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Object Grasping in Non-metric Space Using
Decoupled Direct Visual Servoing

Bernhard Neuberger1, Geraldo Silveira2, Marko Postolov3 and Markus Vincze4

Abstract— In this paper we present a robotic system for
grasping novel objects. Using a low-cost camera mounted on
the end-effector, our system utilizes visual servoing control to
command the gripper to a grasp position that is prescribed
during a teach-in phase when the object is presented to the
system. By using decoupled direct visual servoing, an intensity-
based approach, object grasping is done without any 3D
input and requires no metric information about the object.
Although the robot moves in the 3D Euclidean space and is
controlled in the joint space, the command signal is derived
completely from pixel information from the input image in
the 2D projective space. Furthermore, the control strategy is
extended for trajectory following in the control error space to
generate smoother and more stable trajectories. This enables
more direct and accurate positioning of the end-effector. A set of
experiments is performed with a 7 DoF KUKA LWR IV robotic
arm and shows the capability of precisely grasping objects from
cluttered scenes. The system also shows robustness to object
movement during the grasping process as well as robustness
against errors in the camera calibration.

I. INTRODUCTION

Robotic arms are widespread in industrial environments
for production tasks and are capable of precise sub millimeter
positioning. In order to exploit such high precision the
system is required to perceive the environment with similar
accuracy.

One common task in robotics is grasping, which works
well when considering controlled conditions but becomes
increasingly more challenging when its necessary to adapted
to an changing environment.

The focus in this work is on the task of grasping objects
with a robotic arm. The robotic system is equipped with a
low cost camera that provides the perception. The described
approach is capable of grasping objects that are newly
presented to the robot and only require a teach-in phase to
generate a single reference image.

State-of-the-art methods [5], [13], [9] have shown that
visual servoing control can stabilize a robotic system around
an equilibrium space. Here the work from Silveira et. al. [15]
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Fig. 1: Teaching the robot to grasp a newly presented object.

is extended such that the visual servoing approach is used for
the task of grasping. The considered objects have a planar
and textured surface that will be visible to the robot during
the task of grasping.

In order to use visual servoing for grasping the task was
broken down to an end-effector positioning. Therefore first
experiments were conducted were it is shown that the system
is able to position itself in regards to a reference image. This
approach is extended in such a way that the robot is guided
along a desired trajectory to the final pose. For this guided
movement a desired control error is predetermined so that the
initial control error is gradually reduced. This enables a direct
smooth movement and is used to grasp objects in a cluttered
environment without colliding with the surroundings of the
target object. For first results on grasping the clutter was
placed such that it was guaranteed that the target object was
good visible and the desired grasp was reachable.

In the teach-in phase a new object is learned by showing
it to the robot. Therefore it is needed to present the object to
the camera of the system as it would be seen when grasped
by the gripper. We do not require any form of object model
or depth information and purely rely on the input from the
mounted camera. Figure 1 shows the teach-in phase, the
system state when starting the grasping process and the state
of the robot after grasping the newly learned object.

Additionally, a number of experiments was conducted
which test the system performance in regard to errors in
the camera parameters. For this case wrong camera intrin-
sic parameters, particularly the focal lengths fx and fy in
the algorithm were disturbed when a positioning task was
performed.

The presented system builds on the work from [15] and
contributes with the following additional features:

• visual servoing is used as a tool for grasping newly
presented objects
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• an easy to use teach-in phase is used that requires a
human supervisor to take a single reference image of
the object in the desired grasp pose

• a desired error trajectory is presented for smoother
movement that enables grasping in clutter

• we show that the approach has high robustness against
errors in the camera intrinsic parameters

• object grasping remains successful even when the target
is repositioned during the process

II. RELATED WORK

Saxena et. al. [11] present a robotic system that is able to
grasp newly seen objects. Their approach calculates corre-
sponding points for grasping the object and then calculates
a 3D grasp point from a set of sparse points on the object.
In contrary to this work we are not able to grasp completely
unseen objects but we need to teach the object to the robot
which doesn’t require any 3D object information.

Fischinger et. al. [6] present a grasping approach that uses
depth data to extract features for grasping objects in piles and
cluttered scenes. They present a method that is able to grasp
newly presented objects without any object knowledge.

In [7] Levine et. al. show a deep learning approach that
learns to move the robot in the task space such that it results
in a high probability for a successful grasp. They show that
continuous servoing corrects the mistakes from the network
and improve the grasp quality. Their method requires a large
number of training data compared to a single reference image
in our method.

