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PRNU-based Finger Vein Sensor Identification in the Presence of
Presentation Attack Data

Babak Maser1,∗, Dominik Söllinger1,∗ and Andreas Uhl1

Abstract— We examine the effectiveness of the Photo Re-
sponse Non-Uniformity (PRNU) in the context of sensor identi-
fication for finger vein imagery. Experiments are conducted on
eight publicly-available finger vein datasets. We apply a Wiener
Filter (WF) in the frequency domain to enhance the quality of
PRNU estimation and noise residual, respectively, and we use
two metrics to rank PRNU similarity, i.e. Peak-to-Energy (PCE)
and Normalized Cross Correlation (NCC). In the experiments,
we include a dataset consisting of both real finger vein data
and captured artifacts produced to assess presentation attacks.
We investigate the impact of this situation on sensor identifi-
cation accuracy and also try to discriminate spoofed images
from non-spoof images varying decision thresholds. Results of
sensor identification for finger vein imagery is encouraging, the
obtained scores for classification accuracies are between 97%
to 98% for different settings. Interestingly, selecting particular
decision thresholds, it is also possible to discriminate real data
from artificial data as used in presentation attacks.

I. INTRODUCTION
Human identification is one of the main goals of

biometric technology and the corresponding research
area. Biometric systems utilize a human’s physical or
behavioral characteristics for authentication. Not only
companies or governmental organizations do rely on
biometric technology to provide secure authentication,
but also everyday technology (e.g. smartphones, laptops,
entrance systems) applies this technology to an increasing
extent. Nevertheless, biometric traits also set new challenges
in terms of maintaining the security and integrity of
biometric data. While the (cryptographic) key material used
in traditional authentication methods like PINs, passwords,
smart-cards etc. can usually be changed once compromised,
a person’s biometric trait usually remains stable. Therefore,
once biometric features are leaked, stolen or adopted
many different attack scenarios become realistic and many
corresponding attack vectors have been identified.

In order to capture a certain biometric trait, we need
digital hardware which is typically termed “sensor” that has
the technological capability to acquire the corresponding
data suited to uniquely identify humans, which is a
near-infrared (NIR) camera used with NIR illumination to
visualize the structure and vascular pattern of human finger
veins. The underlying imaging principle relies on NIR light
absorption of human blood, thus, vessels appear dark in
such images. For the security of a biometric system, the
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integrity of the authentication process is of vital interest.
In this context, it is required to ascertain that imagery used
for authentication has been indeed captured by the proper
sensor, and has not entered the system in the context of an
injection attack. At this point, we encounter passive media
security techniques termed “digital image forensics” which
can be used for this purpose. Similar to bullet scratches
that allow forensic experts to match a bullet to a particular
barrel with high reliability to be accepted even in court,
these techniques can be eventually used to identify a sensor
which has captured a finger vein image.

In this paper, we use an approach which is based on
the photo-response non-uniformity (PRNU) [1] method.
PRNU is an intrinsic property of every digital sensor
caused by different sensitivity of pixels to light due to
inhomogeneity of silicon wafers and imperfections during
the sensor manufacturing process. PRNU can be interpreted
as the telltale of “scratches” in images which can identify
the originating sensor and discriminates images taken by
different sensor instances.

Prior work in biometric sensor identification has shown
that the PRNU method can be considered a well-suited
method to identify a sensor in different fields of biometrics,
so far considered for fingerprint [2] as well as iris [3], [4],
[5], [6] sensors, respectively.
Prior work shows that the PRNU method can be considered
a well-suited method to identify a sensor in different fields
of biometric, e.g. Bartlow et al. studied the application of
hardware fingerprinting based on PRNU noise analysis of
biometric fingerprint devices for sensor identification [2],
also PRNU has been used in the context of iris sensors in
[3], [7], [8]. Alternatively to PRNU, also classical texture-
oriented features have been used to identify a particular
sensor model in the context of iris recognition [4], [5], [6].
Finally, in [9], Schuch et al. studied the applicability of a
CNN-based and conventional approach on database bias as
distinguishing property for the origin of a fingerprint. Also
Marra, Francesco, et al. in [10] proposed a CNN-based
algorithm improve the iris sensor model identification for
benefit of the sensor interoperability.

