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Vision-based Autonomous Feeding Robot

Matthias Schörghuber1,4, Marco Wallner1, Roland Jung2, Martin Humenberger3, Margrit Gelautz4

Abstract— This paper tackles the problem of vision-based
indoor navigation for robotic platforms. Contrary to methods
using adaptions of the infrastructure (e.g. magnets, rails),
vision-based methods try to use natural landmarks for local-
ization. However, this imposes the challenge of robustly estab-
lishing correspondences between query images and the natural
environment which can further be used for pose estimation.
We propose a monocular and stereo VSLAM algorithm which
is able to, first, generate a map of the target environment
and, second, use this map to robustly localize a robot. Our
hybrid VSLAM approach is able to utilize map points from
the previously generated map to (i) increase robustness of
its local mapping against challenging situations such as rapid
movements, dominant rotations, motion blur or inappropriate
exposure time, and to (ii) continuously assess the quality of the
local map. We evaluated our approach in a real-world environ-
ment as well as using public benchmark datasets. The results
show that our hybrid approach improves the performance in
comparison to VSLAM without an offline map.

I. INTRODUCTION
In order to perform autonomous navigation, robot plat-

forms need to be able to robustly and reliably localize them-
selves and track their position within their operation area.
Good examples are commercially available robot platforms
fulfilling logistic tasks, e.g. within hospitals or warehouses.
For localization, these systems rely on magnetic markers,
rails or other infrastructure-based guidance systems. To con-
tinuously track the pose between such markers, many robot
platforms perform dead reckoning approaches such as wheel
odometry. The target robot platform in this paper, namely
Wasserbauer’s “Butler Gold” feeding robot (shown in Fig. 1),
currently uses a very similar approach for autonomous nav-
igation. Even if this and related approaches perform well
in target environments, they require costly adaptions of the
infrastructure and thus only work within a very well-defined
area or even only along well-defined paths.

Since, on the one hand, the application fields of robots
are not limited to industrial environments where necessary
adaptions can be made, and on the other hand, the costs and
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Fig. 1: Target robot platform for feeding with front-facing
stereo camera system. Right image: c© Wasserbauer

efforts of these installations should be reduced, alternative
approaches are investigated. The robotics community sug-
gests to use cameras (mounted on the robot) for navigation
since they provide rich information about the environment
and are easy to install in comparison to other technologies
(a survey can be found in [10]). Following this idea, in
this paper, we present a visual navigation system, especially
designed for autonomous robot indoor navigation. The goal
is to robustly localize and track the robot’s position within
a certain area using passive cameras only. We excluded
active light emitting technologies to not interfere with the
environment and to enable a possible extension for outdoor
usage. In the nature of the application, the vision system
has to operate in a challenging environment as dynamic
objects (moving cows) are present and the structure (feed,
tools, constructions) changes from mission to mission. Fur-
thermore, the system has to be robust against a variety
of environmental conditions such as dirt, dust, moisture,
lighting or occlusions.

II. RELATED WORK

Similar to many other navigation tasks, for visual local-
ization and pose estimation, certain landmarks are needed.
We roughly differentiate between artificial and natural land-
marks. Artificial landmarks, such as QR-Codes, are well
defined and need to be placed manually. Natural landmarks,
such as significant corners or well-textured areas in the
image, need to be identified automatically using proper
feature extraction methods. In this work, we focus on visual
navigation using natural landmarks, since our target is a
general approach where the environment does not need to
be adapted. The problem of visual localization using natural
landmarks is addressed in several ways. Structure-from-
Motion (SfM, e.g. [8]) uses multiple images to estimate
their positions and to reconstruct the captured environment.
Image-based localization (e.g. [11]) uses the resulting maps
to estimate the pose of query images. While applications
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of the mentioned approaches are often found in large-scale
and offline localization tasks where memory consumption
and processing time play minor roles, in robotics these two
issues are critical. Addressing these challenges, important
and relevant methods for visual pose estimation such as
visual odometry (VO, [6], [4], [15]), visual inertial odometry
(VIO, [12], [1]), and visual simultaneous localization and
mapping (VSLAM, [9], [5]) were introduced. We differen-
tiate VO from VSLAM by the property that VO does not
implement global map optimization or loop-closure, i.e., the
process of recognizing that a place was visited before to
reduce drift. Therefore, VO algorithms typically maintain
only a local map and “forget” about the past. While VO
may exhibit more drift than VSLAM, it is computationally
more efficient. VIO additionally uses data from inertial mea-
surement units (IMUs) to combine measures from inertial
sensors (gyroscope, accelerometer) with visual information.
A recent in-depth overview of SLAM discussing common
architectures, history, the present, and future is presented
in [3] and [14].

