

Multilingual Speech Control for ROS-driven Robots

Dominik P. Hofer1, Simon Brunauer2 and Hannes Waclawek3

Abstract — To improve the collaboration of humans and

robots, a multilingual speech (MLS) control was created, which

allows to manage multiple ROS-based robots at any time.

Keywords—Speech Control, Multilinguality, Speech to Text,

Text to Speech, Intent and Variable Detection

I. INTRODUCTION

How can various types of Robots (e.g. robot arm, robot
car, etc.) be controlled with the same speech control? In this
paper, a universal speech control for various robots, which use
ROS as a middleware, is presented. The speech control only
uses open source tools and libraries which work offline. This
allows the user to secure privacy and independence of
companies. Furthermore, to allow people with different
mother tongues to use the same speech control,
multilingualism was implemented.

II. METHOD

The workflow for the whole audio dialog was split into

five steps: First, language identification (LID), next speech-

to-text transformation (STT), afterwards the intent and the

variables of the command are detected (I&VD), which is

followed by command publishing (CP) and finally the

creation of the audio response by text-to-speech (TTS).

Figure 1 is a graphical representation of the speech control.

For the implementation of this workflow, a set of specialised

open-source tools was used, which are described in the

following subsections.

Figure 1: The graphical representation of the processes done by the

speech control

A. Language Identification (LID)

For the speech control to transform the audio signal into
the correct written language, the LID is necessary. In the case
of this project the library iLID, created by Tom Herold and
Thomas Werkmeister, is used [1]. The library allows to train
a convolutional neural network (CNN) with Mel-Filters on
various languages [1].

B. Speech to Text (STT)

The STT-Transformation is done by using the CMU
Sphinx library [2]. This open-source offline tool allows to

1 Dominik P. Hofer is with Salzburg Research Forschungs GmbH, 5020 Salzburg, dominik.hofer@salzburgresearch.at and Information

Technology & System-Management, Fachhochschule Salzburg GmbH, 5412 Puch bei Hallein, AUSTRIA, dhofer.its-m2018@fh-

salzburg.ac.at
2 Simon Brunauer is with Information Technology & System-Management, Fachhochschule Salzburg GmbH, 5412 Puch bei Hallein,

AUSTRIA sbrunauer.its-m2018@fh-salzburg.ac.at
3 Hannes Waclawek is with Information Technology & System-Management, Fachhochschule Salzburg GmbH, 5412 Puch bei Hallein,

AUSTRIA sbrunauer.its-m2018@fh-salzburg.ac.at

transform any language by letting users create their own
dictionaries, language models and acoustic models.

C. Intent and Variable Detection (I&VD)

To let the system know, what the user wants a specific
robot to do, the intent, as well as variables, need to be
extracted out of the command. ID detects the intent the user
has e.g. drive, bring, stop, etc. SF, on the other hand, is the
process of finding variables in the command (e.g.: “fahre 15
Meter” – 15 meter is the variable). This is achieved by using
the Snips NLU tool, which analyses the text via regular
expressions or using a logistic regression in combination with
Conditional Random Fields (CRFs) [3].

Figure 2: Architecture of the ROS Speech Interface

D. Publishing Command (CP)

For the robot(s), referenced in the audio file, the intent and
the stated variables are published on a topic. Two examples of
ROS topics can be seen in Table 1. Column one shows the
name of the topic. The message format stays the same for all

Table 1: Some ROS Topics and the corresponding functionalities

the topics and consists out of three strings. The first string
representing the name of the robot. The second referencing the
language which was identified by the ID. This was
implemented to allow the Text to Speech-Transformation to

ROS Topic ROS Msg
format

Intended
Function

Usage
Example

/stt_save_pos stt_std Save current
robot position
under a position
name

“Sam, speichere
diese Position
als
Startposition.”

/stt_goto stt_std Go to position
previously saved
via /stt_save_pos

“Sam, fahre zu
Startposition.”

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-16

97

respond in the correct language. The final string consists out
of the function the robot should execute. The third column of
Table 1 shows what function the topic sets in motion. The final
column represents sample sentences.

E. Text to Speech (TTS)

The final step, the TTS-Transformation uses the response
(further explained in chapter III. Results) of the robot and
transforms it into an audio file. This is done by the eSpeak
library [4]. This library allows to transform text written in
various languages.