As biometric authentication becomes a standard
replacement for the traditional way of authentication
in many areas, various attacks have been used to fool
sensors with prerecorded data or artifacts. One of the
approaches to mislead and deceive biometric sensors is
the so-called “presentation attack” or sensor spoofing [11].
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In this attack, a copy of a biometric trait is fabricated
artificially and presented to the sensor. Intensive work has
been done to develop techniques to detect presentation
attacks [12], and for evaluation purposes, datasets consisting
of artificial biometric data resulting from sensing such
artifacts have been established and published.

This work is organized as follows: Section II gives an
overview of techniques used for PRNU extraction and en-
hancement. Section III introduces the datasets, explains the
different experimental settings as well as the evaluation
workflow in detail. Finally, experimental results are provided
in section V followed by a conclusion (section VII).

II. TECHNICAL APPROACH

There are different ways how to compute the PRNU, we
used a method proposed by Fridrich in [13], the method
describes how to estimate the PRNU image from set of
images taken by the same camera, the PRNU estimator
is derived using maximum likelihood estimator (MLE),the
MLE is modeled from the simplified sensor output model
[13]. Thus the PRNU factor is obtained as follow:

K̂=

N

∑
i=1

RiIi

/
N

∑
i=1

I2
i (1)

where PRNU factor is denoted by K̂ which is noise-like
signal responsible for the PRNU. Ii is an image and Ri is
the noise residual of an image which is obtained by (eq. 2),
note that i stands for the i th image out of N images which
have been taken from a particular sensor.

The residual image Ri can be calculated by subtracting an
original image from a denoised image obtained using e.g. a
wavelet denoising filter from an original image:

Ri = Ii −F(Ii) (2)

where F denotes the denoising method, in our case the
denoised image is obtained in the wavelet domain applying
a 4-Level Wavelet decomposition using the Daubechies 8-
tap wavelet filter, we empirically set σ0 = 3. Eventually, a
Wiener Filter (WF) [14] is applied additionally.

To detect whether the Residual of an image I (RI) is taken
by the sensor with PRNU estimator K̂, we use normalized
cross-correlation (NCC):

ρ[RI ,IK̂] = NCC(RI , IK̂) (3)

NCC has been also proposed in [13]. Apart from NCC, we
investigate the effect of using the Peak Correlation Energy
(PCE) as another similarity metric [13] in this paper.

III. EXPERIMENTAL DESIGN

A. Datasets
In this paper, we have assembled the following

publicly available datasets to evaluate the performance
and effectiveness of the proposed approach. The number of

images in each dataset is not equal, thus to keep the sample
dataset balance we choose an equal number of images from
each dataset. Hence we have chosen the first 120 images
from each dataset for our experiments. The following listing
provides a description of the datasets.

• SDUMLA-HMT (SDUMLA) - Images are selected
from the first 20 clients, images of the dataset [15] are
stored in BMP format with 320×240 pixels in size.

• IDIAP VERA (IDIAP-REAL) - Images of the
dataset [16] are stored in PNG format with a size of
250×665. The images are taken from 60 clients of the
IDIAP-REAL sub-dataset.

• IDIAP VERA (IDIAP-SPOOF) - Images of the
dataset [16] are stored in PNG format with a size of
250×665. The images are taken from 60 individuals of
the IDIAP-Spoof sub-dataset.

• FV-USM - Images of the dataset [17] are stored in
JPEG format with a size of 480×640. The selected
subset is taken from the first 30 clients.

• MMCBNU 6000 (MMCBNU) - Images of the dataset
[18] are stored in BMP format with a size of 640×480.
The selected subset is chosen from the first 20 clients.

• PLUS-FV3-Laser-Palmar (Palmar) - Images of the
dataset [19] are stored in PNG format with a size of
600×1024. The selected subset has been chosen from
the first 20 clients.

• THU-FVFDT - Images of the dataset [19] are stored
in PNG format with a size of 600×1024. The selected
subset is composed of images from the first 20 clients.

• UTFVP - Images of the dataset [20] are stored in PNG
format with a size of 672×380. The selected subset is
composed of images of the first 20 clients.

• HKPU-FV - Images of the dataset [21] are stored in
BMP format with a size of 513×256. The selected
subset is composed of images of the first 60 clients.

