
  

 

Abstract— Human attention processes play a major role in the 

optimization of human-robot collaboration (HRC) systems. This 

work describes a novel framework to assess the human factors 

state of the operator primarily by gaze and in real-time. The 

objective is to derive parameters that determine information 

about situation awareness which represents a central concept in 

the evaluation of interaction strategies in collaboration. The 

control of attention provides measures of human executive 

functions that enable to characterize key features in the 

collaboration domain. Comprehensive experiments on HRC were 

conducted with typical tasks including collaborative pick-and-

place in a lab based prototypical manufacturing environment. The 

methodology measures executive functions and situation 

awareness (SART) in the HRC task in real-time for human factors 

based performance optimization in HRC applications. 

I. INTRODUCTION 

Collaborative robotics has recently progressed to human-
robot interaction in real manufacturing. Human factors are 
crucial as industrial robots are enabling human and robot 
workers to work side by side as collaborators and to assess the 
user’s experience with a robot, while understanding how 
humans feel during their interaction with it [1]. Furthermore, 
human-related variables are essential for the evaluation of 
human-interaction metrics [2]. To work seamlessly and 
efficiently with their human counterparts, robots must similarly 
rely on measurements to predict the human worker’s behavior, 
cognitive and affective state, task specific actions and intent to 
plan their actions. A typical application is anticipatory control 
with human-in-the-loop architecture [3] to enable robots to 
proactively perform task actions based on observed gaze 
patterns to anticipate actions of their human partners according 
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to its predictions. However, measuring and modeling of the 
state of human factors as well as the human situation awareness 
based on gaze triggered information recovery is mandatory for 
the understanding of immediate and delayed action planning.  

This work describes a novel methodology to measure the 
human factors state of the operator in real-time with the purpose 
to derive fundamental parameters that determine situation 
awareness as a central concept in the interaction strategies of 
collaborative teams. Human situation awareness is determined 
on the basis of concrete measures of eye movements towards 
production relevant processes that need to be observed and 
evaluated by the human. Motivated by the theoretical work of 
[4] on situation awareness the presented work specifically aims 
at dynamically estimating (i) distribution of attentional 
resources with respect to task relevant ‘areas of interaction’ over 
time, determined by features of 3D gaze analysis and a precise 
optical tracking system, and (ii) derive from this human factors 
in real-time, such as, (a) human concentration on a given task, 
(b) human mental workload, (c) situation awareness and (d) 
executive functions related measure, i.e., task switching rate.  

Gaze in the context of collaboration is analyzed in terms of - 
primarily, visual - affordances for collaboration. In this work we 
stress the relevance of considering eye movement features for a 
profound characterization of the state of human factors by 
means of gaze behavior, with the purpose to optimize the 
overall human-robot collaboration performance. 

 

Figure 1: Human-robot collaboration and intuitive interface (HoloLens, eye 
tracking, markers for OptiTrack localization) for the assessment of human 

factors state to characterize key features in the collaboration domain. 
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(a)  

(b)  

(c)  
Figure 2: HRC within a tangram puzzle assembly task. (a) The operator 
collaborates with the robot in the assembly (only robot can treat ‘dangerous’ 
pieces). (b) Egocentric operator view with augmented reality based 
navigation (arrow), piece localization, gaze (blue sphere), current state of 
mental load (L) and concentration (C) in the HoloLens display. (c) 
Recommended piece (arrow) and gaze on currently grabbed puzzle piece.  

The estimation of situation awareness of the human worker 
can be crucial for the elaboration of performance analysis 
through measurement of executive functions, evaluation of 
interruption impact, as well as for the prediction of accidents. 

II. RELATED WORK 

A. Human-Robot Collaboration 

Human-Robot collaboration has substantially advanced, in 
the planning domain. [4] presented a planning executive able to 
handle choices by either team member while respecting causal 
links and temporal constraints with regard to risk bounds. In a 
related approach, one of the contributions of [5] defines 
helpfulness in terms of cost reduction resulting from the 
utilization of the robot. [6] split the planning process for 
repetitive collaborative assembly tasks into two phases, 1

st
 is 

offline and establishes agents’ capabilities for hierarchical plans 
with choices, the second one taking cost-function-based 
optimization decisions. [7] researched probabilistic planning for 
collaborative manipulation, aiming at boosting the human’s 
trust in the robot’s capabilities for better overall performance. 
[8] employ a probabilistic approach focused on dynamical 

switching and on decision-making in hierarchical assembly 
tasks. The aspect of making the behavior of a planning system 
better understandable for humans is addressed by Fox et al. [9] 
who pose a set of questions that the system should be able to 
answer. They show how to capitalize on features of planning 
systems that would make similar questions harder or impossible 
to answer based on other, currently popular AI-based decision 
making approaches. In this context, the cognitive state of the 
human gets into the focus of research studies. 

