
D
ra

ft

Traffic cone based self-localization on a 1:10 race car

Axel Brunnbauer1 and Markus Bader1

Abstract— This document describes a feature-based self-
localization running on-board on an automated 1:10 race car.
Traffic cones are detected using an Intel RealSense depth
camera and integrated into the self-localization as landmarks.
The work presents a novel approach for how to detect traffic
cones by fusing depth and RGB data. Motion commands and
sensor readings are combined with an Extended Kalman Filter
(EKF). The performance of the overall system was evaluated
using an external motion capture system.

I. INTRODUCTION

Learning the technical principles of autonomous driving
with a real car is not only expensive but also dangerous.
Therefore our work group uses multiple car models scaled
at 1:10 with self-printed components for teaching, research
and developing new approaches.
This work presents a localization system that is able to
detect traffic cones in various contexts and, as a consequence,
localize the vehicle using a prior known feature map. The
car shown in Fig. 1 is an enhanced version of the model
presented in [2]. The car is equipped with a depth camera
and an Single Board Computer (SBC) running a high-
level processing unit with Robot Operating System (ROS).
The Brushless Direct Current (BLDC) motor for driving
and the servomotor for the front Ackermann steering are
controlled by a self-designed board connected by a serial
cable to the SBC. A more detailed explanation of the model’s
components is provided later.
One challenging aspect of designing such a system is the
detection of traffic cones. Difficulties in object detection are
presented by various factors. Camera-based detection meth-
ods, in particular, are greatly influenced by changing lighting
conditions. Currently, the car provides simple odometry by
dead reckoning using Hall effect sensors on the motor and no
wheel encoders. Therefore the number of revolutions of the
motor and the state of the servomotors are used to calculate
odometry. However, these measurements are subject to noise
introduced by external and internal factors. External factors,
on the one hand, constitute calibration errors regarding wheel
diameter, wheelbase distance, slightly different wheel sizes,
etc. Internal factors, on the other hand, are inaccuracies in
the mathematical model used to describe the motion of the
vehicle. Since the model is an abstraction of the real world,
simplifying assumptions are necessary to keep the model
feasible. The uncertainty presented by the errors in odometry

*The research leading to these results has received funding from the
Austrian Research Promotion Agency (FFG) according to grant agreement
855409 (AutonomousFleet) and 854865 (TransportBuddy)

1Axel Brunnbauer and Markus Bader are with the Faculty of Informatics,
Computer Engineering, Vienna University of Technology, Vienna 1040,
Austria, axel.brunnbauer@tuwien.ac.at

Fig. 1: 1:10 race with an on-board PC (green), a depth
camera (red), a motor control board (blue) and reflectors
(yellow) to record ground truth pose data with a motion
capture system.

and the sensor readings must be considered when building
a reliable localization system. To cope with these issues,
this work applies a variant of the Extended Kalman Filter
(EKF) algorithm, which can deal with these types of uncer-
tainties. Some other approaches dealing with localization and
mapping of traffic cones are presented below, followed by a
discussion of the methods applied in this project. Finally, the
results of the experimental evaluation are compared with the
current performance of the system.

II. RELATED WORK

In [1], the development of the flüela driverless, the first
car to win the Formula Student Driverless (FSD), was
introduced. The flüela driverless is an electrically-powered
race car equipped with a variety of sensors for traffic cone
detection and state estimation, including a 3D LiDAR sensor,
a stereo camera system, an inertial navigation system and
an optical ground sensor. The vehicle is able to map the
track defined by pairs of traffic cones using a particle-
filter-based SLAM approach. Further, for localizing the car,
a landmark-based EKF was implemented. The previously-
mapped traffic cones serve as landmarks used for updating
the current estimation of the vehicle’s pose. To detect the
traffic cones, the team used a 3D LiDAR scanner. Traffic
cones are recognized by first removing the ground plane from
the scan. Then, the filter clusters the traffic cones using the
Euclidean clustering algorithm and further classifies these
clusters according to size. In a second filtering step, traffic
cones get rejected based on their distance from the sensor.
The approach presented in this work also filters traffic cones
based on their size. In addition, it rejects objects which do

Proceedings of the ARW & OAGM Workshop 2019 DOI: 10.3217/978-3-85125-663-5-20

109



D
ra

ft

not fit the visual appearance of the traffic cones.
Zeilinger et al. present their approach to designing an au-
tonomous vehicle for the FSD in [5]. Their system uses a pla-
nar laser scanner and color cameras for the detection of traffic
cones. Furthermore, to estimate the vehicle’s movements, a
rich set of sensors, including IMU’s, GPS sensors, several
wheel spin sensors and rotary encoders are mounted on
the car. The traffic cone detection includes segmentation by
color, exploiting the distinct color of the traffic cones. Also,
techniques to incorporate the data from the stereo cameras
and the laser scanner are presented. To map the traffic cones
and localize the vehicle, an EKF-SLAM implementation was
used. The work proposed in this paper also proposes an EKF
implementation for localization, but does not take SLAM into
consideration. The trajectory planning in [5] also exploits the
fact that the pairs of cones already describe a path which
have to be followed. This path is then smoothed using a
model-predictive motion controller.

