem has been solved setting all material and system parameters
to one, i.e., E = A = ρ = ` = 1. The units are omitted for the sake of simplicity. Two
choices of spatial discretization and time steps have been made. Set 1 refers to 10 finite
elements of size h1 = 0.1 and a time step ∆t = 0.05, whereas set 2 refers to 100 finite
elements of size h2 = 0.01 and ∆t = 0.005. Obviously, the boundary integral approach
does not need any spatial discretization and the time step sizes are chosen of equal size
for the finite element and boundary integral methods. Figure 1.6 shows the computed
solutions for these two sets. The displacement is displayed for the right end, x = `, and
at the interface, x = `/2, in the left picture 1.6(a). The axial force is shown for the left
end at x = 0 and the interface in the right picture 1.6(b). Confer the analytical solutions
given in figures B.1(a) and B.1(b) to identify the corresponding displacement and force
curves.
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0 4 8 12
time ct/l

0

0.5

1

1.5

2
u/

u st
at

ic
set 1
set 2

(a) Displacements

0 4 8 12
time ct/l

0

1

2

N
/F

0

set 1
set 2

(b) Axial forces

Figure 1.6: Computed solution for the displacement at points x = ` and x = `/2 and for the
axial force at points x = 0 and x = `/2.

1.2.3 Dynamic case — unbounded domain

Here, a dynamic load is applied to an semi-infinite rod as shown in figure 1.7. The con-
sidered domain is now Ω = {x ∈ R : x < 0} and the load is applied at the position x = 0.
This problem is also governed by equation (1.2) but the boundary conditions are different.

F(t)

Ω = (−∞,0)

Figure 1.7: Semi-infinite rod loaded with a unit step force.

They now read
N(0, t) = F(t) and lim

x→−∞
u(x, t) = 0

and hold for all times t ∈ (0,∞). The latter of these two conditions is physically reasonable
because the effect of the applied load should not affect any point at an infinite distance.
Moreover, this reasoning also implies that

lim
x→−∞

N(x, t) = 0 .

The finite element discretization of this problem remains the same as in the previous case
of the bounded rod. Clearly, a pure finite element approach cannot be suitable because the
discretization has to be truncated at a certain point and this causes unphysical reflections
of the wave traveling to infinity. The capability of the presented boundary integral method
to treat unbounded domains is shown in the following.

Boundary integral method. Consider again the boundary expressions (1.3) and let the
length ` get arbitrarily large. Then the displacement at x = 0 becomes with vanishing
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displacements and axial force for x→−∞

u(0, t) =
1

ρAc

t∫
0

N(0,τ)dτ .

The analytical integration of this expression directly yields the desired solution of the
dynamic problem of the unbounded rod. A numerical approach is given by using a trape-
zoidal rule with step size ∆t to approximate this integral and the following scheme is thus
obtained

2ρAc
∆t

ui,0 = Fi,0 +Fi−1,0 +
2ρAc

∆t
ui−1,0 .

This expression gives an approximation for the displacement u(0, i∆t) at x = 0 at the time
point t = i∆t.

Example. The two-domain formulation of the previous bounded case is repeated for the
unbounded rod with the difference that the right subregion Ω2 = (−0.5,0) is discretized by
N−1 finite elements and the remaining unbounded subregion Ω1 = (−∞,−0.5) is treated
by the boundary integral method, compare figure 1.5. Furthermore, the applied load is now
the impulse

F(t) = H(t−0.1c/`)−H(t−0.2c/`) .

The analytical solution for such a load can be easily obtained by the superposition principle
using the analytical solution for the step function given in appendix B.1. The two-domain
formulation (1.4) can be directly transferred to this situation and its solution is given below.
The sets 1 and 2 are the same as before, i.e., set 1 refers to 10 finite elements and ∆t = 0.05
whereas set 2 represents 100 finite elements with a time step ∆t = 0.005.

0 0.5 1 1.5 2 2.5 3
time ct/l

0

0.05

0.1

u(
x,

t)

load point (set 1)
interface   (set 1)
load point (set 2)
interface   (set 2)
analytical

(a) Displacements

0 0.5 1 1.5 2 2.5 3
time ct/l

-0.5

0

0.5

1

N
(x

,t)

set 1
set 2
analytical

(b) Axial forces

Figure 1.8: Computed solution for the displacement of the load point at x = 0 and of the
interface at x =−0.5 and for the axial force at the interface.

The numerical solutions are shown in figure 1.8. The displacement results in figure 1.8(a)
show a good agreement with the analytical solution for both sets. Especially, the curves
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for set 2 are close the exact solution. The outcome for the axial force at the interface, on
the other hand, is significantly worse as shown in figure 1.8(b). The spurious oscillations
occurring at the jumps at t = 0.6`/c and t = 0.7`/c do not rapidly decay which is a typically
feature of the Newmark method for the chosen parameters β = 0.25 and γ = 0.5. The
method is unconditionally stable and has second order accuracy but does not have any
numerical dissipation [49]. The problem can be alleviated by choosing other parameters
and sacrificing one order of accuracy.

1.3 Outline

The remainder of this work is organized as follows. In chapter 2, the mathematical models
of the acoustic wave equation and the elastodynamic system are introduced together with
their static counterparts of the Poisson equation and elastostatics. Moreover, the variational
principles and boundary integral representations are given in this chapter, which provide
the basis for the numerical approximation methods used in this work. It concludes with
some remarks on problems on unbounded domains.

Chapter 3 is then dedicated to approximation methods. At first, finite and boundary
element methods are shown as variants of spatial discretizations. Then, the temporal
discretizations follow in form of the Newmark method and the convolution quadrature
method. The chapter is closed by details on the numerical integration needed for the com-
putation of the matrix coefficients and, finally, the direct solution routines for the systems
of algebraic equations resulting from these approximations are presented.

The theoretic part of this work is concluded by chapter 4 on the coupled solution strat-
egy. It begins with a general section on the notation and some variational principles. After
introducing Dirichlet-to-Neumann maps in the continuous and discrete settings, the FETI
framework is outlined with emphasis on floating subdomains. The treatment of nonmatch-
ing interfaces ends this chapter.

In chapter 5, results of some verification tests are presented first for the numerical analysis
with either finite or boundary element methods in a single domain. Then these examples
are carried over to analyses with various coupled approaches. The results of the static and
dynamic analysis of an individual footing on an elastic halfspace are given in the end of
this chapter.

Finally, this work is concluded by chapter 6 with a short summary of the presented meth-
ods which is followed by an outlook on future work in this field. Special emphasis is placed
on recollecting the several weak points which are pointed out throughout the chapters 2 to 4
in the form of remarks.
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2 WAVE EQUATIONS FOR ACOUSTICS AND
ELASTODYNAMICS

In this chapter, the basic equations are introduced that will be solved numerically by the
later introduced methods. Basically, these are the acoustic wave equation with its static
correspondence, the Poisson equation, and the elastodynamic system with the elastostatic
system for the static case. The notion of boundary and initial boundary value problems
is raised in the following in order to embed the presented equations into complete mathe-
matical statements. Then variational principles and boundary integral representations are
brought up being the necessary tools for the later introduced numerical methods.

All considered physical models are based on the assumption that the changes in the state
variable (the pressure of the fluid or the displacement field of the solid) are relatively
small. Therefore, higher order terms can be neglected and the resulting equations are linear.
Hence, it suffices to describe the physical phenomena (e.g., kinematics and balance laws)
in the reference configuration only. Moreover, a Cartesian coordinate system will be fully
adequate for the spatial description. The position x in the d-dimensional Euclidean point
space, d = 1, 2, or 3, will be identified by the position vector x∈Rd , where an arbitrary but
fixed reference point has been chosen as the origin (cf. Ogden [75] for a more profound
discussion on point and vector spaces). This position vector has the components xi with
the indices i = 1, . . . ,d.

2.1 The Acoustic Fluid

The considered fluid is assumed to be homogeneous and compressible. It is at rest in the
reference configuration and gravity effects are neglected. Under these assumptions, a fluid
is termed acoustic fluid [76]. A further classification is made between the inviscid and the
dissipative acoustic fluid. The former does not resist to shear stresses whereas the latter
reacts due to viscosity. In the following, the fluid is assumed to be inviscid. The derivation
of the acoustic wave equation presented here is similar to the one-dimensional version of
Feynman [30]. Alternatively, one can directly start from the continuity equation as shown
by Gaul et al. [33].

The motion of the fluid is described by the displacement field u(x, t) which is a function of
position x and time t. It has a mass density which can be decomposed into its equilibrium
state ρ0 (ρ0 > 0) and the fluctuation around this state ρ(x, t), which is relatively small

ρtotal(x, t) = ρ0 +ρ(x, t) with max
t
|ρ(x, t)| � ρ0 ∀x . (2.1)

17
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Using a similar decomposition for the hydrostatic pressure

ptotal(x, t) = p0 + p(x, t) with max
t
|p(x, t)| � p0 ∀x (2.2)

with the equilibrium pressure p0 and the fluctuation p(x, t), the stress fluctuation in the
inviscid fluid is represented by

σ(x, t) =−p(x, t)I , (2.3)

where σ denotes the stress tensor and I the identity or unit tensor.

Now, let dV denote a differential volume of the acoustic fluid at position x and time t. In
reference configuration the same volume is denoted by dV0. Furthermore, this volume has
the mass densities ρtotal and ρ0, respectively. The conservation of mass then dictates under
the assumption of no mass production

(ρ0 +ρ(x, t))dV (x, t) = ρ0 dV0(x) . (2.4)

In a linearized setting, the divergence of the displacement field is relatively small (now
with respect to the geometrical extensions) and thus higher order terms can be neglected.
Hence, the relative volume change or dilatation can be expressed in terms of the divergence
of the displacement field

dV (x, t)−dV0(x)
dV0(x)

= ∇ ·u(x, t)

and, therefore, the mass balance (2.4) becomes

ρ(x, t) =−ρtotal(x, t)∇ ·u(x, t) =−(ρ0 +ρ(x, t))∇ ·u(x, t) .

Finally, the density fluctuation is expressed in terms of the displacement field by

ρ(x, t) =−ρ0∇ ·u(x, t) . (2.5)

Equation (2.5) can be regarded as the kinematics of the acoustic fluid. In order to relate the
density with pressure fluctuations, a constitutive relation is needed. The fluid is assumed
to be elastic. Hence, the total pressure is a function of the total density, ptotal = f (ρtotal),
and a Taylor expansion yields

p0 + p(x, t) = f (ρ0 +ρ) = f (ρ0)+ρ(x, t) f ′(ρ0)+
ρ2(x, t)

2
f ′′(ρ0)+ · · · .

Truncation after the linear term and the necessary condition p0 = f (ρ0) yields the consti-
tutive relation

p(x, t) = f ′(ρ0)ρ(x, t) .

In case of a linear constitutive behavior, as assumed here, the proportionality factor of the
above constitutive relation is a constant and can be identified with the square of the wave
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velocity, c2 = f ′(ρ0). Alternatively, the pressure fluctuation is directly proportional to the
relative density changes or the volume dilatation

p(x, t) = κ
ρ(x, t)

ρ0
=−κ∇ ·u(x, t) (2.6)

with the bulk modulus κ (κ > 0) as proportionality factor. The wave velocity thus be-
comes

c =
√

κ

ρ0
. (2.7)

At last, the dynamic equilibrium has to be formulated. Starting from the balance of linear
momentum in the reference configuration∫

V0

ρ0ü(x, t)dx =
∫

∂V0

t(x, t)dsx +
∫
V0

ρ(x)f(x, t)dx

with the body mass forces f, the surface forces t, and the Cauchy lemma t = σ ·n, n be-
ing the outward normal vector to the volume, one obtains by means of the divergence
theorem ∫

V0

(∇ ·σ(x, t)+ρ0f(x, t))dx =
∫
V0

ρ0ü(x, t)dx .

This equation has to hold for every sub-volume Ṽ ⊂ V0 and, therefore, not only in an
integral sense but also pointwise for the integrands. With the hydrostatic stress (2.3), the
dynamic equilibrium becomes

−∇p(x, t)+ρ0f(x, t) = ρ0ü . (2.8)

By inserting the kinematic relation (2.5) into the constitutive relation (2.6) and in turn
inserting the result into the equilibrium equation (2.8), a partial differential equation for
the displacement field is obtained

c2
∇(∇ ·u(x, t))+ f(x, t) = ü(x, t) .

It is usually preferred to express the above relation in terms of the pressure fluctuation. Ap-
plying the divergence to the above equation and exchanging temporal with spatial deriva-
tives then yields the acoustic wave equation for an inviscid fluid

p̈(x, t)− c2
∆p(x, t) = g(x, t) . (2.9)

In this equation, the negative divergence of the body force term f has been abbreviated by g,
i.e., g =−∇ · f. Furthermore, ∆ denotes the Laplace operator, ∆ = ∇ ·∇ = ∑i ∂ 2/∂x2

i .

Equation (2.9) is a hyperbolic partial differential equation. In order to embed it into an
initial boundary value problem as shown in section 2.3, the acoustic flux is introduced

q(x, t) = ∇p(x, t) (2.10)
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Figure 2.1: Tonti diagram for the acoustic fluid.

as an auxiliary variable. By means of the flux variable, one can set up a Tonti diagram [113]
for the acoustic wave equation as depicted in figure 2.1.

In the presented case, the wave equation describes the pressure fluctuation in a homoge-
neous, compressible, elastic, and inviscid fluid. This model is often used in acoustics for
instance. Alternatively, the pressure p can be eliminated from the equation by introducing
a displacement potential ψ , u = ∇ψ , or a velocity potential φ , u̇ = ∇φ . These potentials
then obey wave equations with exactly the same operator as in equation (2.9) but with
different force terms. Moreover, the same type of equation shows up in many other wave
propagation phenomena. For instance, the waves in a string or the longitudinal waves in
thin rods (see the book of Graff [37] and also the introductory example in section 1.2) are
described by similar equations.

Applying a Laplace transformation to the acoustic wave equation gives

s2 p̂(x,s)− c2
∆ p̂(x,s) = ĝ(x,s)

with the Laplace parameter s∈C and under the assumption of vanishing initial conditions,
i.e., p(x,0) = 0 and ṗ(x,0) = 0. The circumflex denotes the Laplace transform which
is defined as p̂(s) := L (p) =

∫
∞

0 p(t)exp(−st)dt. Rearranging the terms in this equation
yields (

∆− s2

c2

)
p̂(x,s) =

1
c2 ĝ(x,s) (2.11)

with the Yukawa operator (∆− s2/c2). Restricting the range of the Laplace parameter to
the imaginary axis, s = iω (i2 =−1), yields the Helmholtz equation

(∆+ k2)p̃(x,k) = g̃(x,k) (2.12)

with the wave number k = ω/c. The force term has simply been renamed and the operator
(∆ + k2) is the well-known Helmholtz operator. Actually, p̃(x,k) resembles the Fourier
transform of p(x, t), i.e., p̃(x,k) =

∫
∞

−∞
p(x, t)exp(−2πikt)dt.

The dynamic terms are neglected if the fluid tends to incompressibility (c→ ∞) or the
disturbances are quasi-static, g(x, t) = h(x) ∀t. Then, the pressure function p becomes
independent of time and the Poisson equation is obtained

−∆p(x) = h(x) . (2.13)
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Equation (2.13) however, appears in the context of many physical phenomena, like heat
conduction and electrostatics. It is the prototype of an elliptic partial differential equation.
The homogeneous version of the Poisson equation is commonly called Laplace equation

−∆p(x) = 0 . (2.14)

The equations presented in this section are valid for one-, two-, and three-dimensional
problems. The involved functions are then dependent on the corresponding coordinates,
e.g., p(x, t) = p(x1,x2, t) for two space dimensions. Accordingly, on has to use the right
operator, e.g., ∆ = ∂ 2/∂x2

1 +∂ 2/∂x2
2 for the same example.

2.2 Linear Elastodynamics

In the following, the basic components of the linear elastodynamic equations are sum-
marized. Detailed derivations are given in any textbook on the basic theory of elasticity.
Special treatment of elastodynamics and wave propagation in solids can be found in the
books of Achenbach [1], Graff [37], and Kupradze [56] among others.

A homogeneous elastic solid is considered, which is subjected to dynamic forces. Again,
the deviation from the reference configuration is assumed to be small such that the general
equations of continuum mechanics [75] are linearized.

The displacement field u(x, t) depending on position and time is introduced to describe the
motion of the solid which is equipped with an equilibrium mass density ρ0. Measuring
the changes of the squares of length of line elements in the undeformed and the deformed
state, the linear strain tensor is obtained

ε(x, t) =
1
2

(
∇u(x, t)+(∇u(x, t))>

)
. (2.15)

Here, ()> denotes the transpose and, therefore, ε is the symmetric part of the displacement
gradient tensor. Note that the higher-order terms of the exact non-linear strain tensors are
neglected according to the assumptions of a small displacement gradient formulation. The
effect of the anti-symmetric part of the displacement gradient can be expressed by means
of the curl operator [37] introducing the rotation vector

ω(x, t) =
1
2

∇×u(x, t) . (2.16)

Actually, the newly introduced curl operator, ∇× (), can be defined by the relation [75]

(∇×u(x, t))×a =
(

∇u(x, t)− (∇u(x, t))>
)
·a ∀a ∈ Rd .

It is thus the axial vector of an anti-symmetrical tensor field. Additionally, the velocity is
given by the first time derivative of the displacement

u̇(x, t) =
∂u(x, t)

∂ t
. (2.17)
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The solid is assumed to be linear elastic, homogeneous, and isotropic. The former condi-
tion allows for a linear stress-strain relationship

σ(x, t) = C(x, t) : ε(x, t) .

The colon denotes a double contraction of tensors, e.g., A : B = ∑i, j Ai jBi j for the two
second-order tensors A and B. Homogeneity lets C be independent of the position x and
it is additionally assumed that the material behavior does not depend on time either, i.e.,
C = const. Due to the condition of isotropy, the material law finally takes the form

σ(x, t) = λ tr(ε(x, t))I+2µε(x, t) . (2.18)

The symbol tr() denotes the trace, i.e., the sum of the diagonal entries or in terms of
the contraction tr(A) = A : I. Furthermore, two material parameters λ and µ have been
introduced which are called Lamé parameters. These can be related to the more common
Young’s modulus E and Poisson ratio ν by

λ =
Eν

(1+ν)(1−2ν)
µ =

E
2(1+ν)

E = µ
3λ +2µ

λ + µ
ν =

λ

2(λ + µ)
.

As in the case of the acoustic fluid of section 2.1, the stress field σ is the deviation from an
equilibrium stress σ0 which is not considered further. The density of linear momentum `
is defined by the relation [75]

`(x, t) = ρ0u̇(x, t) . (2.19)

In order to complete the set of equations, a balance law is needed. The balance of linear
momentum as used for the derivation of the wave equation suffices (cf. the derivation of
equation (2.8)) and relates the stresses σ and linear momentum density ` with the body
forces f

∇ ·σ(x, t)+ f(x, t) = ˙̀(x, t) . (2.20)

Note that in the derivation of the balance of linear momentum the continuity equation,
i.e., balance of mass, is implicitly employed. Furthermore, the rotational momentum is
also conserved. In the given setting, the balance of rotational momentum requires sym-
metry of the stress field σ [75]. This symmetry is implicitly included in the constitutive
equation (2.18).

The elastodynamic system of equations expressed by the displacement field is finally ob-
tained by inserting the kinematic relation (2.15) and the definition of the velocity (2.17)
into the material law (2.18) and the definition of the density of linear momentum (2.19).
These results are then inserted into the balance law (2.20). This procedure is graphically
represented by the Tonti scheme [113] for elastodynamics in figure 2.2 and the final set of
equations is

ρ0ü(x, t)−µ∇ · (∇u(x, t))− (λ + µ)∇(∇ ·u(x, t)) = f(x, t) . (2.21)
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Figure 2.2: Tonti diagram for elastodynamics.

In figure 2.2, equation (2.17) is interpreted as a kinematic relation and (2.19) as a material
law. Equations (2.21) are often referred to as Lamé-Navier equations. Employing the
identity

∇ · (∇u) = ∇(∇ ·u)−∇× (∇×u)

in equations (2.21), an alternative representation is obtained [37, 56]

ρ0ü(x, t)− (λ +2µ)∇(∇ ·u(x, t))+ µ∇× (∇×u(x, t)) = f(x, t) .

With the abbreviation ε = ∇ ·u for the volume dilatation and the rotation vector ω from
equation (2.16), one gets after dividing by ρ0

ü(x, t)− c2
1∇ε(x, t)+ c2

2∇×ω(x, t) =
1
ρ0

f(x, t) . (2.22)

This representation of the elastodynamic system clearly displays the dilation and rotation
parts. Moreover, one can identify the two different wave velocities

c1 =

√
λ +2µ

ρ0
and c2 =

√
µ

ρ0
, (2.23)

which describe the speeds of the compression and the shear wave, respectively. Since it
holds that λ ≥ 0 for materials with ν ≥ 0, it follows that c1 > c2, which means that the
compression or dilatation wave with speed c1 is always faster than the shear wave.

Application of the Laplace transform to the system of equations (2.21) results in

ρ0s2û(x,s)−µ∇ · (∇û(x,s))− (λ + µ)∇(∇ · û(x,s)) = f̂(x,s) (2.24)

with the Laplace parameter s ∈ C and, again, initial conditions have been assumed to be
homogeneous, i.e., u(x,0) = 0 and u̇(x,0) = 0.

The elastostatic equations are obtained from (2.21) by the assumption that the displacement
field u and the body forces f are independent of the time. Hence, one gets

−µ∇ · (∇u(x))− (λ + µ)∇(∇ ·u(x)) = f(x) . (2.25)
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So far, the equations of this section are based on a three-dimensional formulation. The
elastodynamic system for one space dimension reduces to equation (1.2) for longitudinal
waves in a bar as shown in the introductory section 1.2.2. In two space dimensions, there
are the special cases of plane strain and plane stress. In the former, the state of strain is
assumed to be independent of the x3-direction. This is the case if the considered geometry
is very large or infinite in this direction and the applied load does not depend on this
coordinate either. The above equations remain the same, only the third component u3 of
the displacement field u vanishes and the partial derivatives ∂/∂x3, too. The corresponding
stresses are not two-dimensional. It holds that σ13 = σ31 = σ23 = σ32 = 0 but σ33 = λ∇ ·u
in the isotropic case, which is not zero in general. Nevertheless, this stress component does
not have to be considered in the set of equations and can be computed afterwards.

The state of plane stress, on the contrary, assumes that the stress tensor is purely two-
dimensional. This assumption is usually made in the case of thin plates which are only
loaded in the plane of their main extension. Now, ε33 6= 0 holds in general. By means of
the substitutions E→ E(1−ν)2 and ν→ ν(1−ν), a solution obtained by the plane strain
formulation can be transformed to the corresponding solution of the state of plane stress.

2.3 Boundary Value Problems

Mathematical models for the considered physical problems described by the equations
presented in sections 2.1 and 2.2 are given in the form of boundary value problems. More
specific, for the case of static and Laplace domain problems elliptic boundary value prob-
lems are formulated and in time-domain hyperbolic initial boundary value problems are
necessary. Parabolic and other systems are not considered in this work. The distinction
between the different types of partial differential equations can be found in the introduc-
tion of the book of Braess [9]. For the sake of simplicity, the static cases are dealt with
first. The dynamic problems then follow. A good introduction to elliptic boundary value
problems is the book of Reddy [90].

2.3.1 Elliptic boundary value problems

The physical models in this work are formulated either in two or in three space dimensions.
If not specified, the dimension is denoted by d. Hence, always d = 2 in two and d = 3 in
three space dimensions.

Let the open domain, in which the physical model is formulated, be denoted by Ω. Unless
stated otherwise, Ω is supposed to be bounded, i.e., there exists a finite number R > 0
such that Ω ⊂ BR(0), where BR(y) =

{
x ∈ Rd : |x−y|< R

}
. In words, Ω can be totally

included in a ball around the origin with finite radius R. The boundary of Ω is symbolized
by Γ and the unit outward normal vector at this boundary by n. In addition, Ω is the closure
of Ω, i.e., Ω together with its boundary points. If Ω is bounded, Γ is a closed surface.
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For the complete description and solvability of a static problem, a proper formulation of
boundary conditions is needed. In the cases of the acoustic fluid and the elastic solid,
the underlying partial differential equations are formulated in the pressure p(x) and the
displacement fields u(x), respectively. For the moment, the unknown function u(x) shall
represent these two. The governing elliptic partial differential equations (the so-called
static cases in the above) can be abstracted by

Lu(x) = f (x) . (2.26)

L is a linear elliptic partial differential operator, e.g., L = −∆ as in the Poisson equa-
tion (2.13), and f (x) is a force or source term. It is assumed in the following that L has
constant coefficients throughout the domain Ω and is thus independent of the position x.

Any solution u of the equation (2.26) can be altered by solutions of the homogeneous
equation. Therefore, uα = u+αu0, where Lu0 = 0 and α ∈ R, is also a solution. Usually,
one does not only pose a partial differential equation the solution has to fulfill, but also
a certain set of boundary data the solution has to meet. In solid mechanics, the common
case is to prescribe displacements or surface forces on the boundary. In acoustics, it would
be the sound pressure, the surface flux or impedances that could be prescribed. For the
first class of boundary condition (displacements or pressure), the boundary values of the
function u(x) itself are given. Therefore, the boundary trace uΓ is considered

uΓ(y) = Tru = lim
Ω3x→y∈Γ

u(x) . (2.27)

The operator Tr for taking the trace was introduced here for later purposes. Although,
the distinction between u inside the domain and uΓ on the boundary seems redundant, it
is mathematically relevant, because the regularity requirements on u and uΓ are differ-
ent [107].

A condition on uΓ is commonly called Dirichlet boundary condition. If uΓ is prescribed
by a function gD on the whole boundary Γ, a Dirichlet problem is formulated

Lu(x) = f (x) x ∈Ω

uΓ(y) = gD(y) y ∈ Γ .
(2.28)

Otherwise, it is also common to prescribe surface forces or fluxes. In such cases, the
surface tractions or fluxes in terms of the function u have to be formulated first. In the case
of the acoustic fluid, the normal flux on the surface is given by

qn(y) = lim
Ω3x→y∈Γ

[q(x) ·n(y)]

where q denotes the interior flux. In elasticity, the surface tractions are given in a similar
way

t(y) = lim
Ω3x→y∈Γ

[σ(x) ·n(y)] .
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An explicit expression of the surface tractions can be found for instance in the book of
Kupradze et al. [57]. Note that the functions q(x) and σ(x) can be expressed in terms
of the unknown functions p and u, respectively. Therefore, the above equations can be
abbreviated by

qΓ(y) = T u(x) , (2.29)

where qΓ represents either qn or t and the operator T is responsible for the mapping from u
to qΓ. It will be referred to as traction operator. It is also called generalized normal
derivative [65]. Again, the regularity requirements for the function qΓ are different from
the corresponding stress or flux fields in the interior of the domain. Moreover, it has to be
noted that the operation (2.29) is not unique, if the boundary point y is located at a point
where the surface Γ is not smooth. If Γ has an edge or a corner at y the normal vector n
is not uniquely defined. Here, it is assumed that Γ is a piecewise smooth surface and,
therefore, one can say that the operation (2.29) is possible almost everywhere [94].

A condition on the function qΓ is called Neumann boundary condition. Prescribing qΓ by
a function gN on the whole boundary yields the Neumann problem

Lu(x) = f (x) x ∈Ω

qΓ(y) = gN(y) y ∈ Γ .
(2.30)

Note that, depending on the structure of the operator L, the Neumann problem (2.30) may
not be uniquely solvable. In elastostatics, for instance, rigid body motions could be added
to u such that (2.30) is still fulfilled.

More specifically, letR denote the space of functions such that

LuR = 0 and T uR = 0 ∀uR ∈R . (2.31)

Then, any uα = u+αuR is also a solution to the Neumann problem (2.30). Additionally,
this problem is only well-posed if the solvability condition∫

Ω

uR(x) f (x)dx+
∫
Γ

(TruR)(y)gN(y)dsy = 0 (2.32)

is fulfilled for all uR ∈ R [107]. The space R is of finite dimension and its basis is easily
expressed. Here, three different situations have to be considered:

Poisson equation: R= span{1} (2.33a)

2D elastostatics: R= span
{(

1
0

)
,

(
0
1

)
,

(
x2
−x1

)}
(2.33b)

3D elastostatics: R= span


1

0
0

 ,

0
1
0

 ,

0
0
1

 ,

 x2
−x1

0

 ,

 x3
0
−x1

 ,

 0
x3
−x2

 .

(2.33c)
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Figure 2.3: Augmented Tonti diagram for the abstract elliptic boundary value problem.

The space of constant functions (2.33a) leads to zero fluxes and, therefore, obviously ful-
fills (2.31). Any member of the spaces for elastostatics (2.33b) and (2.33c) produces a zero
strain, i.e.,

ε(uR) = 0 ∀uR ∈R ,

and, therefore, zero tractions. These spaces exactly consist of 2 (3) rigid body translations
and 1 (3) infinitesimal rigid body rotations for 2 (3) space dimensions. Note that a finite
rotation does not produce a zero strain in this linearized setting. The infinitesimal rotation,
on the other hand, is represented by some vector product x×a with a being a fixed vector
from R3 normal to the plane of rotation. The symmetric gradient of this infinitesimal
rotation vanishes.

A third kind of boundary condition appears, when combinations of uΓ and qΓ are pre-
scribed. This so-called Robin boundary condition appears for instance in the case of elas-
tically bedded plates or as impedances in acoustics. This type of boundary condition is not
further considered in this work.

In many applications, mixed boundary value problems appear where on parts of the bound-
ary a Dirichlet boundary condition and on the remaining parts a Neumann boundary con-
dition are given. Such a mixed boundary value problem is of the form

Lu(x) = f (x) x ∈Ω

uΓ(y) = gD(y) y ∈ ΓD

qΓ(y) = gN(y) y ∈ ΓN .

(2.34)

ΓD and ΓN are subsets of Γ where the Dirichlet and Neumann data are prescribed. Since
only Dirichlet and Neumann boundary conditions are considered in this work, Γ = ΓD∪ΓN
holds, where the bar () denotes the closure of a set. Moreover, ΓD∩ΓN = /0, i.e., it cannot
occur that on the same part of Γ a Dirichlet and a Neumann condition is given. Neverthe-
less, in vector problems of elasticity it could happen that at the same location a Dirichlet
datum is given for a certain direction and Neumann datum for another. In that case, the no-
tation ΓD,i and ΓN, j will be used to indicate that in the i-th component the Dirichlet datum
is prescribed, whereas a Neumann datum is given for the j-th component, respectively. If
the boundary surface is not aligned with the global coordinate system the prescribed condi-
tions are then referring to tangential and normal components of the Dirichlet or Neumann
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datum, respectively. It could still appear that a mixed boundary value problem is still not
uniquely solvable if, for instance, no Dirichlet datum is given for the whole boundary in
one direction. Then, the corresponding rigid body mode is not suppressed.

It is convenient not having to switch between the Poisson equation and the elastostatic
system all the time. Therefore, ε shall denote the quantity obtained from u by the kinematic
relation (either pressure gradient or the strain tensor) and σ represents the quantity to be
balanced (internal flux or stress tensor). Then the elliptic boundary value problem can be
graphically depicted as shown in figure 2.3.

2.3.2 Hyperbolic initial boundary value problems

Contrary to the elliptic case as discussed in the previous section, initial boundary value
problems involve a temporal evolution of the state variable. Therefore, the unknown func-
tion does not only depend on the d space dimensions but also on a time dimension. Like
before, u shall represent the unknown function in this abstract setting and is now a function
of space and time,

u = u(x, t) , x ∈Ω , t ∈ [0,∞).

Ω denotes again the spatial domain in which the problem is formulated. Only linearized
formulations are considered in this work and, hence, it will not be distinguished between a
reference configuration and a current configuration. They are coincident and independent
of time. The additional time dimension is as usual described by the interval of non-negative
real numbers, [0, ∞). A condensed writing is to use the pairs (x, t) which belong to the
(d +1)-dimensional region Ω× [0,∞).

The problems under consideration are hyperbolic and, therefore, are well posed if bound-
ary conditions are given for the spatial boundary together with initial conditions for the
time t = 0. Confer Braess [9] and references therein for the definition of a hyperbolic
differential equation and the well-posedness of such. In the cases of the elastodynamic
system and the acoustic wave equation, the partial differential equation is of the type(

ρ0
∂ 2

∂ t2 +L
)

u(x, t) = f (x, t) ,

where L denotes a second-order elliptic differential operator like the operators introduced
in the previous section. The force term f represents either the acoustic source ρ0g, see
equation (2.9), or the elastodynamic force term f as in equation (2.21). It is assumed that
the operator L neither depends on x nor t and, therefore, all its coefficients are constants.
Some physical models include the first temporal derivative as well in order to include
damping or similar dissipative phenomena. Here, only equations of the above type are
used.

On the spatial boundary Γ, conditions for the boundary trace uΓ and/or the tractions qΓ are
given in the same way as for the elliptic problem. These conditions can be exclusively of



2.3 Boundary Value Problems 29

Dirichlet or Neumann type or they can be mixed. Since the boundary conditions only refer
to the spatial variable x they are in general time dependent. For simplicity only the mixed
case will be presented(

ρ0
∂ 2

∂ t2 +L
)

u(x, t) = f (x, t) (x, t) ∈Ω× (0,∞)

uΓ(y, t) = gD(y, t) (y, t) ∈ ΓD× (0,∞)
qΓ(y, t) = gN(y, t) (y, t) ∈ ΓN× (0,∞) .

(2.35)

Let either ΓN or ΓD be an empty set in order to obtain a Dirichlet or a Neumann problem,
respectively. It is assumed here that the partition of Γ into the two disjoint subsets ΓD
and ΓN does not vary with time.

The problem (2.35) is still lacking the initial conditions. These are given at every point
inside Ω at the time t = 0 for the unknown function u(x, t) and its first temporal deriva-
tive u̇(x, t). The latter is not defined for t = 0 and again traces are defined

u(x,0+) := lim
τ→0
τ>0

u(x,τ) and u̇(x,0+) := lim
τ→0
τ>0

u̇(x,τ) .

Hence, the mandatory set of initial conditions is

u(x,0+) = u0(x)

u̇(x,0+) = u1(x)
x ∈Ω (2.36)

with given functions u0(x) and u1(x). Of course, these functions have to be compatible
with the prescribed boundary data and, therefore, the following conditions have to hold

(Tru0)(y) = gD(y,0+) and (Tru1)(y) = ġD(y,0+) , y ∈ ΓD . (2.37)

Equations (2.35) and (2.36) together give a well-posed hyperbolic initial boundary value
problem. If one has u(x, t) = 0 for all t ≤ 0, which implies u0(x) = 0 and u1(x) = 0 for all
points x ∈Ω, than the function u is said to have a quiescent past.

Contrary to the elliptic case, in dynamics a pure Neumann problem is uniquely solvable.
Superimposed rigid body modes are not possible since the solution has to meet the initial
conditions.

As in the elliptic case, both the acoustic wave equation and the elastodynamic system are
abstracted by the introduction of a notation which represents the two models. In addition
to the already used variables, u, f , ε , and σ , the dynamic quantities u̇ and ρ0u̇ are used to
represent the missing quantities. In figure 2.4, the relations among all the abstract variables
are shown.
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Figure 2.4: Augmented Tonti diagram for the abstract hyperbolic initial boundary value
problem.

2.4 Variational Principles

Variational principles are indispensable tools for the mathematical analysis of boundary
value problems. Also, they are the starting point for many numerical methods, especially,
for the finite element method.

In the following, a variational principle for the elastodynamic system is derived. It will then
be identified with the well-known Hamilton’s principle. The corresponding formulation for
the acoustic wave equation is straightforward. Furthermore, the static (or elliptic) cases are
easily obtained from the dynamic principles.