B. Evaluation of Human-Robot Collaboration 

Kragic et al. [10] presented results of a study featuring a 
human-robot interaction task using three different feedback 
modalities: a computer screen, projection into the workspace, 
and augmented reality. While projection was subjectively higher 
rated, the study did not yield significant performance 
differences between the variations. Salem et at. [11] report on 
an analysis of how various kinds of faulty behavior by a robot 
affect humans’ trust. Measures for Human Robot Collaboration 
are of three complementary dimensions: team performance 
measures, measures targeting user satisfaction and experience, 
and safety and trust related assessments. In this line, the Huang 
et al. [12] evaluated different handover strategies using both 
objective measures (Task Completion Time (TCT), Concurrent 
Activity (CA), Human and Robot Idle Time (HIT and RIT) as 
well as subjective scales via questionnaires (Fluency, 
Intelligence, Awareness and Patience)  

The human response to robot movements was assessed 
using objective measurements (TCT, CA, HIT, RIT, as well as 
average separation distance), and subjective criteria for 
perceived safety and comfort via questionnaires. Moreover, [3] 
evaluated the anticipatory control of a robot in user studies. 
Here, anticipation was derived from gaze analysis, the 
evaluation measures in the study included the average robot 
response time and the TCT. Next, [11] used a vast amount of 
questionnaires to evaluate the influence of robots’ mistakes in 
the quality of the Human Robot Cooperation and Trust. Applied 
subjective test include the Ten Item Personality Inventory 
(TIPI), Godspeed Questionnaire, Human Nature Scale, and 
Uniquely Human Scale. Finally, [13] examines trust, interaction 
and safety issues of industrial workers on fenceless human robot 
collaboration. Here, individual questionnaires for specific 
interaction mechanisms (e.g. voice, gestures), and compared to 
objective measures such as average robot response time. Safety 
was regarded the most important factor for successful HRC, 
followed by usability and efficiency. 

III. HUMAN-ROBOT COLLABORATION PROTOTYPE 

In the presented work, we apply a human factors analysis 

system to a complete human-robot collaboration system which 

is described as follows in more detail. 

System Architecture 

The architecture for the here-presented overall system was 
designed as a 3-tier application. Figure 3 shows the hierarchical 
system decomposition of the three layers. The hierarchy is 
based on task abstraction, i.e., a task at one level is achieved by 
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invoking a set of tasks at lower levels. For connection and 
communication (i.e. services and messages) between the 
components we used the Robot Operating System (ROS).  

 

Figure 3: System architecture diagram depicting the 3-tier. 

B. Task Planner & State Description  

In order to deal with the manifold situations that may arise 
in a collaborative robot application, the orchestration of the 
robot and interaction components is performed by a task 
planning subsystem. It has a PDDL 2.1 [14] planner wrapped in 
ROSPlan [15] at its core, performant enough to be invoked after 
any significant change in order to always act based on current 
knowledge. The planning problems in our custom domain 
contain a mix of abstract knowledge derived from 
configuration, such as which agents there are and in which 
zones of the workspace they are allowed to act, and structures to 
be built at certain locations, from sensor data with respect to 
configuration, such as visibility and current zone of parts, and 
from combining the previous two with task-related aspects, such 
as whether a part counts as added to a structure being built. 
Such enriched object knowledge is also passed on to the 
interaction components. Our knowledge provider component 
keeps the knowledge about the current state and goals up to date 
according to the various data sources of the system. It takes care 
that are currently feasible and of top priority, i.e., requests by 
the participant to pass an object override assembly goals. The 
action link implementation bridges the gap between high-level 
plans and the robot control interface. It is able to work around 
robot joint limit violations and collisions on the table, also 
considering shape-dependent equivalent rotations of parts. 