Another deep learning based method for grasping is pre-
sented by Mahler et. al. in [8]. They show that their network
is able to predict grasp points with a high success rate when
trained on a large synthetic dataset. They also present a grasp
planner that is needed to position a robot within workspace
constraints. In contrary our method directly positions in
regards to the target and does not use grasp points at all.

Chaumette and Hutchinson present in [3] and [4] an
overview of various state-of-the-art visual servoing ap-
proaches. They present control strategies for image-based
visual servo control (IBVS) and position-based visual servo
control (PBVS). The difference between IBVS and PBVS
are examined and stability of the strategies are investigated.
PBVS methods such as [17] and [16] have the advantage
of having full control over the trajectories in the Cartesian
space but have the disadvantage of being sensitive to camera
parameters. Our approach is similar to IBVS methods as
presented in [2] but compared to them we don’t use im-
age features. Instead pixel intensities are used directly as
presented in [14] and use it for the specific robotic task of
grasping.

In [9] Mariottini et. al. show how to use IBVS to control a
nonholonomic mobile robot to a desired pose. Similar to our
approach they don’t use any metric information and control
the robot in the epipolar geometry. Contrary to our method
they use extracted features from the images for the IBVS. In
our system the visual tracker from [10] is used.

VisioTec VSC Interface Robot
v′k qIre f Gk Icurr

qmsr,J(qmsr)Icurr

Fig. 2: Conceptional Overview of the Visual Control

Nogueira presents in [10] an intensity-based homography
estimation which is implemented in the robot operating
system(ROS). In this paper we will refere to this software
as the “VisioTec” that is publicly available1. It is used to
calculate the homography between the reference image and
the currently captured camera image.

III. VISUALLY GUIDED OBJECT GRASPING

For our grasping approach, the system perceives the envi-
ronment with a camera mounted on the end-effector of the
robotic arm. In the teach-in phase, the object is presented to
the robot in the final grasp pose. This provides the system
with an reference image in the precise configuration for
the final grasping pose. After this phase, the robot arm
automatically moves from any initial pose to a grasp pose
such that the live image from the camera coincides with the
recorded reference image. This enables the system to grasp
the object (by closing the fingers of the end-effector) even if
the object is moved at any time during the control procedure.

Our approach enables a set of objects to be grasped with-
out the need for object models. As such, novel objects can
be simply presented to the system for immediate grasping.
Human involvement is reduced to the task of positioning an
object in front of the wrist mounted camera and recording
of the reference image.

This section gives an overview of the visual control
and details for the steps of the robot control strategy. An
extended control strategy for trajectory following in the
control error space is then presented. This extension guides
the end-effector motion along a coarse trajectory for smooth
positioning.

A. Concept Overview

Figure 2 shows a block diagram of the conceptional
overview of the robot control loop that is used for the
grasping task. The first part in the control loop is the VisioTec
visual tracker [10] that takes a selected bounding box from
the reference image Ire f and performs intensity-based image
registration for the tracked area in the current image Icurr.
The output of the VisioTec tracker is the homography G
between the reference target area and the corresponding area
in the current image.

This homography is the input to the visual servo controller
(VSC), which is described in III-B. This component takes the
homography and outputs the desired end-effector velocity
commands v′k.

1http://wiki.ros.org/vtec ros
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Our implementation includes an interface between the
VSC and the robot control due to the lack of a velocity
control mode. The interface transforms the commanded
velocity v′k directly into desired joint states q.

The computed joint states are received by the robot control
unit to move the robotic arm to a desired configuration.
Additionally, the robot control unit returns the measured joint
states qmsr and also the current Jacobian matrix J(qmsr).
Within this block J(qmsr) is used to calculate the pseudo
inverse Jacobian matrix J+ to calculate the joint velocities
according to

q̇ = J+v′k. (1)

The measured joint states qmsr and joint velocities q̇ are used
to determine the commanded joints q using the sampling time
t∆

q = qmsr + q̇t∆. (2)

The robot arm moves according to the commanded joint
states and captures a different view of the environment. The
latest captured image is returned to the VisioTec tracker and
closes the control loop.

B. Robot Control

The purpose of the robot control is to transform the ho-
mography Gk from the VisioTec to the end-effector velocity
v′k to move the robot arm closer to the reference pose.

