
D
ra

ft

Flexible industrial mobile manipulation: a software perspective

Thomas Haspl1, Benjamin Breiling1, Bernhard Dieber1, Marc Pichler1, Guido Breitenhuber1

Abstract— With ongoing research in robotics, some specific
architectural approaches of robotic systems earn more and
more interest by all kinds of industries. Mobile manipulators–
robots consisting of a mobile base and a serial manipulator–
provide the ability to make robotic manipulation location-
independent, which will be an essential feature in future
production. Such robot platforms offer a high level of flexibility
and efficiency of robot applications. Especially under the aspect
of modularity, mobile manipulators would provide even more
flexibility by offering the possibility to exchange or extend
the robot hardware for specific applications. To achieve this,
modularity also has to be considered in software. In this paper,
we present a software architecture for modular mobile manipu-
lation applications. It provides mechanism for reconfigurability,
easy programming, and an easy approach for adding external
hardware components. Being targeted at industrial use, the
architecture also considers security and software deployment
aspects. These considerations will, in combination with all the
other aspects, be presented by means of two modular mobile
manipulation platforms and a set of representative scenarios.

I. INTRODUCTION

Nowadays, the number of robots used in different indus-
trial and non-industrial is steadily rising. These application
areas range from manufacturing, transportation, household,
up to health care, amongst others. Independent from the
application area, the requirements to robotic platforms also
heavily increased. Due to the demand of flexible applica-
bility and the desire to let robots operate in unstructured
environments, a significant amount of research work has
been dedicated to this. One very promising type of robots
for many kinds of applications are mobile manipulators.
Those combinations of robot arms and mobile bases free
the serial manipulator (the arm) from its location-dependence
thus enabling a whole new range of applications. In industry,
mobile manipulation is currently taking up speed where
sensitive robots are employed working next to humans on
the shop floor. Key aspects in the successful application of
mobile manipulation is the flexibility in the use of the robot.
This requires easy programming for end-users and system
integrators, extensibility and reconfigurability of the robot
hardware as well as the easy integration of the robot into
the manufacturing IT infrastructure. Additionally, a higher
level of modularity of robotic hard- and software inevitably
requires strategies for secure communication between the
robot’s components in order to keep the system safe from
intrusion.
While there have been many reports of mobile manipulators
in research, this paper presents a software architecture that

1The authors are with the Institute for ROBOTICS and
Mechatronics, JOANNEUM RESEARCH, Klagenfurt, Austria
firstname.lastname@joanneum.at

has already been proven in industrial settings by enabling
a highly flexible use of robots in various scenarios. The
architecture explicitly considers mobile manipulators that are
modular in their nature. Thus, one key requirement for the
software architecture is that it must be easily possible to
integrate software components for new pieces of hardware
like sensors or grippers but also to exchange core hardware
elements like the robotic arm or mobile base. So, while we
here mainly report on a configuration consisting of a MiR100
mobile base and a UR10 arm, the architecture also supports
the integration of different bases and arms of other types and
vendors. while the architecture focuses on the industrial use
of mobile manipulators, it can also be used in other settings
in- and outside of industry.
This paper is structured as follows: section II depicts the
state of the art, which is relevant for our software architec-
ture. This includes reconfigurability of hard- and software
components, security in robotic applications and the issue
of deploying robot software. Section III then elaborates our
developed architecture. By providing necessary requirements
at the beginning, this section then describes the core com-
ponents and processing layers of the architecture. The topics
security and deployment will finalize this section. Then, in
section IV an evaluation of the architecture by means of three
scenarios will be done. Before that, we present two in-house
developed mobile manipulation platforms - the CHIMERA
which can operate in industrial environments and a modular
research platform for mobile manipulation. Both are driven
by the software stack presented in this paper.

II. STATE OF THE ART

Robot software is becoming increasingly important as the
focus of the development shifts from hardware capabilities
to more intelligent robots. In terms of software, the Robot
Operating System (ROS) [19] has become the predominant
framework for prototyping robot applications and building
intelligent robotic products. Over the years, several archi-
tectural approaches have been presented for domains with
references to robotics [18], [12], [1], [14].

A. Reconfigurability of Hard- and Software

Modularity in robots has been proclaimed as one of the
most promising approaches to making robots more flexible
while at the same time decreasing integration times [15],
[23], [20]. Modularity in hardware enables the reconfigura-
tion or extension on a physical level by adding, removing or
swapping hardware parts. In software, modularization aids
re-usability and thus is aimed at minimizing time required
to develop a solution.