III. APPROACH

In the approach presented here, traffic cones are first
detected and then located relative to the pose of the vehicle.
Next, mapping is determined based on the perceived location
of the landmarks and a known map.

A. Traffic Cone Detection

The algorithm developed for this task uses the guess and
check method. First, objects in the vehicle’s environment are
located by extracting objects from the 3D point cloud. This
is done by simulating a laser scan parallel to the ground.
After potential candidates are detected, the algorithm filters
out objects which do not correspond to distinct features
of the landmarks. The first step of the landmark detection
process is the extraction of objects from the laser scan. To
extract objects from the set of points P = {p1, p2, . . . , pn},
the Euclidean clustering method proposed in [3] is used.
Filtering of the objects detected is realized as a filter
pipeline where each filter takes the clusters extracted as
an argument. In addition, each filter has individual input
arguments necessary for detecting certain features of the
objects. Currently, the pipeline consists of two filters. The
first filter applied sorts out objects which do not correspond
to the expected width of traffic cones, as estimated by the
laser-based detection. Fig. 2 shows the laser scan obtained

Fig. 2: Visualized laser scan readings in green on detected
traffic cones

from traffic cones. If a segment does not correspond to a
certain degree to the expected width, the segment is removed
from the traffic cone candidate list.
The image-based filter exploits the visual properties of a

traffic cone, especially its striped appearance. The classifi-
cation of traffic cones is done using a template-matching
algorithm. The goal of the algorithm is to match objects
which correspond to the typical striped pattern of traffic
cones. By applying the Sobel operator to find horizontal
edges, unnecessary information is removed and the pattern
of the traffic cones can be emphasized. Fig. 3b shows the
extracted edges of the image. To speed up the template-
matching process, the search space is reduced to a narrow
area around the projected point. This area is defined by the
traffic cone’s height and width. First, the coordinates of the
objects detected in the previous step are projected onto the
image plane using extrinsic and intrinsic camera parameters.
Now that the location of the candidate objects in pixel space
is known, the search space is limited by the surrounding
bounding boxes. In Fig. 3a, search spaces are marked with
yellow bounding boxes. The marker inside a bounding box
depicts the center of the detected object which is projected
onto the image. The next step involves matching the sub-

(a) Cone candidates, estimated
by the laser

(b) Horizontal edges used for pat-
tern matching

(c) Final estimatation of traffic cones

Fig. 3: Image processing steps for traffic cone detection

regions of the image, defined by the candidate objects, with
templates. For each bounding box in Fig. 3b, the template
matching algorithm determines which template matches best.
The method used for calculation is the normalized sum of
squared differences, resulting in a value between 0 and 1.
Values close to zero indicate strong similarities between a
template and a candidate object. Then, a simple threshold
operation is applied in order to reject regions with a matching
score of higher than a certain value. Fig. 3c shows such
matching using a threshold value of 0.3, which yielded good
results throughout several experiments under various lighting

110



D
ra

ft

conditions. The green bounding boxes indicate objects which
have been matched, whereas the red ones indicate rejected
candidate objects. A matching score is displayed at the
bottom of each bounding box.

Fig. 4: Templates in different resolutions
Fig. 4 shows the templates used for template-matching in

different resolutions and pre-processing steps. From left to
right, each template is converted to a gray-scale image and
then the horizontal edges are extracted. To get robust results,
about forty templates were recorded from various angles and
distances of up to 1.5 metres.

B. Localization

For the localization of the vehicle, a landmark-based EKF
with unknown correspondences was implemented. Limited
computational power and simplicity of implementation in-
formed the selection of this approach. Implementation is
based on the localization approach for unknown landmark
correspondences, as proposed in [4]. Detected traffic cones
are associated with the map using an Maximum Likelihood
(ML) estimator which maximizes the probability of a de-
tection being the landmark actually observed. To address
the problem of false data association, a distance metric is
used to reject landmark associations exceeding a predefined
threshold. The metric of choice is the Malahanobis distance,
as it is scale-invariant and unit-less. For a detected landmark
zzzi and landmark ẑ̂ẑz j and its covariance SSS j, chosen by the ML
estimator, the constraint shown in (1) must be satisfied.