The implementation of the robot control requires the
template location in the location matrix Gl to be set in
terms of pixel coordinates (lx, ly). So long as the target is
located in the selected area the control error εk will be zero.
The location matrix Gl , the camera intrinsic parameters
K ∈ R3×3 and the hand-eye calibration T

′ ∈ SE(3) are set
according to

Gl =




1 0 lx
0 1 ly
0 0 1


 , K =




fx 0 cx
0 fy cy
0 0 1


 , T

′
=

[
R
′

t
′

0 1

]
(3)

where fx and fy are the focal lengths of the camera and (cx,
cy) is the principal point coordinate. The homography Gk
from the VisioTec tracker is than transformed to the image
frame with

G′k = GkG−1
l . (4)

The control point p∗ ∈ P2 and the control vector c∗′ ∈ R3

are used to calculate the control error

εk =

[
2I [m∗′]×

−[c∗′]× I

][
(H− I)m∗′

ϑ µ

]
(5)

where
H = K−1G′kK, m∗′ = K−1 p∗ (6)

and
r =

1
2

vex(H−H>) (7)

ϑ =

{
arcsin(||r||) if tr(H)≥ 1,
π− arcsin(||r||) otherwise,

(8)

µ =
r
||r|| . (9)

The error from the control law is used to calculate the
required camera velocity in order to reduce the control error

vk = λ (εk)εk. (10)

Here λ (εk) is a variable gain that was used in our setting.
This ensures that the gain declines with an increasing control
error and will result in small end-effector velocities with high
control error. This reduces velocities exponentially for very
high control errors and keeps them within boundaries.

λ (εk) = αe−γ||εk|| (11)

The control parameters α > 0 and γ > 0 can be tuned such
that a higher α increases the velocity and a higher γ increases
the damping of the gain.

Finally, the velocity from the camera frame is transformed
to the tool center point (TCP) frame with

v′k =
[

R′ [t ′]×R′

0 R′

]
vk (12)

where [t ′]× is the skew symmetric matrix of the translation
vector between the camera and TCP frame and R′ is the
rotation matrix for the transform.

C. Trajectory Following

The control strategy as described above moves the robot
to a reference pose. For a more reliable grasping, the system
can be adapted for smoother and more stable end-effector
movement. This first requires the introduction of a desired
control error trajectory ε∗(t). The actual control error is
derived from the error trajectory ε∗(t) according to

ε ′(t) = ε(t)− ε∗(t) (10)

Stable trajectories are then achieved by adapting the control
law from Equation (13) to

vk = λ (ε ′)ε ′(t)+
∂ε∗(t)

∂ t
(14)

Specific details of the desired control error is presented in
Section V.

IV. EXPERIMENTAL SETUP

In our experiments, we use a KUKA LWR IV [1] robotic
arm with the provided control unit. The robot arm has 7
degrees of freedom (DoF) and is controlled with position
commands for the joints. A Logitech HD C920 webcam and
a dynamixel AX-12A Dual Gripper are mounted on the end-
effector of the arm with a 3D printed support structure.

The VisioTec, the VSC and the interface depicted in the
block diagram of Figure 2 run on a remote PC. The remote
PC and the KUKA control unit communicate via Ethernet.
Communication between the remote PC and the robot control
unit is enabled with the kuka-lwr-ros package2, which uses
the fast research interface3 (FRI) [12].

2https://github.com/epfl-lasa/kuka-lwr-ros
3https://cs.stanford.edu/people/tkr/fri/html/
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(a) reference pose (b) initial pose

(c) reference image (d) initial image

Fig. 3: Positioning Experiment

V. RESULTS

A number of different experiments were executed to
evaluate the performance of our approach. First, we perform
positioning experiments to establish a base line to evaluate
the benefit of the trajectory following adaptation. In these
experiments, the robot arm is tasked to position itself with
respect to a known planar textured surface. Second, we
perform grasping performance to showcase the capability of
the system to grasp novel objects in clutter. The grasping
task is restricted to rigid textured objects with a planar
surface, where for each experiments the object is presented
to the system in its final grasping pose. Finally, we conduct
experiments to test the robustness under camera parameter
errors.

A. Positioning Experiment

For this experiments, a plain textured image is used as
target. After a reference image is recorded from a reference
pose the robot arm is moved to an initial pose. The goal is
to control the robot arm in such a way that it moves back to
the reference pose while reducing the control error. Figure 3
shows the setup of the positioning experiment with the robot
arm in the reference pose and initial pose. The reference
image with the selected target area and the initial image with
the tracked target area are also shown.