The elastodynamic system (2.21) can be written in the residual form

ρ0ü−∇ ·σ(u)− f = 0 . (2.38)

Here, σ(u) shall indicate that the stress tensor σ is to be understood as a function of the
displacement field u. Moreover, the functional dependencies on the position x and time t
are omitted for the moment for the sake of legibility. Remember that in the context of an
initial boundary value problem u has to obey the set of boundary conditions

Tru = gD on ΓD and T u = gN on ΓN

and certain initial conditions (cf. section 2.3 for details).

Now, an arbitrary but admissible vector field v(x, t) is taken and equation (2.38) will be
multiplied by v and integrated over the domain Ω∫

Ω

[ρ0ü−∇ ·σ(u)− f] ·vdx = 0 .

Admissible means in the current context that v obeys specific regularity requirements in
order to ensure the existence of the integrals and that it vanishes on ΓD, i.e., Trv = 0
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on ΓD. In engineering literature, v is often referred to as virtual displacement. In this
work, the term test function is preferred.

Using the identity
(∇ ·σ) ·v = ∇ · (σ ·v)−σ : ∇v

and the divergence theorem ∫
Ω

∇ ·vdx =
∫
Γ

Trv ·nds ,

one obtains the relation∫
Ω

σ(u) : ∇vdx+
∫
Ω

ρ0ü ·vdx−
∫
Ω

f ·vdx−
∫
Γ

(T u) ·Trvds = 0 .

The gradient of v can be decomposed into its symmetric and its antisymmetric parts. The
contraction of a symmetric tensor with an antisymmetric tensor yields zero and, therefore,
only the symmetric part of this decomposition remains in this relation. Then the principle
of virtual work is obtained∫

Ω

ρ0ü ·vdx+
∫
Ω

σ(u) : ε(v)dx =
∫
Ω

f ·vdx+
∫

ΓN

gN ·Trvds . (2.39)

Similar to the kinematic equation (2.15), ε(v) denotes the symmetric part of ∇v. Since the
test function v is assumed to vanish on ΓD, only the surface integral over ΓN remains and
the Neumann boundary condition has already been employed. Note that both sides of the
above relation are still functions of time.

Obviously, the function u, which is a solution to the initial boundary value problem, fulfills
relation (2.39). But, in order to be a solution of the underlying partial differential equa-
tion, this function u has to be twice differentiable in space and in time. The variational
principle (2.39) only requires the first spatial derivative to be square integrable. The im-
portant point is that, if the function u fulfills this variational principle for any arbitrary but
admissible test function v, and if u is twice differentiable, then it is also a solution of the
original initial boundary value problem. Due to the less severe regularity requirements, the
solution to this variational principle is commonly called weak solution, whereas the solu-
tion to the original initial boundary value problem is termed classical or strong solution.
Additionally, the force terms f and gN have to obey weaker conditions than in the classical
formulation. Point forces, for instance, are valid in the variational principle. Therefore, the
set of weak solutions is wider than the set of classical solutions. Actually, the latter form a
subset of the former. On the other hand, the Dirichlet boundary condition is strongly ful-
filled by the solution u, i.e., the solution is sought among those functions, which already
fulfill the condition Tru = gD on ΓD. Strang and Fix [110] provide a good introduction to
this matter for the elliptic case.
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The initial conditions, which the solution function has to obey, are commonly posed in a
weak form, too [49]. This means that they have to be fulfilled in an integral sense for all
admissible test functions v∫

Ω

u ·vdx =
∫
Ω

u0 ·vdx and
∫
Ω

u̇ ·vdx =
∫
Ω

u1 ·vdx at t = 0 . (2.40)

Now, two time instants t0 and t1 are taken and relation (2.39) is integrated over the time
between these instants. Additionally, the employed test functions v are assumed to be once
differentiable in time and to vanish at these time points, i.e., v(t0) = v(t1) = 0. Then the
first term of equation (2.39) becomes

t1∫
t0

∫
Ω

ρ0ü ·vdxdt =
∫
Ω

ρ0u̇ ·vdx

∣∣∣∣∣∣
t1

t0

−
t1∫

t0

∫
Ω

ρ0u̇ · v̇dxdt =−
t1∫

t0

∫
Ω

ρ0u̇ · v̇dxdt .

With this result, the temporal integration yields

t1∫
t0

∫
Ω

ρ0u̇ · v̇dxdt−
t1∫

t0

∫
Ω

σ(u) : ε(v)dxdt +

t1∫
t0

∫
Ω

f ·vdxdt +
t1∫

t0

∫
ΓN

gN · (Trv)dsdt = 0 .

Introducing the kinetic and strain energies

K (u) =
1
2

∫
Ω

ρ0u̇ · u̇dx and U (u) =
1
2

∫
Ω

σ(u) : ε(u)dx , (2.41)

respectively, and identifying the right hand side of equation (2.39) with the external virtual
work δW , Hamilton’s principle is recovered [1]

t1∫
t0

δ (K −U )dt +
t1∫

t0

δW dt = 0 . (2.42)

Here, δ denotes the first variation. The difference term is often referred to as the La-
grangian, L = K −U . In the given context, this principle states that the integral from t0
to t1 over the sum of the Lagrangian and the potential of the applied forces is stationary and
does not depend on the actual path of integration. Confer the textbooks of Goldstein [35]
and Love [66] for more details on Hamilton’s principle.

Moreover, if the used test function v is taken to be the velocity, i.e., v = u̇, the principle of
virtual work (2.39) becomes [75]∫

Ω

ρ0ü · u̇dx+
∫
Ω

σ(u) : ε̇(u)dx =
∫
Ω

f · u̇dx+
∫
Γ

(T u) ·Tr u̇ds .
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Here, the surface integral has to be extended over the whole boundary Γ because there
is no boundary condition on u̇ as there was before for the test function v. Recalling the
definitions of the kinetic and strain energies (2.41), this relation becomes

∂

∂ t
K (u)+

∂

∂ t
U (u) =

∫
Ω

f · u̇dx+
∫
Γ

(T u) ·Tr u̇ds .

The integration from 0 to t over this expression yields the total energy stored in the sys-
tem [118]

K (u)+U (u) =
t∫

0

∫
Ω

f · u̇dxdτ +
t∫

0

∫
Γ

(T u) ·Tr u̇dsdτ , (2.43)

where, for the sake of simplicity, u is assumed to have a quiescent past, i.e., u = 0 for
all t ≤ 0.

In the static case, these principles can be simplified. Hamilton’s principle collapses to the
statement

δU = δW ,

i.e., the variation of internal strain energy equals the virtual work done by the applied
forces. Commonly, a potential is formulated whose minimization gives the above relation.
For the given boundary value problem, the potential is of the form

Π(u) =
1
2

∫
Ω

σ(u) : ε(u)dx−
∫
Ω

f ·udx−
∫

ΓN

gN · (Tru)ds . (2.44)

Note that this is only one possible form of such a potential. Many other versions exist in
literature (cf. for instance [91]). Moreover, suitable function space have to be established
in order to ensure that the minimum can be really attained. Here, function spaces are not
considered any further and the book of Strang and Fix [110] is given as a good reference
for an introduction to this matter.

Minimization of the potential (2.44) yields∫
Ω

σ(u) : ε(v)dx =
∫
Ω

f ·vdx+
∫

ΓN

gN · (Trv)ds (2.45)

for all admissible v, which is exactly (2.39) without the inertia term. This equation is
obtained by taking the first variation with respect to the unknown function u of the potential
and setting it to zero, i.e., δuΠ = 0. The second variation then gives∫

Ω

σ(v) : ε(v)dx > 0 ∀v 6= 0 .

The fact that the above result is always positive ensures that the function u really minimizes
the potential.
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For the acoustic wave equation
ρ0 p̈−κ∆p = ρ0g

similar principles can be stated. The principle of virtual work for the dynamic equation
states ∫

Ω

ρ0 p̈ vdx+
∫
Ω

κ∇p ·∇vdx =
∫
Ω

ρ0 gvdx+
∫

ΓN

gN Trvds (2.46)

and the first term is simply omitted for the static case of Poisson’s equation. Again, a test
function v has been introduced, which vanishes on the Dirichlet boundary, i.e., Trv = 0
on ΓD. And the Dirichlet boundary condition is assumed to be fulfilled by u a priori.

For subsequent purposes, again a shorthand notation is used, which combines both cases
of elastodynamics and acoustics. By means of the generic variables already used in sec-
tion 2.3, the following abbreviation represents equations (2.39) and (2.46)

〈ρ0ü,v〉+at(u,v) = 〈 f ,v〉+ 〈gN ,Trv〉ΓN . (2.47)

Here, 〈·, ·〉 is the L2-scalar product on Ω, 〈·, ·〉ΓN the L2-scalar product on ΓN , and at(·, ·) a
symmetric bilinear form corresponding to the underlying physical model

at(u,v) =
∫
Ω

σ(u) : ε(v)dx or at(p,v) =
∫
Ω

κ∇p ·∇vdx (2.48)

for elastodynamics or acoustics, respectively. In fact, the at(·, ·) yields a function of time
and is thus not a bilinear form in the classical sense. The subscript t is used to indicate this
fact.

Using this notation, the introduced energies become

K (u) =
1
2
〈ρ0u̇, u̇〉 and U (u) =

1
2

at(u,u) (2.49)

for the kinetic and the strain energy, respectively. Additionally, the work of the applied
forces can be written as the linear form

`t(u) := W (u) = 〈 f ,u〉+ 〈gN ,Tru〉ΓN . (2.50)

The notation `t(u) is preferred in the rest of this work because it is more common.

Finally, the generic dynamic variational principle states:

Find u with Tru = gD on ΓD× (0,∞) such that

〈ρ0ü,v〉+at(u,v) = `t(v) in Ω× (0,∞)
〈u,v〉= 〈u0,v〉 on Ω×0
〈u̇,v〉= 〈u1,v〉 on Ω×0

(2.51)

for all v with Trv = 0 on ΓD× (0,∞).
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In statics, this principle reduces to the statement:

Find u with Tru = gD on ΓD such that

a(u,v) = `(v) in Ω (2.52)

for all v with Trv = 0 on ΓD.

The bilinear form a(·, ·) used in the latter variational principle does not carry the subscript t
because it yields a real number and, therefore, is a bilinear form in the classical sense.

The exact function spaces, u and v are taken from, can be found in textbooks on the matter,
e.g., [90, 107] for the static case and [49] for the dynamic case. In the static case, one
easily observes that a(u,uR) = 0 if uR belongs to the corresponding space of rigid body
modes (2.33). Hence, if a pure Neumann problem is considered, i.e., ΓD = /0 and ΓN = Γ,
one gets

`(uR) = 0 ,

which is exactly the solvability condition (2.32). Therefore, the Neumann problem is not
uniquely solvable.

2.5 Boundary Integral Equations

In this section, boundary integral equations are derived relating the boundary values (traces
and tractions) with each other and the given forces. These equations are the key ingredients
for the later introduced boundary element method. Additionally, they have been playing a
fundamental role in the analysis of partial differential equations.

2.5.1 Representation formulae

Before introducing the final boundary integral equations, the so-called representation for-
mulae are presented. By means of these, the solution function u can be given at any
point x inside the domain Ω (and at any time t > 0 in the dynamic case) if the boundary
data of the function, i.e., its trace uΓ := Tru, and the tractions qΓ := T u are known (for all
times 0 < τ < t).

Elliptic boundary value problems Recall the mixed elliptic boundary value problem in
the abstract notation

Lu(x) = f (x) x ∈Ω

uΓ(y) = gD(y) y ∈ ΓD

qΓ(y) = gN(y) y ∈ ΓN .

(2.53)

Here, u is the unknown function, uΓ its boundary trace, and qΓ the corresponding traction.
The functions f , gD and gN are given inside the domain Ω, on the Dirichlet boundary
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part ΓD, and on the Neumann boundary part ΓN , respectively. Employing a suitable test
function v(x), a generalized version of Green’s second identity can be established by means
of integration by parts∫

Ω

(Lu)vdx+
∫
Γ

qΓ(Trv)ds =
∫
Ω

(Lv)udx+
∫
Γ

uΓ(T v)ds . (2.54)

Here, it has already been assumed that the partial differential operator L is self-adjoint,
which holds for the considered problems. Replacing Lu by f and Lv by f ∗ (i.e., assuming
that v is the solution to some other boundary value problem with force term f ∗), one obtains
Betti’s theorem of reciprocity [66].

Now, a function u∗(x,y) is introduced such that [107]∫
Ω

(Lyu∗(x,y))u(y)dy = u(x) x ∈Ω (2.55)

holds. The subscript y at the differential operator L denotes that the differentiation is
applied with respect to the spatial variable y and not x. This function u∗ turns out to be
a fundamental solution. Defining v(y) = u∗(x,y) and inserting this relation into Green’s
second identity (2.54), where the integration variable x has been replaced by y, yields the
representation formula

u(x) =
∫
Γ

u∗(x,y)qΓ(y)dsy−
∫
Γ

Tyu∗(x,y)uΓ(y)dsy +
∫
Ω

u∗(x,y) f (y)dy x ∈Ω . (2.56)

Here, Ty indicates that the traction operator is applied with respect to the y-variable. Fur-
thermore, dsy emphasizes that the surface integration is performed with respect to y as
well. Hence, knowing a function u∗(x,y) with the above property (2.55), the unknown
function u(x) is given for any point x inside the domain Ω if its boundary data uΓ and qΓ

are known. This set of boundary data [uΓ, qΓ] is called Cauchy data [107]. In elastostatics,
the representation formula (2.56) is commonly known as Somigliana’s identity [33].

Consider the property (2.55) of the function u∗(x,y) and recall the screening property of
the Dirac delta distribution [109]∫

Ω

δ (y−x) f (y)dy = f (x) x ∈Ω .

Then, it becomes clear that
Lyu∗(x,y) = δ (y−x) (2.57)

holds in a distributional sense and such a function u∗(x,y) is called fundamental solution
of the operator Ly [107]. Physically, it represents the answer at point y due to a unit
point source at point x. A list of the fundamental solutions used in this work is given in
appendix A.
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The functions u∗(x,y) used here do not directly depend on x or y but on only the differ-
ence x−y. Therefore, the operations∫

Ω

u∗(x,y)qΓ(y)dy and
∫
Ω

Tyu∗(x,y)uΓ(y)dy

turn out to be spatial convolutions, especially since the range of integration can be extended
to Rd by assuming that u(x) = 0 outside Ω.

The fundamental solutions used in this work have the following mapping properties

Poisson equation: u∗ : Rd×Rd → R
Elaststatics: u∗ : Rd×Rd → Rd .

Therefore, in the case of elastostatics u∗ can be represented as a d×d-tensor with compo-
nents U∗[i, j], i, j = 1, . . . ,d.

Hyperbolic initial boundary value problems In the dynamic case, the unknown func-
tion u(x, t) has to fulfill the initial boundary value problem(

ρ0
∂ 2

∂ t2 +L
)

u(x, t) = f (x, t) (x, t) ∈Ω× (0,∞)

uΓ(y, t) = gD(y, t) (y, t) ∈ ΓD× (0,∞)
qΓ(y, t) = gN(y, t) (y, t) ∈ ΓN× (0,∞)

u(x,0+) = u0(x) x ∈Ω

u̇(x,0+) = u1(x) x ∈Ω

(2.58)

formulated on the (d +1)-dimensional domain Ω× [0,∞). Similar to Green’s second iden-
tity (2.54) or Betti’s theorem of reciprocity, for time dependent problems exists the dy-
namic reciprocal identity [118]

∫
Ω

[(
ρ0

∂ 2

∂ t2 +L
)

u
]
∗ vdx+

∫
Ω

ρ0 (u0 v̇(t)+u1 v(t))dx+
∫
Γ

qΓ ∗ (Trv)ds =

∫
Ω

[(
ρ0

∂ 2

∂ t2 +L
)

v
]
∗udx+

∫
Ω

ρ0 (v0 u̇(t)+ v1 u(t))dx+
∫
Γ

(T v)∗uΓ ds . (2.59)

Here, v fulfills another initial boundary value problem with initial conditions v0 and v1,
respectively. The operation ∗ denotes the Riemann convolution

(g∗h)(x, t) =
t∫

0

g(x, t− τ)h(x,τ)dτ (2.60)
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whose properties are defined for instance in [118]. Moreover, u(t) means that the func-
tion u(x, t) is evaluated at the time point t.

Analogously to the previous section, a function u∗(x,y, t,τ) is introduced which has the
property

t∫
0

∫
Ω

[(
ρ0

∂ 2

∂τ2 +Ly

)
u∗(x,y, t,τ)

]
u(y,τ)dydτ = u(x, t) , (x, t) ∈Ω× (0,∞) (2.61)

and the above test function v(x, t) is defined by

v(y,τ) = u∗(x,y, t,τ) .

The function u∗(x,y, t,τ) depends only on the time difference t − τ and not explicitly
on the absolute times t or τ . Because of this, property (2.61) is also a convolution with
respect to time of u with the hyperbolic differential operator applied to u∗ as it is defined
in equation (2.60).

Inserting this definition together with property (2.61) into the dynamic reciprocal iden-
tity (2.59) and replacing the differential equation by its right hand side, yields the dynamic
representation formula

u(x, t) =
t∫

0

∫
Γ

u∗(x,y, t,τ)qΓ(y,τ)dsy dτ−
t∫

0

∫
Γ

Tyu∗(x,y, t,τ)uΓ(y,τ)dsy dτ

+
t∫

0

∫
Ω

u∗(x,y, t,τ) f (y,τ)dsy dτ

+
∫
Ω

ρ0[u∗(x,y, t,0)u1(y)+ u̇∗(x,y, t,0)u0(y)]dy .

(2.62)

for x∈Ω and t ∈ (0,∞). As before, this special function u∗(x,y, t,τ) fulfills the differential
equation for a point source at position x and time t, i.e.,(

ρ0
∂ 2

∂τ2 +Ly

)
u∗(x,y, t,τ) = δ (y−x)δ (τ− t) . (2.63)

This distributional solution to the partial differential equation is again a fundamental solu-
tion. The representation formula (2.62) indicates that if the data set [uΓ, qΓ] is known for
all times τ with 0 < τ < t, then the unknown function u can be computed for the time t at
any point x inside Ω.

2.5.2 Boundary integral operators

The representation formulae previously introduced allow to express the unknown func-
tion u at any point in Ω (and at any time t > 0), once the Cauchy data (with their full
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history) are given. Obviously, these formulae do not directly yield a solution procedure,
since on the boundary part ΓD the datum Tru is given but T u is unknown and vice versa
on ΓN . Therefore, boundary integral equations are needed in order to directly relate bound-
ary data with each other. As before, at first the static and then the dynamic case will be
regarded.

Elliptic boundary value problems The following is mainly adapted from the text books
of Steinbach [107] and Rjasanow and Steinbach [94]. The idea is now to apply the
trace (2.27) of the static representation formula (2.56) on the boundary. Then, one gets

Trx u(x) = Trx

∫
Γ

u∗(x,y)qΓ(y)dsy

−Trx

∫
Γ

Tyu∗(x,y)uΓ(y)dsy +Trx

∫
Ω

u∗(x,y) f (y)dsy , (2.64)

where the subscripts ()x and ()y are used in order to emphasize the variable which the
respective operators Tr and T act upon. Furthermore, for the sake of legibility the short-
hands uΓ = Tru and qΓ = T u are used. In this application of the trace operator the problem
occurs that the function u∗ and its derivatives become singular as x approaches y. All con-
sidered fundamental solutions u∗ in this work and the traction kernels Tyu∗ of the elastic
problems exhibit this behavior Due to this degenerate behavior of the integral kernels, one
has to be careful with the commutation of integration and trace operator in equation (2.64).
Next, each term is considered separately.

For the last term on the right hand side of equation (2.64), integration and trace easily
commute and the Newton potential can be defined by

(N0 f )(x) =
∫
Ω

(Trx u∗(x,y)) f (y)dy =
∫
Ω

u∗(x,y) f (y)dy x ∈ Γ . (2.65)

Also, for the first term integration and trace operator are interchangeable and the single
layer operator is defined by

(VqΓ)(x) =
∫
Γ

(Trx u∗)(x,y)qΓ(y)dsy =
∫
Γ

u∗(x,y)qΓ(y)dsy x ∈ Γ . (2.66)

The operators defined in equations (2.65) and (2.66) contain so-called weakly singular
integrals [107], i.e., the result of the integration exists although the integrand tends to
infinity for x→ y.

Problematic is the commutation of integration and trace in the second term on the right
hand side of equation (2.64). One gets

Trx

∫
Γ

Tyu∗(x,y)uΓ(y)dsy =−C̃(x)uΓ(x)+(KuΓ)(x) .
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The operator K denotes the double layer operator, defined by

(KuΓ)(x) = lim
ε→0

∫
Γ\Bε (x)

Tyu∗(x,y)uΓ(y)dsy x ∈ Γ , (2.67)

where Bε(x) is a d-dimensional ball around x with radius ε . Here, the integral is only
finite, if the limit is taken such that Bε(x) shrinks uniformly to zero. Such an integration
is called Cauchy principal value [41]. In the case of the scalar problems for the Laplace
and the acoustic wave equation, the integral kernel in the double layer operator (2.67)
becomes zero for x→ y and, therefore, the integral exists even in an improper sense as a
weakly singular integral. But in elasticity, one has to carry out the integration with properly
taking the limit in the sense of principal value integration. Alternatively, there exists a
regularized representation for the double layer potential in elasticity, which is obtained by
integration by parts and only consists of weakly singular terms. See, for instance, the book
of Kupradze et al. [57] for details on this alternative representation.

Since the range of integration has been split in Γ = limε→0[Γ \Bε(x)+ ∂Bε(x)∩Ω], the
remaining term is

C̃(x) = lim
ε→0

∫
∂Bε (x)∩Ω

Tyu∗(x,y)dsy ,

where ∂Bε(x) denotes the surface of the ball Bε(x). In view of the final integral equation,
it is more convenient to define the following operator

C(x) = I+ C̃(x) = I+ lim
ε→0

∫
∂Bε (x)∩Ω

Tyu∗(x,y)dsy , (2.68)

which is often termed integral free term or just free term. Here, I denotes the unity opera-
tor, i.e., IuΓ = uΓ. The free term depends on the solid angle of the surface Γ at the point x
and in elasticity it also depends on Poisson’s ratio ν . Explicit expressions for C(x) can
be found in [33] and [71]. Fortunately, these rather cumbersome geometric expressions
reduce to the simple identity

C(x) =
1
2
I (2.69)

if Γ is smooth in the neighborhood of the point x. Due to the assumptions made in this
work, one can state that expression (2.69) is valid almost everywhere.

Insertion of the definitions (2.65), (2.66), and (2.67) into equation (2.64) yields the bound-
ary integral equation in operator form

(CuΓ)(x)+(KuΓ)(x) = (VqΓ)(x)+(N0 f )(x) x ∈ Γ . (2.70)

Independent of the problem (Dirichlet, Neumann, or mixed boundary value problem), the
only unknown values in equation (2.70) are boundary data. More specifically, in a Dirichlet
problem one has

VqΓ = (C+K)gD−N0 f , (2.71)
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where the argument x has been omitted. Here, gD is the given Dirichlet datum as in the
problem statement (2.28) and the problem can be solved for the unknown datum qΓ. The
problem formulation (2.71) is the so-called direct approach, since the unknown qΓ is di-
rectly obtained as the solution. See [107] or [94] for the description of the indirect ap-
proach, where an unphysical density function is used as an intermediate result. An inte-
gral equation with the structure of (2.71) is called Fredholm integral equation of the first
kind [41].

Conversely, the Neumann problem yields the formulation

(C+K)uΓ = VgN +N0 f , (2.72)

where gN is the given Neumann datum as in problem (2.30) and uΓ is the only unknown.
This equation can be solved by a Neumann series [107]. Again, problem (2.72) is not
uniquely solvable but any altered solution uα = uΓ +αuR, where uR ∈ TrR, i.e., belongs
to the trace of the rigid body motion spaces (2.33), also solves the problem. Equation (2.72)
has the form of a Fredholm integral equation of the second kind [41].

For the mixed boundary value problem, the formulation is not so straightforward. At first,
define by g̃D a continuous extension of the given Dirichlet datum such that

g̃D(x) = gD(x) , x ∈ ΓD .

With this extended function g̃D a new unknown function ũΓ is defined by

ũΓ = uΓ− g̃D .

Obviously, one gets ũΓ(x) = 0 if x ∈ ΓD since the function uΓ is assumed to fulfill the
Dirichlet boundary condition a priori. Inserting now uΓ = ũΓ + g̃D into the boundary inte-
gral equation (2.70) yields

VqΓ +N0 f = (C+K)uΓ

= (C+K)ũΓ +(C+K)g̃D .

Rearranging this intermediate result and posing the given Neumann boundary condition as
a side condition, the mixed boundary value problem can be formulated as

VqΓ− (C+K)ũΓ = (C+K)g̃D−N0 f x ∈ Γ

qΓ = gN x ∈ ΓN .
(2.73)

The solution of this system for the unknowns qΓ and ũΓ and the revocation of the above
extension gives the full set of Cauchy data [qΓ, uΓ].

Alternatively, a Dirichlet-to-Neumann map can be established by solving the boundary
integral equation (2.70) for the Neumann datum qΓ

qΓ = V−1(C+K)uΓ−V−1N0 f
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and the Steklov-Poincaré operator S is introduced by

V−1(C+K)︸ ︷︷ ︸
S

uΓ = qΓ +V−1No f . (2.74)

The existence and uniqueness of the inverse of the single layer operator V is guaranteed
for the given problems in three dimensions and with some restrictions in two dimensions
as discussed by Steinbach [107]. By means of this new operator, the mixed boundary value
problem (2.73) becomes

SũΓ = gN−S g̃D +V−1N0 f x ∈ ΓN . (2.75)

Remark 2.1. By application of the traction operator Tx (2.29) to the representation for-
mula (2.56), one obtains the hypersingular boundary integral equation

(C̃qΓ(x))− (K′qΓ)(x) = (DuΓ)(x)+(N1 f )(x) x ∈ Γ . (2.76)

Here, the adjoint double layer operatorK′, the hypersingular operatorD and another New-
ton potential N1 have been introduced (cf. [107] for the exact definitions). The impor-
tant feature is now, that the combination of the two boundary integral equations (2.70)
and (2.76) allows for a symmetric formulation of the mixed boundary value problem and,
moreover, if a Galerkin projection scheme is used the system matrices will then be symmet-
ric too. A symmetric formulation of the Steklov-Poincaré operator (2.74) is then possible

S =D+(C+K′)V−1(C+K) (2.77)

by using both integral equations (2.70) and (2.76). ♦

Hyperbolic initial boundary value problems In the dynamic case, the same procedure
as before is applied, i.e., the application of the trace Trx (2.27) to the dynamic representa-
tion formula (2.62) gives the boundary integral equation in operator form

C(x)uΓ(x, t)+(Kt ∗uΓ)(x, t) = (Vt ∗qΓ)(x, t)+(Nt ∗ f )(x, t) x ∈ Γ . (2.78)

In this equation, ∗ denotes again the temporal convolution as defined in equation (2.60).
Equation (2.78) is a Volterra integral equation [41]. The employed operators are the single
layer operator

(Vt ∗qΓ)(x, t) =
t∫

0

∫
Γ

u∗(x,y, t,τ)qΓ(y,τ)dsy dτ , (2.79)

the double layer operator

(Kt ∗uΓ)(x, t) = lim
ε→0

t∫
o

∫
Γ\Bε (x)

Tyu∗(x,y, t,τ)uΓ(y,τ)dydτ , (2.80)



2.6 Unbounded Domains 43

and the Newton potential

(Nt ∗ f )(x, t) =
t∫

0

∫
Ω

u∗(x,y, t,τ) f (y,τ)dydτ

+
∫
Ω

ρ0

[
u∗(x,y, t,0)u1(y)+

∂

∂ t
u∗(x,y, t,0)u1(y)

]
dy . (2.81)

The integral free term C(x) turns out to be the same as defined in equation (2.68) in the
static case [98].

Whereas the treatment of elliptic boundary value problems has been analyzed rather ex-
haustively, mathematical literature on the like for time-dependent problems is moderate.
Moreover, the Steklov-Poincaré operator S as defined for the static case by equation (2.74)
cannot be formulated directly. A good overview is given in a survey article by Costa-
bel [13].

2.6 Unbounded Domains

Until now, it has been assumed that the domain Ω under consideration is bounded and,
therefore, has a closed surface Γ. In certain physical applications, this assumption is not
valid and the domain Ω is unbounded. One example is the sound emission of a body, where
this body occupies a bounded region Ωint and the analysis takes place in its complement
Ωext = Rd \Ωint . Another example is the wave propagation in an elastic halfspace, for
instance Ω =

{
x ∈ Rd : xd > 0

}
with Γ =

{
x ∈ Rd : xd = 0

}
, where the domain and its

boundary are both unbounded.

Static case Here, the solution u(x) and its first derivatives have to exhibit a certain de-
cay behavior as |x| → ∞ in order to ensure the unique solvability of the boundary value
problem. At first, the case of a bounded and closed surface Γ = ∂Ω is considered.

Kupradze et al. [57] derive these conditions by means of Green’s formula similar to the
minimization of the potential (2.45). Taking an auxiliary domain ΩR which is defined by
ΩR = Ω∩BR(x0), where BR(x0) =

{
x ∈ Rd ,R > 0 : |x−x0|< R

}
is chosen such that it

fully contains the boundary Γ. Now,

aR(u,u) =
∫

ΩR

f udx+
∫

ΓN

gNuΓ ds+
∫

∂BR(x0)

qΓ(Tru)ds (2.82)

denotes the strain energy (up to some factor) of the function u for a boundary value prob-
lem formulated on ΩR with given force term f and Neumann boundary conditions gN
on ΓN ⊆ Γ. The strain energy of the solution on the unbounded domain is then given by
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the limit limR→∞ aR(u,u). This expression shall be finite for obvious physical reasons.
This requirement implies the necessary condition that the force function f has a bounded
support, i.e., the set supp( f ) = {x ∈Ω : f (x) 6= 0} is bounded. A diverging behavior of
the first integral in (2.82) for the limit R→ ∞ is thus prevented. It remains to require
(see also [14])

lim
R→∞

∫
∂BR(x0)

qΓ ·uΓ ds = 0 .

Therefore, the following conditions are posed [57]

lim
|x|→∞

|x|u(x) = C ∈ R and lim
|x|→∞

|x| |∇u|= 0 . (2.83)

These conditions are obtained for three space dimensions. In two space dimensions, it is
sufficient to replace the factor |x| by its square root

lim
|x|→∞

√
|x|u(x) = C ∈ R and lim

|x|→∞

√
|x| |∇u|= 0 . (2.84)

Hence, under conditions (2.83) for three space dimensions (or conditions (2.84) for two
space dimensions) the static boundary value problem formulated on the unbounded do-
main Ω is uniquely solvable.

The question arises, whether the representation formula (2.56) is valid for unbounded do-
mains. Therefore, it will be first formulated on the auxiliary domain ΩR = Ω∩BR(x0)

u(x) =
∫
Γ

u∗(x,y)qΓ(y)dsy−
∫
Γ

Tyu∗(x,y)uΓ(y)dsy

+
∫

∂BR(x0)

u∗(x,y)qΓ(y)dsy−
∫

∂BR(x0)

Tyu∗(x,y)uΓ(y)dsy .

Ideally, the additional integrals over the surface of BR(x0) would vanish if the limit R→ ∞

is taken [14]. The fundamental solutions used in this work have the following asymptotic
behavior with some finite constant C ∈ R:

d = 3: lim
|x−y|→∞

|x−y|u∗(x,y) = C lim
|x−y|→∞

|x−y|2Tyu∗(x,y) = C

d = 2: lim
|x−y|→∞

u∗(x,y)
log |x−y|

= C lim
|x−y|→∞

|x−y|Tyu∗(x,y) = C .

By means of the conditions (2.83), it is easy to show that in three dimensions the addi-
tional integrals vanish and the representation formula (2.56) is exactly the same for the un-
bounded domains. In two dimensions, unfortunately, the logarithmic behavior of u∗(x,y)
destroys the pattern and the corresponding integral does not vanish under the given condi-
tions. Therefore, further restrictions on qΓ are necessary for the validity of the representa-
tion formula for unbounded domains in two dimensions, which will not be outlined further.
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See the analysis of the ellipticity of the single layer operator in the book of Steinbach [107]
for more details.

Note that here, contrary to many textbooks on the matter, the normal vector n is pointing
out of the domain Ω even if it is an exterior domain that is under consideration.

It is important to mention that the Neumann problem, i.e., problem (2.30), formulated on
an unbounded domain together with the conditions (2.83) (or (2.84)) is uniquely solvable.
Any function u0 for which Lu0 = 0 and T u0 = 0 hold is identically zero if it additionally
fulfills conditions (2.83) (or (2.84)) and, therefore, does not alter the solution u of the
problem.

These observations are based on the assumption that although Ω is unbounded, its bound-
ary Γ is a closed and bounded surface. In some circumstances, it will be of interest to
consider the halfspace Ω =

{
x ∈ Rd : xd > 0

}
or similar geometries, where the boundary

is unbounded too. Knops and Payne [54] summarize uniqueness theorems for this case in
elastostatics, where the conditions in the limit R→ ∞ are less severe and certain unphys-
ical values of Poisson’s ratio ν have to be excluded. Here, this argument is not followed
any longer and the above conditions (2.83) or (2.84) for three or two space dimensions,
respectively, are assumed to hold and to be sufficient for the considered problems.

Dynamic case Wheeler and Sternberg [118] have thoroughly analyzed uniqueness theo-
rems, reciprocal and integral identities for unbounded domains, where the case of an un-
bounded boundary Γ is included in the considerations. Recall the energy identity (2.43),

K (u)+U (u) =
t∫

0

∫
Ω

f · u̇dxdτ +
t∫

0

∫
Γ

qΓ · (Tr u̇)dsdτ , (2.85)

where u = 0 for all t ≤ 0 has been additionally assumed. Recall, that f represents either the
acoustic source ρ0g or the dynamic force term f, see equations (2.9) or (2.21), respectively.
Expression (2.85) describes the total energy in the system at time t > 0. If the right hand
side of equation (2.85) is finite, then the left hand side has to be finite as well. Therefore,
the conditions on the unique solvability are that these two integrals are bounded. This is
ensured by postulating that the force term f and the product qΓ · (Tr u̇) have a bounded
support, i.e.,

f (x, t) = 0 (x, t) ∈ (Ω\ϒt)× [0, t]
qΓ(y, t) · (Tr u̇)(y, t) = 0 (x, t) ∈ (Γ\ϒt)× [0, t] .

(2.86)

Here, ϒt is a bounded set in Rd whose shape and position might depend on the time t.
Outside this bounded set the above products vanish and, therefore, the integrals on the
right hand side of equation (2.85) are of finite value. Note that the first condition in (2.86)
has been implicitly assumed in the consideration of equation (2.82). It only depends on the
given data. Conversely, the second condition has to be fulfilled by the unknown itself.
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For exterior problems only, one could take the same approach as in the static case by
introducing an auxiliary outer boundary which then tends to infinity. This approach then
again yields specific requirements on stresses and velocities for |x| → ∞ (see [118] and
references therein).