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-10

65



D
ra

ft

B. Security

Also security has been addressed in our previous work. Es-
pecially in the context of ROS, we have focused on securing
robots i) in the applications [11], ii) in the ROS-core [3] or iii)
in their integration in larger IT infrastructures [9]. In addition
to our work, contributions to ii)[22] and iii)[16] can be
found as well. In general, a multi-layer approach to security
is recommended in- and outside of the robotics domain
(i.e., the combination of all three aforementioned security
approaches) [5], [10]. Security flaws in robot systems are
especially grave since recent studies have shown a very large
number of robots to be publicly accessible via the internet
[8], [21].

C. Deployment

Software deployment is an activity performed for or by
the customer where all the customer-centric configuration
and customization is done [7]. It is a process consisting of
activities related to the release, installation, activation, deac-
tivation, update, and removal of components [6]. Different
generic standards for software deployment like RPM (RPM
Package Manager) or DPKG (Debian Package) on Linux
or OMG’s (Object Management Group) deployment and
configuration specification for component based distributed
applications [17] exist. In the field of robotics software de-
ployment is a challenging problem due to the complexity and
variability of robots [4], [13]. Robot manufacturers tackle
the problem with custom proprietary solutions. Universal
Robots uses URCaps for installing additional components
or system updates. Franka Emika has a concept of APPs,
which add new functionality to the controller. In ROS there
is roslaunch, which at least covers the configuration and
activation step of the deployment process. Yet we found no
related research for an end-to-end approach on how to deploy
a robotic software from a software developer via optional
system integrators and/or customers to a robot in a secure
way where each of the stakeholders should be able to add
or modify parts of a deployment package.
In contrast to the works reported above, the architecture
presented in this paper considers all of the aspects of security,
modularity and deployment within an end-to-end concept for
industrial mobile manipulators.

III. ARCHITECTURE

In this section, we first present the requirements for our
architecture before going into detail on its components and
their interactions.

A. Requirements

Considering the hardware-related aspects and
requirements as mentioned in the introduction, we can
derive a number of requirements regarding the software
structure of mobile manipulators from them.

1) Hardware reconfiguration: As hardware reconfigura-
tion is key to enabling a flexible use of a robot, it is
also necessary for the underlying software to support this
aspect. This requires a hardware-driver model and defined
communication channels to other components. This basically
means that the software has to be designed in a way that its
components for controlling a mobile platform and a serial
manipulator are capable of communicating over defined
interfaces, but can basically operate self-contained. Further-
more, these components should meet the requirement that
they are independent from the applied hardware. Providing
these attributes a software structure for mobile manipulation
can reach a high level of flexibility and reusability.

2) Security: It is undoubted that human safety is an
essential aspect of all robotic platforms and applications.
When it comes to mobile manipulation this aspect earns even
more interest as the typical operation area of mobile ma-
nipulators can also include interactions with humans in any
kind of way. A key requirement we actually want to address
with this argument is security. Security in a robotic context
relates to a secure (intrusion-proof) communication structure
between hardware and software components, whereas the
term safety is used for human safety. Even the most excellent
safety concept for a robotic application becomes worthless
if security issues are not considered. Accordingly, security
is strongly connected to safety and as we already stated in
our previous work [2] it is even practically not possible to
guarantee safety without considering security. In this sense,
security is a necessary but not sufficient precondition for
safety. It must be assured, that (typically software-based)
safety measures are not undermined by a lack of security.

3) Extensibility: Another requirement we want to point
out is extensibility. A system integrator as one important
end-user of our software does not want to struggle with
issues because of a complicated way of programming when
it comes to extending the software setup. The whole concept
should be based on structural decisions which allow a
modular behavior of the application software. With this, it
should not only be easy to add custom modules such as
sensors or grippers in hardware, but also in software.

4) Deployment: In addition to easy programming, a sim-
ple and scalable procedure for deployment and integration is
an important point. When deploying software to a robot it
must be made sure that only genuine software components
are deployed and used on the robot. We dedicated a particular
section to this important topic in III-E.

