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Abstract— The transportation of goods is a central task of
today’s economy. The cheap transportation of goods allows
the wide spread of today’s internet based sales. To perform
such transportation tasks one currently relies on humans. This
imposes constraints when the transportation can be performed
and imposes constraints on the costs. To address this time
and cost constraints an automatic transportation of goods is
preferred.

Such an automatic transportation can be performed by an
autonomous robot, as the ones used in warehouse environments.
Although such environments are diverse and undergo a certain
amount of change they are still rather static environments.
To allow robots to perform the transportation in outdoor
environments several problems need to be tackled. One needs to
deal with large operation areas, uneven ground, and dynamic
objects. In this paper, we present a robot system which can
cope with these problems and allows to perform transportation
tasks in outdoor environments. The focus of this paper will be
on the localization and navigation of the robotic in the outdoor
environment allowing the robot to perform outdoor deliveries.

I. INTRODUCTION

The cheap transportation of goods is a central part of
today’s economy. Reasonable prices of goods which are sold
over the internet, heavily depend on transportation costs.
Today’s supply chain requires a very dense distribution
network and relies on the fact that sending a lot of packages
on the same route is cheap. The larger number of goods
for one route the cheaper it becomes. This is in contrast
with the need for transporting goods to a single customer.
Such a transportation is characterized by a few goods for one
transportation route. To address this, robots offer a possible
solution. Using a robot, the transportation can be performed
in a flexible manner. Additionally, if multiple robots are used
one can simply balance the load of transportation tasks on
several robots.

The use of a robot fleet for transportation tasks is getting
adopted for warehouse environments nowadays [1], [2], [3].
These robot systems allow transporting goods in the ware-
house without the need of an adaption of the warehouse. This
is achieved by using algorithms allowing a localization and
navigation in an indoor environment [4]. These algorithms
use a 2D map of the environment. Such a map can be stored
easily in the robots memory for a warehouse but not for

1Konstantin Lassnig is with ARTI, Graz Austria. This author was with
the Institute for Software Technology when contributing, Graz University
of Technology, Graz, Austria. klassnig@arti-robots.com
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large outdoor environments such as a city. Furthermore, the
2D map can be easily used in a warehouse for navigation as
one can assume a reasonable flat ground. Such an assumption
cannot be made for an outdoor environment where the robot
needs to ensure that it is not falling over road curbs.

To allow a robot system to be used for transportation
tasks in a large scale outdoor environment, one needs to
address the problems which are imposed by the scale of the
environment as well as the uneven ground. In this paper,
we show a robot system which addresses these problems.
The size of the environment is addressed by splitting the
environment into smaller areas allowing the robot to keep
only a small map in its memory. To allow the robot to
be globally localized one additionally stores how the small
pieces are related to each other. To tackle the uneven ground
only the area close to the robot needs to be considered. This
space is represented as a 2.5D surface and interpreted to find
possible holes.

The remainder of the paper is organized as follows. In
the next section, we will discuss the software system used
by the robot to perform transportation tasks in an outdoor
environment. The proceeding section discusses how the robot
localizes itself despite the size of the environment. In Section
IV we discuss how the robot navigates in the environment.
This section also comprises a description how the robot deals
with the uneven ground. Afterward, we discuss some related
research. Finally, we conclude the paper and point out some
future work.

II. SYSTEM OVERVIEW

Fig. 1. The transport robot [5].

In this paper, we discuss a robot which can perform a
transportation task on a university campus autonomously.
The robot can navigate indoor as well as outdoor. Further-
more, the robot considers the uneven ground outdoors to
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Fig. 2. System overview of the transport robot [5].

safely navigate between buildings. The robot is depicted in
Figure 1 and is based on a pioneer 3-AT platform which
allows the robot to navigate indoors as well as outdoor.
Additionally, the robot has three laser scanners to detect
obstacles. Two laser scanner are mounted horizontally to
detect obstacles, like cars or people. Furthermore, these
two lasers are used to localize the robot. The third laser
is mounted tilted down to scan the ground in front of the
robot. This laser is used to build a map of the local terrain.
Besides the laser scanners, the robot has a GPS sensor for
the localization and mapping. To improve the accuracy of the
odometer of the robot an inertial measurement unit (IMU)
is used which is mounted on the robot. To perform the
transportation task, the robot uses the system architecture
depicted in Figure 2.

The robot uses its sensors to estimate the current location.
This is done using the robots odometer, the IMU, GPS and
the horizontal laser scanners. Due to this redundancy, the
estimation of the current location is stable in areas where one
sensor may yield wrong results, e.g. the GPS sensor near tall
buildings. To perform the estimation, the robot matches the
sensor readings with the information of a topological map.
The topological map consists of several small maps which
are linked to each other to allow the robot to only keep small
maps to be localized.