Under the assumptions (2.86), the dynamic reciprocal identity (2.59) retains its validity

∫
Ω

[(
ρ0

∂ 2

∂ t2 +L
)

u
]
∗ vdx+

∫
Γ

qΓ ∗ (Trv)ds =

∫
Ω

[(
ρ0

∂ 2

∂ t2 +L
)

v
]
∗udx+

∫
Γ

(T v)∗uΓ ds , (2.87)

again with a quiescent past. By means of this identity, the representation formula is easily
established by replacing the test function v by the fundamental solution u∗. Finally, the
representation formula (2.62) is recovered [1]

u(x, t) =
t∫

0

∫
Γ

u∗(x,y, t,τ)qΓ(y,τ)dsy dτ−
t∫

0

∫
Γ

Tyu∗(x,y, t,τ)uΓ(y,τ)dsy dτ

+
t∫

0

∫
Ω

u∗(x,y, t,τ) f (y,τ)dsy dτ . (2.88)

This formula is well applicable to the dynamic analysis of unbounded media even with
unbounded boundaries as, for instance, the halfspace. As shown in chapter 5 the halfspace
is still approximated in a good way if the unbounded surface Γ is replaced in the numerical
analysis by some bounded surface patch.
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This chapter is dedicated to the numerical approximation methods used in this work to
obtain approximate solutions for the considered mathematical models. These models and
related representations have been introduced in chapter 2. At first, in section 3.1 some
basic concepts of spatial discretization methods are reviewed before the discretization of
variational principles by finite elements and of the boundary integral equations by bound-
ary elements are presented in sections 3.1.2 and 3.1.3, respectively. For both methods, the
static case is regarded first leading to an algebraic system of equations before consider-
ing the dynamic situation which yield semi-discrete equations. The resulting systems of
time-continuous equations will then be handled by the methods presented in section 3.2.
Specific details on the computation of the final matrix entries are outlined in section 3.3
with emphasis on the singular integrals occurring in the boundary element discretization.
Finally, the direct solution techniques employed for obtaining the unknown data are pre-
sented in section 3.4.

3.1 Spatial Discretization

In this section, the spatial discretization for static and dynamic problems is considered. To
begin with, some basic concepts are shown for static problems, which coin the essence
of the afterwards presented discretization methods, finite elements in subsection 3.1.2 and
boundary elements in subsection 3.1.3.

3.1.1 Basic concepts

In order to illustrate the respective characteristics of the used numerical methods, some
fundamental items are presented first. These are the Ritz method and weighted residuals.

Ritz method Consider the Dirichlet problem

−∆u(x) = 0 in Ω , (Tru)(y) = gD(y) on Γ = ∂Ω . (3.1)

It is well known that a function v, which minimizes the Dirichlet integral [115]

J(v) =
1
2

∫
Ω

∇v ·∇vdx (3.2)

47
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and fulfills vΓ = gD on Γ, is the solution to problem (3.1).

The idea of Ritz [92] was to minimize J in a finite dimensional subspace of the original
solution space. Therefore, the approximation

vn(x) = g(x)+
n

∑
i=1

aiϕi(x) (3.3)

is used, where g(y) = gD(y) and ϕi(y) = 0, i = 1, . . . ,n, on Γ. This approximation ob-
viously fulfills the Dirichlet boundary condition of the original problem. Moreover, the
functions ϕi are chosen such that

n

∑
i=1

aiϕi(x) = 0 ⇔ ai = 0 , i = 1, . . . ,n ,

i.e., the ϕi are linear independent. Inserting this approximation (3.3) into the Dirichlet
integral (3.2) yields a function of the unknown coefficients ai

Jn(a1, . . . ,an) =
1
2

∫
Ω

∇vn ·∇vn dx . (3.4)

A linear system of n equations for the n unknown coefficients is finally obtained by requir-
ing

∂Jn

∂a1
= 0 , . . . ,

∂Jn

∂an
= 0 . (3.5)

This yields the system of equations
Au = g (3.6)

with the matrix entries

A[i, j] =
∫
Ω

∇ϕi ·∇ϕ j dx

u[i] = ai

g[i] =−
∫
Ω

∇g ·∇ϕi dx

i, j = 1, . . .n . (3.7)

Once the coefficients ai are computed from equations (3.5), the function vn as expressed in
equation (3.3) gives an approximation to the solution u of problem (3.1) which is optimal
when J is used as a measure. Moreover, it easily shown that [115]

Jm(a1, . . . ,am)≥ Jn(a1, . . . ,an)≥ J(u) ,

where m < n, i.e., the minimal value of J is approached from above.

The described procedure is commonly referred to as Ritz method. This method is easily
extended to other problems by using the appropriate energy integrals J. For instance, ap-
plying this procedure to the elastic potential (2.44) gives an approximation for the displace-
ment field u which is a solution to the mixed boundary value problem of elastostatics.
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It has to be noted that the choice of the trial functions ϕi which constitute the approxima-
tion (3.3) is fundamental for the convergence behavior of the method. For instance, taking
the monomials xi for a one-dimensional problem gives a very ill-conditioned system of
equations which is not solvable in practice. The most efficient choice would be functions
such that the final system matrix A is diagonal, but these are very difficult to obtain. The
most established choice of trial functions are finite elements, as they are introduced below.
See the introduction of the book of Strang and Fix [110] for an in-depth discussion on this
matter. Moreover, in the same reference a discussion of the corresponding function spaces
is given in order to ensure the unique solvability of the above described minimization
problem.

Weighted residuals The method of weighted residuals, also referred to as Galerkin
method, starts from the residual of the differential equation Lu = f , defined as

R(v) = Lv− f , (3.8)

which is obviously zero in the case of v being the solution of the differential equation. The
first step is now to use again an approximation as for the Ritz method (3.3)

vn(x) = g(x)+
n

∑
i=1

aiϕi(x) ,

which fulfills the given Dirichlet boundary condition. Now, the residual R(vn) does not
vanish (unless vn is already the solution of the problem). The idea of the method of
weighted residuals [33] is to require that∫

Ω

R(vn) ·w j dx = 0 ∀w j (3.9)

with a certain set of weight functions w j, j = 1, . . . ,n. Note that expression (3.8) requires
that the function v has to be twice differentiable. Therefore, the residualR(vn) of the Ritz
approximation is only a valid expression if this approximation is twice differentiable, too.
Nevertheless, the integral of the weighted residual (3.9) exists for suitably chosen weight
functions w j even if the approximation has a lower regularity. See the books of Braess [9]
or Strang and Fix [110] for more details on the regularity requirements of trial and weight
functions.

The classical Galerkin method, or Bubnov-Galerkin method, is to take as weight functions
the same ϕi as for the approximation. The identity (3.9) yields after integration by parts a
system of equations for the unknown coefficients ai of the approximate solution.

This approach gives for the problems considered in this work exactly the same system of
equations as for the Ritz method. Alternatively to the two approaches, one can first derive
the corresponding variational principle (cf. for instance equation (2.52)) by variation of
the potential (2.44) or by the procedure described in section 2.4. Then employing the
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approximation (3.3) and taking the functions ϕi as weight functions gives again exactly
the same system of equations.

Other than weighting the residual by the trial functions, one can require that this residual
of the approximation vanishes at a certain set of points x∗j , j = 1, . . . ,n, which yields the
collocation method. There, it is stated that

R(vn)(x∗j) = 0 ∀x∗j . (3.10)

Of course, the choice of the location of these collocation points x∗j ∈ Ω is critical to this
method. By means of the Dirac delta distribution δ (x) and its screening property [109],
the collocation method can be written as∫

Ω

R(vn) ·δ (x−x∗j)dx = 0 ∀x∗j .

Note that the classical Galerkin method with weight functions taken as the approximation
functions ϕi finally yields a symmetric system of equations (at least in the here considered
cases, where L is self-adjoint). On the contrary, the collocation method gives a system
matrix, which in general is nonsymmetric.

3.1.2 Finite elements

The method of finite elements as an approximation method for the solution of boundary
value problems is well established. It is by far the most popular method in numerical
analysis of structural mechanics. The literature on finite elements is vast from both the
engineering and mathematical community.

The term finite elements refers to a special choice of trial and test functions when solving a
boundary value problem by means of a variational principle. This special type of functions
has the property that each member is non-zero only inside a small subset of the domain Ω

but obeys the same regularity requirements as for the unknown function u and the test
functions v. The latter criterion can be relaxed in the context of non-conforming finite
element methods, which are not considered further in this work.

The books of Bathe [6], Braess [9], Hughes [49], Jung and Langer [52], Steinbach [107],
Strang and Fix [110], Szabó and Babuška [112], and Zienkiewicz and Taylor [120] are just
a few examples of the numerous text books on the matter.

Static problems The first step in construction of a finite element discretization consists
in a geometric triangulation of the domain Ω. Therefore, Ω is approximated by

Ωh =
Ne⋃

e=1

τe , (3.11)
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which is the union of Ne geometric elements τe. These elements are usually of a very sim-
ple structure. In three space dimensions tetrahedra and hexahedra are a common choice,
whereas in two dimensions triangles and quadrilaterals prevail. Furthermore, every such
element τe can be expressed as the representation of a coordinate transformation from the
reference element τ̂ to the coordinate space in which Ωh is defined

x ∈ τe : x(ξ ) = ∑
i

ϕ
g
i (ξ )xe

i . (3.12)

Here, x(ξ ) maps points ξ = [ξ1, . . . ,ξd]> from the d-dimensional parameter space to the
coordinates in Rd . xe

i are the vertices of the element τe and the functions ϕ
g
i are Lagrangian

polynomials. With every triangulation the parameter h is associated which is a measure
of the mesh width. The elements τe are assumed to be of a certain shape regularity (cf.
Braess [9]) such that the coordinate transformation (3.12) is well-defined.

Once this triangulation is established, finite element functions are easily constructed. Al-
though many other choices are possible, here the trial function ϕi corresponds to the ver-
tex xi and vanishes outside the elements which are connected to this vertex. Its restriction
to an element ϕi|τe can be expressed by a Lagrangian polynomial when mapped onto the
reference element τ̂ . For simplicity, the same symbol ϕi is used for ϕi(x) in the compu-
tational domain Ωh and for ϕi(ξ ), the trial function on the reference element. With these
trial functions, the unknown function is approximated by (similar to Ritz’ idea [92] in
equation (3.3))

uh(x) =
N

∑
i=1

uiϕi(x) . (3.13)

One has to be keep in mind for elastic problems that u then represents the displacement
field u = [u1, . . . ,ud] of d components. Then the above approximation has to be done for
every component thus leading to N× d coefficients. Since the ϕi are Lagrangian polyno-
mials, the so-called Kronecker delta property holds, i.e.,

ϕi(x j) =

{
1 if i = j
0 else

(3.14)

and, therefore, the coefficients ui of the approximation (3.13) are the function values of the
approximate uh at the vertices xi.

Here, only isoparametric finite elements are employed which means that ϕ
g
i = ϕi. Hence,

in the geometry representation (3.12) the same basis functions are used as for the finite
element trial functions in equation (3.13). Moreover, it has to be emphasized that the
shape functions are continuous and the gradients involved in the bilinear form a(·, ·) are
thus valid operations.

For convenience, the space of finite element functions is defined by

Sh(Ωh) = span{ϕi}N
i=1 . (3.15)
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Furthermore, Sh,0 is the subspace of Sh whose members vanish on the Dirichlet boundary

Sh,0(Ωh) =
{

ϕ ∈ Sh : ϕ(y) = 0 on ΓD,h
}

.

Note that ΓD,h simply denotes the Dirichlet part of the boundary of Ωh. At last, Sh,D is the
subspace of Sh whose members assume the prescribed Dirichlet boundary conditions

Sh,D(Ωh) =
{

ϕ ∈ Sh : ϕ(y) = gD,h(y) on ΓD,h
}

.

In this expression, gD,h denotes the approximation of the prescribed Dirichlet datum ob-
tained either by interpolation or by an L2-projection, see Steinbach [107] for details in
these approximations. With these subspaces, the classical finite element method is easily
stated by the discrete variational principle:

Find uh ∈ Sh,D such that

a(uh,v) = `(v) in Ωh (3.16)

for all v ∈ Sh,0.

This principle yields for homogeneous Dirichlet data, i.e., gD = 0, the system of linear
equations

Au = f (3.17)

where the matrices have the following coefficients and dimensions

A[i, j] = a(ϕ j,ϕi)
u[ j] = u j

f[ j] = `(ϕ j)
i, j = 1, . . . ,N0 . (3.18)

N0 is the dimension of the finite element space Sh,0, i.e., N0 = dim(Sh,0). This matrix A
is usually called stiffness matrix, a name obviously originating from structural mechanics.
Note that

a(ϕ j,ϕi) = 0 if supp(ϕ j)∩ supp(ϕi) = /0

and, therefore, the number of non-zero entries of the matrix A is relatively small with
respect to the total number of entries. The system matrix is referred to as a sparse matrix
for this reason.

The treatment of problems with prescribed inhomogeneous Dirichlet data is a little more
complicated. A function uD is now introduced with the properties [9]

uD(xi) = gD(xi) ∀xi ∈ ΓD,h and uD(x j) = 0 ∀x j ∈Ωh, x j /∈ ΓD,h .

This function is easily constructed, once the finite element space is available. Then, one
can decompose the approximate for the unknown u like

uh = ũh +uD

and obtain the modified variational principle:



3.1 Spatial Discretization 53

Find ũh ∈ Sh,0 such that

a(ũh,v) = `(v)−a(uD,v) in Ωh (3.19)

for all v ∈ Sh,0.

This leads to the same system of equations as in equation (3.17)

Au = fD (3.20)

but with a different right hand side

fD[ j] = `(ϕ j)−a(uD,ϕ j) j = 1, . . . ,N0 . (3.21)

Since ũh coincides with uh at every node which does not belong to the Dirichlet bound-
ary ΓD,h, the solution of the system (3.20) directly gives the unknown coefficients of the
approximate uh.

Remark 3.1. In elasticity, it may occur that the boundary conditions at a specific part of the
boundary are not entirely of Dirichlet or Neumann type but are mixed in the components.
Moreover, these components need not coincide with the directions of the global coordinate
system. Consider for instance roller bearings where the plane of unrestrained movement
is tangential to the boundary but not along any global coordinate direction. In this case,
the above approach is not directly applicable but additional equations prescribing the rela-
tions among each other, e.g., normal and tangential displacement components have to be
employed. This can be done either by modification of the final system matrices [6] or by
employing Lagrange multipliers for these equations as side conditions [5]. Although ap-
parent in many engineering applications, such situations are not considered further in this
work. Here, the occurrence of mixed boundary conditions at the same point is included
only if the corresponding directions coincide with the global system of coordinates. ♦

Dynamic problems In dynamic problems it is common to begin with the same procedure
as introduced above by using the approximation

uh(x, t) =
N

∑
i=1

ui(t)ϕi(x) , (3.22)

which is a separation of variables. The trial functions ϕi are constructed in exactly the
same manner as for the static case. Also, the finite element spaces are the same as above
and the test function v is independent of time and taken from the space Sh,0, as before.

Contrarily, now the dynamic variational principle (2.51) has to be used for obtaining the
system of ordinary differential equations [49]

Mü(t)+Au(t) = f(t) . (3.23)

Here, the matrix M is called mass matrix for obvious reasons. This equation is often
referred to as a semi-discrete equation, since only the spatial discretization has been carried
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out and a system of ordinary differential equations in time remains. The coefficients of the
matrices in the system (3.23) are

M[i, j] = 〈ρ0ϕ j,ϕ j〉
ü(t)[ j] = ü j(t)
A[i, j] = a(ϕ j,ϕi)

u(t)[ j] = u j(t)
f(t)[ j] = `t(ϕ j)

i, j = 1, . . . ,N , (3.24)

where it has to emphasized that the external work `t is now a function of time.

Transferring the treatment of Dirichlet boundary conditions to the dynamic case is straight-
forward and will not be repeated here. The initial conditions are incorporated by means of
the systems

M̄u(0+) = f0
0 and M̄u̇(0+) = f0

1 , (3.25)

which have the following coefficients

M̄[i, j] = 〈ϕ j,ϕi〉
f0
0 [ j] = 〈u0,ϕ j〉

f0
1 [ j] = 〈u1,ϕ j〉

i, j = 1, . . . , N . (3.26)

The system of ordinary differential equations can then be solved by a time stepping method
as shown in section 3.2.1.

3.1.3 Boundary elements

The numerical solution of boundary value problems using the boundary integral repre-
sentation (2.70) (or equation (2.78) for dynamics) leads to so-called boundary element
methods.

Among the first publications on this matter where the papers of Jaswon and Symm [51,111]
for the Laplace equation and of Rizzo [93] for elastostatics. The textbooks of Gaul et
al. [33], Hartmann [45], and Steinbach [107] provide good introductions and overviews of
the method.

For simplicity, the Newton potentials are not considered any further in this work, i.e.,

(N0 f )(x) = 0 and (Nt ∗ f )(x, t) = 0 (3.27)

for the static and dynamic situation, respectively. These assumptions correspond to a van-
ishing body force f in statics and in dynamics to vanishing initial conditions, or a quiescent
past, and a vanishing body force for all times.

Now, the remaining terms in the boundary integral equations (2.70) and (2.78) are exclu-
sively expressed by means of boundary variables. Therefore, the numerical treatment of
these representations only requires the consideration of the surface Γ of the computational
domain.
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Static problems Beginning again with the static case, the first step is, as in the case of a
finite element discretization, to set up an appropriate triangulation of the geometry

Γh =
Ne⋃

e=1

τe . (3.28)

In the numerical analysis, the surface Γ is thus represented by Γh which is the union of
shape regular surface elements τe. In a three-dimensional computation these surface ele-
ments are usually triangles or quadrilaterals and in two dimensions the one-dimensional
surface is approximated by line elements. Again, such geometrical entities can be repre-
sented by a coordinate transformation from a reference element τ̂ to the coordinate space
similar to equation (3.12). Contrary to the finite element case, here the reference space is
(d−1)-dimensional.

The next step is to use a suitable approximation for the boundary variables uΓ and qΓ.
Basically, this is done in the same fashion as in the case of the Ritz approximation (3.3).
Therefore, the first boundary variable uΓ (the boundary pressure or displacement) is ap-
proximated by uΓ,h and the second boundary variable qΓ (the surface flux or traction)
by qΓ,h, which are defined by

uΓ,h(y) =
N

∑
i

uiϕi(y) and qΓ,h(y) =
M

∑
j

q jψ j(y) . (3.29)

The choice of the same notation for the coefficients ui as in the finite element approxima-
tion (3.13) is taken for simplicity and its particular meaning is determined by the context.

The approximation for uΓ is the same as for the geometry representation, i.e., ϕ
g
i = ϕi.

Therefore, this approximation is continuous and corresponds to the mapping properties
of the double layer operator K [12]. On the other hand, qΓ is by its definition (2.29)
discontinuous at corner and edge points of the surface Γ. In addition, Γh is more likely to
have corners and edges than Γ. Consider, e.g., the geometry discretization of a sphere by
flat triangles. It is thus reasonable to consider these discontinuities in the approximation
of qΓ. A common approach in engineering is to introduce these discontinuities where
necessary by means of so-called double nodes or partially discontinuous elements (see also
References [33,79,84] for more details on these concepts). Both approaches require these
locations to be marked during preprocessing and often yield auxiliary equations which
spoil the structure of the final system of equations. Here, it is preferred to use a globally
discontinuous space for the approximation of qΓ by taking either constant or piecewise
linear discontinuous functions. The implications of the choice of trial functions on the
final system of equations are discussed later.

These approximation functions give rise to the boundary element spaces of continuous trial
functions

Sh(Γh) = span{ϕi}N
i=1 (3.30)
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and of discontinuous trial functions

S−h (Γh) = span
{

ψ j
}M

j=1 . (3.31)

Finally, one can define the space of approximation functions which vanish on the Dirichlet
part of the boundary

Sh,0(Γh) =
{

ϕ ∈ Sh(Γh) : ϕ(y) = 0 on ΓD,h
}

, (3.32)

whose dimension is denoted by N0.

By means of the approximation (3.29), the boundary integral equation (2.70) yields the
residual

R(uΓ,h,qΓ,h) =
M

∑
j
Vψ jq j−

N

∑
i

(Cϕi +Kϕi)ui , (3.33)

which is in general not zero. Now, the concept of weighted residuals as discussed in sub-
section 3.1.1 can be applied to equation (3.33) in order to obtain an algebraic system of
equations. Multiplication of equation (3.33) by any member of S−h (Γh) and integrating
over the surface Γh yields a method commonly referred to as the Galerkin boundary ele-
ment method. This method becomes really effective when using both integral equations
as pointed out in remark 2.1 and, thereby, yielding a block skew-symmetric system of
equations [107]. Here, only the first integral equation is used and, therefore, a collocation
method is preferred. In this method, the residual (3.33) is assumed to vanish at a certain
set of points located on the surface Γh which are called collocation points and denoted
by
{

x∗`
}L

`=1. Hence, the system of L equations is obtained

Vq− (C+K)u = 0 , (3.34)

with the matrices
C[`, i] = (Cϕi)(x∗`)
K[`, i] = (Kϕi)(x∗`)
V[`, j] = (Vψ j)(x∗`)

u[i] = ui

q[ j] = q j

i = 1, . . . ,N
j = 1, . . . ,M
` = 1, . . . ,L .

(3.35)

Note that C is a sparse and K and V are in general fully populated matrices. The spe-
cific way, how these matrix entries are finally computed is postponed at this point. See
section 3.3 for details on the integrations involved in the computation of the matrix coeffi-
cients.

In order to be solvable, the system (3.34) has to be equipped with the given boundary
conditions on uΓ and qΓ. The classical approach is to move unknown data to the left
and known data to the right hand side of equation (3.34). Although apparently the most
direct way, this method destroys the structure of the system of equations. The present idea
is to exploit the fact that V is an elliptic operator (in two dimensions only under certain
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restrictions) [107] and, therefore, a proper discretization scheme gives a positive definite
matrix V. At first the number of collocation points K is chosen such that V becomes a
square matrix, i.e., L = M. Secondly, given Dirichlet data are treated in the same way as
in the case of a finite element discretization. Therefore, the steps outlined in the derivation
of equation (2.73) are followed on a discrete level by introducing an extension of the given
Dirichlet data defined by

uΓ,D(xi) = gD(xi) ∀xi ∈ ΓD,h and uΓ,D(x j) = 0 ∀x j ∈ ΓN,h , (3.36)

which assumes the given Dirichlet data at vertices belonging to the Dirichlet part ΓD,h of
the approximate boundary and vanishes at the remaining boundary vertices. Decomposi-
tion of the unknown uΓ,h

uΓ,h = ũΓ,h +uΓ,D

then yields the system of equations

Vq− K̃ũ = K̃uD .

The abbreviation K̃ = C+K has been introduced for the sake of brevity. Since at every de-
gree of freedom ui it either holds that ũi = 0 or uD,i = 0 and, in addition, when uD,i = 0 the
newly defined approximate ũΓ,h equals the original approximate uh,Γ it suffices to write

Vq− K̃NuN = K̃DuD =: fD , (3.37)

where the subscripts D and N refer to those columns of the matrix K and coefficients of the
column matrix u which correspond to a given Dirichlet datum or to an unknown bound-
ary displacement degree of freedom, respectively. Note that in case of a pure Dirichlet
problem, system (3.37) reduces to

Vq = K̃DuD (3.38)

which is solvable for the unknown Neumann data q.

In order to solve a mixed boundary value problem, the application of Neumann boundary
conditions is still lacking. Therefore the requirement that

qΓ = gN x ∈ ΓN ,

i.e., the second equation of system (2.73), will be added in a weighted form by stating
that

〈qΓ,h,ϕi〉= 〈gN ,ϕi〉 ∀ϕi ∈ Sh,0(Γh) , ∀xi ∈ ΓN,h . (3.39)

The given Neumann datum gN is extended to the whole boundary by introducing g̃N , for
which holds

g̃N = gN x ∈ ΓN and g̃N = 0 x ∈ ΓD .

Defining by gN the collection of nodal values of this extension, equation (3.39) translates
to

Bq = BgN =: fN . (3.40)
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Figure 3.1: Placement of collocation points for line (a) and triangle elements (b).

The matrix B simply consists of the scalar product of pairs of trial functions of the approx-
imation (3.29) and its coefficients are thus

B[i, j] = 〈ϕi,ψ j〉 i = 1, . . . ,N0 , j = 1, . . . ,M . (3.41)

The matrix B is obviously sparse. Such a matrix is usually referred to as a mass matrix.
Although, physically speaking, it does not represent any mass of the system, it is mathe-
matically equivalent to the mass matrix M as used in the finite element discretization of
the dynamical system (3.23) and defined in equation (3.24).

The combination of the systems of equations (3.37) and (3.40) yields the system(
V −K̃N
B

)(
q

uN

)
=
(

fD
fN

)
. (3.42)

These are (M + N0) equations for the M Neumann coefficients q j and the N0 unknown
Dirichlet coefficients ui. Solving the first block row for q and inserting this result into the
second block row or, in other words, computing the Schur complement, gives the discrete
Dirichlet-to-Neumann map

BV−1K̃N︸ ︷︷ ︸
S

uN = fN−BV−1fD︸ ︷︷ ︸
g

. (3.43)

This mapping is paramount for the later introduced coupling method and S is a boundary
element discretization of the Steklov-Poincaré operator S as introduced in equation (2.74).
Although S is a self-adjoint operator, the presented discretization does not yield a sym-
metric matrix S. Nevertheless, symmetric discrete representations of S are feasible, see
Steinbach [105, 106].
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Remark 3.2. So far, it has only been stated that one has to take as many collocation points
as degrees of freedom in the approximation for the second variable qΓ. The specific choice
of the location of these points is a difficulty of the method. The mathematical analysis of
collocation methods is poorly developed and, therefore, it remains a matter of empiricism
to place these points of evaluation effectively. Since the geometrical coincidence of two or
more such collocation points would result in a rank decay of the system matrices, it seems
to be a good choice to use positions such that neighboring points are as far away as possible
for every point. In case of a piecewise constant approximation of qΓ, the midpoints of the
elements are obviously a good choice for the location of the collocation points. In case of
piecewise linear discontinuous functions ψ j, the collocation points must not be too close
to the midpoints in order not to coincide and not be too close to the vertices of the elements
in order not to be identical with the collocation points of the neighbor elements. In other
words, if these points are too close to each other the condition number of the system matrix
will blow up. On the other hand, if they get too close to the neighbor elements, in addition,
the integration error will be larger as it can be seen from the discussion below in remark 3.4.

The collocation points for line elements in two dimensions are put at the reference co-
ordinates ξ = ±1

2 in the interval ξ ∈ (−1,1) as shown in figure 3.1(a). A quadrilateral
would then be equipped with the tensor product of these locations. Numerical tests for
three-dimensional analysis with triangle elements have shown a strong sensitivity on the
location of the collocation point. It finally turned out that the best results are obtained by
choosing on the reference triangle, {ξ1,ξ2 : 0 < ξ1 < 1, 0 < ξ2 < 1−ξ1}, the three collo-
cation points located at reference coordinates (1

4 , 1
4), (1

2 , 1
4) and (1

4 , 1
2), see figure 3.1(b).

The choice of collocation points inside the element, i.e., neither on a vertex or an edge,
yields the identity

C[k, i] =
1
2

ϕi(x∗k) (3.44)

which is the discrete representation of equation (2.69). ♦

Remark 3.3. The block system of the boundary element discretization (3.42) has the form
of a saddle point problem with Bq = fN as a side condition. For the unique solvability
of the system it is necessary that B fulfills the discrete Babuška-Brezzi condition [9, 44].
Equivalently, Bqz = 0 has to imply qz = 0 [44]. Unfortunately, this condition is violated
if the trial functions ψ j for qh are piecewise constant and the trial functions ϕi for uh are
piecewise linear. Using this combination of trial functions, the solvability of the system
cannot be guaranteed. See [103] for an example. Therefore, it is advocated to use a
piecewise linear discontinuous basis for the approximation of q. ♦

Dynamic problems The articles of Cruse and Rizzo [16, 17] are among the first publi-
cations on the treatment of time-domain problems with boundary element methods. Their
approach is based on the inverse Laplace transform of the solution of the elastodynamic
problem in Laplace domain. A method formulated directly in time-domain is given in
the thesis of Mansur [70] treating the acoustic wave equation and elastodynamics in two
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space dimensions. A concise overview of boundary integral equation methods for time-
dependent methods is given by Costabel [13].

The spatial discretization of the dynamic integral equation (2.78) by boundary elements is
carried out similar to the static case but the approximation coefficients remain functions of
time as in the finite element case, see equation (3.22). The approximations

uΓ,h(y, t) =
N

∑
i

ui(t)ϕi(y) and qΓ,h(y, t) =
M

∑
j

q j(t)ψ j(y) (3.45)

are employed for uΓ and qΓ, respectively. Inserting this approximation into the integral
equation (2.78) and collocation at the set of points

{
x∗`
}L

`=1, gives the semi-discrete equa-
tion

V(t)∗q(t) = Cu(t)+K(t)∗u(t)

Defining an auxiliary matrix operator C̃ by

C̃(t)∗u(t) =
t∫

0

Cu(τ)δ (t− τ)dτ = Cu(t) , (3.46)

the above used abbreviation, K̃(t) = C̃(t)+K(t), can be established and the integral equa-
tion thus reads

V(t)∗q(t) = K̃(t)∗u(t) . (3.47)

Note that in these equations convolutions of matrices with vectors appear. These have
to be understood in the sense of an ordinary matrix-vector product, where each compo-
nent multiplication itself is a convolution in time as defined for instance by Wheeler and
Sternberg [118].

Due to the assumption that the partition of the boundary Γ in its Dirichlet and Neumann
parts ΓD and ΓN , respectively, does not vary with time, the application of given Dirichlet
boundary conditions is done in the same manner as in the static case, such that

V(t)∗q(t)− K̃N(t)∗uN(t) = K̃D(t)∗uD(t) =: fD(t) . (3.48)

Again the subscripts N and D respectively refer to degrees of freedom on the Neumann
and Dirichlet parts of the boundary. Moreover, uD are the time-dependent coefficients
of uΓ,D(·, t), which is the extension of the given Dirichlet data gD(·, t) similar to the static
case as in equation (3.36). Also, the prescribed Neumann data are handled in the same
way as before by requiring that

〈qΓ,h(·, t),ϕi〉= 〈gN(·, t),ϕi〉 ∀ϕi ∈ Sh,0(Γh) , ∀t ∈ (0,∞) ,

which results in the system of equations

Bq(t) = BgN(t) =: fN(t) . (3.49)
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Here, the matrix B is exactly the same mass matrix as defined in equation (3.41). The
combination of equations (3.48) and (3.49) finally yields the system(

V(t) −K̃(t)
B̃(t)

)
∗
(

q(t)
uN(t)

)
=
(

fD(t)
fN(t)

)
. (3.50)

Note that B̃(t) is defined, similarly to C̃(t), by the identity B̃(t)∗q(t) = Bq(t). The time-
dependent entries of the matrices appearing in equation (3.50) are as follows

V(t)[`, j] =
∫
Γ

u∗(x∗` ,y, t,τ)ψ j(y)dsy

K̃(t)[`, i] = Cδ (t)ϕi(x∗`)+ lim
ε→0

∫
Γh\Bε (x∗` )

Tyu∗(x∗` ,y, t,τ)ϕi(y)dsy

B̃(t)[i, j] = 〈ϕi,ψ j〉δ (t)
q(t)[ j] = q j(t)

uN(t)[i] = ui(t)

(3.51)

with the same range of indices i, j, and ` as in equations (3.35) and (3.41). Again, the
details for the integrations occurring in the computation of these coefficients is not shown
here but outlined in section 3.3.

In order to solve for the approximation of dynamic Cauchy data [u(t),q(t)], the system
of equations (3.50) has to be discretized along the time axis as pointed out below in sec-
tion 3.2.2.

3.2 Temporal Discretization

Whereas the spatial discretization by finite or boundary elements for static problems di-
rectly results in an algebraic system of linear equations, the presented dynamic problems
yields either a system of ordinary differential equations (3.23) or a system of convolution
equations (3.50).

3.2.1 Time stepping methods

In the following, the solution to the system of ordinary differential equations (3.23) is
considered. In order to simplify the notation, at first only the test equation

mü(t)+ ku(t) = f (t) t ∈ (0,∞) (3.52)

is considered, where m and k are positive real constants and u and f are scalar valued func-
tions of time only. As before, ü represents the second time derivative, ü(t) = ∂ 2/∂ t2u(t).
Additionally, initial conditions have to be fulfilled

u(0+) = u0 and u̇(0+) = u1 . (3.53)
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In general, the analytical solution of equation (3.52) is not available and for this reason a
numerical approximation scheme is required. Moreover, once such a method is established
it can be easily extended to systems of ordinary differential equations as it is the underlying
problem of this section.

Equation (3.52) is an ordinary differential equation of second order with constant coeffi-
cients and because f does not depend on u the equation is also autonomous. The problem
statement of equation (3.52) together with the initial conditions (3.53) compose an initial
value problem of second order.

Since ordinary differential equations of second order appear so frequently in many areas
of application, methods have been developed especially tailored to them. Although many
such methods exist (cf. for instance [49]), here only the well-known Newmark method [72]
is used. At first, the time interval of interest, denoted by (0,T ) is subdivided into N sub-
intervals of equal size ∆t, thereby establishing the time grid

t0 := 0, t1 := ∆t, . . . , tn := n∆t, . . . , tN := N∆t = T . (3.54)

Note that the step size ∆t is taken constant for simplicity only, whereas the method it-
self does not require this. The approximations of the unknown u and its first two time
derivatives are introduced

un ≈ u(tn) , vn ≈ u̇(tn) , and an ≈ ü(tn) . (3.55)

Consider the Taylor expansions of the unknown u(tn) and its first time derivative u̇(tn) at a
time point tn with n > 0

u(tn) = u(tn−1)+∆t u̇(tn−1)+
∆t2

2
ü(tn−1)+

∆t3

6
...u (tn−1)+ · · ·

u̇(tn) = u̇(tn−1)+∆t ü(tn−1)+
∆t2

2
...u (tn−1)+ · · · .

Now the occurring functions are replaced by their approximations (3.55) and two parame-
ters β and γ control the contribution of the third order term ȧn−1 ≈

...u (tn−1)

un = un−1 +∆t vn−1 +
∆t2

2
an−1 +β∆t3ȧn−1

vn = vn−1 +∆t an−1 + γ∆t2ȧn−1

The approximation of the third order term by the forward difference

...u (tn−1)≈
an−an−1

∆t
finally leads to the family of Newmark methods

un = un−1 +∆t vn−1 +
(

1
2
−β

)
∆t2an−1 +β∆t2an

vn = vn−1 +(1− γ)∆tan−1 + γ∆t an

man = kun + fn ,

(3.56)
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where the differential equation evaluated at the time point tn has been used and fn = f (tn)
is simply an abbreviation. Note that the scheme is in general implicit since in every of the
three equations unknown values appear on both sides. Nevertheless, the original differ-
ential equation is linear and this allows the equations to be reordered such that only one
unknown appears on the left hand side at every time step. One possibility would be to
insert the first into the third equation which yields a scheme in which at first the approxi-
mation of the second derivative an is computed and afterwards the remaining unknowns vn
and un [49]. In the later explained coupling method it is necessary to have a direct expres-
sion for the primary unknown un and, for this reason, it is here preferred to express the
above in terms of un. This yields the algorithm for 0 < n≤ N(

k +
1

β∆t2 m
)

un = fn +
1

β∆t2 mun−1 +
1

β∆t
mvn−1−

(
1− 1

2β

)
man−1 (3.57a)

vn =
γ

β∆t
(un−un−1)+

(
1− γ

β

)
vn−1 +∆t

(
1− γ

2β

)
an−1 (3.57b)

an =
1

β∆t2 (un−un−1)−
1

β∆t
vn−1 +

(
1− 1

2β

)
an−1 . (3.57c)

For n = 1 it is necessary to have previously computed the initial second time derivative,
which is easily done by using the differential equation itself with the given initial condi-
tions

ma0 = f0− ku0 . (3.58)

It remains to choose the parameters β and γ which determine accuracy and stability of the
method. Mathematical analysis has shown that a second order accuracy is only obtained
in the case of γ = 1

2 [49]. Moreover, unconditional stability is gained by the inequality
2β ≥ γ ≥ 1

2 [49, 89]. Nevertheless, if numerical dissipation is desired as for instance in
coupled algorithms, the choice γ > 1

2 might be adequate despite the loss of one order of
accuracy. The following choice is fixed throughout this work unless stated otherwise

β =
1
4

and γ =
1
2

. (3.59)

In order to apply the Newmark scheme to a system of ordinary differential equations, the
coefficients m and k, in the above, basically have to be understood as matrices and the
unknowns un, vn, and an are then vectors with as many coefficients as spatial degrees of
freedom. In view of the system (3.23), equation (3.57a) becomes then the algebraic system
of equations(

A+
1

β∆t2 M

)
︸ ︷︷ ︸

Ã

un = fn +M

(
1

β∆t2 un−1 +
1

β∆t
vn−1−

(
1− 1

2β

)
an−1

)
︸ ︷︷ ︸

f̃n

. (3.60)

The structure of this system of equations is very similar to the static case (3.17). In fact the
left hand side matrix is commonly termed effective or dynamic stiffness matrix, whereas
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there appear effective or dynamic forces on the right hand side. Since ∆t is constant, the
effective stiffness matrix Ã does not change throughout the computation. Therefore, it
is usually preferred to assemble this matrix and precompute a factorization of it, which
can be efficiently reused in every time step, where only the right hand side changes. This
solution procedure will be described in section 3.4.