Image-based localization has its strength in absolute lo-
calization and VO/VSLAM in relative pose estimation, yet
an approach which robustly combines them is still missing.
In this paper, we propose an approach to overcome this
problem. Recently maplab [12] was published where this
problem is addressed as well. The authors perform VIO
locally and simultaneously fuse the estimated relative pose
with absolute localizations within the existing map. In con-
trast, our approach tracks and uses the existing map points
directly.

We present a VSLAM algorithm which is able to com-
bine robust geo-referenced global offline maps, previously
generated using VSLAM (in this paper we use the presented
algorithm) or SfM, with local online maps which are gener-
ated during run-time.

III. VISUAL NAVIGATION

We propose a visual navigation system which allows to
localize and track the pose of the feeding robot within
the operational area. To be robust against the changing
environment, we perform an initial mapping process where a
map is first generated using our VSLAM algorithm and in a
second step, registered onto a floor plan (to enable absolute
localization). This map is then used in subsequent missions
as reference and referred to as offline map. However, in the
nature of the application, the existing map is outdated due
to the dynamic environment as camera occlusion, structural
changes or moving objects can occur. Leveraging the combi-
nation of using the initial offline map and performing online
mapping, we aim to (i) operate in a global coordinate system
defined by the offline map, (ii) allow flexible movements and
robustness against structural changes by performing online
mapping and (iii) suppress map degeneration on challenging
scenes by simultaneous validation of the online mapping with
the existing offline map.

The vision pipeline for pose estimation, map generation
and localization is inspired by modern SLAM systems (see
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Fig. 2: Algorithmic overview of the main operational modes
of the VSLAM implementation.

Section II). It uses a feature based approach with the map
consisting of keyframes, 3D points and their 2D observations
within the keyframes. The most similar approach to our
implementation is ORB SLAM [9]. It presents a VSLAM
system with a localization only mode (i.e. without mapping),
however, neither loading or storing nor usage of pre-existing
maps is possible.

The core blocks of our implementation are a) Mapping, b)
Localization and c) Tracking and Pose Estimation as shown
in Fig. 2 and described in the following.

a) Mapping: The mapping process aims to find and
triangulate new reliable 3D points between the existing
map and new input images. In the Find Points procedure,
a correspondence search of image features not associated
with 3D points is performed with features of neighboring
keyframes. If no map is present during initialization of the
algorithm, the correspondence search is performed either
with the stereo image pair or with two consecutive images
with sufficient translation in between in case of monocular
input. The new 3D point candidates are triangulated and
validated using geometric properties. Finally, Bundle Adjust-
ment is performed with keyframes and 3D points affected by
the new measurements. We distinguish between 3D points
originating from the online and offline map within this
optimization step. The 3D points of the existing global map
are assumed to be fixed and reliable, thus they are higher
prioritized. This prioritization prevents a drift or degeneration
between the online and the offline map, as new measurements
are aligned to the coordinate system defined by the offline
map even in cases where online map points are dominant.
To prevent map degeneration and undefined behaviour in
subsequent missions, the offline map is not updated with
new measurements in our current application.
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b) Localization: Localization aims to find the pose of
a query image within a given map. Our implementation per-
forms a two-step process. First, the most similar keyframes
are retrieved with a visual vocabulary based approach. In
such a visual vocabulary the image descriptors are clustered
into words of a pre-defined vocabulary (bag of words [7]).
This methodology allows to efficiently compare images on
this reduced set of words. Image similarity is determined
by the presence of shared words of the vocabulary between
images.