Based on preliminary experiments leading up to the study, 
the planning subsystem was configured such that the robot 
keeps working in its dedicated area as much as possible and 
only enters the collaborative area when necessary. This 
principle leads to more opportunities for the human participant 
to safely contribute to the joint task. Including the human 
participant’s and/or the referee’s actions in the planning 
problem was considered in different variations and leads to 
promising plans in isolated tests. However, this improvement 
could not be integrated due to accumulating delays resulting 
from a temporal lack of flexibility in available planning 
executive configurations. We aspire to follow up on this in 
future work incorporating findings from [4]. 

C. Computer Vision & Safe Robot Control 
For locating parts to be manipulated on the table, we use a 

combination of shape and color matching approaches on 2D 
RGB images from a single camera, the output of which is 

rectified and projected into the table plane in the robot’s 3D 
workspace based on results of intrinsic camera calibration and 
hand-eye calibration. As a key element of our multifaceted 
safety infrastructure, we track the participant’s head and hands 
with a motion capturing system and compute distances to the 
nearest robot parts, applying worst-case assumptions in case of 
bad marker visibility. Based on a combination of this evaluation 
and the participant’s stress level, the robot’s current movement 
speed is limited to a configurable degree, down to a full stop. 
Further safety measures include low overall speed, spatial limits 
to the robot’s workspace, sufficient distribution of emergency 
stop buttons to the participant, referee and extra personnels. 

D. Study Goals 

Within the described user study we aim at evaluating the 
quality of the interaction via the here-presented interaction 
system within a human-robot-collaboration application. In this 
context, we want to assess the individual interaction 
components (i.e. speech, gestures, etc.) as well as the overall 
interaction mechanisms resulting from the interconnection of 
the different modalities. We particularly examine to which 
degree the additional interaction mechanisms provided by the 
interface enhance of the human-robot-interaction. Here we 
focus on the user perspective on the developed interaction 
system and emphasize the intuitiveness of the interaction. We 
thereby assess the targeted qualities in a multi-dimensional way 
applying objective and subjective measures. To compare the 
generated results to a baseline system we performed the same 
experimental procedure within two distinct evaluation settings. 
On the one hand, a reference system (NUL) is established 
without interaction assistance. The full interaction 
functionalities are available in a second evaluation (INT). 

IV. INTUITIVE MULTIMODAL ASSISTIVE INTERFACE 

Assessing the intuitiveness and performance of an interface 
that should be regarded as intuitive as possible appears to be an 
obvious objective for a human factors analysis component. In 
the following we present a novel intuitive interface for 
multimodal assistance in human-robot collaboration. This 
interface will serve as a testbed for the efficiency of elderly. 

A. Multimodal Interaction Design 

Conceptually, we positioned the interaction design towards 
the user. For intuitive interaction we opted for a human-centered 
approach and started from inter-human interactions and the 
collaborative process itself. Following these considerations we 
implemented an interaction system that will be described in the 
remainder of this section. 

The here-presented interaction system is based on the 
following principles: 

 Natural interaction: Mimicking human interaction 
mechanisms we guarantee fast and intuitive interaction 
processes. 

 Multi-modal interaction: We implement speech, gaze, 
gestural, and Mixed-Reality interaction to offer as much 
interaction freedom as possible to the user. 
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 Tied modalities: We link the different interaction modalities 
to emphasize the intuitive interaction mechanisms. 

 Context-aware feedback: Feedback channels deliver 
information regarding task, environment to the user. We pay 
attention at what is delivered when and where. 
Figure 4 shows a schematic overview of the presented 

interaction system. A central component entitled ‘Interaction 
Model’ (IM) acts as interaction control and undertakes the 
communication with the periphery system. The IM also links 
the four interaction modalities and ensures information 
exchange between the components. It triggers any form of 
interaction process, both direct and indirect, and controls the 
context-sensitivity of the feedback. It is further responsible for 
dialog management and information dispatching. 

 
Figure 4: Schematic overview of the presented interaction system. The 
included interaction modalities refer to (from top left clock-wise): Gaze 
(including Human Factors (HF)), Mixed-Reality, Speech, and Gestures. 

B. Audio Communication  

Speech is the most natural communication element and acts 
as the main connecting element between the modalities in the 
developed interaction system. It is mostly used to derive the 
main intention of the interaction, which is strengthened by other 
modalities. Here, the system applies an acoustic interface to 
receive speech input. Context awareness is fully guaranteed 
since the interface is initialized and configured by the IM. It 
moreover delivers information about the speech interaction 
process (i.e. voice activity and last recognized command) to the 
Mixed-Reality display to increase the usability and user 
experience of the interaction. 