Using the estimation of the current location together with
a road map, the robot plans a high-level path for naviga-
tion. The roadmap describes possible traversal routes in the
environment on a higher level. Due to this abstraction, the
planning can be done very efficiently even in the case of
large environments. After generating a high-level plan, the
plan is passed to the lower-level planner which tries to find
a valid path in the environment for each path segment in
the high-level plan. This is done by considering the current
small local map of the environment as well as the sensor data
which are used to build a cost map. If a valid path is found
the robot tries to follow this path as accurate as possible.

To incorporate the information of the terrain the robot uses
the tilted laser to perform a terrain analysis. Afterward, the
results of this terrain analysis are used to update the cost map.

Thus, holes, as well as small objects which are below the
horizontal laser scans but bigger than the robots clearance,
are added to the cost map as obstacles. This allows the robot
to consider the terrain in the low-level planning.

In the following two sections, we will discuss the local-
ization as well as the navigation in more detail.

III. LOCALIZATION

Starting from an initial known position the robot needs
to know its location during the entire delivery. This is done
through one part of the robot system which is used to localize
the robot. This localization should ensure that the robot has
an estimation of its global position. First, the robot corrects
its odometer to get a good estimation of its 2D position using
dead reckoning. Afterward, it uses the created topological
map to localize itself.

To correct the odometer of the robot we use an unscented
Kalman filter (UKF) [6]. The Kalman filter uses the raw
odometer of the robot to perform a prediction of the robot
pose. This prediction is formed in a probabilistic manner with
a position and a covariance matrix specifying the uncertainty.
The covariance matrix is defined in such a way that the linear
speed has a higher accuracy as the rotational speed, as the
rotation is badly estimated through the raw odometry due
to the slippage of the wheels during rotation. To correct the
prediction the IMU data are used. The IMU data is used to
provide an additional estimation of the robots velocity in all
three axes as well as the global orientation the robot has in
space. As in the case of the raw odometry, the IMU data
update the estimate in a probabilistic manner with the help
of a covariance matrix. The covariance matrix for the IMU
data is formed in such a manner that the rotational speed is
estimated more accurately than with the raw odometry. Due
to the use of the Kalman filter, we have a better estimation
of the robot pose instead of the very noisy raw odometer of
the robot.

After the odometer is corrected the robot can perform its
estimation on the topological map. The topological map is
a graph with vertices which represent positions in the world
and edges which represent connections between those posi-
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Fig. 3. Grid selection for the localization, together with the topological
map [5].

tions. Each vertex is specified as a full 2D pose in the global
reference frame allowing to specify the difference from the
robots location to any frame in the graph. Furthermore, each
vertex contains a grid map representing the local environment
at this position. It is ensured that every position within the
grid map can reach the center. To ensure proper connections
of vertices a connection is only made if the combination of
both grid maps allow the robot to reach one vertex from the
other. Let’s consider the simple example of a topological map
as it is depicted in Figure 3. Grid 11 is close to grid 3, but due
to the wall between these two grids, no connection between
grid 11 and grid 3 is made. Thus, the robot knows which
traversals are possible in the environment with the help of
the grid map. We will exploit this knowledge to select the
right grid for localization if the robot moves beyond the area
of one grid.

Initially, the robot knows its starting location, this is done
through the input of the user. After the robot has selected
the initial position the vertex which is the closest to the
current initial location is chosen. Additionally, the robot
should check if it can move between the initial pose to the
grid map vertex. Using this vertex, the robot can use the grid
map of the vertex to localize itself. This is done with the help
of a particle filter [7]. The particle filter uses the grid map to
align the current laser measurements with the occupied cells
in the grid map. Additionally, the robot uses the GPS signal
to localize itself. This is done by anchoring each vertex with
a GPS position. Thus, by using the current GPS signal the
robot can estimate its position relative to the currently used
vertex in the topological map. Using the grid map and the
GPS the robot derives an estimation of its current location.
If the robot is moving in the grid map the localization can be
done with the current grid map. But as we assume a large
space of the outdoor environment the robot will at some
point reach the border of the grid map. In such a case the
robot needs to decide which vertex in the topological map is
the next one to localize itself. This is done by checking the
distance to each vertex in the topological map which has a
connection to the currently used vertex. The vertex with the
smallest distance to the current robot pose is used for future

localization. Thus, the robot will switch the vertex and the
occupancy grid only if it is closer to that vertex than any
other vertex which could be reached from the robot.

Let’s consider the situation in Figure 3. If the robot is
moving from grid 3 to grid 4. It checks the distance from
the vertex of grid 3 and the distance of vertex of grid 4. But
the robot does not check the distance to the vertex of grid 11
as the robot already knows that there is no possibility that it
has traveled from grid 3 to grid 11. If the distance of grid 4
is larger than the distance to grid 3 the robot will use grid
3 for future localization.