III. RESULTS

 The architecture of the speech control as shown in Figure
2 consists out of four different ROS nodes: stt, param, client
and tts.

The stt node focuses on the entire process of speech and
language analysis, as well as checking if the intended
command is supported by the demanded robot. The param
node, strictly speaking is already integrated in the ROS core
node, is a parameter server which holds a list of all the robots
currently active in the ROS environment and their supported
commands. The parameter server does this process
automatically. The client node represents the various robots.
The final node, tts, only focuses on audio output and listens on
the tts-topic. The node saves any kind of message in a first in
first out (FIFO) concept.

For the implementation of the speech control, a demo
scenario was created. This scenario is represented as a dialog
flow chart in Figure 3. It shows how a user asks the robot for
a certain task. After that the speech control evaluates the
command, whether the robot can even execute the task, or if
everything is fine. The error analysis is done multiple times
during the execution. If the user wants the execution to stop,
the stop command can be executed at any given moment. This
allows handling of dangerous situations, but it is still
recommended to have further security tools at hand.

Figure 4: Dialog Flow representation of the Proof-of-Concept

If everything went according to program, the speech control
outputs an audio message and the corresponding robot moves
back into the idle position. Figure 4 shows an implemented
proof-of-concept. Here, the Panda Robot by Franka Emika [5]
transports a product (3D-printed owl) from the storage (not in
the picture) to the product output facility (conveyor belt).

IV. FURTHER WORK

There are some possibilities of improving the speech control.

The first and probably most important one would be to allow

different accents and dialects. This would provide users an

even better experience. This can be achieved by focusing on

two points regarding the Speech to Text transformation. The

first one would be to allow the use of certain English

commands in other languages. This would diminish the need

of creating an e.g. German counterpart for e.g. “gripper”. The

second improvement would be to advance the resources

available for CMU Sphinx. This would allow to better use a

bigger variety of languages. Another improvement would be

understandability. This should mean that it can take several

tries till the speech control got the correct command. This

problem can also be solved by improving the stt

transformation. The last improvement would be speed. The

process of analysing the audio input until the robot finally

moves currently can take up more than ten seconds. This

should be reduced in further research.

V. CONCLUSIO

All in all this short paper presents a speech control that
allows to command multiple robots, which have a ROS
interface, in multiple languages. The libraries and tools used
are on the one hand open-source, which makes the user
company independent, and on the other hand do not need an
internet connection. This aspect is especially important
regarding security issues. However, with the presented
modular approach, parts of the workflow can be easily
replaced with more sophisticated online speech recognition
services. Due to the possibility of intent and variable detection
the speech control allows the execution of more programs and
a variation of these (e.g. different lengths of driving straight
ahead, etc.). It still needs to be pointed out that the
clients/robots need to be independently programmed;
therefore, the user needs to be able to program the desired
robot. In sum, the proof-of-concept works and there are still
options left to improve it.

REFERENCES

[1] T. Herold and T. Werkmeister, “Practical Applications of Multimedia Retrieval,” 7 April 2016. [Online].

Available:

https://github.com/twerkmeister/iLID/blob/master/Deep%20Audio%20Paper%20Thomas%20Werkmeister%2C
%20Tom%20Herold.pdf.. [Accessed 2019 March 9].

[2] CMU Sphinx, “Open Source Speech Recognition Toolkit,” 7 Juni 2017. [Online]. Available:

https://cmusphinx.github.io. [Accessed 2019 March 9].

[3] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro, T. Gisselbrecht, F. Caltagirone,

T. Lavril, M. Primet and J. Dureau, “Snips Voice Platform: an embedded Spoken Language Understanding

system for private-by-design voice interfaces,” 6 Dezember 2018. [Online]. Available:

https://arxiv.org/abs/1805.10190. [Accessed 2019 March 9].

[4] eSpeak, “eSpeak text to speech,” 1995. [Online]. Available: http://espeak.sourceforge.net. [Accessed 2019

March 9].

[5] Franka Emika, “Panda,” 2018. [Online]. Available: https://www.franka.de/panda. [Accessed 2019 March 9].

Figure 3: Implementation of the Proof-of-Concept

98