3.2.2 Convolution quadrature method

In order to obtain a purely algebraic set of equations, the system (3.50) has to be discretized
in time. Therefore, the time grid (3.54) is used again, which is made up of N equally sized
steps ∆t from t0 = 0 to the final time of computation tN = N∆t = T .

The classical approach in time-domain boundary element methods is to employ shape
functions for the time dimension and perform the temporal integration analytically. The
sequential solution of the unknown data [u(tn), q(tn)] for all n, 0 < n≤ N is thus possible.
Such a method for two-dimensional scalar wave equation and elastodynamics has been
introduced by Mansur [70]. A three-dimensional realization can be found in the thesis of
Schanz [97].

Here, another approach is considered, based on a quadrature rule tailored for convolution
integrals and which uses quadrature weights from Laplace transformed functions. For
instance, the application of the single layer operator is of the form (2.79)

(Vt ∗qΓ)(x, t) =
t∫

0

∫
Γ

u∗(x,y, t,τ)qΓ(y,τ)dsy dτ , (3.61)

and the spatially discretized form is then as given in equation (3.50)

(V ∗q)(t) =
t∫

0

V(t− τ)q(τ)dτ

with the matrix coefficients as defined by equation (3.51). For simplicity, the convolution
of two scalar functions f and g is regarded

h(t) := f ∗g =
t∫

0

f (t− τ)g(t)dτ , t > 0 . (3.62)

The here presented method is commonly called convolution quadrature method or opera-
tional quadrature method and was introduced by Lubich [67,68]. Since a good introduction
to this method is given by Schanz [98], it is preferred to summarize only the key ingredients
of the method.
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In this convolution (3.62), the function f will be replaced by its inverse Laplace trans-
form [11]

f (t− τ) =
1

2π i

∫
C

f̂ (s)exp(s(t− τ))ds ,

where C denotes a line parallel to the imaginary axis such that f̂ (s) is analytical within
the half plane to the right of C. The convolution thus becomes after reversing the order of
integration

h(t) =
1

2π i

∫
C

f̂ (s)
t∫

0

g(τ)exp(s(t− τ))dτ ds . (3.63)

The inner integral I(t,s) =
∫ t

0 g(τ)exp(s(t− τ))dτ is the analytical solution of the follow-
ing first order initial value problem

dI
dt

= sI +g , I(0,s) = 0 .

The application of a k-step method [60] in order to approximate I(tn,s) by In at the time
point tn = n∆t on the grid (3.54) leads to the expression

k

∑
j=0

α jIn+ j−k = ∆t
k

∑
j=0

β j
[
sIn+ j−k +g(tn+ j−k)

]
with

{
α j,β j

}k
j=0 being the coefficients determining the multistep method. Moreover, it is

assumed that I(t,s) = 0 and g(t) = 0 if t ≤ 0. Both sides of this equation are now multiplied
by any zn, z ∈ C, and summed up for n = 0 to n = ∞. Resorting the terms gives(

k

∑
j=0

αk− jz j

)(
∞

∑
n=0

znIn

)
= ∆t

(
k

∑
j=0

βk− jz j

)(
s

∞

∑
n=0

znIn +
∞

∑
n=0

zng(n∆t)

)
,

where now the infinite sum over znIn is factored out

∞

∑
n=0

znIn =
1

γ(z)
∆t − s

∞

∑
n=0

zng(n∆t) . (3.64)

In this expression, γ(z) denotes the characteristic polynomial [60] of the underlying mul-
tistep method

γ(z) =
∑

k
j=0 α jzk

∑
k
j=0 β jzk

. (3.65)

Replacing the inner integral of equation (3.63) by its approximation In, multiplying by zn

and summing over all n = 0, . . . ,∞ results in the expression

∞

∑
n=0

znh̃(n∆t) =
1

2π i

∫
C

f̂ (s)
1

γ(z)
∆t − s

ds
∞

∑
n=0

zng(n∆t) .
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Note that h̃ denotes the approximation of the original convolution h as defined in equa-
tion (3.62). Under certain assumptions on f̂ (s) [98] the Cauchy integral formula [11] can
be used to solve the integral on the right hand side

∞

∑
n=0

znh̃(n∆t) = f̂
(

γ(z)
∆t

)
∞

∑
n=0

zng(n∆t) . (3.66)

The final step is now to express the Laplace transform f̂ by a power series

f̂
(

γ(z)
∆t

)
=

∞

∑
n=0

zn
ωn(∆t, f̂ ,γ)

and insert this result into expression (3.66), where the weights ωn are given below. Com-
paring the coefficients gives the quadrature formula

h̃(n∆t) =
n

∑
j=0

ωn− j(∆t, f̂ ,γ)g( j∆t) , n = 0, . . . ,∞ . (3.67)

It remains to express the quadrature weights ωn

ωn(∆t, f̂ ,γ) =
R−n

2π

2π∫
0

f̂
(

γ(Rexp(iφ))
∆t

)
exp(− ikφ)dφ . (3.68)

For details, how to compute this expression efficiently confer Schanz [98]. References for
error bounds also can be found there. The resulting expressions can actually be computed
by means of a discrete fast Fourier transform [11]. The radius R of the integration path is
chosen as R = ε1/2N with ε being a positive number bounding the error in numerical eval-
uation of f̂ (s) [68] and N the total number of time steps in the computation. Figure (3.2)
shows how the argument of f̂ varies in the evaluation of the quadrature weights (3.68)
for fixed step size ∆t = 0.01 and various step numbers N in the left picture 3.2(a) and in
the right picture 3.2(b) the converse is displayed where N = 1000 is fixed and the step
size ∆t varies. For both cases the error bound has been chosen to ε = 2 · 0−16 giving a
radius R =

√
2 ·108/N .

By means of formula (3.67), the original convolution h = f ∗ g is approximated by an
expression, which samples the original function g at discrete points j∆t and uses quadra-
ture weights based on the characteristic polynomial γ of a k-step method and the Laplace
transform f̂ of the function f . The multistep method to be chosen has to fulfill certain re-
quirements [67], among which is the A(α)-stability (cf. [60] for its definition) for some α ,
such that the region of analyticity of f̂ (s) can be enclosed in the region of absolute stability
of the multistep method (up to some shift along the real axis). Moreover, the characteristic
polynomial of the method has to be an analytic function. Here, the backward differential
formula BDF2 is chosen. It is A-stable, meets the other requirements and has second-order
consistency [60]. The characteristic polynomial of the BDF2 is

γ(z) =
3
2
−2z+

1
2

z2 . (3.69)
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Figure 3.2: Argument paths for f̂ in the computation of the quadrature weights (3.68) for
various N for ∆t = 0.01 (a) and various ∆t for N = 1000 (b). The error bound
was chosen as ε = 2 ·10−16.

In view of the application of the single layer operator (3.61), the following formula is
obtained

(Vt ∗qΓ)(x, tn) =
tn∫

0

∫
Γ

u∗(x,y, t,τ)qΓ(y,τ)dsy dτ

=
∫
Γ

u∗(x,y, ·, ·)∗qΓ(y, ·)dsy

≈
∫
Γ

(
n

∑
j=0

ωn− j(∆t, û∗,γ)qΓ(y, j∆t)

)
dsy .

(3.70)

The Laplace transform of the fundamental solution u∗ is expressed by û∗. Similarly, the
spatially discretized convolution occurring in the system (3.50) becomes by means of the
convolution quadrature

(V ∗q)(tn) =
n

∑
j=0

ωn− j(∆t, V̂,γ)q( j∆t) . (3.71)

The application of the double layer matrix K is of course carried out in the same manner.
Needless, to say that the matrix operators C̃ (3.46) and B̃ have been only introduced to
facilitate the writing of system (3.50) and need not undergo the above procedure. The
underlying matrices C and B, respectively, are independent of time. Using the following
notation for n = 0, . . . ,N

Vn := ωn(∆T, V̂,γ) qn := q(n∆T )

Kn := ωn(∆T, K̂,γ) un := u(n∆T )

K̃0 := C+K0

(3.72)
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System (3.50) becomes the sequence of systems of equations(
V0 −K̃0
B

)(
qn
un

)
=
(

fD(n∆t)
fN(n∆t)

)
−

n

∑
j=1

(
V j −K j

)(
qn− j
un− j

)
. (3.73)

Obviously, the left hand side matrix of this equation does not change throughout the com-
putation, whereas at each step a new right hand side has to be computed. A simple ap-
proach to solve this system is shown in section 3.4.

It remains to ask, why this rather cumbersome approach is taken instead of going the
classical way [70]. The computation of the quadrature weights is fairly expensive and
requires complex arithmetic. Nevertheless, this approach has shown to be less sensitive
with respect to the size of the time step [99]. Another important advantage of this method is
the simple fact that only Laplace transformed fundamental solutions are required. For this
reason, it suffices to derive and finally implement the fundamental solution of the Laplace
transformed differential equation. Laplace domain fundamental solutions commonly have
a simpler structure than the time domain equivalents and are more robustly evaluated.
Although not applicable to the models considered in this work, a striking argument is that
for many mathematical models only a Laplace domain fundamental solution is available,
as it is the case in visco- and poroelasticity. See the publication of Schanz and Antes [100]
for the extension of this approach to viscoelastic solids and the monograph of Schanz [98]
for the analysis of wave propagation in visco- and poroelstatic media.

3.3 Computation of Matrix Coefficients

In sections 3.1 and 3.2, it is shown how to attain an algebraic system of equations by means
of spatial and temporal discretizations, respectively. In the following section 3.4, solution
methods for these equations are presented. But before going there, it is necessary to take a
closer look at the way, the matrix coefficients are computed. This section could be missed
out if every integral occurring in the computation of the matrix entries was easily solvable
in an analytical way. Since this is not the case, numerical integration schemes have to be
employed.

Geometrically speaking, two types of integrals appear in the presented numerical approxi-
mations. The coefficients of the finite element mass and stiffness matrices M and A require
the evaluation of the bilinear forms a(ϕi,ϕ j) and 〈ρϕi,ϕ j〉, respectively. These bilinear
forms contain integrations over the volume Ω. On the other hand, the applied surface trac-
tions or fluxes enter the equations by means of a surface integral. Furthermore, all spatial
integrals appearing in the context of the presented boundary element methods are formu-
lated on the body’s surface Γ. Therefore, one can distinguish between volume and surface
integrals [55], both in two and three dimensions.

Considering the integral kernels, three different types of integrations are involved. At first,
the classical regular integrals occur in the form of volume and surface integrals in the finite
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element method. Due to the fact that

lim
y→x∗

u∗(x∗,y) = ∞ ,

special care has to be taken when computing the coefficients of the boundary element
matrices. If the collocation point x∗ and the variable of integration y are relatively far from
each other, the surface integrals are regular and can be treated in the usual way. But if
these points get closer, the singularity of the kernel has to be considered. The integrals
arising in the discretization of the single layer operator V are improper integrals, which
means that, although the integrand diverges, the integral is well defined. Such integrals
will be referred to as weakly singular integrals. The coefficients of the discretized double
layer operator K require further attention. The integrals involved therein are only defined
when the integration is carried in the sense of a principal value. More details will follow
in the respective subsections.

3.3.1 Regular integrals

The regular volume integrals occurring in the finite element context are commonly approx-
imated by a quadrature rule performed on the reference element. For simplicity, consider
the bilinear form of the Laplace equation

a(u,v) =
∫

Ωh

κ∇u ·∇vdx .

The matrix entries of the finite element stiffness matrix thus become

A[i, j] = a(ϕ j,ϕi) = ∑
`∈L

∫
τ`

κ∇ϕ j ·∇ϕi dx , ϕi, ϕ j ∈ Sh,0(Ω) .

The region of integration reduces to the intersection of the respective supports of the trial
functions ϕi and ϕ j since outside this region the integrand vanishes. This is only a patch
composed of a certain number of elements such that supp(ϕi)∩supp(ϕ j) =

⋃
`∈L τ`, where

the set L represents the indices of elements τ` which contribute to the considered degree of
freedom. Each of these elements τ` is an instance of the coordinate transformation from
the reference element τ̂ to the global coordinates as given by (3.12). Remember that the ge-
ometry is approximated with the same functions as the unknown u, i.e., ϕ

g
i = ϕi ∈ Sh(Ω).

Therefore, the matrix coefficient is the sum of integrals expressed in local coordinates

A[i, j] = ∑
`∈L

∫
τ̂

κ∇xϕ j(ξ ) ·∇xϕi(ξ )detJ`(ξ )dξ .

The subscript x at the gradients ∇() emphasize the fact that differentiation is with respect
to the global coordinates. detJ` denotes the determinant of the Jacobi matrix J` of the
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coordinate transformation from the reference element to the element τ` with the coeffi-
cients [55]

J`[i, j] =
∂x j

∂ξi
, i, j = 1, . . . , d , x ∈ τ` . (3.74)

It remains to express the partial derivatives with respect to the global coordinates x by local
coordinates ξ . Therefore, the chain rule is applied and results in [6]

∂

∂x
= J−1

` (ξ )
∂

∂ξ
, x ∈ τ` .

Finally, the coefficient of the stiffness matrix becomes

A[i, j] = ∑
`∈L

∫
τ̂

κ
(
J−1(ξ )∇ξ ϕ j(ξ )

)
·
(
J−1(ξ )∇ξ ϕi(ξ )

)
detJ`(ξ )︸ ︷︷ ︸

f`(ξ )

dξ . (3.75)

Expression (3.75) is now ready for the application of a quadrature rule because all con-
tributions are expressed in terms of reference coordinates. The finite elements used in
this work are quadrilaterals in two and hexahedra in three space dimensions. Both can be
represented by

τ̂ = (−1,1)d , d = 2,3 . (3.76)

Therefore, it seems natural to apply a tensor-product integration rule based on a one-
dimensional Gauß quadrature. Using a one-dimensional Ng-point rule, i.e., Nd

g points in
the tensor-product rule, the matrix coefficient (3.75) can be approximated by

A[i, j]≈ ∑
`∈L

Nd
g

∑
g=1

f`(ξ g)wg , (3.77)

where ξg and wg denote the coordinates and the weight of the g-th Gauß point, respectively.
The treatment of the integrals occurring in the bilinear forms of the stiffness matrix in
elasticity and of the mass matrices for the dynamics problems is totally equivalent.

The discretization with boundary elements requires regular and singular integrals over the
surface Γh. Whereas the latter are treated in the following two subsections, at the moment
only regular surface integrals are considered. As an example, regard the matrix entries of
the single layer matrix

V[i, j] = (Vψ j)(x∗i ) =
∫
Γh

u∗(x∗i ,y)ψ j(y)dsy .

Using the triangulation (3.28), the matrix coefficients become

V[i, j] =
∫
τ j

u∗(x∗i ,y)ψ j(y)dsy ,
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because the support of the trial function ψ j extends only over one element τ j. Contrary to
the volume integration, where the coordinate transformation is the mapping x : Rd → Rd ,
the computational surface Γh is a (d−1)-dimensional manifold embedded in the d-dimen-
sional space. Therefore, one has the mapping

Rd−1 3 ξ → x(ξ ) ∈ Rd . (3.78)

The Jacobi matrix of this transformation is defined as in equation (3.74) with the difference
that the index i ranges only from 1 to (d−1) due to the above described property. By means
of the Gram determinant [55]

G j(ξ ) := det(J j(ξ )J>j (ξ )) , x ∈ τ j , (3.79)

the surface integrals can be transformed to an integration over the reference element

V[i, j] =
∫
τ̂

u∗(x∗i ,y(ξ ))ψ j(ξ )
√

G j(ξ )dξ . (3.80)

Equation (3.80) is now ready for a quadrature rule. It has to be emphasized that x∗i /∈ τ j,
otherwise the collocation point would lie in the region of integration and thus the kernel
diverges. Nevertheless, x∗i could lie in one of the elements adjacent to τ j. Then the so-
called quasi-singular situation occurs, where the integral is theoretically regular but still
difficult to handle by normal quadrature.

Remark 3.4. The best treatment of the regular surface integrals occurring in the compu-
tation of matrix coefficients of the boundary element method is clearly the employment
of adaptive quadrature rules if analytical integration is ruled out. Several of these exist in
literature, e.g., the CUBTRI algorithm [64] for triangles or the idea of Lachat and Wat-
son [58] for quadrilateral elements. A survey of these methods can be found in the book
of Krommer and Ueberhuber [55]. ♦

For simplicity, in this work only standard quadrature rules are used with a certain high
number of points such that the integration error is kept low. The used reference elements
are the one- and two-dimensional simplices, which are the interval (−1,1) and the tri-
angle

{
(ξ1,ξ2) ∈ R2 : 0 < ξ2 < 1−ξ1, 0 < ξ1 < 1

}
(see figure 3.1 for pictures of these

elements). For the first case a standard Gauß quadrature is used and for the latter the trian-
gle quadrature rules due to Dunavant [22]. Let again Ng be the number of Gauß points in
either case, the approximation of the coefficients of the single layer matrix is

V[i, j]≈
Ng

∑
g=1

u∗(x∗i ,y(ξ g))ψ j(ξ g)
√

G j(ξ g)wg . (3.81)

Again, ξ g and wg are the coordinates and the weight of the g-th integration point. The
computation the matrix entries of the double layer matrix K are carried out in the same
way, with the difference that, like in the case of finite elements, the shape functions have a
support extending over a patch of elements whose contributions are then summed up. The
mass matrix B poses no difficulty and can be computed with a low-order rule.
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3.3.2 Preliminaries to singular integration

Now the case is considered, where the collocation point is located on the element of in-
tegration, i.e., x∗i ∈ τ j. Obviously, the collocation point x∗i and the integration variable y
can get arbitrarily close and, therefore, the integrand diverges. Let ξ

∗ denote the reference
coordinates corresponding to the collocation point. Hence, it holds x∗i = x(ξ ∗). For the
sake of convenience, the subscripts referring to the number of the collocation point and the
reference element is omitted in the following unless necessary. Furthermore, the Landau
notation is used

f (x) =O(g(x)) ⇔ | f (x)| ≤C|g(x)| , x→ 0 . (3.82)

It is henceforth implicitly assumed that this notation is understood for the limit x→ 0. By
means of the above, the Euclidean distance between x∗ and y can be expressed through a
Taylor expansion in reference coordinates

|y−x∗|= |x(ξ )−x(ξ ∗)|= |J>(ξ ∗)(ξ −ξ
∗)|+O(|ξ −ξ

∗|2) . (3.83)

Here, x(ξ ) refers to the coordinate transformation (3.12) such that the expression y = x(ξ )
is meaningful.

Looking at the time domain kernel functions u∗ and Tyu∗ that occur in the single and
double layer matrices, respectively, it can be stated that

u∗dyn(x,y, t,τ) = u∗stat(x,y)+O(|y−x|0) , (3.84)

where the subscripts have been added to the functions to point out their different nature.
This relation is easily established by replacing the appearing exponential and Bessel func-
tions by the corresponding Taylor series. Note that the awkward term |y−x|0 in the asymp-
totic behavior cannot be simply replaced by a constant. It represents all monomials of the
term |y−x| of order at least zeroth order. The essence of expression (3.84) is that it suffices
to consider the singular behavior of the fundamental solution of the corresponding static
problem because the asymptotic behavior for y→ x is the same for static and dynamic
fundamental solutions.

Remark 3.5. Most of the methods described below work with the decomposition

u∗(x,y) = u∗sing(x,y)+(u∗(x,y)−u∗sing(x,y)) ,

where the singular part of the fundamental solution is extracted in order to be treated by
special techniques and the difference term handled like a regular integral. Although the
most popular approach in the engineering community, especially when analytical integra-
tions are not feasible, the difference term in this decomposition poses a problem. The term
itself is regular in the sense that it does not diverge when y tends to x, but its derivatives are
not regular and show a diverging behavior [55]. The dilemma is that the higher the applied
quadrature rule the higher the order of the derivatives which control the error. Therefore,
one cannot simply tackle the problem by increasing the order of the quadrature rule. An
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adaptive quadrature rule as already suggested in remark 3.4 could mitigate the trouble.
Finally, this difference can be numerically unstable because it involves the subtraction of
large numbers and thus is a classical problem of cancellation [46]. Therefore, quadrature
rules applicable to the fundamental solution as a whole would be the best choice. Unfor-
tunately, in this work only the treatment of weakly singular integrals in three dimensions
contains such an approach, whereas for the other cases the decomposition method has to
suffice. ♦

3.3.3 Improper surface integrals

Consider again the matrix coefficients of the single layer matrix in the reference coordi-
nates (3.80)

V[i, j] =
∫
τ̂

u∗(x∗i ,y(ξ ))ψ j(ξ )
√

G j(ξ )dξ

with xi ∈ τ j.

The fundamental solutions considered here (cf. the appendix A), show the asymptotic
behaviors

x→ y : u∗(x,y)∼


log

1
|y−x|

d = 2

1
|y−x|

d = 3 .

(3.85)

In the following, first the two-dimensional and then the three-dimensional case is exam-
ined.

Weakly singular surface line integrals In this case, the subtraction of singularity tech-
nique [55] is applied by expressing the two-dimensional fundamental solutions as the sum
of their singularity and a difference term

u∗(x∗,y(ξ )) = C log
1

|ξ −ξ ∗|
+
(

u∗(x∗,y(ξ ))−C log
1

|ξ −ξ ∗|

)
. (3.86)

Note that the constant C used in this expression can be a scalar or a 2× 2-matrix in case
of elastic problems. Moreover, the reference coordinates ξ boil down to the scalar ξ for a
one-dimensional reference element. Included in this expression is the fact that

log
1

|x(ξ )−x(ξ ∗)|
≈ log

1√
G(ξ ∗)|ξ −ξ ∗|

= log
1√

G(ξ ∗)
+ log

1
|ξ −ξ ∗|

,

where the first approximation follows in two spatial dimensions from the Taylor expan-
sion (3.83) and becomes an identity in the case of a linear geometry approximation. In
the following only the logarithmic part, i.e., the first term in equation (3.86), is treated,
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whereas the difference term is regular and therefore is computed like a regular surface
integral (cf. remark 3.4).

Since special quadrature rules are available for logarithmic singularities, the singular part
in (3.86) only has to be transformed into the right form. At first, the singular integral,
henceforth termed Iw,2, is split in two parts

Iw,2 := C
1∫
−1

log
1

|ξ −ξ ∗|
√

G(ξ )ψ(ξ )dξ (3.87)

= C

ξ ∗∫
−1

log
1

|ξ −ξ ∗|
ψ(ξ )

√
G(ξ )dξ +C

1∫
ξ ∗

log
1

|ξ −ξ ∗|
ψ(ξ )

√
G(ξ )dξ .

Now, auxiliary coordinates are introduced such that the point of singularity ξ ∗ is mapped
to the origin in each of the two integrals,

η
1 = ξ

∗−ξ and η
2 = ξ −ξ

∗ .

Then, the singular integral becomes

Iw,2 = C

1+ξ ∗∫
0

log
1

η1 ψ(η1)
√

G(η1)dη
1 +C

1−ξ ∗∫
0

log
1

η2 ψ(η2)
√

G(η2)dη
2 ,

which now has to be stretched or squeezed, respectively, to the unit interval. Therefore, a
new set of coordinates with the properties

ζ
1 =

η1

1+ξ ∗
and ζ

2 =
η2

1−ξ ∗

is introduced such that one obtains

Iw,2 = C
1∫

0

log
1

(1+ξ ∗)ζ 1 ψ(ζ 1)
√

G(ζ 1)(1+ξ
∗)dζ

1

+C
1∫

0

log
1

(1−ξ ∗)ζ 2 ψ(ζ 2)
√

G(ζ 2)(1−ξ
∗)dζ

2 .

Note that ψ(ζ i) = ψ(ξ (η i(ζ i))) and similarly for
√

G(ζ i). Unfortunately, this is not
yet the right form for using the logarithmic quadrature rule, since the arguments of the
logarithm still contain a perturbing factor. Therefore, one has to split up these terms and
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get

Iw,2 = C
1∫

0

log
1

ζ 1 ψ(ζ 1)
√

G(ζ 1)(1+ξ
∗)dζ

1+C
1∫

0

log
1

1+ξ ∗
ψ(ζ 1)

√
G(ζ 1)(1+ξ

∗)dζ
1

+C
1∫

0

log
1

ζ 2 ψ(ζ 2)
√

G(ζ 2)(1−ξ
∗)dζ

2+C
1∫

0

log
1

1−ξ ∗
ψ(ζ 2)

√
G(ζ 2)(1−ξ

∗)dζ
2 .

These are four integrals, two of which of the form
∫ 1

0 log(1/x) f (x)dx, which can be treated
by a logarithmic quadrature rule, and two of which are regular. The latter two have to be
transformed back to the interval (−1,1) in order to apply a classical Gauß quadrature,
which is a trivial task.

The logarithmic quadrature rule [86] employed in this context is designed such that

1∫
0

log
1
x

f (x)dx≈
Ng

∑
g+1

f (xg)wg

is carried out exactly, if f (x) is a polynomial of degree at most 2Ng−1.

Weakly singular surface area integrals Again the matrix coefficients of the single layer
matrix (3.80) are under consideration. Now the integration is carried out on the reference
triangle and the integral kernel contains the three-dimensional fundamental solution

Iw,3 :=
1∫

0

1−ξ1∫
0

u∗(x(ξ ∗),x(ξ ))ψ(ξ )
√

G(ξ )dξ2 dξ1 .

The first step is to subdivide the triangle such that the point of singularity ξ
∗ = (ξ ∗1 ,ξ ∗2 ) is

located on the vertices of the sub-triangles as displayed in figure 3.3. Two types of subdi-
vision are analyzed, one with three and another with six sub-triangles. Each of these sub-
triangles is now mapped onto the reference triangle {(η1,η2) : 0 < η2 < η1, 0 < η1 < 1},
see figure 3.4(a). Therefore, the coordinate transformation(

ξ1
ξ2

)
=
(

ξ ∗1
ξ ∗2

)
+

(
ξ

i,1
1 −ξ ∗1

ξ
i,1
2 −ξ ∗2

)
η

i
1 +

(
ξ

i,2
1 −ξ

i,1
1

ξ
i,2
2 −ξ

i,1
2

)
η

i
2 (3.88)

is used, where the coordinates ξ
i,k
j , i.e., the (k + 1)-th vertex of the i-th sub-triangle, are

taken from table 3.1. The Jacobian determinant of this coordinate transformations is

detJi = (ξ i,1
1 −ξ

∗
1 )(ξ i,2

2 −ξ
i,1
2 )− (ξ i,1

2 −ξ
∗
2 )(ξ i,2

1 −ξ
i,1
1 ) (3.89)
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ξ1

ξ2

0
0

ξ ∗1

ξ ∗2

1

1

1

2
3

(a) 3 sub-triangles

ξ1

ξ2

0
0

ξ ∗1

ξ ∗2

1

1

1 2

3

4

5

6

(b) 6 sub-triangles

Figure 3.3: Triangle subdivision into 3 (a) and 6 sub-elements (b).

and thus a constant. Then, the considered integral becomes the sum of the contributions of
all sub-triangles

Iw,3 =
{3|6}

∑
i=1

1∫
0

η i
1∫

0

u∗(x(0),x(η i))ψ(η i)
√

G(η i) detJi dη
i
2 dη

i
1 ,

where the shorthand η i = (η i
1,η

i
2) has been used. The idea is now, to use a coordinate

transformation which alleviates the singularity. One option are polar coordinates whose
functional determinant reduces the order of the singularity by one [33] but the transformed
region has a rather complicated shape which requires another coordinate transformation
onto the reference square. Here, so-called Duffy coordinates are preferred [21], which
map the triangle onto a square by stretching the vertex with the singularity to one side of
the square. A similar idea has been actually proposed by Lachat and Watson [58] (see

i ξ
i,1
1 ξ

i,1
2 ξ

i,2
1 ξ

i,2
2

1 0 0 1 0
2 1 0 0 1
3 0 1 0 0

(a) 3 sub-triangles

i ξ
i,1
1 ξ

i,1
2 ξ

i,2
1 ξ

i,2
2

1 0 0 ξ ∗1 0
2 ξ ∗1 0 1 0
3 1 0 1+ξ ∗1−ξ ∗2

2
1−ξ ∗1 +ξ ∗2

2

4 1+ξ ∗1−ξ ∗2
2

1−ξ ∗1 +ξ ∗2
2 0 1

5 0 1 0 ξ ∗2
6 0 ξ ∗2 0 0

(b) 6 sub-triangles

Table 3.1: Vertices of the sub-triangles for the coordinate transformation (3.88). Subdivi-
sion with 3 (a) and 6 triangles (b).
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η1

η2

0
0

1

1

(a) Reference triangle

ζ1

ζ2

0-1 1

1

-1
(b) Degenerated square

Figure 3.4: Reference triangle (a) and degenerated square (b) with Gauß points.

also [33]) earlier than Duffy. A new set of coordinates ζ = (ζ1,ζ2) is used with the prop-
erties

η
i
1 =

1
2
(ζ1 +1) and η

i
2 =

1
4
(ζ1 +1)(ζ2 +2) . (3.90)

This transformation relates the coordinates ζ of the square (−1,1)2 (see figure 3.4(b)) with
the reference triangle depicted in figure 3.4(a). The determinant of the Jacobian matrix is
then

H(ζ ) := det
∂η

∂ζ
=

1
8
(ζ1 +1) (3.91)

such that the integral finally becomes

Iw,3 =
{3|6}

∑
i=0

1∫
−1

1∫
−1

u∗(x(−1,ζ2),x(ζ ))ψ(ζ )
√

G(ζ )detJiH(ζ )dζ . (3.92)

This expression is now ready for a tensor-product Gauß quadrature rule, as for instance the
3×3-rule shown in figure 3.4. Note that

H(ζ1,ζ2) =O(ζ1) and H(−1,ζ2) = 0

and these properties alleviate the singularity of the fundamental solution u∗. Moreover,
this approach does not require to split the kernel function in singular and regular parts.
It can be applied to the static and dynamic fundamental solutions in a black-box fashion.
It remains to choose the sub-division of the original reference triangle as shown in fig-
ure 3.3. Therefore, the outcome of the described quadrature procedure is compared with
the analytical solution given in the appendix of the book of Rjasanow and Steinbach [94],
where a constant shape function ψ has been assumed. In this comparison, two different
locations of the collocation points have been chosen, ξ

∗
1 = (1/4,1/4) and ξ

∗
2 = (1/4,1/2),

respectively. These locations correspond to piecewise linear triangles, see remark 3.2. The
results of this analysis are given in table 3.2 for the two different subdivisions together with
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the exact solution. The order in the tables refers to the order of the tensor-product Gauß
quadrature rule. It can be seen that the subdivision in 6 sub-triangles is more effective
than using only 3 sub-triangles. For instance, the result for 6× (14× 14) = 1176 Gauß
points, i.e., 6 sub-triangles with a tensor-product rule with 14 points, is better the error
of using 3 sub-triangles with a 20 point rule each, i.e., 1200 points in total, whereas both
computations have a similarly amount of function evaluations. It is thus preferred to use
the subdivision with 6 triangles as in figure 3.3(b).

3.3.4 Cauchy principal value surface integrals

The Cauchy principal value is defined as [55]

−
∫
Γ

f (x)dx := lim
ε→0

∫
Γ\Bε (x0)

f (x)dx , (3.93)

where x0 is the location of the singularity of the integrand f and Bε(x0) denotes a ball
of radius ε with center x0. If f is a regular function, the principal value coincides with
classical integration. In order to exist, the functions f has to obey certain criteria which
are given, for instance, in the book of Sauter and Schwab [96].

Whereas the singularities occurring in the evaluation of the single layer matrix V are all
integrable in the sense of improper integrals (weak singularities), the double layer matrix
K contains so-called strong singularities. Here, the asymptotic behavior is

x→ y : Tyu∗(x,y)∼


1

|y−x|
d = 2

1
|y−x|2

d = 3 .
(3.94)

A closer look at the kernel functions Tyu∗(x,y) reveals that in case of the scalar problems
of Laplace and scalar wave equations, the problematic term |y−x|1−d is multiplied by the
term

∂ |y−x|
∂n(y)

=
(y−x) ·n(y)
|y−x|

, (3.95)

where n(y) denotes the unit outward normal vector at y ∈ Γ. Obviously, the scalar product
of the difference (y−x) and the normal vector n(y) vanishes if y lies on the tangent plane
at x. Therefore, this term cancels the singularity and in the case of the scalar fundamental
solutions, the double layer operator does not contain any strong singularities. Due to this
observation, in the following only the kernel function TyU∗(x,y) of elastic problems is
regarded, which has d×d components. This function can be expressed as

(TyU∗)(x,y) =− 1
2dπ(1−ν)|y−x|d

×[(
(1−2ν)I+d

(y−x)(y−x)>

|y−x|2

)
(y−x) ·n(y)+(1−2ν)Σ(x,y)

]
(3.96)
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order ξ
∗
1 ξ

∗
2

2 0.185816458342436 0.169263531227941
4 0.188303880801567 0.184070343292020
6 0.188476966386167 0.183569752851678
8 0.188639144444796 0.182465213766623

10 0.188654512298107 0.182179913028121
12 0.188655194402365 0.182189837148910
14 0.188655418573529 0.182225011283474
16 0.188655458424223 0.182237334611801
18 0.188655461710007 0.182238029755407
20 0.188655462157438 0.182236873150163

exact 0.188655462260302 0.182236342753599

(a) 3 sub-triangles

order ξ
∗
1 ξ

∗
2

2 0.190686675090202 0.183666318618617
4 0.188617874392945 0.182265263922609
6 0.188656313328276 0.182231113760237
8 0.188655440675359 0.182236707825696

10 0.188655462838450 0.182236328926781
12 0.188655462244554 0.182236342516193
14 0.188655462260730 0.182236342843543
16 0.188655462260287 0.182236342745183
18 0.188655462260303 0.182236342754061
20 0.188655462260302 0.182236342753590

exact 0.188655462260302 0.182236342753599

(b) 6 sub-triangles

Table 3.2: Values of the integral (3.92) for the two considered triangle subdivisions and
different quadrature rules.
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with the d×d identity I and the skew-symmetric tensor Σ with components

Σ(x,y)[i, j] = (y j− x j)ni(y)− (yi− xi)n j(y) i, j = 1, . . . ,d . (3.97)

xi, yi, and ni are the i-th components of the vectors x, y, and n, respectively. The considered
kernel function is thus composed of a part multiplied by the term (3.95), which will not
be considered any further, and a part which really has to be integrated in the sense of a
principal value as in equation (3.93). The matrix entries of the double layer matrix are

K[i, j] = lim
ε→0

∫
Γh\Bε (x∗i )

TyU∗(x∗i ,y)ϕ j(y)dsy = −
∫
Γh

TyU∗(x∗i ,y)ϕ j(y)dsy

which become the sum over the elements belonging to the support of the j-th trial func-
tion

K[i, j] = −
∫

∑`∈L τ`

TyU∗(x∗i ,y)ϕ j(y)dsy .