Due to the use of the connections within the topological
map one saves the effort to check all nearby vertexes if they
should be used for localization. Furthermore, more important
is that the robot will not select a vertex which cannot be
reached. Let’s consider the map in Figure 3. Grid 3 and 4
can be on the outside of the building whereas grid 11 is the
inside of the building. Thus, if the robot is localized outside
of the building it does not make sense that the robot jumps
suddenly through the wall inside the building. As we don’t
consider grid 11 as an alternative such a jump is not possible.
This also allows the robot to move close to the wall of the
building without being incorrect localized.

IV. NAVIGATION

With the help of the topological map, the robot can localize
itself. Using this localization, the robot can plan its path
to the destination. To do so, the robot uses a hierarchical
planning approach. As we consider a large-scale environment
the robot is not able to use a grid map of the complete
environment. Thus, the robot uses a road map to plan the
overall navigation. This allows the robot to plan for the large
environment in a fast manner. After a plan is found using the
road map the robot use the current grid to search for a mid-
level plan within this map to move between different nodes
in the roadmap. Finally, the robot uses a local planner to
move along the mid-level plan and avoid obstacles which
are not present in the grid map.

The road map which is used by the robot to generate a
high-level plan consists of a graph of nodes which specify
locations and edges which describe possible traversals be-
tween these nodes. A roadmap together with the high-level
plan is depicted in Figure 4. The road map is constructed by
considering the distance between the nodes and if the node
is collision free. To check if a node is collision free the
footprint of the robot and the local grid map of the position
to check is used. As the robot, has not specified a complete
description of the environment traversability, one uses the
positions used during mapping as a seed for the road map
calculation. This allows that the robot uses the positions and
traversals which were created during mapping.

To plan a path within the road map the robot first deter-
mines the closest node of the road map to its current location.
Afterward, the closest node to the destination is determined.
The node close to the current position is the start node of
the search and the node close to the destination is the goal
node of the search. After determining these two nodes the
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robot performs a graph search for the shortest path through
the A∗ algorithm [8].

Fig. 4. Road map (green) together with the high-level plan (red) and the
low-level plan (blue) [5].

After the robot has generated a high-level plan it generates
a mid-level plan on the current grid map to plan to the next
node in the road map which is part of the high-level plan. The
node which is the next one to pass through is determined by
the current location of the robot. The robot considers every
node as reached which is in a certain range. To determine
this node, the robot uses a queue of nodes within the high-
level plan. After the head of the queue is in range the robot
pops the head from the queue and uses the new head of the
queue as the next goal to plan to. Additionally, if the node is
the last node in the queue the robot plans to the destination
as the high-level plan only ensure that the robot moves near
the destination.

For the mid-level plan on the current grid map, the robot
uses the information of the current grid map to determine if
it can traverse a grid cell or not. Using this information, the
robot uses its current location together with the next node
to find a plan. This plan consists of a sequence of grid map
cells to traverse. The sequence is found by using the A∗

algorithm [8]. As the grid map only specifies a limited area
of the world the algorithm can determine the path very fast.
Additionally, the path which needs to be planned is most of
the time short compared to the high-level plan.

Using the mid-level plan on the current grid map the robot
has derived a path which should lead to the current node of
the high-level plan considering the known static objects. As
we consider a dynamic environment the robot needs to deal
with these obstacles as well. This is done by creating a local
plan with the help of the dynamic window approach [9]. The
local plan is generated several times per second to allow to
react to changes. To plan locally the robot uses a cost map
which contains the static obstacles, the information from the
horizontal laser scan, the information from the elevation map
and information about the grass around the robot.

As we argued above one cannot assume that the robot
moves on a flat surface. Thus, the robot needs to deal with
the uneven ground. Through the construction of an elevation
map in a local area, the robot can detect holes and barriers.
The elevation map is constructed with the help of the sensor
data of the tilted laser. Each of the laser measurements
is transformed to specify a position in the world frame.
Afterward, the measurement is projected on a grid which
defines the height information of the environment. To in
cooperate the sensor measurement into the grid a Bayes

update per grid cell is used [10]. This allows the robot to deal
with the noise of the sensor measurements. After generating
the height information one detects holes and barriers by
deriving the gradient for each grid cell. Using this gradient
one can define a threshold which determines if this hole or
barrier is traversable by the robot. If the gradient exceeds
a certain limit the robot cannot traverse this grid cell and
it is assumed to be a lethal obstacle for the local planner.
An example of grid cells which are marked due to a large
gradient is depicted in Figure 5. As the elevation map is
projected through the gradient into the cost map one can use
a standard 2D-planning algorithm to find a local plan.