For the evaluation, the robot state is recorded along the
whole trajectory from the initial pose to the final pose. Figure
4 plots the pose and control errors over the duration of the
experiment. We can see that the errors reduce and eventually
go to zero after 15 seconds. Although the final pose is
reached, the movement shows unintended behaviour as seen
by the significant overshoot in Figure 4c and Figure 4d.

(a) control error translatoric (b) control error rotatoric

(c) position error translatoric (d) position error rotatoric

Fig. 4: Results from the positioning experiment

(a) control error translatoric (b) control error rotatoric

(c) position error translatoric (d) position error rotatoric

Fig. 5: Results from the trajectory following experiment

B. Trajectory Following

The desired control error is set in such a way that the initial
error is gradually reduced along a smooth function with the
property of being continuously differentiable. A Lipschitz
continuous desired control error is made possible by setting

ε∗ =

{
ε0(1+2( t

T )
3−3( t

T )
2) t ≤ T

0 t > T
(15)

where ε0 is the initial control error from the initial end-
effector pose. This choice of control error guarantees a
Lipschitz continous commanded velocity.

Figure 5 shows the pose and control errors with trajectory
following activated. Compared to Figure 4, we see that the
control error is now reduced in a more controlled way, which
results in a more direct and smooth movement. It can be seen
in Figure 5c that the pose error is gradually reduced with less
overshoot along the x-axis compared to Figure 4c.
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Fig. 6: Grasping an object while repositioning the target object

(a) control error translatoric (b) control error rotatoric

(c) position error translatoric (d) position error rotatoric

Fig. 7: Results from the trajectory following with 37.40%
errors in camera parameters

C. Object Grasping

The setting from the trajectory following experiments were
used to grasp objects. Qualitative results are presented in
Figure 6. This shows not only a successful grasp but also
the fact that the system successfully compensates for the
movement of the target during the process of positioning
to the final pose. So long as the target object remains in the
camera’s field of view the robot is able to successfully follow
the target. Grasping is achieved by closing the fingers of the
gripper when the pose error is below a predifined threshold.

These results show that our visual servoing approach can
be used to grasp objects in unpredictable conditions. Further
experiments show that the inclusion of trajectory following
enables grasping in cluttered scenes, where collisions are
possible near the target object, i.e. obstacles sitting on the
same plane as the target object. As shown in Figure 1,
grasping is successful as the gripper moves directly towards
the object without colliding with surrounding objects.

D. Robustness against errors in the Camera Parameters

The positioning experiment is repeated with an added error
in the focal lengths fx and fy if the camera intrinsic matrix K.

(a) control error translatoric (b) control error rotatoric

(c) position error translatoric (d) position error rotatoric

Fig. 8: Results from the trajectory following with 113.74%
errors in camera parameters

Fig. 9: End-effector trajectory for different camera parame-
ters

In order to obtain the nominal parameters K, a checkerboard
and the ROS camera calibration package4 is used.

Figure 7 shows the pose and control error over time
with an error of 37.40% in the focal length of the camera
parameters and Figure 8 shows the same plots with 113.74%
of error. The results show that even with 113.74% error
the robot still manages to reach the reference pose. Further
increase in the error of the camera parameters results in a

4http://wiki.ros.org/camera calibration
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failed experiments because the target shifts out of the field of
view. In this case the reference image can longer be tracked.

Although the reference pose is still reached with a very
high error the resulting end-effector trajectory is not feasible
for grasping experiments. Figure 9 shows the trajectories of
the end-effector from the initial pose to the the reference
pose with different settings of the camera parameters. We
can see that the trajectories with the nominal parameters and
37.40% error are similar and follow a very direct path. But
it is visible that the trajectory with 113.74% error of camera
parameters follows a more complicated path that would result
in a collision with surrounding objects.

VI. CONCLUSION
The results show that a reliable grasp is possible with

our method even if we add errors to the camera intrinsic
parameters. We show that newly taught objects can be
tracked and grasped with the system.

Future work will exploit the redundancy of the KUKA
LWR IV. The 7 DoF of the robot arm has one additional
degree of freedom compared to the workspace of the robot.
This can be used to avoid singularities, joint limits or keeping
distance between the joints and obstacles.

Further plans will improve the system in such a way that
the robot can detect the target in a newly presented image
even if the target is completely lost in between. This can
be beneficial for a mobile platform which can exploit the
room and than plan the object manipulation accordingly.
This would allow a robot to grasp or manipulate previously
learned objects in an novel environment.
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