The index set L contains the elements τ` belonging to the region of integration. The col-
location point lies inside one element and thus the integration over the other elements is
regular. Denoting by τ`′ the element in which the collocation point x∗i is located and by L′

the index set L without the index `′, the above becomes

K[i, j] = ∑
`∈L′

∫
τ`

TyU∗(x∗i ,y)ϕ j(y)dsy +−
∫
τ`′

TyU∗(x∗i ,y)ϕ j(y)dsy .

In the following, only the part of the latter integral is treated, which contains the Cauchy
principal value

Is,d :=− 1−2ν

2dπ(1− v)︸ ︷︷ ︸
Cd

−
∫
τ`′

1
|y−x∗|d

Σ(x∗,y)ϕ(y)dsy . (3.98)

Remark 3.6. The double layer potential operator of elastostatics can also be represented
by the single layer operator of elastostatics and the double layer operator of the Laplace
equation [57]. This representation only contains weakly singular integrals and is therefore
preferable to the classical expression. The drawback though is that it is derived by means
of integration by parts and therefore additional terms on ∂Γ, i.e., the boundary of the
surface Γ, appear, which contain singularities too. In case of a closed surface, no boundary
of the surface exists, ∂Γ = /0, and these additional terms do not show up. But, since in this
work the application to open domains is an important item, the classical representation is
used. ♦

As in the case of the improper surface integrals, at first the Cauchy principal value integra-
tion on a line and then on a two-dimensional surface is looked at.
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Strongly singular line integrals For the time being, it is assumed that the geometry
representation is linear. Then, one can establish

y−x∗

|y−x∗|
=

J>(ξ −ξ ∗)
|J>(ξ −ξ ∗)|

= sign(ξ −ξ
∗)t ,

where t = (t1, t2)> is the unit tangent vector of the element. Moreover, the Jacobi matrix
is simply a vector with length of the Gram determinant, |J|=

√
G, and obviously t ·n = 0

such that n1 = t2 and n2 =−t1. With these relations, the principal value integral becomes

Is,2 = C2 −
1∫
−1

Σ(ξ ∗,ξ )√
G|ξ −ξ ∗|

ϕ(ξ )
√

Gdξ = C2S−
1∫
−1

sign(ξ −ξ ∗)
|ξ −ξ ∗|

ϕ(ξ )dξ = C2S−
1∫
−1

ϕ(ξ )
ξ −ξ ∗

dξ

with the matrix S =
(

0 1
−1 0

)
. In case of a non-linear geometry approximation, this deriva-

tion is only valid in the vicinity of the singularity ξ ∗. In such cases, the above result for Is,2
is subtracted from the integrand in order to obtain a regular difference term. It turns out
that the singular part is of the form−

∫ 1
−1 f (ξ )/(ξ −ξ ∗)dξ , ξ ∈ (−1,1) to which a modified

quadrature rule is applied. Such rules especially tailored for Cauchy principal value inte-
gration and their analysis can be found in the thesis of Diethelm [19]. Other techniques
are explained in the book of Krommer and Ueberhuber [55].

Strongly singular surface area integrals The treatment of the Cauchy principal value
on a two-dimensional surface is done analogously to the approach of Guiggiani and Gi-
gante [40]. The only difference is here that the collocation point is always inside the
element and, instead of the rather cumbersome polar coordinate transformation, Duffy co-
ordinates [21] are preferred. Only the basic steps will be repeated here. The derivation
starts again with the Taylor expansion (3.83). Then the differences in the reference coor-
dinates are expressed through Duffy coordinates on the i-th sub-triangle (i = 1, . . . ,6 due
to the arguments at the end of subsection 3.3.3, see also figure 3.3(b))

ξ −ξ
∗ (3.88)= (ξ i,1−ξ

∗)η i
1 +(ξ i,2−ξ

i,1)η i
2

(3.90)=
[
(ξ i,1−ξ

∗)+(ξ i,2−ξ
i,1)

ζ2 +1
2

]
︸ ︷︷ ︸

ξ̃
i
(ζ2)

ζ1 +1
2

.

Insertion of this expression into the difference of the global coordinates yields the approx-
imation

y−x∗ ≈ J>ξ̃
i︸︷︷︸

ai(ζ2)

ζ1 +1
2

(3.99)

and therefore for the distance function

|y−x∗| ≈ ζ1 +1
2

ai(ζ2) (3.100)
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with ai(ζ2) being the length of the vector ai(ζ2), defined by equation (3.99). The inte-
gral (3.98) thus becomes

Is,3 = C3−
∫
τ`′

Σ(x∗,y)
|y−x∗|

ϕ(y)dsy

= C3 lim
ε→0

6

∑
i=1

1∫
−1

1∫
−1+γε

Σ(x(−1,ζ2),x(ζ ))
|x(ζ )−x(−1,ζ2)|3

ϕ(ζ )
√

G(ζ )detJiH(ζ )︸ ︷︷ ︸
Fi(ζ )

dζ ,

where γε is the transformed result of the original ball Bε(x∗) and will be reconsidered
later. The kernel function Fi is now approximated in the following way by using expres-
sions (3.99) and (3.100)

Fi(ζ )[k, j]≈
nkai

j(ζ2)−n jai
k(ζ2)

(ai)3(ζ2)

ζ1+1
2(

ζ1+1
2

)3 ϕ(ζ )
√

G(ζ )detJi
ζ1 +1

8

=
1

2(ζ1 +1)

nkai
j(ζ2)−n jai

k(ζ2)

(ai)3(ζ2)
ϕ(ζ )

√
G(ζ )detJi

=
1

2(ζ1 +1)
Ei(ζ )[k, j] .

The intermediate result is for the considered integral now

Is,3 ≈C3 lim
ε→0

6

∑
i=1

1∫
−1

1∫
−1+γε

1
2(ζ1 +1)

Ei(ζ )dζ (3.101)

Now, the singularity is subtracted by means of the identity

Ei(ζ ) = Ei(ζ1,ζ2) = Ei(−1,ζ2)+(Ei(ζ1,ζ2)−Ei(−1,ζ2)) .

Inserting this decomposition into the integrals (3.101) yields two integrals per sub-triangle,
whereas the first contains the singularity and the second is a regular integration over the
difference term. The regular contribution is treated by a tensor-product Gauß quadrature
and will not be considered any further. The remaining singular integral contributed by
the i-th sub-triangle is of the following form and its inner integration can be carried out
analytically

Ĩis,3 := C3 lim
ε→0

1∫
−1

1∫
−1+γε

Ei(−1,ζ2)
2(ζ1 +1)

dζ1 dζ2 =
C3

2
lim
ε→0

1∫
−1

Ei(−1,ζ2) log(ζ1 +1)|1−1+γε
dζ2 .

Due to the coordinate transformations from the global coordinates x to the local Duffy
coordinates ζ , the lower integration bound, i.e., the surface of the ball Bε(x∗) becomes

|y−x∗|> ε −→ ζ1 +1
2

ai(ζ2) > ε ⇔ ζ1 >
2ε

ai(ζ2)
−1 = γε −1 .
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By means of this, the remaining singular integral can be finally expressed by summing
again over the contributions Ĩis,3

Is,3 ≈
6

∑
i=1

Ĩis,3 =
6

∑
i=1

lim
ε→0

C3

2

1∫
−1

Ei(−1,ζ2) log
ai(ζ2)

ε
dζ2

=
6

∑
i=1

C3

2

1∫
−1

Ei(−1,ζ2) logai(ζ2)dζ2 .

(3.102)

The validity of the last equality has been shown by Guiggiani and Gigante [40] and the
result is regular because, by its definition, ai(ζ2) cannot become zero. For this reason, a
standard one-dimensional quadrature rule will solve this last integral. It has to be added
that in case of a linear geometry representation, the approximations (3.99) and (3.100)
become exact and thus expression (3.101), too. In this situation, the only errors committed
are due to the employed quadrature rules.

3.4 Direct Solution Methods

In sections 3.1 and 3.2, the considered discretization methods are introduced. In case of a
finite element discretization, system (3.17) is obtained for a static analysis and the sequence
of systems of equations (3.60) for a dynamic analysis. The boundary element discretiza-
tions, on the other hand, yield systems (3.42) and (3.73), respectively. Section 3.3 was then
dedicated to details in the computation of the coefficients of the system matrices. These
coefficients are computed with limited accuracy only, especially the boundary element
matrices are rather error-prone. Consequently, one would have to introduce a notational
indication for the distinction between the system matrices and their approximations. In or-
der to avoid a mess of notation, the use of approximately computed matrix coefficients is
henceforth implied by expressions A, V, etc. The same holds for the right hand sides which
can also be affected by integration errors. At first, the occurring finite element systems are
considered before the block systems of the boundary element discretizations follow.

Finite element discretization In case of the considered finite element discretizations it
is guaranteed that the system matrix A is symmetric positive definite [9] and it shall be
assumed that its approximation does not loose this property. Moreover, the same holds for
the mass matrix M [49] such that the linear combination of both with positive coefficients
results again in a symmetric positive definite matrix, as it is the case in the system occurring
due to the Newmark method (3.60). In addition to this property, these matrices are sparse,
i.e., the number of non-zero entries grows only linear with the number of unknowns.

In view of these features and of the fact that the system (3.60) has the same left hand
side matrix for all time steps, a Cholesky decomposition [36] is advocated. Therefore,
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this decomposition can be precomputed and, in case of a dynamic analysis, reused for
every new time step to obtain the current set of unknowns. The sparsity of the system
matrix is exploited by using special storage formats as explained for instance in the book
of Saad [95]. The system matrix A (or Ã in the dynamic case) is thus decomposed and then
the system Au = f (Ãun = f̃n) solved in two steps

A = LL> , y = L−1f and u = L−>y . (3.103)

In the dynamic case, the last two steps, which are carried out at once and are efficient due
to the triangular structure of the factor L, are then repeated at every time step.

Boundary element discretization Similar to the finite element discretization, the time-
domain analysis requires the solution of a sequence of systems of equations where only the
right hand side changes. So, by the same reasoning, a direct solver by means of a factor-
ization is preferred to iterative solution procedures. Moreover, the considered block sys-
tem (3.42) is not symmetric and the blocks V and K̃ are fully populated which complicates
the design of an efficient preconditioning procedure, as required for a robust iterative so-
lution algorithm. Here, a block LU-decomposition [36] of the system matrix is employed.
At first, the system matrix is decomposed(

V −K̃
B

)
=
(

LV
LB I

)(
I

S

)(
UV −UK

I

)
=
(

LV
LB LS

)(
UV −UK

US

)
(3.104)

with the following factors

LV UV = V , LV UK = K̃ , LBUV = B and S = LBUK . (3.105)

The first operation is a classical LU-decomposition and the next two are forward and back-
ward substitutions in order to obtain the factors UK and LB. Finally, the last matrix-matrix
product yields S, which in fact is the same Schur complement as shown in equation (3.43).
Another LU-decomposition of this block, LSUS = S, then gives the factors for the final
block decomposition (3.104). As seen below, it will be useful to perform two more substi-
tutions, obtaining auxiliary matrices G and H,

GLV = LB and UV H = UK . (3.106)

All of these operations can be carried out in place, which means that no additional storage
is required, except for the storage of S or its factors LS and US.

After precomputing all these factors, the system can be solved by the steps

g = fN−HfD , Su = g , Vy = fD and q = y +Gu . (3.107)

The necessity of the auxiliary matrices (3.106) becomes clear in these solution steps. The
first operation is a simple matrix-vector product which gives the condensed right hand side
as in equation (3.43). Afterwards, two solutions of linear systems are carried out, where
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the left hand side matrices V and S are already factorized. Finally, another matrix-vector
product gives the solution of q. In fact, the LU-factorization is carried out with pivoting
and, because of this, some steps require permutation operations, which are not shown here
for simplicity.

In the dynamic solution algorithm, the same methodology is performed with the only dif-
ference that at each time step the new right hand sides have to be computed and then the
steps (3.107) are repeated.

Remark 3.7. The procedures introduced for the solution of the final systems of equations
have in general a cubic complexity. This means that the factorization of an N×N-matrix
hat the complexityO(N3). In case of the finite element stiffness matrix (3.17), the sparsity
pattern can reduce the number of required operations down to O(Nb2) for the optimal
case of a symmetric positive definite matrix with bandwidth b [36]. Note b� N and b is
independent of N. For large N, an iterative solution procedure would prevail, for instance, a
preconditioned conjugate gradient method [95]. The block system of the boundary element
discretization (3.42), on the other hand, is indefinite and the iterative solution has to be
adapted to this situation [104]. In any case, a classical iteration procedure solves the system
without generating a factorization such that in a dynamic analysis the solution process has
to be repeated at every time step. ♦



86 3 Numerical Approximations



4 COUPLED SOLUTION ALGORITHMS

In this chapter, the partitioned analysis of the (initial) boundary value problems presented
in chapter 2 is outlined using the numerical approximation methods introduced in the pre-
vious chapter 3. The partitioning considered in this work is purely spatial in the sense
that the computational domain Ω is subdivided as explained in section 4.1 but the time
discretization is the same for each subdomain.

The aims of such a strategy are multiple. On the one hand, Ω might already consist of
several physically different subregions. In these multiphysics situations, the partitioning
could be mandatory in order to tackle the problem. The case of fluid-structure interaction
contains (at least) two entirely different physical models sharing an interface. See for
instance the book of Ohayon and Soize [76] for the problem of acoustic-structure vibration
problems. Here, only the cases with equal mathematical models but possibly different
material properties are treated. Nevertheless, the extension of this work to the combination
of different models is possible.

A similar situation occurs on the other hand, when the underlying geometry of the problem
motivates the subdivision. This is for instance the case in soil-structure interaction, where
the soil is often represented by an unbounded medium connected to the finite-sized struc-
ture. Although both parts can be governed by the same set of partial differential equations,
the treatment of the unbounded soil might require a different numerical approximation
method. A typical approach to such a problem is the combination of boundary and fi-
nite element discretizations in form of a hybrid method. The idea of combining finite and
boundary element discretizations goes back to Zienkiewicz et al. [121] and a profound
mathematical analysis can be found for instance in the monograph of Steinbach [106].

Finally, computational efficiency can be gained by using the partitioning for a divide-and-
conquer strategy. This approach is commonly called domain decomposition method and
allows for a significant speedup with solution algorithms especially designed for a suitable
subdivision of Ω. Commonly, these algorithms perform in parallel when executed on
multiprocessor computers. The book of Toselli and Widlund [114] and the survey articles
of Le Tallec [65] and of Farhat and Roux [28] exhaustively describe the topic of domain
decomposition methods for finite element discretizations.

Whereas in the case of multiphysics, the interfaces between the subregions are predefined
by the physical structure, in domain decomposition approaches it prevails to sub-divide
the given problem such that the workload for each subregion is balanced. Automatized
subdivision algorithms are often employed in the latter situation. Nevertheless, the above
concepts are not mutually exclusive because a multiphysics situation can still be handled
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by domain decomposition algorithms where each physical subregion can be treated by
different numerical approximation schemes.

In this chapter, at first the partitioning of the problem is described in section 4.1 mainly
for the introduction of the employed notation and variational principles. Section 4.2 out-
lines so-called Dirichlet-to-Neumann maps, essential for the FETI-like methods used in
this work which are presented in section 4.3. The special topic of conforming and noncon-
forming interface discretizations is then treated in section 4.4.

4.1 Partitioning of the Problem

The process of subdividing a given (initial) boundary value problem begins with the geo-
metric partitioning of the domain Ω in which the problem is stated. Let Ω be decomposed
into Ns subdomains Ω(r),

Ω =
Ns⋃

r=1

Ω
(r)

. (4.1)

The subdomains are non-overlapping, i.e., their mutual intersections vanish

Ω
(r)∩Ω

(p) = /0 , r 6= p .

The internal boundaries or interfaces due to this subdivision are defined by

Γ
(rp) := Ω

(r)∩Ω
(p) r, p = 1, . . . ,Ns , r 6= p . (4.2)

Consequently, the boundary of each subdomain Ω(r) is composed of its interfaces, a Dirich-
let, and a Neumann part, i.e.,

Γ
(r) := ∂Ω

(r) =

 ⋃
p∈J(r)

Γ
(rp)

∪Γ
(r)
D ∪Γ

(r)
N , (4.3)

where Γ
(r)
D := Ω

(r)∩ΓD and Γ
(r)
N := Ω

(r)∩ΓN . Recall, Γ = ∂Ω = ΓD∪ΓN is the boundary
of the original undecomposed domain consisting of Dirichlet and Neumann parts. More-
over, the set J(r) collects the indices of subdomains sharing an interface with Ω(r),

J(r) =
{

p, 1≤ p≤ Ns, p 6= r : Ω
(r)∩Ω

(p) 6= /0
}

. (4.4)

In the union (4.3), the Dirichlet and Neumann parts Γ
(r)
D and Γ

(r)
N can be empty sets,

whereas the union of interfaces does not vanish because otherwise the subdomain would
be disconnected from the rest. The skeleton of the partition (4.1) is denoted by

Γs :=

(
Ns⋃

r=1

Γ
(r)

)
\Γ , (4.5)
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Ω

gN

gD = 0
ΓD

ΓN

(a) Single domain

Ω(1)

Ω(2)

Ω(3)

Ω(4)

Γ(12)

Γ
(3)
D

Γ
(4)
NgN

gD = 0
(b) 4 subdomains

Figure 4.1: Problem statement for a single domain (a) and 4 subdomains (b) with some
exemplary labeling.

i.e., the collection of all interfaces. Figure 4.1 displays the situation for a single do-
main 4.1(a) and its subdivision into 4 subdomains 4.1(b) with some examples of the intro-
duced notation. The boundary Γ(1), for instance, is composed of Γ(12), Γ(13), Γ

(1)
N and Γ

(1)
D ,

and its connectivity index set is J(1) = {2,3}. The skeleton of this subdivision is of course
Γs = Γ(12)∪Γ(13)∪Γ(23)∪Γ(24).

At first, elliptic mixed boundary value problems are regarded only. Let u(r) denote the
restriction of the unknown u to the subdomain Ω(r), i.e.,

u(r)(x) := u(x) x ∈Ω
(r) . (4.6)

Thus, in every subdomain Ω(r) the following problem is stated

L(r)u(r)(x) = f (x) x ∈Ω
(r)

u(r)
Γ

(y) := (Tr(r) u(r))(y) = gD(y) y ∈ Γ
(r)
D

q(r)
Γ

(y) := (T (r)u(r))(y) = gN(y) y ∈ Γ
(r)
N ,

(4.7)

which corresponds to the mixed elliptic boundary value problem (2.34) presented in sub-
section 2.3.1. If Γ

(r)
D or Γ

(r)
N is an empty set, the corresponding condition vanishes. Note

that the operators L, Tr, and T are all assigned with the subdomain superscript (r). This
emphasizes the fact that the coefficients involved in L and T (for instance the material
stiffness) can be different in each subdomain. In fact, it is assumed that these coefficients
are constant within each subdomain but can have jumps at the interfaces. Moreover, the
traces refer to the subdomain boundary Γ(r) and the outward normal vector incorporated
in the definition of T is defined with respect to Ω(r).

Considering the decomposition of the subdomain boundaries (4.3), it becomes obvious that
the problem statement (4.7) is not completely formulated because conditions for Tr(r) u(r)

and T (r)u(r) on the interfaces are lacking. Therefore, the so-called interface conditions are
formulated

u(r)
Γ

(y)−u(p)
Γ

(y) = 0 (4.8a)

q(r)
Γ

(y)+q(p)
Γ

(y) = 0 (4.8b)
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for y ∈ Γ(rp). The first of these conditions describes the continuity of the unknown u
across the interfaces, often referred to as continuity or compatibility condition. The latter
condition can be interpreted as an equilibrium condition at the interfaces (recall the method
of sections in basic structural mechanics). Actually, the equilibrium condition (4.8b) is a
consequence of the continuity condition (4.8a) because it can be obtained by applying
the respective traction operators T (r) and T (p) to the continuous solution u of the global
problem. Now, the fulfillment of problem (4.7) for every subdomain Ω(r), 1 < r < Ns, and
of the interface conditions (4.8) on the whole skeleton Γs is fully equivalent to the original,
unpartitioned formulation of the mixed elliptic boundary value problem (2.34).

A variational formulation similar to (2.52) is obtained by regarding the first interface con-
dition (4.8a) as a Dirichlet condition for the local subproblems:

Find u(r) with u(r)
Γ

= gD on Γ
(r)
D and u(r)

Γ
= u(p)

Γ
on all Γ(rp) such that

a(r)(u(r),v(r)) = `(r)(v(r)) in Ω
(r) (4.9)

for all v(r) with v(r)
Γ

= 0 on Γ
(r)
D and v(r)

Γ
= 0 on Γ(rp), p ∈ J(r).

Here, a(r) and `(r) are the restrictions of the bilinear form a and the linear form ` of the
corresponding global problem to the subdomain Ω(r). Moreover, v(r) is the test function
defined on the subdomain Ω(r) and obeys the same regularity requirements as u(r).

Boundary integral equations for the partitioned problem are obtained via the representation
formula for the r-th subdomain

u(r)(x) =
∫

Γ(r)

u∗(x,y)q(r)
Γ

(y)dsy−
∫

Γ(r)

(T (r)
y u∗)(x,y)u(r)

Γ
(y)dsy +

∫
Ω(r)

u∗(x,y) f (y)dy ,

(4.10)
which is derived in the same manner as the representation formula (2.56) by considering
only Ω(r). Taking the trace Tr(r) of the above formula gives the boundary integral equation
with side condition[(

C(r) +K(r)
)

u(r)
Γ

]
(x) =

(
V(r)q(r)

Γ

)
(x)+

(
N (r)

0 f
)

(x) x ∈Ω
(r)

u(r)
Γ

(x) = u(p)
Γ

(x) x ∈ Γ
(rp) , p ∈ J(r) .

(4.11)

The integral operators of this equation are defined as in subsection 2.5.2 but carry now the
subdomain superscript (r) in order to emphasize that the integrations are performed on Γ(r)

and Ω(r), respectively.

In the dynamic case, the situation is similar due to the assumption that the subdivision (4.1)



4.1 Partitioning of the Problem 91

does not depend on time. Then the local problems have the form(
ρ

(r)
o

∂ 2

∂ t2 +L(r)
)

u(r)(x, t) = f (x, t) (x, t) ∈Ω
(r)× (0,∞)

u(r)
Γ

(y, t) = gD(y, t) (y, t) ∈ Γ
(r)
D × (0,∞)

q(r)
Γ

(y, t) = gN(y, t) (y, t) ∈ Γ
(r)
N × (0,∞)

u(r)(x,0+) = u0(x) x ∈Ω
(r)

∂

∂ t
u(r)(x,0+) = u1(x) x ∈Ω

(r)

(4.12)

and the interface conditions (4.8) have to hold for all t ∈ (0,∞). The formulation of the
corresponding variational principle and boundary integral equations is straightforward and
unnecessary to be shown.

Recall that the variational principle (2.52) can also be obtained by minimization of the
potential Π(u) as defined, for instance, in equation (2.44) for elasticity. In general, one can
express this potential in terms of the bilinear form (2.48) and the external energy (2.50)

Π(u) =
1
2

a(u,u)− `(u) . (4.13)

By means of the interface condition (4.8), this potential can be decomposed and equipped
with a side condition

Π(u) =
Ns

∑
r=1

(
1
2

a(r)(u(r),u(r))− `(r)(u(r))
)

=
Ns

∑
r=1

Π
(r)(u)

G(u) :=
Ns

∑
r=1

∑
p∈J(r)

(
u(r)

Γ
−u(p)

Γ

)
=

Ns

∑
r=1

∑
p∈J(r)

G(rp)(u) = 0 .

(4.14)

The variational principle (4.9) is obtained by minimizing Π(u) among all admissible func-
tions u which directly fulfill G(u) = 0. Minimization problems under side conditions are
commonly tackled by Lagrange multiplier techniques [65]. Therefore, the augmented po-
tential or Lagrangian (not to be confused with L = K −U in Hamilton’s principle (2.42))
is introduced

L (u,λ ) :=
Ns

∑
r=1

Π
(r)(u)+ ∑

p∈J(r)

∫
Γ(rp)

λ
(rp)G(rp)(u)ds

 (4.15)

with the Lagrange multiplier λ defined on the skeleton Γs. Obviously, λ (rp) is the restric-
tion of λ to the interface Γ(rp).

Minimization of this Lagrangian functional yields the variational principle:

Find (u(r),λ ) with u(r)
Γ

= gD on Γ
(r)
D such that
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Ns

∑
r=1

a(r)(u(r),v(r))− `(r)(v(r))+ ∑
p∈J(r)

∫
Γ(rp)

λ
(rp)
(

v(r)
Γ
− v(r)

Γ

)
ds

= 0 (4.16a)

Ns

∑
r=1

 ∑
p∈J(r)

∫
Γ(rp)

µ
(rp)
(

u(r)
Γ
−u(r)

Γ

)
ds

= 0 (4.16b)

for all admissible (v(r),µ) with v(r)
Γ

= 0 on Γ
(r)
D .

Another test function µ corresponding to λ has been introduced in this formulation. Again
the extension to dynamic problems is omitted because the basic characteristics are iden-
tical and have to be valid through the course of time. A boundary integral formulation
for this approach is not so straightforward. It is here preferred, to employ the notion of
Dirichlet-to-Neumann maps for a method-independent formulation as introduced in the
next section.

The main difference between formulations (4.9) and (4.16) is the incorporation of the
interface conditions. Whereas in the first principle (4.9) the solution is sought in the space
of functions fulfilling the interface condition, the second principle (4.16) only requires a
weak fulfillment of the interface conditions, weighted by the Lagrange multiplier λ .

This difference becomes evident, when considering a finite element discretization of the
respective variational principles. For simplicity, the number of subdomains shall be two,
i.e., Ns = 2, and a pure Dirichlet problem is considered by setting ΓN = /0. The finite
element discretization procedure explained in section 3.1.2 applied to equation (4.9) results
in the system

A(r)u(r) = f(r)− r(r) , r = 1,2 ,

with some force residual r(r) acting at the interfaces due to isolation of the r-th subdomain.
Reordering the system according to degrees of freedom belonging to the interior of the
subdomain and the interface between the domains, the set of equations is obtained(

A
(r)
II A

(r)
IΓ

A
(r)
ΓI A

(r)
ΓΓ

)(
u

(r)
I

u
(r)
Γ

)
=

(
f
(r)
I

f
(r)
Γ
− r

(r)
Γ

)
, r = 1,2 (4.17)

with the subscripts I and Γ referring to the interior and the interface of the domains, re-
spectively. Obviously, r = (0, rΓ)> which has already been used in this expression. Note
the symmetry of this expression due to the symmetric blocks A

(r)
II and A

(r)
ΓΓ

and A
(r)
ΓI being

the transposed of A
(r)
IΓ . The discrete interface conditions are then [114]

u(1)
Γ
−u(2)

Γ
= 0

q(1)
Γ

+q(2)
Γ

= 0

}
→

{
u

(1)
Γ

= u
(2)
Γ

=: uΓ

r(1) + r(2) = fΓ−A
(1)
ΓI u

(1)
I +A

(2)
ΓI u

(2)
I +AΓΓuΓ = 0 .
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In the last equation, the abbreviations AΓΓ := A
(1)
ΓΓ

+ A
(2)
ΓΓ

and fΓ := f
(1)
Γ

+ f
(2)
Γ

have been
used. Altogether, one gets the global system of equationsA

(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI AΓΓ


u

(1)
I

u
(2)
I

uΓ

=

f
(1)
I

f
(2)
I
fΓ

 . (4.18)

Furthermore, the discretization process of equations (4.16) requires an approximation of
the Lagrange multiplier field on the skeleton

λh(y) =
Nλ

∑
j=1

λ jψ j(y) y ∈ Γs . (4.19)

As usual, the test function µ is taken from the space spanned by the trial functions of λh,
i.e., µ ∈ span{ψ j}. Then the final system of equations has the formA(1) 0 C(1)>

0 A(2) C(2)>

C(1) C(2) 0


u(1)

u(2)

λ

=

f(1)

f(2)

0

 . (4.20)

In this equation, λ denotes the collection of the degrees of freedom due to the approxima-
tion (4.19), λ[ j] = λ j, and the matrices C(r) have components

C(r)[ j, i] =±
∫
Γs

(Tr(r) ϕ
(r)
i )ψ j ds . (4.21)

The sign in this expression depends on a predefined numbering of the subdomains. For
instance, at the interface Γ(rp) the signs are such that for r < p the entries C(r)[ j, i] are
negative and the entries C(p)[ j, i] are positive and vice versa if r > p. These matrices C(r)

are henceforth referred to as connectivity matrices and considered in more detail in sec-
tion 4.4.

4.2 Dirichlet-to-Neumann Maps

The variational framework of the previous section is well-suited for finite element dis-
cretizations but is not sufficiently abstract to formulate a partitioned problem without
specification of the discretization method. Therefore, Dirichlet-to-Neumann maps are in-
troduced in this section. These map the Dirichlet data onto the Neumann data which obey
the regarded boundary value problem. At first, these maps are presented in a continuous
setting for elliptic boundary value problems and then their finite and boundary element
discretizations are given. Finally, discrete Dirichlet-to-Neumann maps are proposed for
the partitioned solution of hyperbolic boundary value problems.
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4.2.1 Elliptic boundary value problems

Considering the boundary integral operators from section 2.5.2, i.e.,

VqΓ = (C+K)uΓ−N0 f ,

the Dirichlet-to-Neumann map is easily established by

qΓ = V−1(C+K)︸ ︷︷ ︸
S

uΓ−V−1N0 f︸ ︷︷ ︸
N f

. (4.22)

S is the so-called Steklov-Poincaré operator and N f another Newton potential [106]. By
means of these operators, the elliptic boundary value problem (2.34) is replaced by the
statement

(SuΓ)(y) = qΓ(y)+(N f )(y) y ∈ Γ

uΓ(y) = gD(y) y ∈ ΓD

qΓ(y) = gN(y) y ∈ ΓN .

(4.23)

This is a totally equivalent formulation which is expressed only in terms of boundary
variables. In other words, the function u, which fulfills the mixed boundary value prob-
lem (2.34), also fulfills the problem statement (4.23) and vice versa. A variational principle
is easily established by means of integration by parts [65]

0 = a(u,v)− `(v)

=
∫
Ω

(Lu− f )vdx+
∫
Γ

qΓvΓ ds−
∫

ΓN

gNvΓ ds

=
∫
Γ

qΓvΓ ds−
∫

ΓN

gNvΓ ds .

(4.24)

The replacement of qΓ in this expression by the Dirichlet-to-Neumann map (4.22) then
directly gives the variational principle [106]:

Find uΓ with uΓ = gD on ΓD such that∫
Γ

(SuΓ)vds =
∫

ΓN

gN vds+
∫
Γ

(N f )vds (4.25)

for all v with v = 0 on ΓD.

Here, the test function v is only defined on the boundary Γ such that the subscript for the
trace can be omitted.

In view of the partitioned problem (4.7) with the interface conditions (4.8), the first vari-
ational problem is to find the solution among those functions which directly fulfill the
continuity condition across the interfaces:
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Find u(r)
Γ

with u(r)
Γ

= gD on Γ
(r)
D and u(r)

Γ
= u(p)

Γ
on Γ(rp) such that∫

Γ(r)

(S(r)u(r)
Γ

)v(r) ds =
∫

Γ
(r)
N

gN v(r) ds+
∫

Γ(r)

(N (r) f )v(r) ds (4.26)

for all v(r) with v(r) = 0 on Γ
(r)
D and Γ(rp), p ∈ J(r).

As before, the introduction of Lagrange multipliers facilitates the incorporation of the
interface conditions in a weak sense and allows for the variational principle:

Find (u(r)
Γ

,λ ) with u(r)
Γ

= gD on Γ
(r)
D such that

∫
Γ(r)

(S(r)u(r)
Γ

)v(r) ds

+ ∑
p∈J(r)

∫
Γ(rp)

λ
(rp)
(

v(r)− v(p)
)

ds =
∫

Γ
(r)
N

gN v(r) ds+
∫

Γ(r)

(N (r) f )v(r) ds (4.27a)

∑
p∈J(r)

∫
Γ(rp)

µ
(rp)
(

u(r)−u(p)
)

ds = 0 (4.27b)

for all (v(r),µ) with v(r) = 0 on Γ
(r)
D .

Physically speaking, the first equation (4.27a) describes the equilibrium of the r-th subdo-
main. Hence, the boundary tractions (or fluxes) due to internal strains and the contributions
from the neighboring domains have to be equal to the given Neumann datum gN and body
forces f . The second equation (4.27b) expresses the continuity of the unknown u across
the interfaces in a weighted form.

It remains now to show discrete representations of the operator S in order to formulate
a numerical approximation scheme for the partitioned problem. Such discretizations are
given in the next subsection.

4.2.2 Finite and boundary element realizations for static problems

The Steklov-Poincaré operator S as defined in equation (4.22) itself does not allow for
a discretization. But its action can be mimicked on the discrete level by considering the
finite or boundary element systems of equations.

At first, the finite element discretization of a full domain is regarded where the degrees of
freedom are ordered with respect to its location in the interior (subscript I) of the domain
or on the boundary (subscript Γ)(

AII AIΓ
AΓI AΓΓ

)(
uI
uΓ

)
=
(

fI
fΓ

)
. (4.28)
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Note that, despite the identical notation, there is a difference between this expression and
equation (4.17) in the sense that here the subscript Γ refers to Γ \ΓD and not only to the
interface to the neighboring domain. Condensation of the internal unknowns of this system
yields the equation (

AΓΓ−AΓIAII
−1AIΓ

)︸ ︷︷ ︸
SFE

uΓ = fΓ−AΓIAII
−1fI︸ ︷︷ ︸

gFE

. (4.29)

The matrix SFE is a finite element realization of the operator S. Since AII and AΓΓ are
symmetric matrices and AΓI is the transposed of AIΓ, this expression is symmetric. More-
over, S is a positive operator [107] and this finite element representation thus results in
a positive definite matrix SFE [106]. If uΓ is known, the interior degrees of freedom are
computable by means of the system

AIIuI = fI−AIΓuΓ . (4.30)

In case of a direct computation of SFE a factorization of AII has already been performed
so that the solution of system (4.30) only requires substitution steps and a matrix-vector
product.

Using the boundary element discretization introduced in subsection 3.1.3, the system of
equations for mixed boundary value problems is obtained,(

V −K̃
B

)(
q

uΓ

)
=
(

fD
fN

)
. (4.31)

Applying the solution procedure for this system, which has been described in section 3.4,
gives as an intermediate result the system

BV−1K̃︸ ︷︷ ︸
SBE

uΓ = fN−BV−1fD︸ ︷︷ ︸
gBE

. (4.32)

This representation of the Steklov-Poincaré operator S is nonsymmetric although the op-
erator itself is self-adjoint [106]. The loss of symmetry is introduced by the employed
representation (4.22) instead of (2.77) and due to the collocation method. By means of
a Galerkin projection, a symmetric representation of S is possible even when only the
first integral equation is used as shown by Steinbach [105]. Once the unknowns uΓ are
computed, the equation

Vq = K̃uΓ + fD (4.33)

delivers the solution of the unknown coefficients q. Again, in a direct solution procedure
the factorization of V has been already carried out in the computation of SBE.