√
(zzzi− ẑzz j)T [SSS j]−1(zzzi− ẑzz j)< dmax (1)

The EKF algorithm was implemented as closely as pos-
sible to the original. One challenge was embedding the
algorithm into the ROS environment, since the original
algorithm leaves out details on how to handle the complexity
introduced by the dimension of time. In the real world, sensor
readings and control updates are not received simultaneously
or even at fixed intervals. The algorithm presented simply
processes control and measurement updates in the order in
which they arrive. That means that as soon as a measurement
z arrives at time t, it is treated as it is perceived at the time
it arrives. This causes the pose estimation to be biased in
terms of it being always a few moments behind the actual
pose. The reason for this is that when a measurement z is
obtained at time t, the processing delay ε induced by the
image detection is neglected. To separate the control updates
from the measurement update, a global pose estimate is
obtained via a series of relative transformations. Fig. 5 shows
an example of such a transformation hierarchy.

The map frame depicts the initial pose at which the local-
ization began. Control updates are successively incorporated
into a transformation between a coordinate frame odom and

Fig. 5: Transformation hierarchy

a base link frame. The transformation between these two
frames corresponds to the position estimated by the odome-
try. Furthermore, a control update history is maintained. An
example can be found in Fig. 6 in the Odometry queue. For
each control update ut , the most recent pose xt−1 relative to
the odom frame’s origin is selected from the queue. Then
the control ut is applied to xt−1 and Σt−1, respectively,
and the result is appended to the queue. To determine the
correction in this approach, another transformation between
the map frame and the odom frame is applied. When a
measurement zt arrives at time t + ε , the last known pose
before time t is queried from the queue. This pose is then
transformed into the map coordinate frame and the EKF
algorithm computes the correction. The transformation from
the map frame to the odom frame can now be calculated
by simply subtracting the transformation between odom and
base link from the correction computed. Since the approach

M
ea
su
re
m
en
ts

z24

O
do

m
et
ry

(u,x,Σ)2 (u,x,Σ)3 (u,x,Σ)4(u,x,Σ)1

O
do

m
et
ry
'

(u,x, )Σ
′2 (u,x, )Σ

′3 (u,x, )Σ
′4

Fig. 6: Covariance update

so far only considers the vehicle’s pose, another step is
necessary to maintaining the covariance. The covariance of
the queue entry at time t is replaced by the covariance of
the corrected pose. Then, the motion model gets reapplied
iteratively to all entries afterwards, while all entries prior to
the one selected can be dismissed. Fig. 6 shows such a case.
At time 4, a measurement obtained at time 2 arrives. The
algorithm searches for an appropriate entry and makes the
correction. Afterwards, the covariances are updated and all
entries with a timestamp of under 2 are dismissed.

111



D
ra

ft

IV. EXPERIMENTAL RESULTS

To evaluate the approach presented so far, the proposed
models are tested with a 1:10 scaled race car. The exper-
iments were carried out in the case studies laboratory at
the Institute. The laboratory is equipped with an OptiTrack1

motion capture system allowing for the localization of visual
markers with sub-millimeter accuracy. Fig. 7 shows the
laboratory with the motion capture system indicated by red
boxes. As shown in Fig. 1, the car is equipped with visual

Fig. 7: Case studies laboratory, IR-cameras indicated in red.

markers which can be localized by the cameras.

A. Traffic cone detection

The evaluation of landmark detection accuracy was done
by comparing the measurements with the true position of a
traffic cone determined by the motion capture system. The
dataset used contains about 4,000 measurements obtained
from various distances and angles while driving the vehicle
towards a single traffic cone with varying speeds. Fig. 8
shows the error of ρ in meters and the error of φ in radians.
The data retrieved from the measurements suggests that un-
certainty originates mainly from the distance measurement.
The mean error of ρ , however, is approximately 4cm and
therefore of systematic nature and can be compensated for
easily. Below, Fig. 8 visualizes the distribution of the mea-
surement errors. While the error of φ is almost distributed
evenly around zero, the error of ρ is skewed towards the
positive. The co-variance matrix used in the EKF algorithm
was derived from this data, represented by the light blue
covariance ellipse. Fig. 9a suggests that the error of ρ
correlates with the distance to the traffic cone, while it is not
significantly influenced by the angular offset to the vehicle.
By applying polynomial fitting, a function describing the
error of ρ regarding the distance to the traffic cone could be
obtained. The function derived could be used to improve the
localization algorithm by replacing the static sensor model
by a dynamic approach.