B. Cropping
The primary goal of this work is not only to study
the general applicability of PRNU-based sensor iden-
tification for finger vein images but also to investigate
the effect of the presence of spoofed images resulting
from a presentation attack on the sensor identification
performance.
We assume that fingerprints generated from uncorrelated
data (in order to facilitate the out-averaging of image-
content related high-frequency content) are better suited
for sensor identification than fingerprints generated from
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Fig. 1. Sample Patches: Center 320×150

correlated data. Therefore, we expect good performance
for regions containing the biometric trait due to a
better variability of the image content instead of image
regions covered by sensor parts only. Thus, we decided
to focus our experiment on a region which contains
the biometric trait. The selected cropping is termed
as Center 320×150 as the image region was taken
from the center and contains mostly finger vein texture
(except for some data sets like SDUMLA-HMT and
PALMAR, see Figure 1 for example croppings).

IV. WORKFLOW AND SCENARIO

We applied a 4 fold cross-validation framework for all
eight datasets to examine the proposed methods. In each
fold, we feed 3/4 of the query dataset (i.e. 90 images) to
the model to determine the PRNU estimation by MLE (K̂),
subsequently, the estimated PRNU will be enhanced by WF
or no enhancement will be applied. The images of the other
datasets, as well as 1/4 of the query dataset, are fed into the
model to compute the residuals (Ri), and again, either WF
is applied to the residuals or No Enhancement is considered.
The estimated PRNU, as well as the residuals, are fed into
the classification unit, and as it is mentioned in Section II
we use two similarity metrics for sensor identification (NCC
and PCE).

Recall that IDIAP-Real dataset and IDIAP-Spoof dataset
are captured with the same sensor, the difference is that
for the former, human fingers are imaged, while for the
latter, presentation artifacts are imaged. The AUC-ROC score
and the Precision-Recall score for the IDIAP-Real data are
obtained by estimating K̂ from images of the IDIAP-Real
dataset only, while the residuals are taken from both the
IDIAP-Real dataset and the IDIAP-Spoof dataset respec-
tively. The IDIAP-Spoof results are generated in the same
manner, but K̂ is computed from IDIAP-Spoof data only.
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Fig. 2. Impact of applying Wiener filter and No Enhancement on AUC-
ROC and Precision-Recall scores using NCC and PCE similarity metrics

Similarity
metric

Performance
measurement

WF No Enh.

NCC AUC ROC 0.998 0.971
NCC AUC Precision Recall 0.982 0.878
PCE AUC ROC 0.997 0.986
PCE AUC Precision Recall 0.980 0.835

TABLE I
IMPACT ON AUC ROC AND PRECISION RECALL

USING NCC AND PCE BY APPLYING WF AND NO ENH.

V. EXPERIMENTS AND RESULTS

Our aim is to investigate the following topics as our
primary interest:

• Feasibility of PRNU-based sensor identification using
the proposed method for finger vein imagery,

• Comparison between PCE and NCC as similarity as-
sessment methods in the context of finger vein data,

• Assessment of the influence of applied WF and
• Investigation of the influence of the presence of presen-

tation attack data.

To evaluate and analyze the proposed method we provide
the AUC-ROC score and the Precision-Recall score for all
sensors/data sets.
In Figure 2 and Table I, we display the achieved AUC-ROC
and the Precision-Recall scores by taking the average over
all sensor class scores.

We find that the Wiener Filter plays a significant role in
sensor identification accuracy1. This behavior was somehow
expected because the WF suppresses periodic artifacts and it
has been observed on other data that the resulting PRNU and
residuals have higher quality. We observe the same behavior
in Figures 3, 4, 5, 6 which show non-averaged but per-sensor
results.

When comparing PCE and NCC we find that for data after
the application of WF there is hardly any difference. When
considering non-enhanced data, there are some differences,
but these are not consistent when considering AUC-ROC
scores and Precision-Recall scores.

1In this paper, we use the term accuracy for the AUC ROC score and
the AUC ROC Precision-Recall score
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Figures 3, 4, 5, 6, now detailing results per dataset,
confirm that the PRNU-based approach is well suited to
identify sensors overall. However, there are some results
where certain configurations turn out not to deliver satisfying
performance.

Figure 3 displays stable results with excellent accuracy in
case of WF application, while scores are down to 0.75 for
one sensor (i.e. THU-FVFDT) in case no enhancement is
applied.
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Fig. 3. AUC ROC for NCC
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Fig. 4. AUC Precision-Recall for NCC

This result is confirmed in Figure 4, which shows the
results of AUC-Precision-Recall for all sensors. Again the
worst result is seen for sensor THU-FVFDT in case of no
enhancement is applied. We observe that the score for the
MMCBNU sensor is slightly improved compared to AUC-
ROC scores in Figure 3.