Fig. 5. Detection of edges with the help of the elevation map [5].

Besides the uneven ground, the robot needs also to con-
sider the grass to proper navigate in an outdoor environment.
During outdoor navigation, the robot should preferably stick
to roads and sidewalks. Thus, the robot needs to detect the
grass surrounding the robot. To perform this detection, the
robot uses the tilted laser scanner. The tilted laser scanner
does not only provide the information about the distance
from obstacles but it also contains the information about
the intensity of the reflection. Using the intensity and the
distance one can identify grass in the environment. A simple
linear separator is sufficient to detect grass properly. This
relation between distance and reflection intensity with the
linear separator is depicted in Figure 6. With the help of
this classifier, the robot can detect grass in its vicinity. An
example of this detection is depicted in Figure 7. Using this
information, the robot adds increased costs in the cost map
for the local planner on those positions which indicate grass.
Thus, the robot avoids the grass if possible but will also
traverse it if necessary.

By combining the grass, the information of the elevation
maps, the laser scan measurements of the horizontal laser
as well as the static objects in the map the robot can safely
navigate locally. Thus, the robot neither hits an object nor
falls down a step. We consider these data only for a local area
around the robot. This has the benefit of a smaller memory
footprint for each local cost map but also the drawback that
this information cannot be used for localization or high-level
navigation.

V. RELATED RESEARCH

Before we conclude the paper, we discuss some related
research.
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Fig. 6. Separator to detect grass with the help of the laser scanner [5].

Fig. 7. Detection of the grass though the laser scanner [5].

We start our discussion of related research with the robot
presented in [11]. The robot could take a long tour through
Munich without a prior created map or GPS information.
Instead, the robot was using its sensors to react locally in
a safe manner and asked humans for information about the
direction. This was done by approaching humans and the
recognition of basic commands to derive the direction of the
desired destination. In contrast, our robot has a prior created
map which allows it to move autonomously without asking
for directions. This is also desirable in the case of a transport
robot which should transport goods to a customer.

In [12] the method to deal with large maps was described.
The authors use a topological map to allow an efficient
representation of large areas. The vertices in the topological
map are spots of interests such as a square or a crossing.
The edges represent paths between these places. For each
edge, a traversal behavior is defined. Thus, one can use
different behaviors to perform the traversal. With the help of
this method, the robot could drive autonomously in a park.
Our robot uses, in contrast, a topological map which contains
enough information to allow the robot to be always localized
not only in interesting places. Furthermore, the robot uses a
denser road map allowing it to plan its route more accurate.

A very close related work to ours was presented in [13].
The robot navigated more than 3km in the city Freiburg in
an autonomous fashion. To localize itself, the robot used a
topological map where each vertex in the graph contains
a map of one part of the environment. In contrast, our
approach additionally used the GPS signal for estimating
the robot pose within the particle filter. To navigate the

robot, the method presented in [13] created a high-level
plan using the graph of the topological map. Each vertex is
connected to those vertices in the graph which allow moving
between these two locations. Thus, using this graph the
robot can derive a simple high-level plan for the navigation.
Whereas the robot uses a planner on grid map basis to
navigate between different vertices of the topological map.
This contrasts with our approach as we use a finer grained
road map for the high-level planning which allows us to
choose the path more precisely.

VI. CONCLUSION AND FUTURE WORK

The transportation of goods is an essential part of our
today’s economy. The transportation often takes place in
outdoor environments by delivering goods to costumers. To
provide cost-efficient and flexible deliveries, robots are a
promising solution.

In this paper, we presented an autonomous transport robot
which is capable of navigating in large scale outdoor envi-
ronments. To perform this transportation, the robot addresses
the problem of a large-scale environment, uneven ground,
and grass which should only be traversed if necessary. To
deal with the large scale of the environment the robot uses a
topological map. This map stores areas of the environment
which are loaded on demand. This allows that the robot
only needs to keep a small part of the environment in its
memory and perform the localization on it. We furthermore
showed how the robot can exploit the topological map to
switch between the different parts to allow the robot to be
localized during the complete delivery. To deal with the
uneven ground, the robot builds an elevation map for its
local environment. Afterward, the robot determines within
the elevation map dangerous terrain and avoids it. To deal
with the grass we have shown a simple solution with a linear
classification for laser scan measurements. This detection
allows the robot to detect grass precisely enough to avoid
the grass if possible.

The robot presented in this paper mainly used several laser
scanners to localize itself and it is left for future work to add
more sensors to perform localization as well as navigation.
Especially cameras would be of interest as they allow a
detailed localization in many areas which don’t offer features
for a laser scanner. The additional use of a camera would
increase the quality of the terrain classification.
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