
Pattern representation and recognition with
accelerated analog neuromorphic systems

M. A. Petrovici†‡ S. Schmitt† J. Klähn† D. Stöckel† A. Schroeder†
G. Bellec‖ J. Bill† O. Breitwieser† I. Bytschok† A. Grübl† M. Güttler† A. Hartel† S. Hartmann§ D. Husmann† K. Husmann†

S. Jeltsch† V. Karasenko† M. Kleider† C. Koke† A. Kononov† C. Mauch† P. Müller† J. Partzsch§ T. Pfeil† S. Schiefer§
S. Scholze§ A. Subramoney‖ V. Thanasoulis§ B. Vogginger§ R. Legenstein‖ W. Maass‖ R. Schüffny§ C. Mayr§ J. Schemmel† K. Meier†

† Heidelberg University, Kirchhoff-Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg
‡ University of Bern, Department of Physiology, Bühlplatz 5, CH-3012 Bern

§Technische Universität Dresden, Chair of Highly-Parallel VLSI-Systems and Neuromorphic Circuits, D-01062 Dresden
‖Graz University of Technology, Institute for Theoretical Computer Science, A-8010 Graz

Abstract—Despite being originally inspired by the central
nervous system, artificial neural networks have diverged from
their biological archetypes as they have been remodeled to fit
particular tasks. In this paper, we review several possibilites
to reverse map these architectures to biologically more realistic
spiking networks with the aim of emulating them on fast, low-
power neuromorphic hardware. Since many of these devices em-
ploy analog components, which cannot be perfectly controlled,
finding ways to compensate for the resulting effects represents
a key challenge. Here, we discuss three different strategies
to address this problem: the addition of auxiliary network
components for stabilizing activity, the utilization of inherently
robust architectures and a training method for hardware-
emulated networks that functions without perfect knowledge of
the system’s dynamics and parameters. For all three scenarios,
we corroborate our theoretical considerations with experimental
results on accelerated analog neuromorphic platforms.

I. INTRODUCTION

Artificial neural networks (ANNs) rank among the most
successful classes of machine learning models, but are –
superficial similarities to sensory processing pathways in
cortex notwithstanding – difficult to map to biologically
realistic spiking neural networks. Nevertheless, we argue that
such a reverse mapping is worthwhile for two reasons. First, it
could help us understand information processing in the brain
– assuming that it follows similar computational principles.
Second, it enables machine learning applications on fast,
low-power neuromorphic architectures that are specifically
developed to mimic biological neuro-synaptic dynamics. In
this manuscript, we discuss several ways to answer what
we consider to be a key challenge for neuromorphic archi-
tectures with analog components: Is it possible to design
spiking architectures and training methods that are amenable
to neuromorphic implementation and remain functionally
performant despite substrate-inherent imperfections?

More specifically, we review three different approaches
[1]–[3]. The first two are based on recent insights about
how networks of spiking neurons can be constructed to
sample from predefined joint probability distributions [4],
[5]. When these distributions are learned from data, these
networks automatically build an internal, generative model,
which is then straightforward to use for pattern recognition
and memory recall [6]. Practical problems arise when the

hardware dynamics and parameter ranges are incompatible
to the target specifications of the network, as these inevitably
distort the sampled distribution. The first approach involves
the addition of auxiliary network components in order to
make it robust to hardware-induced distortions (Sec. II). The
second one restricts the network topology in a way that
endows it with immunity to some of these effects (Sec. III).
We demonstrate the effectiveness of both these approaches
on the Spikey neuromorphic system [7].

The third strategy maps traditional feedforward architec-
tures, trained offline with a backpropagation algorithm, to
a network of spiking neurons on the neuromorphic device
(Sec. IV). Here, the key to good performance is an additional
learning phase where parameters are trained on hardware in
the loop, while using the abstract network description as an
approximation for the parameter updates. We show how this
approach can restore network functionality despite having
incomplete knowledge about the gradient along which the pa-
rameters need to descend. These experiments are performed
on the BrainScaleS neuromorphic system [8].

While our networks are small compared to those used in
contemporary machine learning applications, they showcase
the potential of using accelerated analog neuromorphic sys-
tems for pattern representation and recognition. In particular,
the used neuromorphic systems operate 104 times faster than
their biological archetypes, thereby significantly speeding up
both training and practical application.