B. Localization

To evaluate the accuracy of the localization algorithm,
the vehicle was navigated through a number of test tracks.
For each run, both the estimated pose, using only odometry,
and the corrected pose, using traffic cone detection, were

1OptiTrack - Motion Capture System: https://optitrack.com/

Fig. 8: Measurement error

recorded simultaneously and compared.
Fig. 10 shows the performance of the self localization on a
simple straight course. The blue points depict the ground
truth position of the car obtained by the motion capture
system. The orange points show the estimated position
of the vehicle based on either odometry only (10a) or
odometry combined with measurement updates (10b). The
ellipses around each orange point show the covariance of
the pose estimation and the blue crosses represent the traffic
cones defining the course. A relatively strong deviation from
the actual pose in Fig. 10a shows the inaccuracies of the
mechanical configuration of the vehicle. One can see that
the odometer always underestimates the actual speed of the
vehicle. Furthermore, the vehicle tends to drift to the left.
Therefore, some counter-steering was necessary to keep the
vehicle on track when driving through the straight course.

This is the cause for the odometry-based estimation in
Fig. 10a drifting towards the negative y-quadrant. However,
correction using traffic cone detection yields a significantly
better estimation of the true pose, as can be seen in Fig. 10b.
The deviation induced by drift could be compensated for
almost completely. The evaluation reveals as well that the
deviation from the true pose, interpreted as Euclidean dis-
tance, was able to be maintained at a relatively stable level
when using the measurement update, while the approach
using solely odometry shows that the vehicle tends to fall
further behind the longer the run is.
Fig. 11 shows another test run through a slalom-like course.
Again, the odometry base pose estimation shows great in-
accuracies after a short period of time. Correction led to a
more accurate estimation of the pose in this run, as well. In
Fig. 11b, it can be seen how the vehicle’s drift affects the
estimation. After the second pair of traffic cones in a left
turn, the deviation between actual position and estimation
grows, due to the tendency of the vehicle to pull to the left.
Fig. 12 shows the evaluation of the localization on a circular
course. The position estimation in Fig. 12a reveals, again, the
sideways drift and the underestimation of the vehicle’s speed.

112



D
ra

ft
(a) Error w.r.t location

(b) Fitted error function of ρ

Fig. 9: Error with respect to different distances

Whereas the car completed almost a whole lap on the course,
the odometry-based estimation supposed that the vehicle
completed only half of a lap. Although the correction does
not work as well as on the previous courses, the estimation
yields an improvement over the odometry estimation.

V. CONCLUSIONS

As the evaluation results suggest, the localization of the
car can be improved by using the measurements obtained
from the on-board camera. Although the odometry yields
great uncertainty, pose correction can compensate for these
inaccuracies in many instances.
An important step towards a more reliable self localization
would be the improvement of the on-board odometry. Cur-
rently, only the speed of the wheels is estimated based on
the revolutions of the motor and the wheel’s diameter. For
instance, a wheel encoder could be used to accurately deter-
mine the velocity of the vehicle. The localization system, as
it is, requires that location of the traffic cones be known.
The next step would be the implementation of a SLAM
approach, to enable the vehicle to build up a map while
driving a course. Potentially, in order to enable a vehicle

(a) Odometry only

(b) Correction enabled

Fig. 10: Straight course: The estimated trajectory is shown
in orange, the actual trajectory in blue. The figures show
the position estimation of the vehicle based on its odometry,
with EKF correction enabled.

(a) Odometry only

(b) Correction enabled

Fig. 11: Slalom course

to drive such a course autonomously, a navigation module
could be developed that is able to navigate a path through
a sequence of traffic cone pairs without colliding with any
obstacles.

VI. APPENDIX
The data sets used to evaluate the components developed

throughout this paper can be downloaded from the public
repository2.

REFERENCES

[1] M. de la Iglesia Valls, H. F. C. Hendrikx, V. Reijgwart, F. V. Meier,
I. Sa, R. Dubé, A. R. Gawel, M. Bürki, and R. Siegwart, “Design
of an autonomous racecar: Perception, state estimation and system
integration,” CoRR, vol. abs/1804.03252, 2018. [Online]. Available:
http://arxiv.org/abs/1804.03252

[2] B. B. Eugen Kaltenegger and M. Bader, “Controlling and Tracking an
Unmanned Ground Vehicle with Ackermanndrive,” in Proceedings of
the Austrian Robotics Workshop (ARW-16), Wels, Austria, May 2016.

2https://github.com/axelbr/rccar-results

113



D
ra

ft

(a) Odometry only (b) Correction enabled

Fig. 12: Circular course

[3] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in
Human Living Environments,” Ph.D. dissertation, Technische Univer-
sität München, 2009.

[4] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, 2005.

[5] M. Zeilinger, R. Hauk, M. Bader, and A. Hofmann, “Design of an
Autonomous Race Car for the Formula Student Driverless (FSD),” in
Proceedings of the OAGM ARW Joint Workshop (OAGM ARW-17),
W. K. A. M. B. B. Peter M. Roth, Markus Vincze and S. Stolc, Eds.,
Vienna, Austria, May 2017, pp. 57–62.

114