Speech interaction is based on state-of-the-art Automatic 
Speech Recognition (ASR). We use the VoCon

1
 library from 

Nuance, audio input is done via a Bluetooth headset. The 
system is set up in a constant-listening mode without a wake-
up-word, i.e. the user has direct access to the voice commands 
without having to press a push-to-talk button. Hence, depending 
on the context (controlled by the IM), a various amount of 
speech commands is always available at a given moment. 
Moreover, we use a state-of-the-art speech synthesis engine to 
sonify the robot speech. We used the system offered by 
Acapella

2
. 

 
1 https://www.nuance.com/mobile/speech-recognition-solutions/vocon-

hybrid.html 
2 http://www.acapela-group.com 

C. HoloLens Display (Augmented Reality)  

Microsoft HoloLens
3
 offers a state-of-the-art mixed reality 

(MR) development environment. By using an MR based display 
the system is able to augment the visual environment. We use 
annotations to visually mark real objects and give real-time 
feedback regarding the gaze and speech interaction process (e.g. 
gaze pointer and voice activity). We further provide indicators 
using visual icons to inform the user about changes in the task 
and the environment. Moreover, we use the interactive 
functionalities of the display to enable dialog interaction with 
virtual object selection via hand gestures. Hence, dialogs 
triggered by the IM can be resolved either using the Mixed-
Reality display or the speech interface.  

D. Human State Description and Human-in the-loop  

In order to describe the current state of the human operator, a 

human factors measurement system (Sec. V) is integrated into 

the interaction system (Figure 4). It is fundamentally based on 

eye tracking for pervasive measurements of human cognitive 

and mental state.  

V. HUMAN FACTORS MEASUREMENT SYSTEM 

In human factors and ergonomics research, the analysis of 
eye movements enables to develop methods for investigating 
human operators’ cognitive strategies and for reasoning about 
individual cognitive states [16]. Situation awareness (SA) is a 
measure of an individual’s knowledge and understanding of the 
current and expected future states of a situation. Eye tracking 
provides an unobtrusive measure to measure SA in 
environments where multiple tasks need to be controlled. [17] 
provided first evidence that fixation duration on relevant objects 
and balanced allocation of attention increases SA. However, for 
the assessment of executive functions, the extension of situation 
analysis towards concrete measures of distribution of attention 
is necessary and described as follows. 

A. Recovery of 3D Gaze in Human-Robot Interaction 

Localization of human gaze is essential for the localization 
of situation awareness with reference to relevant processes in 
the working cell. [18] Firstly proposed 3D information recovery 
of human gaze with monocular eye tracking and triangulation of 
2D gaze positions of subsequent key frames within the scene 
video of the eye tracking system. Santner et al. [19] proposed 
gaze estimation in 3D space and achieved accuracies ≈ 1 cm 
with RGB-D based position tracking within a predefined 3D 
model of the environment. In order to achieve the highest level 
of gaze estimation accuracy in a research study, it is crucial to 
track user’s frustum / gaze behavior with respect to the worker’s 
relevant environment. Solutions that realize this include vision-
based motion capturing systems: OptiTrack

4
 can achieve high 

tracking and gaze estimation accuracy (≈ 0.06 mm). 

 
3 https://www.microsoft.com/de-at/hololens 
4 http://www.naturalpoint.com/optitrack  
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Figure 5: Schematic representation (top view) of the areas of 

interaction (AOIs) that are used to analyze gaze behavior and fro 

this derive human factors analysis. Collaborative task related AOIs 

are in orange, Single task related in blue color. 

B. Situation Awareness 

Based on the cognitive ability, flexibility and knowledge of 
human beings on the one hand and the power, efficiency and 
persistence of industrial robots on the other hand, collaboration 
between both elements is absolutely essential for flexible and 
dynamic systems like manufacturing [20]. Efficient human-
robot collaboration requires a comprehensive perception of 
essential parts of the working environment of both sides. 
Human decision making is a substantial component of 
collaborative robotics under dynamic environment conditions, 
such as, within a working cell. Situation awareness and human 
factors are crucial, in particular, to identify decisive parts of task 
execution.  