B. Components

The core of our software consists of four components
which provide the basic functionality for a mobile manipula-
tor consisting of a mobile platform, a serial manipulator and a
gripper. Additionally, the architecture provides interfaces for
extending the basic application. An exemplary composition
of an application using our software is visualized in figure
1. Basically, the architecture defines three layers, one for
components working close to hardware, a task layer, which
abstracts specific hardware functionality and exposes atomic

66



D
ra

ft

Fig. 1. Architecture of the software running on the core NUC

functions to the application layer where complex applications
and the integration to outside infrastructure are realized.

C. Architecture layers

In the application layer, the implementation of a specific
use case takes place. Various options are available for this,
ranging from code-based implementation to teaching by
demonstration. The result is always the same, namely a work-
flow with already parameterized tasks. A high-level API is
maybe one of the flexible ways to create applications. Here,
a system integrator can easily implement new processes
for the robot platform. Basically, client libraries for any
language can be implemented as long as they support JSON-
RPC communication. Another option for creating executable
workflows is a planner. Planners are basically used for
more complex actions, where for instance tasks have to be
dynamically reordered.
The task layer is responsible for processing a workflow task
by task and to manage the status feedback to the application
layer. From a workflow definition, which can be an ordered
sequence or complexer structures with branches, one task
after another is triggered by the Workflow Manager. This
happens by calling the appropriate ROS-action server from
the underlying robot control connector (or custom interfaces).
A workflow also contains strategies if one or more tasks fail.
As this information is required by the workflow templates,
it can be assured that a workflow always terminates in a
defined state, even in case of hardware execution errors.
On the hardware integration layer, the actuation of hardware
components, thus, the actual execution of tasks takes place.
The responsible components, namely the Robot Control
Connector and the Gripper Control Connector, serve as an
interface between the single tasks maintained by the Work-
flow Manager from the task layer and the robot commands
used by the Multi Robot Interface. In particular, the control
connectors wait for an ROS-action goal, extract the task
parameters and utilize the Multi Robot Interface to gener-
ate and execute base- and arm commands (Robot Control
Connector) as well as gripper commands (Gripper Control
Connector) respectively. For integrating custom hardware, a
system integrator can define and implement his own task
definitions and execution components. After completion of
a command, successful or not, the result is sent back to the
Workflow Manager. In the current version of our software

every task is executed in a blocking manner. Hence, parallel
task execution is not yet supported.

1) Workflow Manager: The Workflow Manager (WFM) is
used to trigger individual atomic actions (e.g. navigating the
mobile base to a specific pose, move the TCP of the serial
manipulator to a specific pose, move the serial manipulator to
a specific joint configuration), but also supports composition
of such atomic actions to complex workflows. The mobile
manipulator then executes these sequences autonomously.
The dynamic JSON-RPC interface of the Workflow Manager
is extended if new hardware is integrated in the integration
layer. This means that higher layer actions of this hardware
are also available. On task level, the Workflow Manager
runs ROS-action clients for sending basic operations to the
Robot Control Connector and Gripper Control Connector
respectively. If additional hardware needs to be integrated,
the WFM can be dynamically extended by new interfaces to
the hardware integration layer. For that, the source code of
the interfacing components has to be stored in a predefined
directory. Then, the Workflow Manager loads the interfacing
components automatically at the next startup, while its source
code remains untouched.

2) Control connectors: These components, namely the
Robot Control Connector and the Gripper Control Connec-
tor, serve as an interface between the single tasks maintained
by the Workflow Manager and the robot commands used
by the Multi Robot Interface (see below). In particular, the
control connectors maintain ROS-action servers, receiving
task actions, in order to execute commands on the robot’s
hardware via the Multi Robot Interface. Like the Workflow
Manager the source code of the control connectors is inde-
pendent from the current hardware configuration. However,
they must be initialized with hardware specific implemen-
tations of the related Multi Robot Interface components at
runtime.

3) Multi Robot Interface: The Multi Robot Interface
(MRI) is a software interface to access common functional-
ities of different robot classes. It provides generic command
factories for serial manipulators, mobile bases as well as
grippers and so abstracts the underlying hardware. This
especially means that task- and application layer components
are independent from the current hardware configuration and
do not need to be modified when the hardware configuration
and their software drivers change. As depicted in figure 1,
the MRI is split into three parts; i) Base-MRI providing
basic commands for controlling a mobile base, ii) Arm-
MRI providing basic commands for controlling a serial
manipulator, iii) Gripper-MRI providing basic commands for
controlling a gripper. These interfaces can then be utilized by
the Robot Control Connector and Gripper Control Connector
to trigger commands. As a consequence, the source code of
both control connectors is independent from the hardware
configuration. As already described in III-C.2 the low level
execution process is initialized with hardware specific im-
plementations of the MRI components at runtime.