The second step performs a correspondence search be-
tween 3D points visible in the retrieved keyframe and 2D
image points of the query image. Finally, the position and ori-
entation of the query image can be estimated using multiple
correspondences with non-linear optimization by minimizing
the reprojection error.

c) Tracking and Pose Estimation: This module aims
to estimate the pose of the current image by tracking an
existing pose (from last tracks or successful localization)
within the map. First, using the extrapolated input pose,
3D points within the camera frustum are projected onto the
image plane. Second, using these estimates, guided matching
is performed to establish 2D-3D correspondences between
the 3D points and the 2D keypoints of the current image. The
new pose is estimated by minimization of the reprojection
error between the 3D point projections and corresponding
2D image feature observations.

Similar to the mapping process, we distinguish between
3D points originating from the online and offline map and
prioritize the measurements within the pose estimation step
accordingly. Furthermore, the tracking of 3D points from
the offline map allows to determine map consistency and
prevents degeneration in challenging scenes. If no 3D points
of the offline map can be found, the robot either left the
operational area (which can be validated using previous
poses) or the camera provides no valid information for
global localization (e.g. occlusions or close-up scenes). As
a consequence, the algorithm tries to relocalize within the
offline map. If this is not successful, a navigation error
occurred and a recovery mode has to be triggered. Based on
the number of visible 3D points originating from the offline
map and total number of 3D points, it is decided when new
keyframes shall be generated and added to the online map.

The VSLAM performance strongly depends on the robot
movement. If fast movements are present, the algorithm
has to deal with motion blur and large unobserved gaps
between frames. This especially occurs when motions with a
mainly rotational component are present. Furthermore, with
monocular input, the triangulation requires a translational
component, which defines the theoretical accuracy of the
3D reconstruction. The proposed approach, using an offline
map as basis, increases robustness to such challenging robot
movements because even if triangulation of new 3D points
fails, 3D points from the offline map can be tracked. In the
same way, if tracking is lost, the robot can relocalize itself
within the offline map. Furthermore, the number of visible

offline points can be used as quality indicator of the online
map.

In order to provide the poses within the application spe-
cific world coordinate frame, the map is registered onto a
geo-referenced 2D floor plan. This rigid transformation is
estimated using manually selected correspondences between
map points and salient features on the floor plan such as wall
corners.

IV. TESTS AND EVALUATION

We performed two experiments to evaluate our VSLAM
system. First, in a real-world environment with recordings
acquired in a cowshed and second, with a benchmark dataset
from the community.

For the real-world test, we used one recording1 to generate
an offline map and a second one for combining offline maps
with online mapping. The trajectories are slightly different,
as can be seen in the purple and green trajectory in Fig. 3
(a). The green trajectory represents the trajectory of the initial
mapping run after registration onto the floor plan. The green
dots indicate the locations of the 3D points generated during
this run. The purple line represents the trajectory of the
second recording using the 3D map from the green mission
as the offline map. Both missions have a common starting
and end point indicated at the position S within Fig. 3 (a),
hence the double line in the entry path of the cowshed.

The camera image in Fig. 3 (b) shows the 2D projections
of the observed 3D points as seen from the position P marked
by a blue circle and an arrow indicating the viewing direction
in Fig. 3 (a). The green points visible within the camera
image in (b) correspond to 3D points originating from the
offline map (and correspond to the green dots in 3 (a)). The
purple points represent newly generated 3D points in the
online map.