In human factors, situation awareness is principally 
evaluated through questionnaires, such as, the Situational 
Awareness Rating Technique (SART, [21]). Psychological 
studies on situation awareness are drawn in several application 
areas, such as, in air traffic control, driver attention analysis, or 
military operations. Due to the disadvantages of the 
questionnaire technologies of SART and SAGAT, more reliable 
and less invasive technologies were required, however, eye 
tracking as a psycho-physiologically based, quantifiable and 
objective measurement technology has been proven to be 
effective [17][22] In several studies in the frame of situation 
awareness, eye movement features, such as dwell and fixation 
time, were found to be correlated with various measures of 
performance. [23] have developed measurement / prediction of 
Situation Awareness in Human-Robot Interaction based on a 
Framework of Probabilistic Attention, and real-time eye 
tracking parameters.  

C. Stress and Concentration Estimation 

For stress quantification we used cognitive arousal 
estimation based on biosensor data. In the context of eye 
movement analysis, arousal is defined by a specific 
parametrization of fixations and saccadic events within a time 
window of five seconds so that there is good correlation 
(r=.493) between the mean level of electrodermal activity 
(EDA) and the outcome of the stress level estimator [25].  

For the estimation of concentration or sustained attention, 
we refer to the areas of interaction (AOI) in the environment as 
representing the spatial reference for the task under 

investigation. Maintaining the attention on task related AOI is 
interpreted as the concentration on a specific task [26], or on 
session related tasks in general. Various densities of the fixation 
rate enable the definition of a classification of levels of actual 
concentration within a specific period of time, i.e., within a time 
window of five seconds.  

D. Estimation of Task Switching Rate 

Task switching, or set-shifting, is an executive function that 
involves the ability to unconsciously shift attention between one 
task and another. In contrast, cognitive shifting is a very similar 
executive function, but it involves conscious (not unconscious) 
change in attention. Together, these two functions are 
subcategories of the broader cognitive flexibility concept. Task 
switching allows a person to rapidly and efficiently adapt to 
different situations [27].  

 
(a) Task Load indeX (rTLX) 

 
(b) SART 

Figure 6: Results of the questionnaires from after the session without (group 

A) & with assistance (group B), respectively. (a) The rTLX subjective 
subscales show significant reduction of mental workload in group B. (b) The 

SART results in significant increase in U (understanding) and S (support of 

attention) and decrease in D (attentional demand) for group B. 

In a multi-tasking environment, cognitive resources must be 
shared or shifted between the multiple tasks. Task switching, or 
set-shifting, is an executive function that involves the ability to 
unconsciously shift attention between one task and another. 
Task switching allows a person to rapidly and efficiently adapt 
to different situations. The task-switching rate is defined by the 
frequency by which different tasks are actually operated. The 
difference between tasks is defined by the differences in the 
mental model which is necessary to represent an object or a 
process in the mind of the human operator. Mental models are 
subjective functional models; a task switch requires the change 
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of the current mental model in consciousness and from this 
requires specific cognitive resources and a load. 

(a)  (b)  

 
Figure 7: Task switching between collaborative and the single task. (a) 

Placing a puzzle piece to goal area in the collaborative task. (b) The operator 

places a puzzle piece to the goal area of single task.(c) Switch between 

collaborative task (S1) and single task (S2). Task duration is determined by 
the human gaze being focused within an AOI related to the specific task.  

In the presented work, processing of a task is determined by 
the concentration of the operator on a task related area of 
interaction (AOI). Interaction is defined by areas in the 
operating environment where the operator is manipulating the 
location of puzzle objects, i.e., grabbing puzzle pieces from a 
heap of pieces, or putting pieces onto a final position in order to 
form a tangram shape. Whenever the gaze of the operator 
intersects with an AOI that belongs to a specific task, then it is 
associated with an on-going task. The task switch rate is then 
the number of switches between tasks per period of time, 
typically the time of a whole session (see Figure 7 for a 
visualization). Task switching has been proposed as a candidate 
executive function along with inhibition, the maintenance and 
updating of information in working memory, and the ability to 
perform two tasks at the same time. There is some evidence not 
only that the efficiency of executive functions improves with 
practice and guidance, but also that this improvement can 
transfer to novel contexts. There are demonstrable practice-
related improvements in switching performance [29][30]. 