When looking at PCE results (Figure 5 and Figure 6), these
seem to less stable as compared to their NCC counterparts
at first sight. However, in Figure 5 the scale on the y-axis
is fairly different as the minimum score value is 0.965. So
basically all these results are excellent and the differences
do not matter. Figure 6 reveals a very poor result in case of
UTFVP and no enhancement applied. Here is the score is
down to 0.3! In this setting again the superiority of applying
WF is confirmed.

Overall, we note that there are some lower score values in
all settings but applying WF enhancement and using NCC
as similarity measure prevents significant inaccuracies in any
case.

VI. DETECTION OF SPOOFED IMAGES

As described in section III-A, the IDIAP dataset consists
of real finger vein images as well as of spoof images which
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Fig. 5. AUC ROC for PCE
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Fig. 6. AUC Precision-Recall for PCE

were generated by imaging presentation attack artifacts with
the same sensor. The results of the previous section clearly
demonstrate that these spoof images do not prevent a correct
classification of the sensor as both, real and spoof images can
be discriminated well from finger vein images acquired by
one of the other sensors. However, there might still be subtle
differences present, which might lead to slight differences in
the PRNU which could be exploited to detect a presentation
attack using corresponding artifacts. To understand whether
PRNU can be also used for this purpose, we analyze if there
is a certain NCC-threshold that allows us to discriminate
between IDIAP-Real and IDIAP-Spoof images.
Table II shows the accuracy of assigning IDIAP-Real and
IDIAP-Spoof images to the appropriate class for different
thresholds. The PRNU computed from IDIAP-Real images is
computing NCC to the respective residuals. We can observe
that for a low threshold, all IDIAP-Real images are classified
correctly. When we increase the threshold to 0.5, we classify
98% of IDIAP-Real images correctly and IDIAP-Spoof im-
ages are still hardly correctly classified (7%). For threshold
0.6, IDIAP-Real images achieve 92% accuracy while IDIAP-
Spoof accuracy is 48%. When increasing the threshold
further, accuracy for IDIAP-Real images are further reduced
while IDIAP-Spoof image classification accuracy is almost
perfect.

Table III again shows the accuracies of classifying
IDIAP-Real and IDIAP-Spoof images for different
thresholds, respectively. However, in this case, IDIAP-Spoof
images are used to compute the PRNU.

As we can see, when choosing a low threshold at 0.3, 0.4
and 0.5, IDIAP-Spoof images are correctly classified, but the
accuracy for IDIAP-Real images is almost 0. However, once
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Threshold (NCC) IDIAP-REAL IDIAP-SPOOF

0.3 1.0 0.0
0.4 1.0 0.01
0.5 0.98 0.07
0.6 0.92 0.48
0.7 0.34 0.99
0.8 0.0 1.0
0.9 0.0 1.0

TABLE II
DISCRIMINATION AMONG IDIAP-REAL AND IDIAP-SPOOF IMAGES

FOR DIFFERENT THRESHOLDS BASED ON IDIAP-REAL PRNU

the threshold increases to 0.6, it can be observed that most
(99%) IDIAP-spoof images are still treated correctly, while
also 74% of the IDIAP-Real images are correctly classified.
Furthermore, if we increase the threshold to 0.7 we can
see that 100% of IDIAP-Real images are correctly classified
while 44% of the IDIAP-Spoof images are detected correctly
as spoof images. Increasing the threshold further entirely
disables classification for IDIAP-spoof images. Overall, we
cannot find any threshold in Tables II and III to perfectly
discriminate both datasets, but for some settings, a PRNU-
based distinction seems to be realistic.

Threshold (NCC) IDIAP-REAL IDIAP-SPOOF

0.3 0.00 1.00
0.4 0.00 1.00
0.5 0.02 1.00
0.6 0.74 0.99
0.7 1.00 0.44
0.8 1.00 0.00

TABLE III
DISCRIMINATION AMONG IDIAP-REAL AND IDIAP-SPOOF IMAGES

FOR DIFFERENT THRESHOLDS BASED ON IDIAP-SPOOF PRNU

VII. CONCLUSION

This work studies the applicability of PRNU-based sensor
identification methods for finger vein images in the context
of biometric systems. The result clearly shows that this
approach is well-suited, in particular, the Wiener filter is used
as an enhancement technique. Finally, we observe that the
PRNU-based approach might be also suited for presentation
attack, aka sensor spoofing, detection.
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