The consistency of the purple trajectory with the floor plan
confirms that the algorithm was able to perform its mission
within the application specific world coordinate frame. Fur-
thermore, with the online mapping, the system was able to
estimate the pose even when the robot moved differently in
comparison to the data available from the offline map; this
is especially visible at the circular movement at position C
in Fig. 3 (a).

Since no ground truth was available for quantitative anal-
ysis of the cowshed data, we used the EuRoC [2] dataset
to evaluate our assumptions of increased robustness and
accuracy that can be achieved by additionally including
3D points of an offline map into the core computations
of the algorithm. This dataset was created with a multi-
rotor unmanned aerial vehicle (UAV) equipped with a stereo
camera sensor providing 20 frames per second. The dataset
consists of sequences captured in a machine hall (mh) sce-
nario with positional ground truth and two laboratories (v1,
v2) equipped with a motion capture system providing 6 DOF
ground truth. The sequences were recorded with varying
difficulties. A higher difficulty implies faster translational

1The actual robot control was performed using its navigation system.
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Fig. 3: (a) 3D map from the VSLAM system registered onto
the cowshed floor plan; (green) 3D points and trajectory of
initial map generation; (purple) trajectory of a subsequent
mission. (b) 3D points of map projected onto camera image
captured from the blue position P in (a). Green dots represent
observed 3D points from the initially generated offline map,
and purple dots the online generated 3D points.

and rotational movements of the UAV, operation in a low-
textured environment or exposure differences due to auto
shutter effects. We processed the sequences with our VS-
LAM algorithm, which is able to provide pose information
at camera frame rate, and estimated the accuracy of each
sequence by comparing it with the ground truth using the root
mean square errors of absolute trajectory error (ATE) and
relative pose error (RPE). The latter consists of a translational
(RPEt) and a rotational (RPEr) component. These metrics
are defined in [13].

The results are shown in TABLE I. It can be seen,
as expected, that the trajectory could be estimated more
precisely on less complex sequences mh 01, mh 02, v1 01
and v2 01 than on the more difficult mh 04, mh 05, v1 02
and v2 02 sequences.

In a second run, marked with an asterisk (*), the VSLAM
uses as offline map the map generated from the correspond-
ing underlined sequence (e.g. mh 02* used the map from
mh 01 as offline map as indicated in TABLE I). In all

cases, the VSLAM was able to improve the pose estimation
compared to runs without an offline map, as can be seen
from the bold figures in TABLE I.

Sequence AT E[m] Sequence AT E[m] RPEt [m] RPEr[deg]

mh 01 0.177 v1 01 0.138 0.056 0.984
mh 02 0.126 v1 02 0.187 0.182 2.488
mh 02* 0.121 v1 02* 0.124 0.145 1.97

mh 04 0.484 v2 01 0.103 0.080 4.501
mh 05 0.389 v2 02 0.273 0.243 9.385
mh 05* 0.290 v2 02* 0.184 0.224 8.77

TABLE I: Comparison of estimated VSLAM trajectories to
a ground truth with the ATE and RPE metric [13] on the
EuRoC [2] dataset. Sequences marked with Asterisk (*) use
an offline map generated from the corresponding underlined
sequence. All values represent the average over multiple
executions.

V. CONCLUSIONS

In this paper, we presented a novel VSLAM approach
for navigation of an autonomous feeding robot. We applied
our algorithm to recordings from a cowshed and showed
the successful operation within this application domain. For
quantitative evaluation of the approach, we used a commu-
nity established dataset where ground truth data is available.
The results show that our approach of combining an offline
map with online mapping successfully improves the accuracy
of the pose estimation.

The increased accuracy is achieved by incorporating re-
liable 3D points from the offline map in order to robustly
triangulate new accurate 3D points. Consequently, the new
3D points are inherently aligned to the mission specific
world coordinate frame. Furthermore, in the case of lost pose
tracking, the robot can relocalize itself in the offline map and
continue its mission.

Possible future work is the analysis of the robustness
towards application specific environmental conditions such
as dust along with further improvements to this aspect and
methods for updating the offline map.
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