Comparing equations (4.29) and (4.32), it becomes obvious that the framework of dis-
crete Dirichlet-to-Neumann maps provides a setting in which the approximate solution
of elliptic boundary value problems can be represented without specifying the underlying
discretization scheme.
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The two-domain Dirichlet problem at the end of section 4.1 is now considered again. The
different variational methods (4.26) and (4.27) are represented by means of the discretized
Steklov-Poincaré operators introduced above. The computation of the matrices S(r) is thus
carried out individually for each subdomain r = 1,2. Explicit requirement of continuity
across the interfaces as in the variational principle (4.26) gives the system

SuΓ = g (4.34)

with the abbreviations S = S(1) +S(2), uΓ = u
(1)
Γ

= u
(2)
Γ

and g = g(1) +g(2). The Lagrange
multiplier method (4.27), on the other hand, leads to the systemS(1) 0 C(1)>

0 S(2) C(2)>

C(1) C(2) 0


u(1)

u(2)

λ

=

g(1)

g(2)

0

 . (4.35)

Here, the matrices C(r) have the coefficients as defined in equation (4.21) for the finite
element discretization. In general, these matrices have the form

C(r)[ j, i] =±
∫
Γs

ϕ
(r)
i ψ j ds . (4.36)

Depending on the chosen discretization scheme, ϕ(r) refers to the boundary trace of the
finite element trial functions for the approximation of u in Ω or to the boundary element
trial functions in the approximation of uΓ on the boundary Γ.

The remarkable feature of the systems (4.34) and (4.35) is that the matrix S(r) represents
either a finite element discretization S

(r)
FE or a boundary element discretization S

(r)
BE of the

Steklov-Poincaré operator S. Therefore, the solution of the partitioned problem can be
formulated without specification of the employed discretization scheme.

4.2.3 Dynamic problems

So far, in this section only static boundary value problems have been considered. For such
problems, the underlying theory is significantly more developed (cf., e.g., Steinbach [106]
and Toselli and Widlund [114]) than in the dynamic case. To the author’s best knowl-
edge, the Steklov-Poincaré operators involved in Dirichlet-to-Neumann maps have not yet
been mathematically analyzed for the time-domain solution of hyperbolic initial bound-
ary value problems. Hence, in the context of these problems, only the discrete setting is
studied. Recall the system of equations resulting from the Newmark method applied to the
semi-discrete system of equations of the finite element discretization (3.23). For a single
domain Ω at time step n it has the form(

ÃII ÃIΓ
ÃΓI ÃΓΓ

)(
uI,n
uΓ,n

)
=
(

f̃I,n
f̃Γ,n

)
, (4.37)
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where the ordering according to interior and boundary degrees of freedom has already been
carried out. Due to the similarity of the structure of the static case (4.28) and this equa-
tion (4.37), the formulation of a discrete Dirichlet-to-Neumann map is easily established
by computing the Schur complement of the system matrix. Therefore,

S̃FEuΓ,n = g̃FE,n (4.38)

is the resulting equation with the abbreviations

S̃FE := ÃΓΓ− ÃΓIÃII
−1ÃIΓ and g̃FE,n := f̃Γ,n− ÃΓIÃII

−1f̃Γ,n . (4.39)

Equation (4.38) can be regarded as a discrete Dirichlet-to-Neumann map for the dynamic
problem. Since the Schur complement of a symmetric positive definite matrix is itself
symmetric positive definite [114], so is S̃FE.

The same procedure is applied to the boundary element discretization of dynamic systems.
There, the system of equations for the n-th time step has the form(

V0 −K̃0
B

)(
qn

uΓ,n

)
=
(

fD(n∆t)
fN(n∆t)

)
−

n

∑
j=1

(
V j K j

)(
qn− j

uΓ,n− j

)
=:
(

hD,n
hN,n

)
(4.40)

with the notation of equation (3.72). The column matrices hD,n and hN,n have been in-
troduced for a shorter notation and to stress the fact that the above system has merely a
constant left hand side matrix with changing right hand sides and thus a similar structure
as in the static case. The computation of the Schur complement yields the system

S̃BEuΓ,n = g̃BE,n (4.41)

and the components of it are the nonsymmetric matrix and the vector

S̃BE := BV0
−1K̃0 and g̃BE,n := hN,n−BV0

−1hD,n , (4.42)

respectively. With system (4.41) the dynamic Dirichlet-to-Neumann map is established for
a boundary element discretization.

The systems of equations (4.38) and (4.41) provide exactly what is needed to extend the
methodology for partitioned static problems of section 4.2.2 to dynamic problems. Al-
though a continuous formulation does not seem to be available, the similarity of discrete
static and dynamic systems suggests the discrete formulation of dynamic Dirichlet-to-
Neumann maps.

4.3 The FETI-framework

In the previous section, a variational framework for the method-independent formulation
of a partitioned boundary value problem by means of the Steklov-Poincaré operator has
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been presented. Moreover, it has been shown that on the discrete level the expressions can
be easily transferred to the treatment of dynamic problems. The following part is dedicated
to the discrete systems of equations and their solution procedure.

So far, two different approaches for the incorporation of the interface condition (4.8a) have
been presented. The first was the direct fulfillment of this condition and led to the varia-
tional principles (4.9) or (4.25), using the original boundary value problem or the Dirichlet-
to-Neumann map, respectively. This approach is usually referred to as a substructuring
method (cf., for instance, Przemieniecki [87]) and basically consists of assembling stiff-
nesses as it can be seen from the systems of equations (4.18) and (4.34) for the two domain
example. The alternative variational expressions (4.16) and (4.27) have become popular
due to the advent of the so-called FETI (finite element tearing and interconnecting) method
as introduced by Farhat and Roux [28]. This method provides a higher parallelism than
the classical sub-structuring approach and come up with very robust and efficient iterative
solution procedures. The literature on FETI is extensive, but the basic method is presented
in the publications of Farhat and Roux [28,29] and convergence proofs are given by Man-
del and Tezaur [69]. Many other good introductions are available but shall not be listed
here.

The idea of using the FETI-framework for boundary element discretizations goes back to
Langer and Steinbach, who at first analyzed this methodology for a pure boundary element
solver, thus coining the term BETI [61] (boundary element tearing and interconnecting).
Later, the same authors combined both methodologies to so-called coupled BETI/FETI
methods [62, 63].

One aim of this work is a relaxation of the continuity condition (4.8a) established by La-
grange multipliers. For this reason, only the methods arising from the saddle point prob-
lem (4.27) are considered and, therefore, a short introduction to the FETI algorithm is
given at first. Although its original version is expressed in terms of finite element stiffness
matrices [28], the starting point is here the discretized Steklov-Poincaré operator S(r) in ei-
ther its finite element (4.29) or boundary element version (4.32). At the subdomain level,
one has the equations

S(r)u
(r)
Γ

= g(r)− r
(r)
Γ

, (4.43)

for r = 1, . . . ,Ns, Ns being the number of subdomains, g(r) the boundary forces due to given
force terms and boundary conditions. The vector r

(r)
Γ

is the residual force due to isolation
of Ω(r). In fact, the introduced field of Lagrange multipliers λ is physically equivalent with
the interface tractions or fluxes and, therefore, by means of the connectivity matrices (4.36)
the residual in the interface equilibrium is expressed as

r
(r)
Γ

= C(r)>λ . (4.44)

This relation has already been employed in equations (4.20) and (4.35) and stems directly
from the variational principles involving the Lagrange multiplier field (see, again, equa-
tions (4.16) and (4.27)). Hence, the discrete equilibrium equation for the r-th subdomain
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is the Neumann problem

S(r)u
(r)
Γ

= g(r)−C(r)>λ . (4.45)

Assume, for the time being, that this expression is solvable for the interface unknowns,
i.e.,

u
(r)
Γ

= S(r)−1(
g(r)−C(r)>λ

)
(4.46)

is a valid. The continuity equation (4.8a), on the other hand, leads to the system of equa-
tions

Ns

∑
r=1

C(r)u
(r)
Γ

= 0 . (4.47)

In the FETI context, equation (4.45) is obtained after the tearing of the subdomains,
whereas equation (4.47) represents the interconnecting step. Inserting the local interface
unknowns (4.46) into the continuity expression (4.47), gives a system of equations for the
coefficients of the approximation of the Lagrange multiplier field

Fλ = d , (4.48)

where the following abbreviations have been introduced

F :=
Ns

∑
r=1

C(r)S(r)−1
C(r)> , F ∈ RNλ×Nλ

d :=
Ns

∑
r=1

C(r)S(r)−1
g(r) , d ∈ RNλ .

(4.49)

Recall that Nλ is the number of coefficients in the approximation (4.19). Note that the
matrix F is an assembly of flexibility matrices, contrary to the classical substructuring
where stiffnesses are added [28].

Once system (4.48) is solved for the unknown λ, the local interface degrees of freedom are
computable by means of equation (4.46) and these, in turn, determine the interior degrees
of freedom u

(r)
I , see equation (4.30), or the secondary unknown q(r), see equation (4.33),

in case of finite or boundary element systems, respectively.

In order to illustrate this procedure, consider again the two-domain example. Now subdo-
main 1 is handled by a finite element and subdomain 2 by a boundary element discretiza-
tion scheme. Then, the global system of equations is of the form

A
(1)
II A

(1)
IΓ

A
(1)
ΓI A

(1)
ΓΓ

C(1)>

V(2) −K̃(2)

B(2) C(2)>

C(1) C(2)




u

(1)
I

u
(1)
Γ

q(2)

u
(2)
Γ

λ

=


f
(1)
I

f
(1)
Γ

f
(2)
D

f
(2)
N
0

 .
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The first step consists in condensation of the internal unknowns u
(1)
I and secondary un-

knowns q(2) by computing the Schur complements of the subblocks for the first and the
second subdomain as shown in equations (4.29) and (4.32), respectively. The reduced
system is then S

(1)
FE C(1)>

S
(2)
BE C(2)>

C(1) C(2)


u

(1)
Γ

u
(2)
Γ

λ

=

g
(1)
FE

g
(2)
BE
0

 .

If the reduction process is continued by elimination of the local interface unknowns u
(1)
Γ

and u
(2)
Γ

, the system (4.48) is finally obtained.

In case of a dynamic problem, the situation is very similar. The final system of equations
reads

F̃λn = d̃n (4.50)

for the n-th time step and now the left and right hand sides are of the type

F̃ :=
Ns

∑
r=1

C(r)S̃
−1

C(r)>

d̃n :=
Ns

∑
r=1

C(r)S̃
−1

g̃
(r)
n .

(4.51)

Hence, at each time step the solution procedure is exactly the same as in the static case. If
the coefficients λn are known, the local unknowns u

(r)
Γ, can be computed and, finally, the

remaining unknown degrees of freedom, u
(r)
I,n or q

(r)
n .

4.3.1 Floating subdomains

In the previous outline of the FETI-framework, it has been assumed that the local prob-
lems (4.45) are uniquely solvable or, in other words, the inverse of S(r) exists. In gen-
eral, this is not the case. Consider for instance the solution of the Laplace equation on
a sub-domain which, due to the partitioning, does not have any share of the Dirichlet
boundary ΓD of the original problem. Then any u

(r)
R = c1, where c ∈ R and 1 is a vector

composed of ones only, leads to
S(r)u

(r)
R = 0 . (4.52)

The vector u
(r)
R is a member of the space R, as defined in equation (2.33a) containing

the nontrivial solutions of the homogeneous Neumann problem. Because of this, the ma-
trix S(r) has in the considered case a nontrivial kernel and R is its null space. u

(r)
R is the

eigenvector to its zero eigenvalue and a solution to the problem (4.45) can be specified
only up to a scalar times a constant vector.
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In the case of elastostatic problems, the situation is more involved. Consider the spacesR
for two- and three-dimensional problems, equations (2.33b) and (2.33c), respectively,
which contain translations and rotations, i.e., rigid body modes. Any u

(r)
R comprising a

linear combination of the basis vectors of R fulfills equation (4.52). Such a subdomain is
referred to as a floating subdomain.

In summary, two problems are posed by a floating subdomain. First, the inverse of S(r) can
not be computed and, second, the solution of equation (4.45) is not unique. Moreover, in
elastostatics, it is not straightforward to see if a subdomain has such rigid body modes. The
techniques presented below are mainly taken from the article of Farhat and Geradin [26]
who have thoroughly analyzed the problem of floating subdomains and provide a robust
scheme which is used in this work.

In order to keep notation simple, the task can be described as follows. The space of solu-
tions to the equation

Ax = b (4.53)

is sought, where A is a square matrix of size N×N and of rank N− k. Obviously, b has to
be in the range or image space of A, which is not trivially fulfilled for a singular A. Any
vector x that fulfills this equation is of the form

x = A+b+Nc , (4.54)

where A+ ∈RN×N is a generalized inverse of A, N∈RN×k contains a basis of the null space
of A and c ∈ Rk is a vector of arbitrary constants. It suffices here to request a generalized
inverse A+, which fulfills [28]

AA+A = A (4.55)

and is not unique, unless A has full rank. A concise overview of generalized inverses and
their construction can be found in the book of Ben-Israel and Greville [8]. Assume now
that the matrix A is already ordered in the form

A =
(

A11 A12
A21 A22

)
, (4.56)

where A11 ∈ R(N−k)×(N−k) has full rank N− k and is thus invertible. Moreover, N− k is
the rank of A and its subblock A11 if it holds [8]

A22 = A21A−1
11 A12 . (4.57)

One possible generalized inverse is easily given by

A+ =
(

A−1
11 0
0 0

)
, (4.58)

which obviously obeys the criterion (4.55) by the help of property (4.57). Furthermore,
the partitioning (4.56) directly gives an expression for the sought null space of A

N =
(
−A−1

11 A12
I

)
, (4.59)
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where I is the k× k-identity matrix. AN = 0 is easily verified, again by means of the
property (4.57).

It remains to determine the value k and construct an efficient method to compute the
generalized inverse A+ and the null space N. The first approach in the original FETI-
publication [28] by Farhat and Roux was a truncated factorization of the local stiffness
matrix. Performing a Cholesky or an LU-decomposition of the singular matrix A with total
pivoting, at a certain point a zero pivot appears. In theory, this happens at the (N− k)-th
step. If an LU-factorization by means of Gaussian elimination [36] is carried out in-place
(as, for instance, in the corresponding LAPACK routine [2]) and stopped when this zero
pivot is encountered, the matrix will have the form(

(L11\U11) L−1
11 A12

A21 A22

)
where L11U11 = A11 is the factorization of the non-singular matrix block A11 and the
triangular factors are stored in-place. Moreover, a backward substitution applied on the
k× (N− k)-block L−1

11 A12 yields the component A−1
11 A12 of the null space of A. Revers-

ing the sign of this block and replacing A22 by the k× k-identity matrix, gives finally the
desired results: a factorization of the non-singular part of A and a basis for its null space.

Unfortunately, this procedure is not robust as shown by Farhat and Geradin [26]. Using
a floating-point arithmetic, one cannot generally decide whether a pivot is simply small
due to a bad conditioning of the problem or effectively zero. Hence, it is mandatory to
determine the number k, i.e., the rank decay, a priori in a reliable fashion applicable to all
possible constellations. Obviously, one has k = 1 for potential problems on subdomains
without connection to the Dirichlet boundary and k = 3 (6) for elastostatic problems in two
(three) spatial dimensions on such totally disconnected subdomains. The problematic cases
are thus elastostatic problems on domains, which have some part of the Dirichlet boundary,
because then it is not straightforward to decide, how many rigid body modes are possible.
The key feature of the method of Farhat and Geradin [26] is to determine the value of k
by considering the given Dirichlet conditions for a subdomain. A brief description of the
method is given here, whereas it is referred to the original publication [26] for a complete
outline.

The infinitesimal rigid body movement of a body with respect to the origin of the coordi-
nate system is described by [35]

v(x) = v0 +ω×x . (4.60)

Here, v0 is the translation of the origin and ω the vector describing the infinitesimal ro-
tation of the considered point x around the origin. On the discretized geometry, the j-th
vertex x j undergoes a movement expressed by

v j = R jα j . (4.61)
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Denoting the number of possible rigid body modes by nr (nr = 3 in two and nr = 6 in three
space dimensions), the matrix R j is of size d×nr and α j a vector of length nr. It has the
entries

R2D
j =

(
1 0 x j2
0 1 −x j1

)
and R3D

j =

1 0 0 0 x j3 −x j2
0 1 0 −x j3 0 x j1
0 0 1 x j2 −x j1 0

 (4.62)

for two and three space dimensions, respectively, with x ji denoting the i-th component of
the vertex x j. The first step of the algorithm is to collect those rows of R j for all vertices x j,
which correspond to a prescribed Dirichlet datum and gather them in a matrix Z ∈Rnd×nr .
The number of coefficients prescribed by a Dirichlet datum has been denoted by nd . The
key point of this method is that the rank decay of Z equals the desired rank decay k of the
considered singular matrix A. The rank of Z can be easily determined by a SVD (singular
value decomposition, see Golub and van Loan [36]). Note that the application of an SVD
to the original matrix A would also yield the rank decay k and its generalized inverse A+.
But the problem remains to decide which singular value of A numerically represents zero.
The matrix A represents in the given case the discretized Steklov-Poincaré operator of a
certain subdomain and is full of error sources, whereas the entries of the matrix Z are exact
to machine precision. Therefore, one can expect a significant gap between singular values
larger than zero and the ones numerically representing zero. Additionally, the cost of the
SVD, which is a computationally expensive operation for the N×N-matrix A, is negligible
for the matrix Z since it is cubic in nr and only linear in nd [36].

The rank of Z is nr−k and once this number k is known, the factorization process described
above can be applied and truncated after N− k steps, a number now known a priori. In
summary, the algorithm contains the following steps:

• generate Z from the given Dirichlet data and compute its rank decay k,

• perform a LU-factorization with total pivoting (or a Cholesky factorization for a
symmetric positive definite A) on the matrix A ∈ RN×N which stops after N − k
steps,

• the upper left (N− k)× (N− k)-block now contains the factors L11 and U11 of the
non-singular block A11,

• the upper right block contains L−1
11 A12, which after a backward substitution with U11

gives the component A−1
11 A12 of the null space,

• reversing the sign of A−1
11 A12 and replacing the lower right block by the k×k-identity

matrix finally lets the right k columns of the original matrix contain the basis vectors
of the null space.

Going through these steps, a factorization of A, which mimics the action of its generalized
inverse A+, and a basis of the null space are obtained such that the solution space (4.54) of
equation (4.53) can be expressed.
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Remark 4.1. In order to avoid the computation of the null space, a so-called all-floating
method is proposed by Of [74], in which every subdomain is considered as totally dis-
connected such that always k = 3 (6) for two (three) space dimensions holds. Another
advantage of this approach is that Dirichlet boundary conditions can be considered in a
general form and, therefore, a remedy to the problem mentioned in remark 3.1 is provided.
See also the work of Park and Felippa [80], who describe different variational formula-
tions, where the possibility of disconnecting the Dirichlet boundaries is considered. ♦

Returning now to the original problem, i.e., the expression of the local interface un-
knowns u

(r)
Γ

of the r-th subdomain, one can state that

u
(r)
Γ

= S(r)+
(

g(r)−C(r)>λ
)

+N(r)α(r) . (4.63)

Now, S(r)+ is the generalized inverse of S(r) and coincides with its standard inverse if it
exists. N(r) is the corresponding null space which vanishes if k(r) = 0, i.e., the consid-
ered subdomain Ω(r) is not floating. The k(r) coefficients of the vector α(r) determine the
contribution of each rigid body mode contained in N(r) and are referred to as rigid body
mode amplitudes. Due to equation (4.63), another Nα = ∑

Ns
r=1 k(r) unknowns are intro-

duced into the global system and thus Nα additional equations are required. The original
statement (4.45) is

S(r)u
(r)
Γ

= g(r)−C(r)>λ

and this expression is only valid if the right hand side is in the range of S(r). Equivalently,
it has to be orthogonal to the left null space Ñ(r) of the matrix S(r) which implies

Ñ(r)>S(r) = 0 ⇒ Ñ(r)>
(

g(r)−C(r)>λ
)

= 0 . (4.64)

This equation is a discrete representation of the solvability condition (2.32) for the pure
Neumann problem as shown in subsection 2.3.1. Obviously, the left null space Ñ(r) of S(r)

is the (right) null space of its transposed S(r)>, S(r)>Ñ(r) = 0. In case of a symmetric
matrix, i.e., the finite element representation of S, the two null spaces coincide. Unfortu-
nately, the considered boundary element discretization of S results in a nonsymmetric ma-
trix. Nevertheless, S is a symmetric operator [106] and it can be expected that its boundary
element representation has the property that its left and right null spaces coincide. A math-
ematical basis of this assumption is lacking here, but the numerical experiments confirm
this idea.

System (4.64) thus gives in total the required Nα equations for the global system. The
global FETI-like system is now easily obtained by inserting the expressions (4.63) into the
constraint (4.47) and assembling the local solvability conditions (4.64). The final saddle
point problem is of the following form [28, 29](

F −G
−G>

)(
λ

α

)
=
(

d
−e

)
. (4.65)
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Now, the block matrices and vectors are defined by

F :=
Ns

∑
r=1

C(r)S(r)+C(r)> , F ∈ RNλ×Nλ

d :=
Ns

∑
r=1

C(r)S(r)+g(r) , d ∈ RNλ

G :=
(

C(1)N(1), . . . ,C(Ns)N(Ns)
)

G ∈ RNλ×Nα

e :=
(

g(1)>N(1), . . . ,g(Ns)>N(Ns)
)>

e ∈ RNα

α :=
(
α(1)>, . . . ,α(Ns)>

)>
α ∈ RNα

(4.66)

and λ contains the coefficients of the approximation (4.19), i.e., λ[i] = λi with the index
i = 1, . . . ,Nλ . A straightforward and direct approach to the solution of system (4.65) is
the factorization of F and the computation of the Schur complement. After solving for α,
the Lagrange multiplier coefficients λ are computed and the local interface unknowns are
determined by expression (4.63).

Independently of the Dirichlet conditions, the local problems (4.46) are uniquely solv-
able in the consideration of dynamic problems. Therefore, it suffices to consider sys-
tem (4.50).

Remark 4.2. The original FETI-method [28] was developed with the aim of reaching the
highest possible degree of parallelism. Therefore, a projected conjugate gradient method
is proposed as solver, involving only matrix-vector products of F which are easily carried
out in parallel. The local solution procedure can be carried out for each subdomain indi-
vidually, independent of the choice of the solver (direct or iterative). It depends on the size
of the local problems which choice is preferable. See the discussion by Farhat et al. [27]
for the respective choice of local and global solvers and optimal preconditioners. In this
work, the idea of FETI is not executed until this very end. Considering the boundary ele-
ment discretization procedure of section 3.1.3, the development of an iterative local solver
will be rather cumbersome (cf. also remark 3.7). The chosen nonsymmetric formulation
finally leads to a nonsymmetric matrix F such that even on the global level, an iterative
solution procedure is not easily applied. Furthermore, dynamic problems introduce an-
other dimension of discretization such that the computable problems are often comparably
small in terms of spatial degrees of freedom, especially in case of the boundary element
discretizations and thus a direct solver would prevail. In case of pure finite element dis-
cretizations, the application to dynamic problems is less costly in terms of the storage of
the time history and the extension of FETI to such problems has already been carried out
by Farhat and Crivelli [25] (see also Farhat et al. [24] for a discussion on this extension
and the development of a modified FETI algorithm especially tailored for such problems).
Subsuming, the development of an iterative and fully parallel solution procedure is beyond
the scope of this work but definitely an important further development of the proposed
methods. ♦



4.4 Connectivity Matrices 107

(a) Matching interfaces (b) Nonmatching interfaces

Figure 4.2: Matching and nonmatching interface discretizations.

4.4 Connectivity Matrices

Until now, the choice of trial functions for the approximation of the Lagrange multiplier
field (4.19) has not been specified. This choice is directly linked to the question whether
the different subdomain discretizations match at the respective interfaces. The original
FETI-method [28] is applied to a domain partitioning applied to a global discretization.
This means that at first the whole model is discretized by, for instance, finite elements
and then divided into subdomains such that connected groups of elements are assigned to
a subdomain. In this case, the discretizations match exactly at the interfaces. In many
other situations, one might find it desirable to allow for nonmatching or nonconforming
interface discretizations, where the discretizations do not necessarily match each other. In
figure 4.2, such interface situations are depicted, where figure 4.2(a) shows the matching
or conforming and figure 4.2(b) the nonmatching situation.

Nonconforming situations occur for instance, when the subdomains are discretized inde-
pendently by different work groups or different preprocessing tools. Moreover, during the
course of the numerical analysis mesh-refinements or simply changes in the local meshes
might be required such that the matching situation cannot be maintained. Other than that,
although the nodes of the respective discretizations coincide, different orders of the poly-
nomials used for the trial functions can occur. As an example, imagine that for one side
of the situation in figure 4.2(a) quadrilaterals are used instead of any two triangles. Then,
the nodes still coincide but not the approximations for the interface unknown. In fact, the
condition

u(r)
Γ

(y) = u(p)
Γ

(y) y ∈ Γ
(rp)

will be violated on most of the interface. On the contrary, if the interface nodes coincide
and the same trial functions are used for both subdomains, the above condition is fulfilled
everywhere on the interface.

The connection of nonconforming interface discretizations has many obvious advantages
and, therefore, has been analyzed thoroughly in the mathematical community. There are,
for instance, the monograph of Steinbach [106], where this problem is considered within
the analysis of different kinds of domain decomposition methods, and the monograph of
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Wohlmuth [119] with the analysis of so-called mortar methods. Mortar methods com-
monly use special trial functions for the Lagrange multipliers such that the connectivity
matrices become easily invertible and, therefore, one side of the interface unknowns can
be easily expressed by the other, see also the publication of Puso [88] with applications to
elasticity. From the engineering side, the work of Park et al. [81, 83] has to be considered.
These authors have worked out a three-field method (also analyzed by Steinbach [106]) by
introduction of another set of unknowns defined on the skeleton of the domain partitioning
and using Lagrange multipliers to link the interface degrees of freedom with the skeleton
degrees of freedom. In order to avoid the tedious interface integrations, they use point
constraints associated with these special degrees of freedom. Unfortunately, the placement
of these constraints is not trivial as discussed by the same authors [82].

One of the reasons to choose the FETI-framework presented in section 4.3 is that, be-
ing a Lagrange multiplier method, such nonconforming situations are easily incorporated.
Recall the approximation of the Lagrange multiplier field (4.19),

λh(y) =
Nλ

∑
j=1

λ jψ j(y)

with yet unspecified trial functions ψ j. The standard FETI-method [28] works with node-
wise constraints. This choice yields

C[ j, i] ∈ {−1, 0, 1} (4.67)

and the sign is adjusted such that

u(r)
h,Γ(y j)−u(p)

h,Γ(y j) = 0 y j ∈ Γ
(rp) .

Property (4.67) is computationally advantageous since matrix operation with theses Bool-
ean connectivity matrices do not really require floating-point arithmetic but only extrac-
tion operations. Nevertheless, the use pointwise constraints for the Lagrange multipliers
requires conforming interfaces. Moreover, one has to be cautious at so-called cross points,
i.e., points where more than two subdomains meet. Such a situation is shown in figure 4.3,
where the three subdomains Ω(r), Ω(p), and Ω(q) are connected at a vertex y j. In the
case of figure 4.3(a), obviously only two of the three Lagrange multipliers λ

(rp)
j , λ

(pq)
j ,

and λ
(qr)
j are linearly independent and the final matrix F is only positive semi-definite in

such cases [29]. In a careful implementation, such redundancies are avoided and a con-
stellation like in figure 4.3(b) results. Alternatively, Park et al. propose so-called localized
Lagrange multipliers as a remedy to this problem [81]. Nevertheless, the introduction of a
new set of skeleton unknowns and, especially, the problem of placing the point constraints
used by these authors seems to limit their approach enormously.

A different choice, for instance, is the approximation of the Lagrange multipliers with
piecewise constant trial functions associated with the elements τ j of the interface dis-
cretization. In the following, τ

(r)
j refers to an element of the spatial discretization by
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Ω(r)

Ω(p)

Ω(q)λ
(rp)
j

λ
(pq)
j

λ
(qr)
j

(a) Redundant Lagrange multipliers

Ω(r)

Ω(p)

Ω(q)λ
(rp)
j

λ
(qr)
j

(b) Non-redundant Lagrange multipliers

Figure 4.3: Cross point with redundant and non-redundant Lagrange multipliers.

boundary elements on an interface of the subdomain Ω(r) or to the corresponding face
of a volume element of a finite element discretization. In a conforming interface situa-
tion, the element τ

(r)
j coincides with some other element τ

(p)
j of the discretization of the

neighboring subdomain Ω(p). Note that the index j corresponds now to an element num-
bering on the skeleton Γs and not to the subdomain discretizations. Assuming r < p in
order to determine the sign of the connectivity matrices, the choice of constant Lagrange
multipliers yields

C(r)[ j, i] =−
∫

τ
(r)
j

ϕ
(r)
i ds =−

∫
τ

(p)
j

ϕ
(p)
k ds =−C(p)[ j,k] , (4.68)

where the shape functions ϕ
(r)
i and ϕ

(p)
k are defined with respect to the same vertex on Γs.

Henceforth, ψ j(y) = 1 if y is located in the j-th element τ
(r)
j and ψ j(y) = 0 otherwise. Such

connectivity matrices C(r) are mathematically denoted as mass matrices as the matrix B in
the boundary element discretization, recall equation (3.41), and are sparsely populated.
The disadvantage of this choice is the computational effort involved in the computation
of these matrix entries and the fact that the projections C(r)S(r)+C(r) now involve real
matrix-matrix products contrary to the standard FETI method. Using Lagrange multipli-
ers associated with interface elements instead of nodes circumvents the problem of cross
points directly. No redundancies are thus possible with this approach.

Going a step further, one introduces the arbitrary notion of slave and master by defining
that at the interface Γ(rp) subdomain Ω(r) is the slave and Ω(p) the master if r < p and vice
versa otherwise. The basic concept is now to let the slave domain completely determine the
Lagrange multiplier approximation. In other words, the underlying spatial discretization in
equation (4.19) is inherited from the slave side of the interface only without consideration
of the master side. Using again piecewise constant trial functions ψ j, the connectivity
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Ω(p)

Ω(r)

(a) Nodal forces

Ω(p)

Ω(r)

(b) Traction field — conform

Ω(p)

Ω(r)

(c) Traction field — noncon-
form

Figure 4.4: Different choices for the approximation of Lagrange multipliers.

matrices are for r < p

C(r)[ j, i] =−
∫

τ
(r)
j

ϕ
(r)
i ds (4.69a)

C(p)[ j,k] =
∫

τ
(r)
j

ϕ
(p)
k ds . (4.69b)

Whereas the slave side (4.69a) does not differ from the previous situation, the master
side (4.69b) contains now an integration of a trial function belonging to subdomain Ω(p)

over the interface element taken from Ω(r) and, therefore, the relation (4.68) is no longer
valid for a general situation. The details of carrying out this integration is discussed be-
low.

Figure 4.4 summarizes the above introduced choices of Lagrange multipliers at the inter-
face Γ(rp). In figure 4.4(a), the classical FETI approach is depicted, where the Lagrange
multipliers enforce nodal constraints and can be understood as nodal forces. With the same
physical interpretation, the figures 4.4(b) and 4.4(c) show Lagrange multipliers as traction
fields associated with the elements. The former is the conforming situation, where both
interface discretizations are still matching, and the latter presents a nonmatching interface.
Note that in this picture Ω(r) would be the slave and Ω(p) the master domain. As the
pictures already indicate, the nonconforming approach contains the conforming one and,
obviously, expression (4.69b) fulfills the identity (4.68) if τ

(r)
j = τ

(p)
j , i.e., the elements

coincide.

Remark 4.3. In this work the approximation of the Lagrange multipliers is entirely carried
out by piecewise constant functions. This choice is the simplest to be implemented and the
results shown in chapter 5 seem to justify this choice. Nevertheless, it has to be noted that
the instabilities occurring due to the choice of piecewise constant trial functions for qh,
as discussed in remark 3.3, are likely to occur here in the same way. Note the similarity
between the matrix B of equation (3.41) and the connectivity matrices as defined in equa-
tion (4.36). At least, in the extension of the method of this work to a domain decomposition
solver this problem should be avoided in order to have a robust method. ♦
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Ω(r) Ω(p)

(a) Piecewise plane interfaces

Ω(r) Ω(p)

(b) Curved interfaces

Figure 4.5: Piecewise plane (a) and curved (b) interfaces.

4.4.1 Nonconform interface integrals

The computation of the integrals of type (4.69b), i.e., the matrix entries of a nonconform
interface discretization, contains some delicate details to which the remainder of this sec-
tion is dedicated.

The interfaces of the computational domain shall be composed of plane regions. Therefore,
curved interfaces are excluded from the following considerations. In figure 4.5, such piece-
wise plane and curved interfaces are depicted. Whereas in the plane case of figure 4.5(a)
the geometry discretization is exactly placed on the interface lines, in figure 4.5(b) the gray
line indicates the curved interface which differs from the traverse of the piecewise linear
geometry approximation. In order to indicate the problem of such curved interfaces, the
lines of the respective discretizations are copied and superimposed in the in the middle
of figure 4.5(b) and clearly show the resulting voids and overlaps due to the nonconform
meshes.

Remark 4.4. Although there are methods to handle the voids and overlaps of interfaces
which are not plane, cf., e.g., Heinstein and Laursen [47], this case is excluded here for
the sake of simplicity. Nevertheless, it can be expected that with decreasing mesh size the
influence of the voids and overlaps is vanishing. It has to be noted that this exclusion can
be a severe restriction when considering a multiphysics situation, where the manifold of
material discontinuity is simply not plane. ♦

Recall now the expressions (4.69) for the computation of the matrix entries. The first of
these expressions, equation (4.69a), consists of the normal integration as carried out for in-
stance for the matrix B of the chosen boundary element method, compare equation (3.41).
A lot more subtle is the problem of computing the master-slave connectivity matrix ac-
cording to equation (4.69b). Now, the shape function ϕ

(p)
k has to be integrated over the

element τ
(r)
j , which belongs to a different spatial discretization.

This situation is depicted in figure 4.6, where on the one side, in figure 4.6(a), a one-
dimensional interface Γ(rp) is shown with the trial functions for the approximations u(r)

Γ,h,

u(p)
Γ,h, and λh. It becomes clear that the computation of C(r) is rather straightforward,
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(a) One-dimensional interface
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(b) Two-dimensional interface

Figure 4.6: One- and two-dimensional interfaces with nonconforming discretizations.

whereas C(p) needs some special consideration. At first, the support of the product ϕ
(p)
k ψ j

has to be determined, which is the overlap of the elements where the respective functions
are defined. Once this overlap is known, the integration is carried out easily for this one-
dimensional interface. The dark shaded regions are thus the contributions to the integral.
The situation in figure 4.6(b) is worse. To determine the overlap of the considered ele-
ments in three dimensions is not a trivial task and, moreover, the resulting section polygon
is of a very general type. For instance, the streaked regions in figure 4.6(b) are a slave and
a master element and their intersection, the dark shaded area, is a polygon with 5 vertices,
on which the integration is defined. Finally, one has to add, that the shape functions of the
master side unknown have to be expressed in the reference coordinate system of the slave
domain in order to apply a suitable quadrature rule. The two crucial steps, the computation
of the element overlap and performing the integration, are outlined in the following

Computation of the overlap. At first, the global coordinates of the considered elements
of the master and slave sides have to be expressed in the same reference coordinate sys-
tem. Consequently, the slave element determines the reference coordinates. Let Ω(M)

and Ω(S) denote the master and slave subdomains at the considered interfaces, respec-
tively. Accordingly, τ(M) and τ(S) are the considered elements on each subdomain. The
global coordinates y of a fixed element of the interface are now expressed through

y = y(ξ ) = ∑
i

ϕ
(S)
i (ξ (S))y(S)

i (4.70)

with the trial functions ϕ
(S)
i and vertices y(S)

i of the slave element τ(S). In order to deter-
mine the vertices y(M)

k of the master element τ(M) in terms of the slave coordinates, the
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system of equations is established

y(M)
k = ∑

i
ϕ

(S)
i (ξ (S)

k )y(S)
i

and has to be solved for the reference coordinates ξ
(S)
k . It is assumed here that it suffices

to consider a purely linear coordinate mapping such that the above equations read

T(S)
ξ

(S)
k = (y(M)

k −y(S)
0 ) . (4.71)

The matrix T(S) contains the tangent vectors of the slave element and y(S)
0 is a reference

point. In fact y(S)
0 is the vertex y(S)

1 in case of linear triangles and it will be the elements

midpoint, i.e., y(S)
0 = y(0), for line and quadrilateral elements. This expression (4.71) is

exact in case of linear line elements and triangles. It is still exact for bilinear quadrilaterals
if the shape of the element is a parallelogram because in that case the quadratic term ξ1ξ2
vanishes. The system (4.71) contains d equations for (d−1) unknowns and is thus overde-
termined. By premultiplication with the transposed of T(S) one obtains the least squares
system of (d−1)× (d−1) equations(

T(S)>T(S)
)

ξ
(S)
k = T(S)>(y(M)

k −y(S)
0 ) . (4.72)

Solving equation (4.72) repeatedly for the vertices y(M)
k yields the corresponding refer-

ence coordinates ξ
(S)
k . In case of a two-dimensional analysis, the reference system for the

interface is one-dimensional. Therefore, one has to simply check if the interval of local
coordinates ξ

(S)
k intersects with the reference interval (−1,1). The intersection is then the

desired overlap. A three-dimensional analysis has two-dimensional interfaces and, there-
fore, the coordinates ξ

(S)
k form a convex polygon in two dimensions. The task is now to

compute the intersection of this polygon with the polygon of the slave reference element.
The intersection of polygons is a common problem in computer graphics and in this field
often referred to as polygon clipping. Here, the General Polygon Clipper library by Alan
Murta is used which is an implementation of the algorithm of Vatti [116]. Consider again
the situation depicted in figure 4.6(b), where the intersection of a triangle and a quadri-
lateral element is shown by the dark shaded region. Finally, this overlap shall be denoted
by

τ̄ = {ξ (S) ∈ τ̂
(S) : y(ξ (S)) ∈ τ

(M)} , (4.73)

where τ̂(S) is the reference element of the slave side.