VI. EXPERIMENTAL RESULTS 

A. Study Setup  

The experimental procedure was performed in a robotics 

laboratory. 20 persons (f=8, m=25) aged 25.44.7 years were 

engaged, mostly with education at university level (BSc). 8 of 
them were with technical or even scientific background, but all 
naïve to the task. All participants were introduced into the tasks 
which consisted of assembling 8-piece tangram puzzles 
according to target images. The overall task was to finalize three 
puzzles in collaboration with a robotic arm that performed pick 
and place actions according to a plan. Tt was possible to 
assemble in parallel a difficult ‘extra’ puzzle without any 
external support. The session was finalized upon the finalization 
of the 3

rd
 collaborative puzzle, and performance was measured 

by completion time minus a bonus time for a single finalized 
‘extra’ puzzle. Participants were told that the best 3 
performances would earn special gifts (for competitive pace)  

Robotic system. The robot arm used was a Kuka iiwa LBR 
7 R800, equipped with a Zimmer R800 2-finger gripper 
prototype and customized 3D-printed fingers with metal 
reinforcement and soft cover. The RGB camera used for vision 
was a Basler acA2440-20gc with an f8mm F1.4 lens. It was 
connected via Gigabit PoE to the computer for vision and safety 
perception applications (Fujitsu Celsius, Intel Xeon 72-core 
2.3GHz, 128GB RAM, Nvidia Quadro P4000 GPU). The 
motion capturing PC worked with Intel dual core i7 3.6GHz 
CPU, 16GB RAM and Nvidia Geforce GT 630 2GB, receiving 
data from 9 OptiTrack Prime 17W cameras.  

Wearable system. For the intuitive assistance device we 
used a Microsoft Hololens AR headset with Pupil Labs 
binocular eye tracking with 200 Hz eye tracking cameras and 
USB connector clip that connected to a Microsoft Surface Pro 6 
with 8GB/128GB RAM/SSD for the gaze analysis.  

B. Outcome Measures 

The major outcome parameters of the study were on the one 
hand related to standardized questionnaires that are commonly 
used to specify important human factors in the human-machine 
interaction domain. At the same time, several eye movement 
features were measured in real-time in order to derive human 
factors on-site directly from the human-robot collaboration task. 
The objective of the study was to investigate if on-site measured 
data would correlate with the results of the questionnaires.  

The subjects were asked to complete several questionnaires 
during the experimental procedure. Specifically, the 
standardized questionnaires raw Task Load indeX (rTLX) and 
the Situation Awareness Rating Technique (SART) were used. 
Furthermore, we designed individual questionnaires to cover 
general interaction, mixed reality interaction and visualization, 
speech interaction, and human-robot-collaboration. These 
include user input via scale ratings as well as open questions 
relating to good and bad experiences within the respective area. 
The real-time assessment of the interaction was built upon a 
mixture of recorded data. The HMD video was captured as well 
as data from an external video camera for post study analysis. 
Eye tracking data were collected in real-time and analyzed with 
respect to the measures presented in Sec. V: the human gaze 
was positioned in 3D space and intersections with various areas 
of interaction (AOI) analyzed with respect to level of 
concentration; all data were recorded in a further study analysis.  

S1 

S2 

(c) 
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C. Descriptive Statistics 

The overall performance comparison resulted in a total 
completion time of M=709.7, SD=193.4 sec. without and 
M=714.6, SD=159.5 sec. with assistance, respectively, and 
ANOVA analysis resulted in Fcrit > F which identifies identical 
distributions. The bonus addendum was negligible. From the 
data of twenty participants, only fifteen were used for analysis, 
for reasons of data loss and loss of eye tracking calibration 
during the session when persons accidentally changed the 
orientation of eye tracking cameras when tipping on the helmet. 
However, the analysis of the questionnaires indicated 
substantial and interesting differences in the outcomes. Figure 
6a depicts subjective subscales of rTLX indicating that users 
with the intuitive assistance system (group B) subjectively 
experienced significantly reduced levels of mental workload, 
time pressure, tension and stress, respectively. The results of the 
SART questionnaire (Figure 6b) depict in U (understanding) 
and S (support of attention) dimensions with significant 
increase and decrease in D (attentional demand) for group B. 

Furthermore, the gaze based outcome measures of the 

experimental study showed further evidence for interesting 

differences with respect to without and with intuitive 

assistance, as documented in Table I: Firstly, the mean 

concentration level (‘M(C)’) with the use of an intuitive 

assistance technology was significantly above the one without 

assistance. Figure 8 depicts sample tracks of attentional 

concentration on tasks during sessions.  

