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Abstract— This industrial spotlight paper outlines a Rie-
mannian geometry inspired approach to measure geometric
quantities in the plane of focus of a Scheimpflug camera in the
presence of nonlinear distortions caused by the Scheimpflug
model and non-linear lens distortion.

I. INTRODUCTION

For the standard pinhole camera model, the image sensor
is parallel to the lens plane and perpendicular to the optical
axis. For this type of camera, the points on a plane surface
parallel to the lens can be focused sharply on the sensor
plane. However, for some specific application scenarios, the
surface of interest is oblique to the lens plane. For example,
to capture most parts of a tall building facade into the camera
view, the camera needs to be tilted upwards with respect to
the building facade. In this case, the standard camera is only
able to project a narrow line region of the building facade
on sharp focus.

It is interesting that the Gaussian focus equation remains
valid under the condition that the sensor plane, the lens plane
and the object plane intersect in a common line [5].

The Scheimpflug model is encountered in various fields
of applications, e.g., architectural photography [6] or in
ophthalmology for measuring the thickness of the cornea [3].

In this industrial spotlight paper we address the prob-
lem of accurately measuring geometric quantities in the
Scheimpflug plane in the presence of non-linear lens dis-
tortion effects by following a Riemannian geometry ap-
proach [1]. In contrast to state-of-the-art approaches the
outlined approach is feasible on embedded platforms and gets
along without guessing initial values and iterative optimiza-
tion steps. Rather, it models the image formation mapping
from the Scheimpflug plane to the image plane directly by
exploiting point-to-point correspondences and interpolation.

In section II we recall the Scheimpflug model and cali-
bration approaches from literature. Section III-A outlines our
parameter-free approach together with experimental results.

II. SCHEIMPFLUG CAMERA

In contrast to the standard pinhole camera, in the
Scheimpflug camera model the sensor plane and the lens
plane are no longer parallel. See Fig. 1 of a schematic view
of the Scheimpflug model. The mathematical model of its
image formation mapping can be derived from decomposing
the mapping from world coordinates (X ,Y,Z) to image pixel
coordinates (x̃t , z̃t) into a concatenation of mappings as
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Fig. 1. Scheimpflug camera model: the sensor plane Ptilt and lens plane
Plens are no longer parallel. The image formation mapping is modeled by
means of the virtual parallel plane Pperp.

Fig. 2. The process of image formation of the Scheimpflug model according
to (1), (2) and (3)

indicated in Fig. 2. First of all, the mapping from (X ,Y,Z)
to a virtual parallel sensor plane (x′,z′) models the familiar
pinhole camera. By taking non-linear radial and tangential
lens distortion effects into account, due to suboptimal shape
and mounting of lens, and modeling these effects by means
of polynomial functions we obtain
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where r2 :=∆x2+∆z2, ∆x := x′−x0, ∆z := z′−z0, (x0,z0) are
the coordinates of the optical axis on Pperp, k1,k2,k3 are radial
and t1, t2 are tangential distortion parameters. The mapping
from (x̃′, z̃′) to (xt ,zt) models the proper Scheimpflug effect
by taking the tilt of the sensor plane into account. Let us
denote by α the angle between z̃′ and zt and by β the angle
between x̃′ and xt , then due to [4] we obtain

(
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)
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(2)

where λ := f/( f− x̃′ tanβ− z̃′ tanα
cosβ ) and f is the focal length.

Finally, we obtain the image pixel coordinates
(
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where (w,h) denotes the image size in number of pixels,
(Sw,Sh) the sensor size in millimeter, (v0,w0) the coordinates
of the principle point, θ the shearing angle in the sensor
coordinate system and Sx := w/Sw, Sz := h/Sh. To this end
we obtain a mapping

Θ : (X ,Y,Z) 7→ (x̃t , z̃t) (4)

which depends in total on 17 parameters (6 extrinsic, 2
Scheimpflug angles, 4 intrinsic, 5 distortions coefficients).

III. SCHEIMPFLUG CAMERA CALIBRATION

A standard way for camera calibration in computer vision
is the approach of minimizing a functional that measures to
which extent the model (4) fits a given set of point-to-point
correspondences resulting from a marker positions of a cali-
bration plate. A familiar choice for the functional is the sum
of squared projection errors. In particular, the estimate of the
extrinsic parameters is not that easily performed. Therefore,
usually simplified approximations are used as initial guess.
For example, [2] starts from a distortion-free model and
derives a first guess of the pinhole camera parameters as
an approximation. It is then used as an initialization of a
nonlinear bundle adjustment optimization that accounts for
distortion and the 2-tilt Scheimpflug angels. In a similar
way [4] starts with Zhang’s method [7] for estimating the
Scheimpflug angels α , β . In a further step, α and β are
kept fix and the remaining parameters are estimated, again
by using Zhang’s method. This procedure is iterated until
convergence.

A. Approach for Embedded Laser-Camera Application

The application scenario is about real-time affine recon-
struction of geometric quantities by means of an embedded
laser-camera system based on a DSP (TMS320DM6435,
700 MHz, 5600MIPS) and a hard-real time requirement of
processing a measurement below 10ms. On such a platform
the computational effort of trigonometric functions is about
20–40 times higher than standard vector operations. In our
approach we exploit the fact that the laser projection plane
and the plane of focus of the Scheimpflug camera are
congruent. This setting allows a simplification of the general
calibration procedure and gets along without the use of
computational expensive functions.

Since the mapping (4) reduces to Θ̃ : (X ,Z) 7→ (x̃t , z̃t).
Instead of solving the inverse problem of identifying the
17 parameters of the Scheimpflug camera model and tack-
ling the problem from a global perspective, we consider
the resulting geometric deformation as representation of a
Riemannian manifold and exploit its local notions of angle
and length of curves for accomplishing measurement tasks.
In this view the measurement problem is solved by the
following steps: (a) register point-to-point correspondences
by means of a sufficiently dense grid of point markers on
the plane of focus resulting from straight lines (geodesics
in Euclidean geometry) and extraction of the point loca-
tions in the image by image processing; (b) determine the
neighboring deformed grid points to the sample point; (c)

Fig. 3. Left: deformed regular grid of points by Scheimpflug camera and
radial and tangential lens distortion: α = β = 5◦, k1 =−4.5e−3mm−2; right:
angle reconstruction errors with 249 pairs orthogonal calibration lines and
286 pairs test lines with different inclined angles (left box: original lines
with the same distortion as the grid, mean = 0.397◦, std = 0.431◦; right
box: distortion rectified lines, mean = 0.082◦, std = 0.084◦.)

apply 3-spline interpolation for approximate recovery of
the corresponding geodesics in the resulting Riemannian
manifold; (d) determine the Riemannian coordinates in the
local coordinate system given by the geodesics; (e) compute
the local inverse in order to obtain the Euclidean coordinates.
In contrast to computing the full camera model which
involves trigonometric functions and fractions, the outlined
approach is also feasible on an embedded system as only
polynomials of maximal degree 3 have to be evaluated. Fig. 3
shows an example of a deformed regular grid of calibration
points by a Scheimpflug camera and the result of angle
measurement based on this approach. The result shows that
the systematic angle reconstruction error resulting from non-
linear Scheimpflug and lens distortion effects can be reduced
substantially which meets the industrial requirements of the
specific application.
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density measurement with scheimpflug camera in vitrectomised eyes,”
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