In this work, the possible overlap of every element on the master side with every element
on the slave side is considered. Obviously, if the resulting intersection polygon is empty,
this combination does not have to be regarded any further. In any case, this approach
has a quadratic complexity in terms of the number of elements on the interface. This
complexity could be reduced by a hierarchical clustering of the interface elements which
would allow to discard whole groups of combinations. Nevertheless, the computation of
the matrices C(r) is currently not crucial for the speed of the computation.
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ξ
(S)
1

ξ
(S)
2

Figure 4.7: Polygon intersection in the slave reference coordinate system and subdivision
into triangles.

Computation of the integral. By means of the above, the overlap τ̄ is determined and
it remains to carry out the integration

Ī :=
∫
τ̄

ϕ
(M)(ξ (S))

√
GS(ξ

(S))dξ
(S) , (4.74)

where the Gram determinant GS(ξ
(S)) is due to the coordinate transformation from y

to ξ
(S) as defined in equation (3.79). Two difficulties are still included in this expres-

sion. The overlap τ̄ is in a three-dimensional analysis a convex polygon of rather arbitrary
shape and the master shape function ϕ(M) is defined in the master reference system, not in
the slave reference coordinates.

Considering first the two-dimensional analysis, the evaluation of the integral is rather
easy. The overlap τ̄ is simply an interval contained in (−1,1). Moreover, in the com-
putation of this overlap the vertices of the master element τ(M) in reference coordinates
have been computed. These are the values of ξ

(S)
k and in case of linear ϕ

(M)
k , the Kro-

necker delta property (3.14) allows to uniquely determine the linear trial functions in this
coordinate system. A simple mid-point rule will be sufficient because the integrand of
expression (4.74) is linear.

In the three-dimensional case, the section polygon is the region of integration and has
m vertices. In the considered cases of triangles and quadrilaterals, one can restrict this
number by 3 ≤ m ≤ 8. The first step is thus to divide this polygon in triangles in order
to apply a quadrature rule. One could think of a subdivision into quadrilateral elements,
but the use of triangles is a lot easier. This is simply done by computing the midpoint of
the polygon and constructing m triangles which are formed by two adjacent vertices of the
polygon and this midpoint. Figure 4.7 shows such a situation with a reference triangle τ̂(S)

and the projection of the master quadrilateral into the slave reference system. The shaded
region is the computed intersection polygon and subdivided into triangles.

The master trial function ϕ(M) can be bilinear such that a simple mid-point rule is not
applicable. Here, a quadrature rule is used, which evaluates the integrand at the midpoints
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of the edges and uses weights of 1/3 times the area of the triangle (cf., e.g., Jung and
Langer for such a rule [52]). If an edge-midpoint of the considered sub-triangle is denoted
by ξ

(S)
g , the last problem to tackle is the evaluation of ϕ(M)(ξ (S)

g ), i.e., the master trial
function, which is defined on the reference element of the master subdomain, evaluated at
this point is given in the reference coordinates of the slave subdomain. In a first step, the
global coordinates corresponding to this point of evaluation are computed by

yg := y(ξ (S)
g ) = T(S)

ξ
(S)
g +y(S)

0 , (4.75)

simply using the coordinate transformation from local slave coordinates ξ
(S) to global

coordinates, which is uniquely defined anyway. This point yg can now be expressed in the
local master coordinates by a similar projection as used for the computation of the overlap,
see equation (4.72), now expressed for the master side(

T(M)>T(M)
)

ξ
(M)
g = T(M)>(yg−y(M)

0 ) . (4.76)

The solution of this 2× 2-system (remember that now only the three-dimensional case is
considered) gives the representation of the evaluation point ξ

(S)
g in the master reference

coordinate system, in which the trial function ϕ(M) is defined. In summary, the integral
under consideration (4.74) is expressed by

Ī =
m

∑
µ=1

∫
τ̄µ

ϕ
(M)(ξ (S))

√
GS(ξ

(S))dξ
(S) =

m

∑
µ=1

3

∑
g=1

ϕ
(M)(ξ (M)

g )
√

G(ξ (S)
g ) wg (4.77)

with wg being a third of the area of the µ-th sub-triangle τ̄µ and ξ
(M)
g the master coordi-

nate representation of the g-th edge midpoint of the µ-th sub-triangle obtained by expres-
sions (4.75) and (4.76).
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5 NUMERICAL RESULTS

In this chapter, the methods introduced in chapters 3 and 4 are applied to some examples.
At first, some typical verifications are conducted by comparing the numerical results with
analytical solutions. This is done by single domain analyses for the testing of the employed
finite and boundary element discretization methods and, afterwards, by using the coupled
algorithm proposed in this work. Some reference solutions are given in appendix B. But
before presenting these results, some details on the approximation methods and their im-
plementation have to be given. Moreover, the considered material data are summarized
below.

The finite element discretizations are all carried out with isoparametric bilinear quadrilater-
als and trilinear hexahedra for two- and three-dimensional problems, respectively (see, e.g.,
the book of Hughes [49] for the definition of such element types). The quadrature meth-
ods for the regular volume integrals according to section 3.3 are classical tensor-product
Gauss rules [55] based on two- and three-point rules for the integrals of the stiffness and
mass matrices, respectively. The solution of the finite element equation systems is done
using a sparse Cholesky factorization of the CHOLMOD package, see the algorithm of
Davis [18].

For the boundary element discretizations, on the other hand, surface line elements with
piecewise linear continuous trial functions for the approximation of uΓ and piecewise lin-
ear discontinuous functions for qΓ are used in two spatial dimensions. The same approx-
imation orders are employed for the triangular elements used for three-dimensional prob-
lems. The collocation points are placed as pointed out in remark 3.2 and the quadrature
is performed according to section 3.3. The line elements are treated by a 20-point Gauss
quadrature and a 42-point rule of order 14 is used for the triangles from the triangle quadra-
ture rules of Dunavant [22]. In case of the singular integration, the logarithmic quadrature
uses a four-point rule and the modified quadrature for the one-dimensional principal value
integration is of second order (the former can be found in the book of Press et al. [86] and
the latter in the thesis of Diethelm [19]). The employed Duffy coordinates, on the other
hand, boil down to a tensor-product rule which again is based on a one-dimensional 20-
point rule. As pointed out in remark 3.4, an adaptive quadrature rule would be of a great
benefit for the boundary element surface integrals. The FFTW library [32] is employed for
an efficient computation of the integration weights of the convolution quadrature method
as presented in subsection 3.2.2. The final system of equations is solved by using LAPACK
routines [2].

The connectivity matrices, which are of mass matrix type, are computed by the tech-
nique explained in subsection 4.4.1 using either a mid-point rule or a second-order triangle
quadrature for two or three spatial dimensions, respectively. As already mentioned in the

117
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same subsection, the polygon intersections are computed by means of the GPC polygon
clipping library.

Materials. The material models used for the numerical examples consist of an acoustic
fluid, modeled by the acoustic wave equation (2.9), and solids governed by the elasto-
dynamic equations (2.21). These materials with their respective properties are listed in
table 5.1.

Material ρ0 κ c
name [kg/m3] [N/m2] [m/s]

Air 1.2 1.4153 ·105 343.43

(a) Material model for the acoustic fluid

Material ρ0 λ µ c1 c2
name [kg/m3] [N/m2] [N/m2] [m/s] [m/s]

Soil 1884 1.3627 ·108 1.3627 ·108 465.82 268.94
Steel 7850 0 1.055 ·1011 5184.5 3666.0

Concrete 2400 9.7222 ·109 1.4583 ·1010 4025.4 2465.0

(b) Material models for the elastic solid

Table 5.1: Material data for the chosen acoustic fluid and the elastic solids. For the con-
struction of a purely one-dimensional problem, the material steel has no lateral
contraction (ν = 0).

The one-dimensional verification problems of subsections 5.1.1 and 5.1.2 are formulated
using the material steel without lateral contraction. Moreover in this specific case of ν = 0,
the two-dimensional elasticity cases plane stress and plane strain coincide.

5.1 Single Domain Solutions

5.1.1 Cantilever beam

The first problem to be considered is the cantilever beam loaded by a vertical force as
depicted in figure 5.1. Using the Bernoulli beam theory, this problem is described by the
equation (

EI
∂ 4w
∂x4

)
(x) = 0 ,
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w = (∂w/∂x) = 0 F = 1N
Ω = (0, `)

x1

x2

Figure 5.1: Cantilever beam loaded with a vertical force.

where w(x) denotes the vertical deflection of the beam with x ∈ (0, `) being the coordinate
along the main axis. E is the Young’s modulus and I the area moment of inertia, where
both are assumed to be constant. The boundary conditions are

w(0) =
∂w
∂x

(0) = 0 ,

(
EI

∂ 2w
∂x2

)
(`) = 0 and

(
EI

∂ 3w
∂x3

)
(`) = F .

The solution to this problem is easily obtained and has the form

w(x) =
F`3

6EI

(
3

x2

`2 −
x3

`3

)
. (5.1)

The validity of the Bernoulli beam theory is restricted to large values of `/b, where `
denotes the length and b the extension orthogonal to the main axis and in the plane of
deflection of the beam. In this example, a beam of 10 m length and 1 m width and height
is chosen such that `/b = 10 and, therefore, the Bernoulli theory is applicable.

A numerical solution to the above described cantilever beam problem was obtained by
solving the elastostatic equations (2.25) for two and three spatial dimensions using the
material steel from table 5.1 without lateral contraction and, therefore, allows for the one-
dimensional beam theory as a reference. The force F acting at x = ` is modeled by a
constantly distributed surface traction field over the surface in downward direction. There-
fore, the boundary value problem for d dimensions, d = 2, 3, has the form

−µ∇ · (∇u(x))− (λ + µ)∇(∇ ·u(x)) = 0 x ∈Ω = (0,10m)× (0,1m)d−1

uΓ(y) = 0 y ∈ ΓD =
{

x ∈Ω : x1 = 0
}

t(y) = gN(y) y ∈ ΓN = Γ\ΓD ,

(5.2)

where gN = −1 N/m2 in the vertical component at x1 = 10m is the only non-zero part of
the prescribed Neumann datum. At first the results of the finite element and then of the
boundary element discretizations are presented.

Finite element discretization. Different spatial discretizations are compared for both
dimensions. In two dimensions the coarsest mesh contains 1×10 quadrilaterals, which is
then refined to 2×20, 4×40, and 8×80 elements. Similarly, the four three-dimensional
meshes start with 1× 1× 10 and end with 8× 8× 80 hexahedra. The second finest mesh
with 4× 4× 40 = 640 elements is displayed in figure 5.2. In terms of the mesh size the
used meshes correspond to h = 1m, 0.5m, 0.25m, and 0.125m.
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Figure 5.2: Three-dimensional finite element discretizations of the cantilever beam with
640 hexahedra trilinear elements.
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(a) Two-dimensional simulation
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(b) Three-dimensional simulation

Figure 5.3: Finite element solutions of the deflection of the cantilever beam along the x1-
axis for different meshes.
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In order to judge the numerical outcome, the values of the vertical displacements along
the x1-axis, see figure 5.1, are plotted together with the solution of the Bernoulli beam
theory (5.1). In figure 5.3(a), the results for a two-dimensional simulation are displayed,
whereas figure 5.3(b) shows the results of a three-dimensional analysis. Clearly, the results
converge with decreasing mesh size to values close to the Bernoulli solution in both cases.
Although the Bernoulli beam theory underlies severe assumptions, e.g., no shear defor-
mation, the given length-width ratio `/b is large enough such that it certainly serves as a
good reference. For both dimensions, the two finer discretizations, i.e., for h = 0.25m and
h = 0.125m, give good results which mimic well the cubic shape of the deflection line.

Boundary element discretization. The same problem is now analyzed by the introduced
boundary element method. Again, two- and three dimensional simulations with different
meshes are carried out. In the plane strain situation, five different meshes are used which
have mesh sizes from h = 1m down to h = 0.0625m obtained by bisection. The three-
dimensional analysis uses three different meshes with surface triangles of sizes h = 1m,
h = 0.5m, and h = 0.25m. Note that in this case h refers to the lengths of the catheti of
isosceles right triangles. Figure 5.4 shows the finest of these three-dimensional discretiza-
tions with 1344 triangles.

The results of these simulations are displayed in figure 5.5. Clearly, in the both cases
of a two- and a three-dimensional analysis, the results get closer to the reference solu-
tion (5.1) of the Bernoulli beam theory. Especially the two-dimensional simulation dis-
played in figure 5.5(a) converges quickly and the finest discretizations with h = 0.125m
and h = 0.0625m mesh width, respectively, give very good results. In fact, these results
are better than even the finest discretization of the three-dimensional simulation shown in
figure 5.5(b). Due to the fact that the integration error in the boundary element approach
is not controlled, see also remark 3.4, the numerical outcome of a simulation with an even
finer mesh than depicted in figure 5.4 is useless and not shown here. The reduced approx-
imation error due to the finer mesh was no longer dominating the result but the integration
error. Moreover, the results seem to indicate that the condition of the system matrices
rapidly worsens with the mesh refinement.

5.1.2 Rod with longitudinal step load

Next, the dynamic problem as depicted in figure 5.6 is considered. This problem has
already been stated in the introductory example in subsection 1.2.2. It is a purely one-
dimensional problem and governed by the initial boundary value problem for the domain
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Figure 5.4: Three-dimensional boundary element discretizations of the cantilever beam
with 1344 triangles.
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(a) Two-dimensional simulation
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Figure 5.5: Boundary element solutions of the deflection of the cantilever beam along the
x1-axis for different meshes.
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u(t) = 0
F(t) = F0H(t)

Ω = (0, `)

x1

x2

Figure 5.6: Rod with impact force.

Ω = (0, `) with boundary Γ = {0, `}

ρ0

(
∂ 2u
∂ t2

)
(x, t)−κ

(
∂ 2u
∂x2

)
(x, t) = 0 (x, t) ∈ (0, `)× (0,∞)

uΓ(0, t) = 0 t ∈ (0,∞)
qΓ(`, t) = F0H(t) t ∈ (0,∞)

u(x,0) =
(

∂u
∂ t

)
(x,0) = 0 x ∈ (0, `) ,

(5.3)

where qΓ(x, t) denotes the outward axial force or acoustic flux at the boundary points. This
initial boundary value problem is the one-dimensional analogue to both the acoustic wave
equation (2.9) and the elastodynamic system (2.21) with the corresponding boundary and
initial conditions. Here, these both cases shall be considered and thus two- and three-
dimensional finite and boundary element analyses of an acoustic fluid and of an elastic
solid are carried out using the respective equations. The materials considered are air on
the one hand and steel on the other hand. In the abstract writing introduced in section 2.3,
the d-dimensional counterpart to problem (5.3) reads

ρ0

(
∂ 2u
∂ t2

)
(x, t)−κ(∇ ·∇u)(x, t) = 0 (x, t) ∈Ω× (0,∞)

uΓ(y, t) = 0 (y, t) ∈ ΓD× (0,∞)
qΓ(y, t) = gN(y, t) (y, t) ∈ ΓN× (0,∞)

u(x,0+) =
(

∂u
∂ t

)
(x,0+) = 0 x ∈Ω .

(5.4)

The domain Ω is now the cuboid (0, `)×(0,b)2 or the rectangle (0, `)×(0,b) for the three-
or two-dimensional representations, respectively. The Dirichlet boundary ΓD is the face at
x1 = 0 and the Neumann boundary ΓN comprises the rest of the surface. The prescribed
Neumann datum gN is zero everywhere but on the face opposite the Dirichlet boundary,
i.e., at x1 = `. In case of the fluid model it is simply an applied surface flux q along the axis,
whereas in case of elastodynamics it is a surface traction field t which is only non-zero in
the first component. In other words, on the face x1 = ` either q(·, t) = F0H(t)/b(d−1) or
t(·, t) = (F0H(t)/b(d−1),0,0)> is applied, depending on the model of a fluid or a solid,
respectively. Finally, the unknown u represents either the acoustic pressure p or the dis-
placement field u. For the elastic case, the compressibility κ is taken as the bulk modulus
of the material, i.e., κ = λ +2µ .

The geometric dimensions of this problem are henceforth fixed to ` = 3m and b = 1m.
Moreover, the force is of unit magnitude and, therefore, F0 = 1 N/m2. Various sizes of the
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time steps will be tested and it is common in dynamic analyses to consider the factor

χ :=
c∆t
h

(5.5)

to measure stability. This factor is usually called the Courant-Friedrichs-Lewy number
(CFL) in honor to their publication on the stability of finite difference schemes [15]. The
components of this factor are the velocity c at which information travels and the size of the
temporal and spatial discretizations, ∆t and h, respectively. In case of the acoustic fluid, c
is simply the speed of the pressure wave, c2 = κ/ρ0, and for elastodynamics the P-wave
is considered with the speed c2

1 = (λ + 2µ)/ρ0, see also equation (2.23). Returning to
the considered numerical example, the wave speeds c for the respective models are simply
taken from table 5.1.

The analytical solution of problem (5.3) is known and given in appendix B.1. As in the
case of the cantilever beam example, at first the results from a finite element discretization
with the Newmark time stepping scheme are discussed before considering the outcome of
the time-domain boundary element method based on the convolution quadrature method.
In most cases the tip displacement or pressure, represented by uΓ at x1 = `, is considered
which has the classical zigzag form. In the context of the boundary element method, also
the value of qΓ, i.e., the surface traction in longitudinal direction of the acoustic flux, at the
Dirichlet boundary x1 = 0 is taken into account.

Finite element discretization. The spatial discretization is similar to the previous can-
tilever beam example. Therefore, it is sufficient to refer to figure 5.3 for an image of a
three-dimensional discretization.

At first, a variation of the CFL number χ is carried out. Therefore, the mesh size is fixed to
h = 0.5m such that the discretizations have 12 quadrilaterals in the two-dimensional case
and 24 hexahedra in three dimensions. Considering first the acoustic fluid, i.e., air from
table 5.1, the wave speed is c = 343.43 m/s and the different time steps are chosen such that
the CFL number has values of χ ∈ {0.1,0.5,1.0,2.0}. The results of this variation of χ are
shown in figure 5.7 for a maximal time of t = 0.11s. The outcome of the two-dimensional
case is given in figure 5.7(a). Figure 5.7(b) contains the three-dimensional results for the
elastodynamic computation of steel. The significant wave speed is then the speed of the
pressure wave c1 = 5184.5 m/s. The other cases of a three-dimensional analysis of the
acoustic fluid and the two-dimensional analysis of the elastic solid are omitted in order to
avoid redundancies because the characteristics of the solutions are identical.

In both cases the worst result is obtained for the choice χ = 2.0. In fact, this is a violation
of the CFL condition [15], which states that the CFL number has to bounded such that
always 0 < χ ≤ 1. Physically speaking, a number χ > 1 would let information travel in
the numerical approximation scheme faster than the speed c at which it travels according
to the physical model. Nevertheless, this violation does not yield instabilities but simply
reduces the amplitudes and causes a phase shift as it can be seen from the results in fig-
ure 5.7. A similar deviation from the analytical solution is obtained for the limit choice



5.1 Single Domain Solutions 125

0 0.02 0.04 0.06 0.08 0.1
time t [s]

0

1e-05

2e-05

3e-05

4e-05

pr
es

su
re

 p
 [

N
/m

2 ]

analytical
χ = 0.1
χ = 0.5
χ = 1.0
χ = 2.0

(a) Two-dimensional simulation of an acoustic fluid

0 0.002 0.004 0.006
time t [s]

0

1e-11

2e-11

3e-11

di
sp

la
ce

m
en

t u
1 [

m
]

analytical
χ = 0.1
χ = 0.5
χ = 1.0
χ = 2.0

(b) Three-dimensional simulation of an elastic solid

Figure 5.7: Results of the finite element analysis of the dynamic rod — pressure of the
acoustic fluid in two dimensions and displacement of the elastic solid three
dimensions for the time interval 0 < t < 0.075s for different CFL numbers χ .

χ = 1. On the other hand, the smallest value of χ = 0.1 results in a slightly shaky curve
without causing instabilities. Recall that the underlying Newmark algorithm as presented
in subsection 3.2.1 is unconditionally stable for the choice of parameters β = 1

4 and γ = 1
2 ,

see also Hughes [49]. The best result among these different CFL numbers is obtained
for the value χ = 0.5 which gives a rather smooth curve with very little damping of the
amplitudes and a negligible phase shift.

The results of an analysis of the three-dimensional elastic solid are shown for a larger time
0.075s < t < 0.08s in figure 5.8(a). The discretization has the mesh size h = 0.5m and
now the five values of χ = 0.1 to χ = 0.5 are considered. Apparently, all of these values
yield a phase shift to the left and the curves are not very smooth. Moreover, the deviation
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Figure 5.8: Three-dimensional finite element simulation of the elastodynamic solid — tip
displacements in a larger time range for various CFL numbers χ .

from the maximal value, i.e., twice the static solution ustatic, and the minimal value of zero
is similar for all choices of χ . The whole range 0 < t < 0.08s is shown in figure 5.8(b) for
the CFL numbers χ = 0.1 and 0.5. In addition, the maximal displacement of the analytical
solution is plotted in order to emphasize the deviation of the numerical solution. One
cannot state that either of the two compared solution has a better behavior in this long
range consideration. The error in terms of the maximal displacement is significant in both
cases. Nevertheless, the considered discretization is rather coarse and refined meshes are
expected to yield better results as considered below.

It can be deduced from figure 5.7 that the difference between the two physical models,
acoustic fluid and elastic solid, and the difference between the two- and three-dimensional
analyses is not significant. Therefore, the following investigation deals only with three-
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Figure 5.9: Three-dimensional finite element simulation of the elastodynamic solid — tip
displacement in a specific time window with a fixed χ = 0.5 and different mesh
sizes.

dimensional elastodynamics, whereas the characteristics are expected to be similar for the
three other situations.

Finally, four different mesh sizes are compared with h = 0.0625m to h = 0.5m or, in
other words, with 12288, 1536, 192 and 24 elements. The results of this simulation are
depicted in figure 5.9 where the CFL number is fixed to χ = 0.5. In order to visualize the
difference in the obtained results, only the time window 0.0175s < t < 0.02s is selected.
The comparison of the four different spatial discretizations clearly shows that finer meshes
yield better results. Whereas the coarsest discretization with only 24 elements significantly
deviates from the analytical solution, the result of the finest mesh with 12288 elements are
hardly distinguishable from the reference solution. One can only observe differences at
the turning points, i.e., the minimal or maximal values. Considering the cost of these
simulations, one has to stress the fact that due to the fixed CFL number a refinement of
the spatial discretization also requires a refinement of the time grid. The finest mesh, for
instance, does not only have 512 times as many elements as the coarsest but also requires
eight times as many time steps for the simulation of the same time interval.

Boundary element discretization. In the following, the solution of the initial-boundary
value problem (5.4) by means of the boundary element method introduced in subsec-
tion 3.1.3 together with the convolution quadrature method of subsection 3.2.2 is analyzed.
The spatial discretization is similar to the one used in the previous cantilever beam exam-
ple, see figure 5.5. A lot of numerical analyses of three-dimensional elastodynamics for
the same problem have been carried out by Schanz [98]. Therefore, this case will not be
repeated here in detail. In summary, one can deduce from the work of Schanz that a value
of χ = 0.2 seems to be a good choice for different discretizations, whereas values signifi-
cantly smaller than 0.2 lead to severe instabilities throughout the course of the simulation.
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Figure 5.10: Tip displacement of the two-dimensional boundary element simulation of the
elastodynamic solid against time for different values of χ with fixed mesh
size h = 0.5m.

Since the basic characteristics of this problem are the same in the case of the acoustic fluid
and the elastic solid, it follows only the consideration of the two-dimensional elastody-
namic case.

Figure 5.10 shows the results for a fixed mesh size h = 0.5m, i.e., 16 elements, and vari-
ous time step sizes such that the CFL number varies through χ ∈ {0.05,0.1,0.2,0.5}. In
figure 5.10(a), the tip displacement u1 at x1 = ` for the range 0 < t < 0.018s is shown and
it can be seen that in case of the lowest value χ = 0.05 the solution becomes instable and
gets out of bound. The time window 0.01s < t < 0.015s is displayed in figure 5.10(b)
with the instable solution excluded for the sake of clarity. In this picture, one can clearly
see that a decreasing value of χ leads to better accuracy. This illustrates the dilemma of
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Figure 5.11: Surface traction at fixed end of the two-dimensional elastodynamic solid
against time for various χ and fixed mesh size h = 0.5m.

time-domain boundary element methods that, on the one hand, higher accuracy is obtained
by smaller time steps (as in any other time integration method), but, on the other hand, the
solutions becomes instable if the time step is below a certain threshold. It has to be noted
that the situation is even worse in classical time-domain boundary elements [70] where
this threshold is higher than in the considered convolution quadrature method, see also
Schanz [98–100] for such comparisons.

Figure 5.11 contains the results of the surface traction at the Dirichlet boundary for the
very same cases as in figure 5.10. Apparently, the instability for χ = 0.05 occurs a lot
earlier in the traction solution than in the displacement solution as it can be seen in fig-
ure 5.11(a). Moreover, the different solution curves shown in figure 5.11(b) for the time
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Figure 5.12: Tip displacement and surface traction of the two-dimensional elastodynamic
solid against time for a fixed CFL number χ = 0.2 and different mesh sizes.

window 0.01s < t < 0.015s show more clearly the respective qualities of the approxima-
tions for different CFL numbers. With decreasing χ the curves get closer to the piecewise
constant traction curve of the analytical solution.

Finally, in figure 5.12 the solution curves for different mesh sizes are displayed. The
tip displacement is shown in figure 5.12(a) and the corresponding surface tractions at the
Dirichlet boundary in figure 5.12(b). Obviously, the results get closer to the analytical
solution with decreasing mesh sizes. Whereas the displacement solutions in figure 5.12(a)
are very close to the analytical solution and only deviate at the minima and maxima, the
traction solutions still differ significantly from the reference curve. One can observe that
with decreasing mesh size the solution gets closer to the piecewise constant graph of the
analytical solution but oscillates greatly after each jump discontinuity. This behavior is
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Figure 5.13: Elastic halfspace with point force.

similar to the well-known Gibbs phenomenon occurring in Fourier series of such discon-
tinuous functions. The overshoots get more pronounced but also more concentrated to the
discontinuity with decreasing mesh size.

5.1.3 Elastic halfspace with surface point force

This subsection is concerned with the elastic halfspace in three dimensions, i.e., in the
following it holds

Ω =
{

x ∈ R3 : x3 > 0
}

and Γ =
{

x ∈ R3 : x3 = 0
}

. (5.6)

Moreover, the problem statement is such that ΓN = Γ and, consequently, ΓD = /0, which
is a pure Neumann problem. The prescribed surface tractions are zero everywhere but
at the origin, where a point force in direction of the x3-axis is acting. The prescribed
Neumann datum has thus the form gN = Fδ (x) with F = (0,0,F)>. Now, F is either a
constant value, F = F0, for the static case or a step function in time, F = F0H(t), for the
dynamic case. Note that the Dirac delta impulse δ (x) on a surface has the unit 1/m2 such
that

∫
Γ

δ (x)dx = 1 holds and the above Neumann datum is meaningful. The analytical
solutions to both static and dynamic cases are given in the appendix B.2. Since Ω is an
unbounded domain, the treatment of these problems by means of a standard finite element
discretization is inapt. The necessary truncation of the spatial discretization would intro-
duce some artificial boundary. Whereas in the static case the local effects around the point
source can still be represented by a finite element method with a large mesh, in dynam-
ics non-physical wave reflections would occur due to this artificial boundary. Therefore,
these reflected waves pollute significantly the numerical solution. The boundary element
method, on the other hand, does not suffer from this effect. Although the discretization of
the unbounded boundary Γ has to be truncated somewhere, the introduced artificial effects
are negligible. Hence, the above described problem is analyzed in the following using only
boundary element discretizations. See also the book of Givoli [34] for a discussion of the
applicability of numerical methods to problems with unbounded domains.
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Figure 5.14: Discretization of the surface patch with 800 triangles. The shaded area is
subjected to a vertical traction field.

Static case. The numerical solution of the elastostatic system of equations (2.25) is con-
sidered in this paragraph. Let F0 = 1N, i.e., the applied static force be of unit magnitude.
The surface Γ described by equation (5.6) is now represented by the surface patch

Γh =
{

x ∈ R3 : x3 = 0,(x1,x2) ∈ (−2.5m,2.5m)2}⊂ Γ . (5.7)

This computational surface patch is discretized by surface triangles and the four triangles
surrounding the origin are loaded by a constant traction field gN,h such that an equivalent
force of 1N is applied, i.e.,

∫
Γh

gN,h(y)dy = 1N. Three different meshes are used for the
simulation of this problem with h = 0.5m, 0.25m, and 0.125m, whereas the middle one
with 800 triangles is shown in figure 5.14. The chosen material is soil from table 5.1.

The outcome of the simulation with these three different meshes is displayed in figure 5.15
together with the analytical solution due to Boussinesq, see equation (B.3) in appendix B.
The markers actually represent the numerical values along a coordinate line x2 = x3 = 0
through the origin such that the radial displacements in figure 5.15(a) are in fact the com-
ponent u1 and the tangential displacements are the component u2. Approaching the origin,
the analytical solution has singularities of orderO(|x|−1) in both the radial and the vertical
displacement components and a decay behavior of the same order for large values of |x|.
The singularities around the origin cannot be reproduced by the numerical approximation,
because a point force is not representable by the trial functions used for the approximation
of the surface traction t. Therefore, the deviations between Boussinesq and boundary ele-
ment solution close to the origin are due to the numerical model itself. Nevertheless, the
finer the mesh size the closer the approximation gets to the poles at the singularities. This
fact is clearly shown in figures 5.15(a) and 5.15(c). A second modeling error is the rep-
resentation of the unbounded surface Γ by the bounded set Γh as given in equation (5.7).
It can be seen in figures 5.15(a) and 5.15(c) that the approximate solution values are very
close to the Boussinesq solution at distances 2.0m < |x| < 1.0m but deteriorates again
beyond |x| > 2.0m towards the end of the surface discretization. It can be expected that
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Figure 5.15: Boundary element solution of the static halfspace problem — radial, tan-
gential and vertical displacements along the coordinate line x2 = x3 = 0 and
−2.5m < x1 < 2.5m.
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Figure 5.16: Halfspace discretization with 160 triangles, loaded area and observation
point. Note that the coordinate system is shifted from the origin.

this deviation is the truncation error, i.e., the above mentioned error in the model due to
the truncation of the discretization.

A good measure of the error in the approximate solution is the result of the tangential
displacement shown in figure 5.15(b). Since the Boussinesq solution is exactly zero for
this displacement component, the numerical outcome represents the absolute error of it.
It can be seen that the two coarser meshes with h = 0.5m and h = 0.25m, respectively,
give results of around four orders of magnitude smaller than in the other components. The
maximal deviation for the finest mesh is even two orders of magnitude smaller and cannot
be distinguished from the zero line in the scale of figure 5.15(b).

In conclusion, one can state that the presented boundary element formulation is capable
of representing static problems with open surfaces. Only the results close to the necessary
mesh truncation are critical. It has to be noted that the modeling error at the point force
does not alter this statement because it is independent of the topology of Ω.

Dynamic case. In this paragraph, the applied point force varies now as a step function in
time. For this special case analytical solutions are available due to Pekeris [85] and given
in appendix B.2.2.

A surface discretization with 160 triangles is depicted in figure 5.16 where each triangle
has catheti of length h = 0.25m. A second spatial discretization is used which has 320
triangles and is obtained by bisection of the lengths in x1-direction. These two meshes
are referred to as mesh 1 and mesh 2 in the following. In figure 5.16, also the loaded
triangles are emphasized by the shaded region. At 4.0m distance from the center of this
loaded area the observation point is located at which the vertical and radial displacements
are detected.

Figure 5.17 contains the outcome of the boundary element simulation of this surface pulse
problem. The two meshes are compared with each other and each mesh has been used
with two different time steps such that χ = 0.2 and χ = 0.3. For the value of h in the
definition of the CFL number (5.5) the shorter side of the triangle is used, i.e., h = 0.25m
for mesh 1 and h = 0.125m for mesh 2. As a comparison the numerical solution curves
are plotted together with the analytical solution of Pekeris [85]. Like in the previous case
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Figure 5.17: Boundary element solution of the surface pulse problem — radial and vertical
displacements at the observation point shown in figure 5.16.
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of the elastostatic analysis of the halfspace, the point source cannot be modeled exactly
and it is represented by a constant traction load over a certain small area, see figure 5.16.
Therefore, one cannot expect the arrival of the pressure wave at the same time instant and
with the same sharp front as in the analytical model. Nevertheless, the numerical results
imitate well the arrival of the pressure wave as it can be seen in figure 5.17(a) and even
better in figure 5.17(b), where the critical region is magnified. After the pressure wave
the shear wave arrives at the observation point causing a slight decay in the radial and
vertical displacements. This is followed by the Rayleigh surface wave which contains a
singularity in the analytical limit as apparent in figures 5.17(a) and 5.17(c). Cf. the books
of Achenbach [1] and Graff [37] for the theoretical background of these three different
wave types. Although this large displacement phenomenon is reproduced well by the
numerical approximations, it causes a severe overshoot after the surface wave has passed.
The analytical solution coincides with the Boussinesq solution of the previous paragraph
for the vertical displacements right after the Rayleigh wave has passed and for the radial
displacements if time gets large, see also figure B.3. This static limit is reproduced by the
approximations only in the vertical components, whereas the radial component deviates
significantly from the static solution. Compare the right sides of figures 5.17(a) and 5.17(c)
for this effect.

Comparing the different discretizations, one can see that the difference between different
time steps for the same mesh size is only apparent in the magnification of figure 5.17(b).
But in the total view the curves for different time steps are very close to each other. The
difference between mesh 1 and mesh 2 is most significant in the way the singularity of the
Rayleigh wave is captured. The finer discretization of mesh 2 reproduces a lot better the
peak of this surface wave but also significant overshoots occur after the wave has passed.