67



D
ra

ft

D. Security

As already indicated in the introduction, there is a gap
between security requirements for the internal communi-
cation and the need of interaction with external entities.
Consequently, our proposed security architecture has to work
on multiple levels, in particular on network, operating system
and application level. The overall network architecture of our
mobile manipulator, shown in figure 3, is separated into i)
an internal network for data processing and low level task
execution, ii) an interaction network for the communication
to external components. Particularly, the second provides
secure access to an administrative interface for maintenance
and configuration as well as secured interfaces to a super-
ordinate task planning component and external interaction
devices. The most important point in this setup is that there
is no direct network connection between the interaction
network on the right hand side and the robotic hardware on
the left hand side of the figure. As a consequence, an attacker
will not be able to directly aim at potentially vulnerable
devices (with regards to cybersecurity), like the base or
the serial manipulator. Further, we pass the information
between the two networks via inter-process communication
techniques, in order to prevent unauthorized access to the
passed information according to the security requirements
we already proposed in [9].

E. Secure Deployment

In order to deploy new software and updates to the mobile
manipulation platform, the architecture has to allow for
both, secure deployment as well as secure execution of the
deployed code. In our work, secure deployment is achieved
by introducing a signed package format, which allows config-
uration data to be modified by a system integrator, while still
ensuring integrity of the software contained in the package.
Secure execution on the other hand is accomplished by
extensive sandboxing of applications, as well as by restricting
access to system resources such as network or file access.

Fig. 2. Application Package

1) Package format: As seen in Figure 2, an application
package consists of multiple parts. This allows for flexibility
in modifications to parts of the package.

The application payload is the actual application or plug-
in that is deployed to a part of the system. For actual stand-
alone software, this is a Docker container, for plug-ins this
might be Python modules, dynamically linked libraries, or
any other payload authored by a developer. The application
payload is digitally signed by the developer, and this signa-
ture is used on deployment to verify the package’s integrity
and origin.

The package file is a text file that contains metadata about
the package itself such as name, version information and
intended target container.

The application data part contains configuration files and
other modifiable resources. Splitting application data and
application payload in two allows for some flexibility in
configuration of packages. For instance if a system integrator
wants to reconfigure a software package for a specific use-
case. This can be accomplished by unpacking the outer
package, changing the application data, and finally re-signing
the outer package with their own private-key. Since the
application payload is left untouched, it is not re-signed and
can be assumed to still work as intended by its developers.

2) Package broker: The package broker is an intermediary
component between the interaction network and the internal
network (as seen in Figure 3). Due to the necessity of
deploying packages to any component of the system as well
as due to security requirements, it exists as a component
that receives packages from the interaction network and
distributes them to either the interaction network or the
internal network. The package broker is responsible for
package-verification and deployment to the intended target
package container within the system.

3) Package containers: A package container registers
with the broker to receive packages since the broker acts
as the central instance for package distribution inside the
system. Once a package arrives at the broker, the bro-
ker inspects the signature and extracts the intended target
package container from the package file. It then verifies
that the creator of the package and source files has the
permissions to deploy to the package container in question.
After performing these tasks, the broker hands the package
off to the package container for further processing.

Once the package arrives at the package container, the
container starts unpacking the package, does some additional
verification, and finally runs the package container-specific
update procedure. When done, it reports the package as
installed to the broker, providing feedback to the user, and
giving the broker the authority to start, stop or uninstall the
application in question.

4) Additional considerations: In order to make the pack-
aging procedure easier, a separate application for packaging
and signing is provided. In addition to this, a user interface
connected to the package broker allows for starting and
stopping running applications on package containers, as well
as for installing and uninstalling packages, hiding the inner

68



D
ra

ft

workings of the deployment and maintenance procedures.

IV. EVALUATION
In this section we evaluate our software architecture

against the requirements stated in III-A. For that, we first
introduce two mobile manipulators able of running our
software. Then, we describe different scenarios, how our
software architecture supports i) the exchange of the hard-
ware modules, ii) the integration of custom hardware and iii)
the deployment of new software packages.