II. FAST SAMPLING WITH SPIKES

Following [4], [5], neural network activity can be inter-
preted as sampling from an underlying probability distribu-
tion over binary random variables (RVs). The mapping from
spikes to states z = (z1, . . . , zk) is defined by

z
(t)
k =

{
1 if tsk < t < tsk + τref ,
0 otherwise , (1)

where tsk are spike times of the kth neuron and τref its abso-
lute refractory period (Fig. 1 A). When using leaky integrate-
and-fire (LIF) neurons, Poisson background noise is used
to achieve a high-conductance state, in which the stochastic
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Fig. 1. Sampling with LIF neurons. (A) Exemplary membrane potential
traces and mapping of refractory/non-refractory neuron states to states 1/0
of binary RVs. (B) Exemplary structure of a BM. A subset of 2 units
(z1, z2) with biases (b1, b2) (green) and connected by weights w12 = w21

(blue) is highlighted to exemplify the neuromorphic network structure in
subplot C. (C) Sketch of sampling subnetworks representing binary RVs.
Each subnetwork consists of a principal LIF neuron (black circle) and
an associated synfire chain that implements refractoriness (red synapses),
and coupling between sampling units (blue synapses). (D) Exemplary spike
activity of a sampling unit and membrane potential of its PN. (E) Target
(blue) vs. sampled (red) distribution on the Spikey chip. (F) Evolution of the
Kullback-Leibler divergence between the sampled and the target distribution
for multiple experimental runs. Time given in biological units.

response of a single neuron is well approximated by a logistic
activation function

p(zk = 1) = σ
(
[ūk − ū0k]/α

)
, (2)

where σ(·) is the logistic function and ūk represents the
noise-free membrane potential of the kth neuron. The param-
eters ū0k (bias parameter determining the inflection point) and
α (slope) are controlled by the intensity of the background
noise. With appropriate settings of synaptic weights wij and
bias parameters ū0k, these networks can be trained to sample
from Boltzmann distributions

p(z) ∝ exp[−E(z)] = exp
[
zTWz/2 + zT b

]
, (3)

where the weight matrix W and the bias vector b can
be chosen freely. This enables the emulation of Boltzmann
machines (BMs) with networks of LIF neurons (Fig. 1 B).

A core assumption of the neural sampling framework is
that the membrane potential uk of a neuron reflects the state
z\k of all presynaptic neurons at any moment in time:

uk(z\k) =
∑n
j 6=kWkjzj + bk . (4)

In particular, this requires that all neurons instantaneously
transmit their states (spikes) to all their postsynaptic part-
ners. In any physical system, this assumption is necessarily
violated to some degree, since signal transmission can never

be instantaneous. In the particular case of accelerated neu-
romorphic hardware, synaptic transmission delays become
even more problematic, as they can be in the same order of
magnitude as the state-encoding refractory times themselves.
Furthermore, the required equivalence between post-synaptic
potential (PSP) durations and refractory states (1,4) can be
violated if either of these are unstable. On Spikey, for exam-
ple, refractory times have relative spike-to-spike variations
στref/τref between 2 % and 20 %. These two kinds of timing
mismatch pose a fundamental problem to the implementation
of spiking BMs in accelerated analog substrates.

Here, we alleviate the issue of substrate-induced timing
mismatches by using a recurrent network structure that rep-
resents each RV with a small subnetwork, called a sampling
unit. The subnetworks are built such that refractory times
can be well controlled and, in addition, intra-unit refractory
states and inter-unit state communication across the network
are inseparably coupled (Fig. 1 C).

Sampling units consist of a single principle neuron (PN)
and a small synfire chain of excitatory (EPs) and inhibitory
populations (IPs). The EPs of each stage project to both pop-
ulations in the following stage, thereby relaying an activity
pulse in the forward direction. The IPs project backwards,
ensuring that neurons from previous stages only spike once.
Additionally, all IPs and the last EP also project onto the PN
with large weights. Therefore, after the PN elicits a spike,
the IPs sequentially pull its membrane potential close to
the inhibitory reversal potential, prohibiting it from firing
as long as the synfire chain is active (Fig. 1 D). When the
pulse has reached the final synfire stage, its EP pulls the
PN’s membrane potential back to its equilibrium value. The
total duration of this pseudo-refractory period can then be
controlled by the synfire chain length and parameters.