In summary, the presented boundary element solution of the surface pulse problem repro-
duces well some basic characteristics of the physical phenomenon. The arrival and magni-
tude of the pressure wave front are approximated in a good manner. Moreover, the peak of
the surface wave is clearly visible, especially with the finer discretization. Nevertheless,
oscillations and overshoots occur after the different wave types arrive and significantly
pollute the solution.

5.2 Coupled Solutions

Finally, in this section the coupling algorithm presented in chapter 4 is applied to some
test cases. These are mainly verification examples as the cantilever beam and the rod with
longitudinal step load. A possible application of the proposed methodology are the static
and dynamic analyses of a foundation on an elastic halfspace which are presented in the
end of this section.
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Figure 5.18: Model of cantilever beam with 4 subdomains.

5.2.1 Cantilever beam

The first considered test case for the coupling algorithm of this work is the cantilever beam.
Again, the geometry has the length ` = 10m and width and height b = 1m. The consid-
ered material is steel from table 5.1. This beam is now represented by a d-dimensional do-
main Ω = (0, `)× (0,b)d−1 which is subdivided into four equally sized subdomains Ω(r),
r = 1, . . . ,4. This constellation is shown in figure 5.18 together with boundary conditions
of the model for the two-dimensional model. At the right end at x1 = ` a downward traction
field of constant value gN =−1 N/m2 is applied. Obviously, subdomains Ω(2) and Ω(4) are
floating and, therefore, undergo the solution procedure described in subsection 4.3.1.

At first, a two-dimensional analysis of this problem is considered. In any of the tested
cases, the subdomains Ω(1) and Ω(4) are treated by the same approximation method with
the same mesh width h1 := h(1) = h(4). Similarly, subdomains Ω(2) and Ω(3) are treated
equally and have h2 := h(2) = h(3) as the mesh size. Table 5.2 shows the mesh sizes and
total number of elements for boundary and finite element discretizations that are used in
this example. A fine and a coarse mesh are used for better comparison of the different

mesh h1 [m] N1,BEM N1,FEM h2 [m] N2,BEM N2,FEM

fine 1/10 110 250 1/8 88 160
coarse 1/6 66 90 1/8 88 160

Table 5.2: Parameters of fine and coarse meshes for the two-dimensional model.

cases. These two meshes are used for the three cases of a BEM-BEM coupling, i.e., using
a boundary element discretization for all subdomains Ω(1) to Ω(4), a FEM-FEM coupling
with a pure finite element approach for all subdomains, and the hybrid situation BEM-
FEM, where subdomains Ω(1) and Ω(4) are treated by a boundary element discretization
whereas for subdomains Ω(2) and Ω(3) the finite element method is used. One can easily
deduce from the mesh sizes given in table 5.2 that in every possible combination the inter-
faces are nonconforming. This is obviously done in order to point out that the methodology
works for such situations rather than really needing nonconforming interfaces for such a
simple test case.

Figure 5.19 shows the outcome for this two-dimensional analysis of the cantilever beam. In
order to make the differences between the solution curves more visible, only the coordinate
range 4m < x1 < 6m is displayed. The curves represent the line of deflection for x2 = 0,
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Figure 5.19: Two-dimensional coupled analysis of the cantilever beam — deflection in the
interval 4m < x1 < 6m.

i.e., the centerline of the domain, cf. figure 5.18. Considering each of the three coupling
strategies (BEM-BEM, FEM-FEM, or BEM-FEM), the finer mesh always yields better
results than the coarser mesh similar to the results shown in subsection 5.1.1. Obviously,
the results for a FEM-FEM coupling are closest to the reference solution of the Bernoulli
beam theory as in equation (5.1). The outcome of the hybrid approach, i.e., BEM-FEM, are
still better than in the pure BEM-BEM analysis. This fact is confirmed by the observations
made in subsection 5.1.1 which showed a better convergence of the finite element method
than the boundary element method for the given example.

The same analysis is now carried out for a three-dimensional model of the cantilever beam.
Again the three coupling cases (BEM-BEM, FEM-FEM, and BEM-FEM) are considered
each with a fine and a coarse discretization according to table 5.3. The combination BEM-
BEM with the fine discretization is not considered because it requires to much computer
memory.

mesh h1 [m] N1,BEM N1,FEM h2 [m] N2,BEM N2,FEM

fine 1/10 3200 2500 1/8 2048 1280
coarse 1/6 1152 540 1/8 2048 1280

Table 5.3: Parameters of fine and coarse meshes for the three-dimensional model.

In figure 5.20, the discretization for the BEM-FEM coupling with the coarse meshes due
to table 5.3 is depicted. The front side of the model is the side of prescribed homogeneous
Dirichlet data whereas on the (not visible) back side the downward traction field is applied,
compare figure 5.18. Clearly, the employed discretizations of each subdomain are noncon-
forming. The nodes at the interfaces do not match and, moreover, the approximation orders
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Figure 5.20: Discretization of the three-dimensional model with boundary and finite ele-
ments.
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Figure 5.21: Three-dimensional coupled analysis of the cantilever beam — deflection in
the interval 4.5m < x1 < 5.5m.

are different. The boundary elements are linear surface triangles and the restrictions of the
finite element shape functions to the surface are bilinear.

The outcome of the computations for this three-dimensional case is given in figure 5.21.
As before, the deflection curves are plotted together with the solution due to the Bernoulli
beam theory. Here, only the range 4.5m < x1 < 5.5m is shown such that the curves are
distinguishable. The same observations as in the two-dimensional case can be made. The
FEM-FEM coupling yields better results than the BEM-FEM coupling. The latter coupling
gives in turn better results than the pure boundary element approach. Of course, in all cases
the fine discretization performs better than the coarse discretization.

In summary, it can be stated that the proposed algorithm for the combination of bound-
ary and finite element discretizations with nonconforming interfaces works well for static
problems. Moreover, the treatment of floating subdomains due to Farhat and Geradin [26]
as outlined in subsection 4.3.1 is successful and the generalized inverses are computed
correctly. The considered case of the cantilever beam with the partitioning as shown in
figure 5.18 contains two non-floating subdomains and two totally floating subdomains.
Due to the fact that the subdomains Ω(2) and Ω(4) have no prescribed Dirichlet datum at
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Figure 5.22: Two-dimensional model for the rod with three subdomains.

all, the computation of the rank deficiency of the corresponding system matrices is trivial.
Both subdomains have the full set of three (six) rigid body modes for two (three) space
dimensions. Nevertheless, the method for detecting the rigid body modes works well as
it detected that the subdomains Ω(1) and Ω(3) are fully constrained and do not have any
rigid body modes. Finally, due to the partitioning in four subdomains at x1 = 5m, xd = 0,
cross points occur. Whereas these points need special considerations in the original FETI
method [29], the considered approach with Lagrange multiplier fields is robust with respect
to such situations.

5.2.2 Rod with longitudinal step load

In this subsection, the dynamic analysis of the problem already considered in subsec-
tion 5.1.2 and depicted in figure 5.6 is now treated by means of the presented coupling
strategy.

Two-dimensional elastodynamics. As a first test, the two-dimensional elastodynamic
system is considered with the somewhat arbitrary partitioning of the domain as shown
in figure 5.22. The material is steel from table 5.1 and the respective mesh size of sub-
domain Ω(r) is denoted by h(r). Denoting by x1 the coordinate direction of the load
and by x2 the orthogonal direction, the domain under consideration can be expressed as
Ω =

{
x ∈ R2 : 0 < x1 < 3m, 0 < x1 < 1m

}
and the three subdomains are as shown in fig-

ure 5.22. A boundary element analysis is now carried out for this partitioned problem
where the mesh sizes of each subdomain are chosen differently.

Two different spatial discretizations are used. The mesh sizes for the subdomains Ω(1)

and Ω(3) are fixed as h(1) = h(3) = 0.25m and with five elements at the interfaces. The
mesh size for the middle domain Ω(2) is varied. The coarse mesh refers to h(2) = 0.5m with
two elements at each interface and the fine mesh has a mesh size h(2) = 0.25m and four
interface elements. Note that the mesh sizes h(r) only refer lines parallel to the coordinate
axes, whereas at the interfaces it is adapted to fill the length. The time step is fixed to
∆t = 5.79 · 10−6 s such that the CFL number varies between χ = 0.12 and 0.24 for all
subdomains.
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Figure 5.23: Coupled boundary element simulation of the rod for two-dimensional elasto-
dynamics — tip displacements are given for points B, C, and D and surface
tractions at point A against time.

In figure 5.23, the outcome of the coupled analysis is plotted. The displacements are
given in figure 5.23(a) for the points B, C, and D, which correspond to x1 = 1.0m, 2.25m,
and 3.0m along the middle line, see figure 5.22. The results are very close to the analytical
solution due to appendix B.1 for both the coarse and the fine meshes. Moreover, the
solution curves are very smooth and noticeable reflections due to the artificial interfaces
do not appear. The traction plots in figure 5.23(b) show the typical oscillations as in case
of the single domain solutions of subsection 5.1.2. Similarly, the finer mesh shows a better
congruence with the analytical piecewise constant curve but has higher overshoots after
the jumps. Any alterations of the solution due to the interfaces are not visible.



142 5 Numerical Results

Three-dimensional acoustic fluid. Another test case is to model the rod as an acoustic
fluid in three spatial dimensions where the material air from table 5.1 is used. Therefore,
the domain Ω = (0,3m)× (0,1m)2 is subdivided into three cubes with side length of 1m
each. These subdomains Ω(1), Ω(2), and Ω(3) are then discretized independently. The outer
regions Ω(1) and Ω(3) are treated by a boundary element discretization with mesh size
of h(1) = h(3) = 0.25m such that the surfaces consist of 192 triangles each. The middle
domain is discretized by finite elements with h(2) = 0.5m and 0.2m such that two different
finite element meshes with 8 and 125 hexahedra, respectively, are used. Confer figure 5.24
for a visualization of the finer discretization. These two discretizations are referred to as
the coarse and the fine mesh.

The discretization shown in figure 5.24 is obviously nonconforming across the interfaces
and the coarser discretization with h(2) = 0.5m, too. Similar to the previous example,
several observation points are used. The pressure is plotted for the points B, C, and D
which are located along the middle axis x2 = x3 = 0.5m at positions x1 = 1m, 2m, and 3m,
respectively. The surface flux is considered at the point A with coordinate x1 = 0 on the
same axis as the other points. The time step is chosen fixed to ∆t = 1.46 · 10−4 s and
the CFL number in the boundary element subdomains Ω(1) and Ω(3) has thus the value
χ = 0.2. In the finite element subdomain Ω(2) this number is either 0.1 or 0.25 for the
coarse and the fine meshes, respectively.

In figure 5.25, the numerical outcome of this analysis is shown. Again, the results for the
first variable, i.e., now the pressure p, are very smooth and close to the analytical solution.
Also, the use of a finer discretization for the middle domain gives a significantly better
result than for the coarser one. Contrary to the results of the single domain approach of
subsection 5.1.2, the coarse mesh shows slight deviations from the analytical curve along
the straight parts and not only at the turning points. These shakes clearly denote spurious
reflections from the artificial interfaces. Nevertheless, this effect is not noticeable for the
finer finite element discretization. The surface flux q has a similar behavior as the tractions
in the elastodynamic example. The coarse mesh gives a rather bad agreement with the
piecewise constant analytical curve. The fine mesh yields results which are significantly
better but have the tendency to overshoot at the jumps.

Concluding these two examples, it can be stated that the proposed coupling algorithm is
useful for this dynamic problem. The propagation of the impulse wave is represented well
in the first variable, surface displacements or pressure. The damping is small and a phase
shift is not visible. Although worse, the outcome for the second variable, surface tractions
or flux, is still in good agreement with the analytical solution considering the complexity
of the numerical approximation of a piecewise constant function.

5.2.3 Elastic halfspace with foundation

As an example for possible applications of the proposed coupling method the static and
dynamic analyses of an individual footing on an elastic halfspace are considered. The
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Figure 5.24: Boundary element and finite element discretization of the dynamic rod.
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Figure 5.25: Coupled boundary and finite element solution for the three-dimensional
acoustic fluid — pressures at points B, C, and D and surface flux at point A
against time.
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Figure 5.26: Discretization of foundation and soil for the static analysis.

foundation is made of concrete and, therefore, assumes the material parameters as shown
in table 5.1. For simplicity, the foundation has a cuboid shape and is subjected to a verti-
cal, uniformly distributed load on its top surface. The elastic halfspace is taken as the soil
from table 5.1. In order to emphasize the potential of this method, the foundation is dis-
cretized by a finite element and the soil by a boundary element method. By means of this
choice, the respective advantages of each method are made use of, i.e., the boundary ele-
ment method for unbounded domains and the finite element method for bounded domains,
possibly occupied by a nonlinear material.

Static analysis. At first, the static case is considered. Therefore, the above described
problem of the individual footing is discretized as shown in figure 5.26. The patch of
triangles Ω(1) = (0,5m)2×{0} represents the halfspace. The cubical foundation occupies
the domain Ω(2) = (0,1.25m)2× (0,1m) with a shift in the origin such that it is centered
on the plane. The upper surface of the foundation is subjected to a constant pressure
of 0.64 N/m2. The mesh sizes are h(1) = 5/16 m and h(2) = 5/24 m for the triangular boundary
elements and the hexahedra finite elements, respectively. These sizes correspond to the
discretization shown in figure 5.26. Additionally, a finer mesh is used for the halfspace
with mesh size h(1) = 5/32 m, whereas the mesh of the finite element subdomain Ω(2) stays
the same. The expressions coarse and fine in figure 5.27 refer to these different values of
the mesh size h(1).

The outcome of this static analysis is given in the figures 5.27(a) and 5.27(b) for the vertical
and the horizontal displacements, respectively. The lines show the displacements of the
lower surface of the foundation and of the soil along the axis x1 = 2.5m on the surface
at x3 = 0. Both results somehow resemble the displacements of the elastic halfspace under
a point load for points away from the foundation, see subsection 5.1.3 and the Boussinesq
solution in appendix B.2.1. Moreover, the effects due to the truncation of the mesh are
visible at coordinates |x1| > 2.0m. Whereas the results for points on the surface away
from the foundation are almost identical for the coarse and the fine mesh, the subsidence
right under the foundation differs. But this difference is only at about 3 % of the values for
the coarser mesh and bigger deviations for even finer meshes are not expected.
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Figure 5.27: Static analysis of a foundation on an elastic halfspace — vertical and horizon-
tal displacements along the coordinate line 2.5m < x1 < 2.5m, x2 = x3 = 0.

In figure 5.27(a), an interesting effect becomes visible. Due to the choice of nonconform-
ing interfaces with piecewise constant Lagrange multipliers (cf. section 4.4 for details),
voids and overlaps appear at the interface between halfspace and foundation. Neverthe-
less, the integral ∫

Γ(12)

λ (u(1)
Γ
−u(2)

Γ
)ds

vanishes and, therefore, the interface condition (4.8a), i.e., u(1)
Γ

= u(2)
Γ

on Γ(12), is fulfilled
in an integral sense but not pointwise. Obviously, these nodal differences at the interface
diminish for finer meshes as it can be seen from comparing the outcome of the two different
meshes.
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Figure 5.28: Discretization of foundation and soil for the dynamic analysis.
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Figure 5.29: Dynamic analysis of a foundation on an elastic halfspace — vertical displace-
ments at different positions against time.

Dynamic analysis. Here, a similar geometrical constellation is assumed. The founda-
tion is now the cube Ω(2) = (0,1m)3 and placed on the surface patch which is given by
Γ(1) = (0,5m)× (0,2m)×{0}. The exact arrangement is shown in figure 5.28. The up-
per surface of the foundation is now subjected to a uniform load of value 1.0 N/m2H(t)
acting in downward direction, which is a unit step function in time. The surface patch is
discretized by 320 boundary elements, the foundation by 216 finite elements and the time
step of size 1.5 ·10−4 s.

Using the coordinate system shown in figure 5.28, the vertical displacements at the points
(1m,1m,−1m), (1m,1m,0), and (4.5m,1m,0), which correspond to the top midpoint of
the foundation, the bottom midpoint, and a point on the surface of the soil at 3.5m distance
from the latter point in x1-direction, respectively. The outcome of the numerical analysis
for these three points is given in figure 5.29. Obviously, the result for the bottom point of
the foundation is slightly shifted with respect to the results of the top point. On the one
hand, the impulse arrives later since it has to travel vertically through the foundation but
this horizontal shift is almost negligible due to the fast wave speed in the chosen concrete
(compare the respective wave speeds c1 of soil and concrete in table 5.1). On the other
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hand the vertical displacement of the top point has to be the sum of the vertical displace-
ment of the bottom point and the vertical compression of the foundation itself. The vertical
displacement at the third point away from the foundation is zero until arrival of the com-
pression wave similar to the analysis of the surface pulse in subsection 5.1.3. Similarly,
the arrivals of the shear wave and the slightly slower Rayleigh wave are noticeable. Then,
for lager times all three curves coincide with the corresponding static solution obtained by
solving the same problem as a static problem. The important feature of all three curves is
that no artificial wave reflection due to the interface or the mesh truncation can be detected.
This demonstrates clearly the potential of the combination of finite and boundary element
methods in the described manner.
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6 CONCLUSION

In the previous chapters, a method has been presented which allows for the coupled solu-
tion of static and dynamic problems. The considered physical problems are the Laplace
equation, elastostatics, the scalar wave equation, and elastodynamics. All of these models
are treated in two and three spatial dimensions and are embedded in mixed (initial) bound-
ary value problems. The employed numerical approximation schemes are the finite and
the boundary element method. In case of dynamic problems, the system of ordinary dif-
ferential equations resulting from the spatial discretizations by finite elements are treated
by the Newmark method. The temporal convolution equations stemming from the bound-
ary element discretization are integrated by means of the convolution quadrature method.
Both finite and boundary element methods are used in a coupled but independent way. For
this reason, the FETI-framework has been used which is a Lagrange multiplier method and
allows for a method-independent formulation. Then a local Dirichlet-to-Neumann map is
realized (at each time step) by the chosen discretization method of each subdomain. In
principle, any discretization method which is capable of realizing such a map is suitable
for this approach. Moreover, this framework is adapted such that nonconforming interface
discretizations can be handled. Several test examples have been analyzed first by a single
domain approach using either a finite or boundary element method. Finally, the proposed
coupling strategy has been used for these test cases and the quality of the results indicates
a good performance of the method.

A critical point of this work is the chosen boundary element method. The formulation
is here a nonsymmetric collocation method with a totally discontinuous approximation of
the Neumann data and indented collocation points. This method has been chosen, because
it works with the first integral equation only. In addition, it yields a structured system
of equations contrary to the common collocation approaches, where columns stemming
from the discretization of the single and double layer operators are mixed according to
the prescribed boundary conditions. The system of equations resulting from the chosen
formulation has thus a better condition than in the classical approach. Due to the indented
collocation points, the integral free term is always one half times the identity and the com-
plicated expressions of the classical approach are thus circumvented. On the other hand, it
requires a huge number of degrees of freedom because every Neumann datum is assumed
to be unknown. The placement of the collocation point is rather heuristic, see remark 3.2,
and the quadrature is not robust due to the quasi-singularity of the neighboring elements,
see remark 3.4. In the dynamic case, the treatment of the singular integrals requires a
subtraction of the singularity from the integral kernel which causes further problems as
pointed out in remark 3.5. An improvement of the latter problem would be the use of a
regularized double layer operator as indicated in remark 3.6. But such a representation
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is only established for closed surfaces and its application to open geometries as the con-
sidered halfspace problems has not yet been established. Finally, the approximation order
of the Neumann datum has to be piecewise linear in order to ensure the solvability of the
final system of equations. The natural choice of piecewise constant shape functions is thus
prohibited, see remark 3.3.

A remedy to most of these problems would be the use of a Galerkin method. First of all,
in a Galerkin method it is needless to worry about the placement of collocation points.
Moreover, in the singular integration adjacent elements are treated in a special way and,
therefore, the problem of quasi-singular integrals is not so significant. In addition, the
Galerkin method allows for a skew-symmetric formulation, see remark 2.1, in which the
choice of constant shape functions for the Neumann datum is feasible. The final system
matrix can be treated by a conjugate gradient solver after a suitable preconditioning. In
remark 3.7, it has been pointed out that the use of iterative solvers would significantly
speed up the solution process. This is true for both of the considered discretization meth-
ods. Nevertheless, such a Galerkin formulation with both integral equations is not directly
applicable to halfspace problems because the hypersingular operator is commonly regu-
larized by integration by parts. The same problem as with the regularized double layer
operator would occur as mentioned above.

Considering the coupling strategy, the presented method is using a direct solver for the dual
problem. Obviously, this is not the optimal choice for problems involving a high number of
Lagrange multipliers. As explained in remark 4.2, the use of a projected conjugate gradient
algorithm as in the classical FETI-methods would be the right choice. Nevertheless, a pre-
liminary to this is a symmetric formulation which implies the use of the skew-symmetric
Galerkin boundary element method as mentioned above. The choice of a direct solver has
next to its inherent robustness the advantage that a factorization of the left hand side can
be precomputed. In dynamic problems, where the spatial dimension is often rather small
and the left hand side does not change throughout the computation, a direct solver is thus
often preferred to an iterative solver.

The choice of piece-wise constant Lagrange multipliers in the coupling approach is the
most direct approach. Nevertheless, stability problems can occur due to this approxi-
mation as pointed out in remark 4.3. Although in the considered test examples no such
problems show up, the use of piecewise linear Lagrange multipliers is recommended for a
robust algorithm. Finally, in remark 4.4 the restriction to plane interfaces is brought up. A
workaround of this limitation is of course necessary for a broader range of applications.

In view of the above described troubles, the next step would be to make use of a symmet-
ric boundary element formulation. Then both the subdomain and the skeleton solutions
can be carried out by conjugate gradient methods. This would significantly speed up the
solution process and additionally allow for a full parallelization of the algorithm as in the
FETI-technology. Moreover, the employment of a fast boundary element method would be
of great benefit. On the finite element side, one could think of considering nonlinear ma-
terial behaviors or large deformations. An incorporation of nonlinear solution algorithms
would not alter the coupling framework. In the same manner, contact problems could be
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considered which are facilitated because nonconforming interfaces are allowed. Another
extension of this work goes into the direction of fluid-structure interaction which includes
acoustic problems. Especially this acoustic-structure coupling needs special consideration
because in the presented method the relaxed interface condition is based on the coupling
of Dirichlet data only. But acoustic-structure coupling requires the coupling of Dirichlet
with Neumann data across the interfaces.
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A FUNDAMENTAL SOLUTIONS

The fundamental solutions used in this work for the boundary integral equations and
boundary element discretizations are listed in the following. Note that due to the use
of the convolution quadrature method (see subsection 3.2.2), only Laplace transformed
fundamental solutions are needed for time-dependent analyses. All of the following func-
tions are taken from literature and adapted to the current notation. Possible references are
Gaul et al. [33] and Steinbach [107] (Laplace and elastostatic equations), Love [66] (elas-
tostatics), Kupradze [57] (three-dimensional elastostatics and -dynamics), Gaul et al. [33]
(acoustics), and Cruse and Rizzo [17] and Kausel [53] (elastodynamics). A concise list of
fundamental solutions for various operators is given by Ortner [77, 78].

Notation. All fundamental solutions are given for two and three spatial dimensions,
denoted by d = 2, 3. The points x,y ∈ Rd are finally the collocation and the integra-
tion points in the boundary element method and have components xi and yi, respectively,
for i = 1, . . . ,d. n is the unit outward normal vector located at the point y with compo-
nents ni. The complex Laplace variable is denoted by s. The considered fluid model has
the compressibility κ and the wave speed c as parameters. The elastic solid is described
by the Lamé parameters λ and µ and the wave speeds c1 and c2 of the compression and
shear waves, respectively. Cf. chapter 2 for the regarded material models. Finally, the two-
dimensional dynamic fundamental solutions are expressed in terms of modified Bessel
functions of the second kind and j-th order, represented by the symbol K j.

A.1 Statics

Abbreviations:

γ(x,y) :=


log

1
|y−x|

d = 2

1
|y−x|

d = 3

Σ(x,y)[i, j] := (y j− x j)ni(y)− (yi− xi)n j(y) i, j = 1, . . . ,d
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A.1.1 Laplace operator

Operators:

(L∆u)(x) :=−∆u(x) =−
d

∑
i=1

∂ 2u
∂x2

i

(T ∆u)(y) := lim
Ω3x→y∈Γ

[∇u(x)] ·n(y)

Fundamental solutions:

u∗(x,y) =
1

2(d−1)π
γ(x,y)

(T ∆
y u∗)(x,y) =− 1

2(d−1)π
(y−x) ·n(y)
|y−x|d

A.1.2 Elastostatics

Operators:

(LEu)(x) :=−µ∇ · (∇u(x))− (λ + µ)∇(∇ ·u(x))
=−(λ +2µ)∇ · (∇u)+ µ∇× (∇×u)

(T Eu)(y) := lim
Ω3x→y∈Γ

[
λ∇ ·u(x)I+ µ

(
∇u(x)+(∇u(x))>

)]
·n(y)

Fundamental solutions:

U∗(x,y) =
1

4(d−1)π
λ + µ

µ(λ +2µ)

[
λ +3µ

λ + µ
γ(x,y)I+

(y−x)(y−x)>

|y−x|d

]
(T E

y U∗)(x,y) = − 1
2(d−1)π

λ + µ

λ +2µ

1
|y−x|d

[
µ

λ + µ
Σ(x,y)

+
(

µ

λ + µ
I+d

(y−x)(y−x)>

|y−x|2

)
(y−x) ·n(y)

]

A.2 Dynamics

A.2.1 Acoustic wave equation

Operators:

(H∆u)(x, t) :=
(

∂ 2u
∂ t2 − c2L∆u

)
(x, t)

(Ĥ∆û)(x,s) = (s2û− c2
∆û)(x,s)
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Abbreviation:
z(x,y,s) :=

s|y−x|
c

Two-dimensional fundamental solutions:

û∗(x,y,s) =
1

2πκ
K0(z)

(κT ∆
y û∗)(x,y,s) =− 1

2π

(y−x) ·n(y)
|y−x|

K1(z)

Three-dimensional fundamental solutions:

û∗(x,y,s) =
1

4πκ

exp(−z)
|y−x|

(κT ∆
y û∗)(x,y,s) =

1
4π

(y−x) ·n(y)
|y−x|3

(1+ z)exp(−z)

A.2.2 Elastodynamics

Operators:

(HEu)(x, t) :=
(

∂ 2u
∂ t2 − c2

1∇∇ ·u+ c2
2∇×∇×u

)
(x, t)

(ĤEu)(x,s) =
(
s2û− c2

1∇∇ · û+ c2
2∇×∇× û

)
(x,s)

Abbreviations:

Σ1(x,y)[i, j] :=
ni(y j− x j)
|y−x|

i, j = 1, . . . ,d

zk(x,y,s) :=
s|y−x|

ck
k = 1,2

Abbreviations (two-dimensional):

χ1(x,y) := K0(z2)+
1
z2

(
K1(z2)−

c2

c1
K1(z1)

)
χ2(x,y) := K2(z2)−

c2
2

c2
1

K2(z1)

χ3(x,y) :=
2

|y−x|

(
c2

2
c2

1
K2(z1)−K2(z2)

)
− s

c2
K1(z2)

χ4(x,y) :=
2s
c2

(
K3(z2)−

c3
2

c3
1

K3(z1)
)

χ5(x,y) :=
1

|y−x|

[
2c2

2
c2

1
K2(z1)−2K2(z2)− z1

(
1−

2c2
2

c2
1

)
K1(z1)

]
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Abbreviations (three-dimensional):

ζk(x,y) :=
exp(−zk(x,y))
|y−x|

, k = 1,2

χ1(x,y) :=−
c2

2
c2

1

(
1
z2

1
+

1
z1

)
ζ1 +

(
1
z2

2
+

1
z2

+1
)

ζ2

χ2(x,y) :=−
c2

2
c2

1

(
3
z2

1
+

3
z1

+1
)

ζ1 +
(

3
z2

2
+

3
z2

+1
)

ζ2

χ3(x,y) :=
c2

2
c2

1

(
2+

6
z1

+
6
z2

1

)
ζ1−

(
3+

6
z2

+
6
z2

2
+ z2

)
ζ2

χ4(x,y) :=
c2

2
c2

1

(
−12− 30

z1
− 30

z1
−2z1

)
ζ1 +

(
12+

30
z2

+
30
z2

2
+2z2

)
ζ2

χ5(x,y) :=
[
−1− z1 +

c2
2

c2
1

(
4+

6
z1

+
6
z2

1
+2z1

)]
ζ1−

(
2+

6
z2

+
6
z2

)
ζ2

Fundamental solutions:

Û∗(x,y,s) =
1

2(d−1)πµ

(
χ1I−χ2

(y−x)(y−x)>

|y−x|2

)
(T E

y Û∗)(x,y) =
1

2(d−1)π

(
χ3

(y−x) ·n(y)
|y−x|

I+ + χ3Σ1(x,y)+ χ5Σ
>
1 (x,y)

+χ4
(y−x)(y−x)>

|y−x|3
(y−x) ·n(y)

)



B REFERENCE SOLUTIONS

B.1 Unit Step Loading of a Rod

The solution of the homogeneous one-dimensional wave equation

∂ 2

∂ t2 u(x, t)− κ

ρ0

∂ 2

∂x2 u(x, t) = 0,

on the interval Ω = (0, `) with the boundary conditions

u(0, t) = 0 and u(`, t) = F(t) = F0H(t)

and vanishing initial conditions, u(x,0) = 0 and (∂u/∂ t)(x,0) = 0, has been derived by
Graff [37] for a general loading F(t). In the given case of a step function F0H(t) as the
load variation in time, the solution can be found in the monograph of Schanz [98]. It has
the form

u(x, t) =
cF0

κ

∞

∑
k=0

(−1)k [(ct + x− (2k +1)`)H(ct + x− (2k +1)`)
−(ct− x− (2k +1)`)H(ct− x− (2k +1)`)]

(B.1)

q(x, t) = F0

∞

∑
k=0

(−1)k [H(ct− (2k +1)`+ x)+H(ct− (2k +1)`− x)] (B.2)

for the unknown u(x, t) and its derivative q(x, t) := κ(∂u/∂x)(x, t) with the one-dimension-
al wave speed c2 = κ/ρ0. A plot of these functions for specific values of the coordinate x
is given in figure B.1 where u0 refers to the static response u0 = F0/(κ`).

0 4 8 12
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0.5

1

1.5

2 x = l
x = l / 2

time ct/`

u(
x,

t)
/
u 0

0 4 8 12
0

0.5

1

1.5

2
x = 0
x = l / 2

time ct/`

q(
x,

t)
/F

0

Figure B.1: Analytical solution for the dynamic rod.
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B.2 Halfspace Solutions

In the following, the static and dynamic solutions for a point load on an elastic halfspace
is given. The domain is thus Ω = {x ∈ R3 : x3 > 0} and Γ = {x ∈ R3 : x3 = 0} denotes
the corresponding unbounded surface. The point load acts at the origin in direction of
the positive x3-axis, i.e., F = (0,0,F)> and F is a function of time in the dynamic case.
The rest of the surface is subjected to homogeneous Neumann boundary conditions and,
therefore, the prescribed surface traction is of the form gN = Fδ (x). Obviously, these
problems contain a radial symmetry and the solutions are thus best described by using
cylindrical coordinates. The displacement of the surface is then uΓ = (ur,0,uz)>, because
there is no displacement in tangential direction.

B.2.1 Static halfspace fundamental solution

In the static case, the problem of a halfspace subjected to a point load is the so-called half-
space fundamental solution and was first derived by Boussinesq. It is given, for instance,
in the book of Love [66]. Its components are for x3 = 0

ur(x) =− F
4π

1
λ + µ

1
|x|

(B.3a)

uz(x) =
F
4π

λ +2µ

µ(λ + µ)
1
|x|

(B.3b)

with the Euclidean distance |x|2 = ∑
3
i=1 x2

i . Obviously, the components in x1 and x2 direc-
tion can be obtained by multiplication of ur with the factors x1/|x| and x2/|x|, respectively.
In figure B.2, this solution is displayed for a specific choice of material parameters along
a coordinate line through the origin.

-2.0 -1.0 0.0 1.0 2.0

distance from source [m]

-3e-09

-2e-09

-1e-09

0

1e-09

2e-09

3e-09

u r [
m

]

(a) radial displacement

-2.0 -1.0 0.0 1.0 2.0

distance from source [m]

0

1e-08

2e-08

3e-08

u z [
m

]

(b) vertical displacement

Figure B.2: Analytical solution for the surface displacement in radial and vertical direction
for an isotropic material with λ = µ = 1.3626 ·108 N/m2 along the coordinate
line −2.5m < x1 < 2.5m, x2 = x3 = 0 for a point load F0 = 1N.
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B.2.2 Impulse point load on the surface

Here, the solution to the elastodynamic equations (2.21) for a halfspace under a point
load of type F(t) = F0H(t), i.e., a unit step function in time, is given. This problem
was first stated by Lamb [59]. Pekeris [85] derived a solution for the surface displace-
ments, i.e., for x3 = 0 only, under the restriction that λ = µ (or ν = 0.25) which will
be given here. For the sake of legibility, the following abbreviations are introduced, the
dimensionless time τ := c2t/|x| with the shear wave speed c2 =

√
µ/ρ0, and the three

factors κ2 := 2/(3τ2−1), γ2 := (3 +
√

3)/4, and C :=
√

3
2τF0/(16π2µ|x|). The vertical

displacement component is then

uz(x, t) =



0 0 < τ <
1√
3

− F0

32πµ|x|

[
6−

√
3√

τ2−1/4
−

√
3
√

3+5

1/2
√√

3+3−4τ2
+√

3
√

3−5

1/2
√√

3−3+4τ2

]
1√
3

< τ < 1

− F0

16πµ|x|

[
6−

√
3
√

3+5

1/2
√√

3+3−4τ2

]
1 < γ < γ

− 3F0

8πµ|x|
τ > γ .

(B.4a)

The radial displacements are expressed as

ur(x, t)=



0 0 < τ <
1√
3

C
[
6K(1/κ)+(6−4

√
3)Π((20−12

√
3)/κ

2,1/κ)−

18Π(8/κ
2,1/κ)+(6+4

√
3)Π((20+12

√
3)/κ

2,1/κ)
] 1√

3
< τ < 1

Cκ

[
6K(1/κ)+(6−4

√
3)Π((20−12

√
3),1/κ)−

18Π(8,1/κ)+(6+4
√

3)Π((20+12
√

3),1/κ)
]

1 < τ < γ

Cκ

[
6K(1/κ)+(6−4

√
3)Π((20−12

√
3),1/κ)−

18Π(8,1/κ)+(6+4
√

3)Π((20+12
√

3),1/κ)
]
+

F0τ

8πµ|x|
√

τ2− γ2
τ > γ .

(B.4b)
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In these expressions, the complete elliptic integrals of first and third kind, K(k) and Π(n,k),
respectively, appear which are defined by [85]

K(k) =

π/2∫
0

1√
1− k2 sin2

θ

dθ

Π(n,k) =

π/2∫
0

1

(1+n2 sin2
θ)
√

1− k2 sin2
θ

dθ .

Note that uz(x, t) for the last period t > γ|x|/c2 coincides with the vertical displacement
of the Boussinesq solution (B.3b) if µ = λ . The same holds for the radial component for
large times, i.e., the limit limt→∞ uz(x, t) is equal to the static solution (B.3a). The plots in
figure B.3 show these radial and vertical displacement components together with the static
solution due to Boussinesq.

0 0.002 0.004 0.006 0.008 0.01

time t [s]
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(a) radial displacement
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(b) vertical displacement

Figure B.3: Analytical solution for the surface displacement in radial and vertical direc-
tion for an isotropic material with λ = µ = 1.3626 · 108 N/m2 at the distance
|x|= 1m from the point load of magnitude F0 = 1N.
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