A. Platforms

As target platforms for our software architecture we
aim at two mobile manipulation platforms with certain
characteristics. One manipulator is used in industrial settings
and has been proven in real factories already. The second
model is a research platform composed of exchangeable
modules. The cross-cutting assumption for this in the
software architecture is to have a robot with a mobile base
and a serial manipulator attached.

1) CHIMERA: The CHIMERA consists of a MiR100
including its internal hardware parts, the network with router,
PC (Intel R© NUC) and PLC, as well as an UR controller for
an UR10 robot arm and an additional PC (Intel R© NUC) for
integrating additional hardware and software. Figure 3 shows
the overall network architecture of the CHIMERA, which is
shown in figure 4.

Fig. 3. Network architecture

From the software point of view, our goal is to combine
the functionalities of the MiR100 and the UR10 in order
to execute customizable mobile manipulation workflows. At
the same time we keep our software as generic as possible,
which means that we can exchange the base, the arm or both
without changing the major part of our software.

2) Research platform for modular mobile manipulation:
The specific characteristic of our wheeled mobile manipula-
tion research platform is its modular mobile base. It can be
assembled with an arbitrary number of hexagonally shaped
modules in order to optimize it for specific applications.
Thereby it is possible to create the most suitable robot for
a given problem. The hexagonal modules can be equipped
with different wheel types, other modules can be used for
power supply, the robot arm or other hardware components.
A computing module contains an Intel R© NUC PC, which
is responsible for running all software parts. At startup,
a configuration file, that contains information about the

Fig. 4. CHIMERA

Fig. 5. Research Platform for modular mobile Manipulation

physical configuration of the mobile base, is parsed. The
gripping module includes an UR3 as well as its controller.
A composition of such a wheeled mobile manipulator can
be seen in figure 5. The mobile base in this figure consists
of three driving modules with omni-directional wheels, two
battery modules, a gripping module with an UR3 and a
computing module.

B. Scenarios

In this section, we iterate through various situations in the
lifecycle of our two platforms and explain how the software
architecture will support this.

1) Integration of custom hardware: In the following sce-
nario, we describe how a system integrator (SI) can integrate
a new sensor and utilize it on the task layer in order to
include it into a custom workflow. First, the SI needs to
deploy a driver software for the sensor using the secure
deployment mechanism. The driver can then be started in an

69



D
ra

ft

own process. In order to use the sensor within a customized
workflow, the Workflow Manager then needs to be extended
with a sensor specific task definition and an interface to
the newly integrated sensor. To make the sensor specific
workflow available for an application layer component the
system integrator also has to provided a related JSON-RPC
service.

2) Deployment of a new software package: In this ex-
ample, we outline how the SI deploys the necessary sensor
driver required for the previous scenario using the secure
deployment mechanism. In a first step, the sensor driver
has to be implemented using a programming language of
the SI’s choice. Furthermore, an application setup-script
to install necessary dependencies has to be created. After
implementation, the driver is packaged using the packaging
application which generates a Docker container based on the
setup-script, the docker container is then packaged with the
package file and is subsequently signed by the SI. The SI then
logs in and pushes the package to the package broker, which
will then perform the deployment as described in Section III-
E.

3) Exchange of basic hardware: Let’s suppose, we suc-
cessfully executed an use-case on the research platform and
want to run it on the CHIMERA. To do so, we need a MiR100
implementation of the Base-MRI interface, replacing the
research platform implementation. Further we have to change
the configuration of the UR implementation in order to use
the UR10 instead of an UR3. The Robot Control Connector
is then initialized with the MiR100 implementation at startup.
The software architecture shown in figure 1 is unmodified,
including the workflows which need to be executed. Only
the driver implementations for hardware components must
be exchanged. Of course transferring applications to dif-
ferent hardware does not guarantee that it can be executed
successfully out-of-the box due to physical differences like
reachability of the robotic arm or maneuverability of the
mobile base.

V. CONCLUSIONS

In this paper we have described a flexible software archi-
tecture for modular mobile manipulators that is suitable (and
has been tested) in industrial scenarios. We have shown that
it can be used on both, platforms for industrial and research
use. Thus, the architecture supports the required flexibility
very well.
In future work, we plan to do more experiments with differ-
ent kinds of hardware in order to strengthen the robustness
of the architecture. We also plan to advance tool support for
developers and system integrators to simplify development
and deployment of software components.

ACKNOWLEDGMENT

This work has been supported by the Austrian Research
Promotion Agency in the program ”ICT of the Future”
funded project FlexIFF (grant no. 861264)

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An
architecture for autonomy,” The International Journal of Robotics
Research, vol. 17, no. 4, pp. 315–337, 1998.