In addition to controlling refractoriness, the synfire chains
also mediate the interaction between PNs. The connections
from a synfire chain to other PNs simply mirror its connec-
tions to its own PN. This guarantees a match between effec-
tive interaction durations and pseudo-refractory periods. The
correct synapse parameter settings (weights, time constants)
are determined in an iterative training procedure [1].

The results of a hardware emulation can be seen in
Fig. 1 E, F. A network of four sampling units was trained on
Spikey to sample from a target Boltzmann distribution. After
training, the network needs about 104 ms of biological time
to achieve a good match between the sampled and the target
distribution. Considering the hardware acceleration factor of
104, this happens in 1 ms of wall-clock time.

III. ROBUST HIERARCHICAL NETWORKS

As discussed in the previous section, sampling LIF net-
works are ostensibly sensitive to different types of hardware-
induced timing mismatch. In this subsection, we discuss
how a sampling network model can be made robust by
imposing a hierarchy onto the network structure [2]. This is
the equivalent of moving from general BMs to restricted BMs
(RBMs). In addition to making their operation more robust,
as we discuss below, this hierarchization has the distinct
advantage of significantly speeding up training.
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Fig. 2. Robustness from structure in hierarchical networks. (A) Hierarchical spiking network emulating an RBM. (B)–(E) Effects of hardware-induced
distortions on the classification rate of the network. Each test image was presented for a duration of 1000 ms. Green: training data, blue: test data, brown:
mean value and range of distortions measured on Spikey. Error bars represent trial-to-trial variations. (B) Synaptic transmission delays. (C) Spike-to-spike
variability of refractory times. (D) Membrane time constant. (E) Synaptic weight discretization. (F) Comparison of classification rates in three scenarios:
software simulation of the ideal, distortion-free case (black), software simulation of combined hardware-induced distortions as measured on Spikey (purple),
hybrid emulation with the hidden layer on Spikey (green). Light colors for training data, dark colors for test data.

To emulate an RBM, we construct a hierarchical LIF
network model with 3 layers: a visible layer representing the
data, a hidden layer that learns particular motifs in the data
and a label layer for classification (Fig. 2 A). The network
was trained with a contrastive learning rule

∆Wij ∝ 〈zizj〉data − 〈zizj〉model , (5)
∆bi ∝ 〈zi〉data − 〈zi〉model (6)

on a modified subset of the MNIST dataset (〈·〉data and
〈·〉model represent expectation values when clamping training
data and when the network samples freely, respectively). Due
to hardware limitations, we used a small network and dataset
(6 digits, 12×12 pixels, each with 20 training and 20 test
samples) for this proof-of-principle experiment.

The specific influence of various hardware-induced dis-
tortion mechanisms were first studied in complementary
software simulations. These simulations show that the classi-
fication accuracy of the network is essentially unaffected by
the types of timing mismatch discussed above, even when
their amplitudes are much larger than those measured on
our neuromorphic substrate (Fig. 2 B, C). In order to facilitate
a meaningful comparison with hardware experiments, two
further distortion mechanisms were studied. An upper limit
to the membrane conductance can prevent neurons from
entering a high-conductance state, thereby distorting their
activation functions away from their ideal logistic shape
(2) and consequently modifying the sampled distribution.
However, within the range achievable on Spikey, the effect
on the classification accuracy remains small (Fig. 2 D). The
largest effect (about 5.6 % regression in classification accu-
racy compared to ideal software simulations) stems from the
discretization of synaptic weights, which have a resolution
of 4 bits on Spikey (Fig. 2 E).

The robustness of this hierarchical architecture to timing
mismatches is a consequence of both the training procedure
and the information flow within the network. Training has
the effect of creating a steep energy landscape E(z) (3),
for which deep energy minima, corresponding to particular
learned digits, represent strong attractors, in which the system
is placed during classification by clamping of the visible
layer. Throughout the duration of such an attractor, visible
neurons represent pixels of constant intensity encoded in their

spiking probability, thereby entering a quasi-rate-based infor-
mation representation regime. Therefore, the information they
provide to the hidden layer is unaffected by temporal shifts
or zero-mean noise. As they outnumber the hidden neurons
24:1, they effectively control the state of the hidden layer. The
hidden layer neurons themselves are unaffected by timing
mismatches because they are not interconnected. Second-
order (hidden→label→hidden) lateral interactions are indeed
distorted, but as they are mediated by only few label neurons,
their relative strength is too weak to play a critical role.