In addition, results showed a significant increase in the 

situation awareness in terms of attentional attributed to the 

collaborative AOIs (‘Collab’), as well as to the single task 

(‘Single’) related AOIs. This clearly shows that the assistance 

mode successfully supports the channeling of attentional 

resources on the task related interaction areas.  

The execution function related feature based on eye 

movements, i.e., the expected time for a next task switch 

(‘ExpTS’), significantly decreased in case of intuitive 

assistance. Figure 7a,b shows task switching between the 

collaborative and the dual, single task, where the operator 

places a puzzle piece to the goal tangram area as contribution 

to the collaborative task or to the goal tangram area of the 

single task. Figure 7c depicts the switches between the 

collaborative task (S1) and the single task (S2) over time. 

Substantial switch times are crucial in order to enable 

meaningful task completion.  

The results clearly show an increased task-switching ability 

of the human operator while the stress level (‘M(S)’) factor 

was not increased (ANOVA shows Fcrit > F comparing the two 

distributions of S with and without assistance). Performance on 

task switching, a paradigm commonly used to measure 

executive function, has been shown to improve with practice 

and as a consequence of knowledge [30] . 

 

 

Figure 8: Measure of attentional concentration on tasks. (a) Concentration 
level during a session without assistance (red line is the mean; red is standard 
deviation), and (b) concentration level during the session with assistance. On 
average, the concentration increased when using the intuitive assistance. 

D. Inferential Statistics and Discussion 

An extensive correlation analysis was performed between 

real-time gaze based human factors analysis and the 

questionnaire results. The first important observation is the 

substantial correlation (Pearson r=-0.404) between the 

expected task switching time (‘ExpTS’) and the concentration 

level (‘M(C)’) which expresses the fact that an increased 

concentration level at the same time means an increase in the 

task switching ability (shorter expected durations between task 

switches with the same performance). The second observation 

is related to SART based situation awareness: M=63.0, 

SD=10.7% without and M=71.2, SD=16.1% with intuitive 

assistance, showing significant benefit in applying the assisting 

technology. SART correlates positively with attentional 

resources on collaborative AOIs (r=0.311 with ‘Collab’) and 

negatively on single tasks (r=-0.605 with ‘Single’).  

Discussion. The conclusion with respect to the inferential 

statistics is that the assessment derived from real-time gaze 

based human factors analysis is capable to fully quantify the 

distribution of attentional resources on task relevant space, in 

real-time, and in this manner not only correlates but represents 

(b) 

(a) 
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the performance of executive functions, i.e., the task switching 

ability in a human-robot collaborative scenario. This will 

enable in the future on-site measured attentional resources to 

represent standard questionnaires on situation awareness which 

provides a basis to evaluate basic human factors, such as, 

concentration of attention, complexity of the situation, 

familiarity of the situation, focusing of attention, information 

quantity, information quality, instability of the situation, 

variability of the situation, arousal, and spare mental capacity.  

TABLE I.  GAZE BASED OUTCOME MEASURES OF THE EXPERIMENTAL 

STUDY WITH RESPECT TO WITHOUT AND WITH INTUITIVE ASSISTANCE.  

user 

groups 

Outcome measures 

M (C) M (S) Collab* Single ExpTS AcGa 

group A 1.400.3 1.350.3   23.5 16.1 2.031.2 51.15 

group B 1.940.5 1.520.4 125.0 29.8 1.600.6 23.7 
*x10-3. C=concentration level; S=stress level; Collab=mean attentional time on mixed areas in 

seconds filtered by concentration, Single= mean time on single (human operator specific) areas in 

seconds filtered by concentration; ExpTS=expected time for next task switch; AcGa=mean time 

access gate observation per session.  

VII. CONCLUSION 

We presented a novel methodology for the assessment of 

gaze based human factors which provides a potential to 

measure executive functions performance, such as, task 

switching ability, in real-time. Within a typical human-robot 

collaboration scenario and the study setup including 

absence/application of state-of-the-art intuitive assistance 

technology for the performance of collaborative tasks, we 

illustrated the potential of interpretation from gaze based 

human factors data in order to evaluate the MRC system.   

Future work will include a study with a larger number of 

participants and evaluate the executive function measures 

under more competitive pressure for performance. Furthermore 

we will study the potential of more complex eye movement 

features to enable a more detailed analysis of the dynamic 

distribution of attentional resources during the tasks.  
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