[2] B. Breiling, B. Dieber, B. Reiterer, A. Schlotzhauer, and S. Taurer,
“Safety nicht ohne security in der kollaborativen robotik.”

[3] B. Breiling, B. Dieber, and P. Schartner, “Secure communication
for the robot operating system,” in 11th Annual IEEE International
Systems Conference, SysCon 2017 - Proceedings, 2017.

[4] D. Brugali, A. Agah, B. MacDonald, I. A. Nesnas, and W. D.
Smart, “Trends in robot software domain engineering,” in Software
Engineering for Experimental Robotics. Springer, 2007, pp. 3–8.

[5] E. Byres, P. E. Dr, and D. Hoffman, “The myths and facts behind
cyber security risks for industrial control systems,” in In Proc. of VDE
Kongress, 2004.

[6] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van
Der Hoek, and A. L. Wolf, “A characterization framework for soft-
ware deployment technologies,” COLORADO STATE UNIV FORT
COLLINS DEPT OF COMPUTER SCIENCE, Tech. Rep., 1998.

[7] A. Dearle, “Software deployment, past, present and future,” in Future
of Software Engineering (FOSE’07). IEEE, 2007, pp. 269–284.

[8] N. DeMarinis, S. Tellex, V. Kemerlis, G. Konidaris, and R. Fonseca,
“Scanning the Internet for ROS: A View of Security in Robotics
Research,” arXiv preprint arXiv:1808.03322, 2018.

[9] B. Dieber and B. Breiling, “Security considerations in modular mobile
manipulation,” in Proceedings of the 3rd International Conference on
Robotic Computing. Naples, Italy: IEEE, Feb. 2019, pp. 70–77.

[10] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and
P. Schartner, “Security for the Robot Operating System,” Robotics
and Autonomous Systems, vol. 98, pp. 192–203, 2017.

[11] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-
level security for ROS-based applications,” in IEEE International
Conference on Intelligent Robots and Systems, vol. 2016-Novem,
2016, pp. 4477–4482.

[12] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and M. Bala-
banovic, “A domain-specific software architecture for adaptive intel-
ligent systems,” IEEE Transactions on software engineering, vol. 21,
no. 4, pp. 288–301, 1995.

[13] N. Hochgeschwender, L. Gherardi, A. Shakhirmardanov, G. K. Kraet-
zschmar, D. Brugali, and H. Bruyninckx, “A model-based approach
to software deployment in robotics,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2013, pp.
3907–3914.

[14] A. Koubaa, “Service-oriented software architecture for cloud robotics,”
arXiv preprint arXiv:1901.08173, 2019.

[15] V. Mayoral, A. Hernndez, R. Kojcev, I. Muguruza, I. Zamalloa,
A. Bilbao, and L. Usategi, “The shift in the robotics paradigm the
hardware robot operating system (h-ros); an infrastructure to create
interoperable robot components,” in 2017 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), July 2017, pp. 229–236.

[16] M. Mukhandi, D. Portugal, S. Pereira, and M. Couceiro, “A novel
solution for securing robot communications based on the MQTT pro-
tocol and ROS,” in Proceedings of the 2019 IEEE/SICE International
Symposium on System Integrations (SII 2019), 2019.

[17] OMG, Deployment and Configuration of Component-based
Distributed Applications Specification Version 4.0, 01 2006.

[18] M. Quigley, E. Berger, A. Y. Ng, et al., “Stair: Hardware and software
architecture,” in AAAI 2007 Robotics Workshop, Vancouver, BC,
2007, pp. 31–37.

[19] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[20] K. Roufas and M. Yim, “Software architecture for modular self-
reconfigurable robots,” in IROS, 2001.

[21] V. M. Vilches, G. O. Mendia, X. P. Baskaran, A. H. Cordero,
L. U. S. Juan, E. Gil-Uriarte, O. O. S. de Urabain, and L. A.
Kirschgens, “aztarna, a footprinting tool for robots,” arXiv preprint
arXiv:1812.09490, 2018.

[22] R. White, H. Christensen, and M. Quigley, “SROS: Securing ROS
over the wire, in the graph, and through the kernel,” in Proceedings
of the IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS)., 2016.

[23] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: a modular recon-
figurable robot,” in ICRA, 2000, pp. 514–520.

70