These findings are corroborated by experiments on Spikey
(Fig. 2 F). Due to the system’s limitations, we used a hybrid
approach, with the visible and label layers implemented in
software and the hidden layer running on Spikey. In the ideal,
undistorted case, the LIF network had a classification per-
formance of 86.6± 1.7 % (93.4± 0.9 %) on the test (train-
ing) set. This was reduced to 78.1± 1.5 % (90.7± 1.7 %)
when all distortive effects were simultaneously present in
software simulations. In comparison, the hybrid emulation
showed a performance of 80.7± 2.3 % (89.8± 1.8 %), which
closely matched the software results within the trial-to-trial
variability. We stress that this was a result of direct-to-
hardware mapping, with no additional training to compensate
for hardware-induced distortions (as compared to Sec. IV).

IV. IN-THE-LOOP TRAINING

In Sec. II, we used a training procedure based on (5,6)
to optimize the hardware-emulated sampling network. Such
simple contrastive learning rules can yield very good classi-
fication performance in networks of spiking neurons [6]. An-
other class of highly successful learning algorithms is based
on error backpropagation. This, however, requires precise
knowledge of the gradient of a cost function with respect to
the network parameters, which is difficult to achieve on ana-
log hardware. We propose a training method for hardware-
emulated networks that circumvents this problem by using
the cost function gradient with respect to the parameters of an
ANN as an approximation of the true gradient with respect to
the hardware parameters [3]. A similar method has previously
been used for network training on a digital neuromorphic
device [9].

Our training schedule consisted of two phases. In the first
phase, an ANN was trained in software on a modified subset
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of the MNIST dataset (5 digits, 10×10 pixels, with a total
of 30690 training and 5083 test samples) using a simple cost
function with regularization

C(W ) =
∑
s∈S ‖ỹs − ŷs)‖

2
+
∑
kl

1
2λW

2
kl (7)

and backpropagation with momentum [10]

∆Wkl ← η∇Wkl
C(W ) + γ∆Wkl , (8)

Wkl ←Wkl −∆Wkl . (9)

Here, ỹs and ŷs denote the target and network state of
the label layer, respectively, and the sum runs over all
samples within a minibatch S. The learned parameters were
then translated to a feed-forward spiking neural network
(Fig. 3 A). Here, the BrainScaleS wafer-scale system [8] was
used for network emulation. Due to hardware imperfections,
the ANN classification accuracy of 97 % dropped to 72 +12

−10 %
after mapping the network to the hardware substrate.

In the second training phase, the hardware-emulated net-
work was trained in the loop (Fig. 3 B) for several iterations.
Parameter updates were calculated using the same gradient
descent rule as in the ANN, but the activation of all layers
was measured on the hardware. The rationale behind this
approach is that the activation function of an ANN unit is
sufficiently similar to that of an LIF neuron to allow using the
computed gradient as an approximation of the true hardware
gradient. As seen in Fig. 3 C, this assumption is validated by
the post-training performance of the hardware-emulated net-
work: after 40 training iterations, the classification accuracy
increased back to 95 +1

−2 %.

V. DISCUSSION

We have reviewed three strategies for emulating per-
formant spiking network models in analog hardware. The
proposed methods tackled the problems induced by substrate-
inherent imperfections from different (and complementary)
angles. The three strategies were implemented and evaluated
with two different analog hardware systems.

An essential advantage of the employed neuromorphic
platforms is provided by their accelerated dynamics. De-
spite possible losses in performance compared to precisely
tunable software solutions, accelerated analog neuromorphic
systems have the potential to vastly outperform classical
simulations of neural networks in terms of both speed and
energy consumption [3] – an invaluable advantage for on-
line learning of complex, real world data sets. The network in
Sec. II, for example, is already faster than equivalent software
simulations (NEST 2.2.2 default build, single-threaded, Intel
Core i7-2620M) by several orders of magnitude.

The studied networks serve as a proof of principle and
are scalable to larger network sizes. Future research will
have to address whether the results obtained for these small
networks still hold as training tasks increase in complexity.
Furthermore, the generative properties of the described hier-
archical LIF networks remain to be studied. Another major
step forward will be taken once training can take place
entirely on the hardware, thereby rendering sequential re-
configurations between individual experiments unnecessary.
Future generations of the used systems will feature on-
board plasticity processor units, with early-stage experiments
already showing promising results [11].
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