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ABSTRACT: In this paper, a wearable Brain-Computer
Interface is proposed. This BCI exploits a non-invasive
single-channel electroencephalogram to measure steady-
state visually evoked potentials (SSVEP) from the user’s
scalp. Dry electrodes are employed. The visual stim-
uli for SSVEP elicitation are presented on the LCD dis-
play of Augmented Reality glasses, and each stimulus
can be associated with a command to actuate. The brain
signals processing is conducted by means of a simple
power spectral density analysis based on an FFT algo-
rithm. Then, the signal features are classified with a Sup-
port Vector Machine. The resulting algorithm requires
a low computational burden, and it was easily imple-
mented in Android. The final BCI system is built with
off-the-shelf components, and it is easily customizable.
This work aims to give a contribution to the development
of BCI systems for applications in daily life.

INTRODUCTION

A Brain-Computer Interface (BCI) is a powerful tool ca-
pable of improving our way of communicating with the
external world [1]. Historically, BCI applications have
been addressed to help people with sever motor disabil-
ities or other medical diseases [2, 3]. However, in the
last decade, other fields have considered the adoption
of a BCI, such as gaming, entertainment, education, or
robotics [4–6], and today we are assisting to a rapid
growth of this technology [7]. Nonetheless, the major-
ity of work on BCI still remains at the level of laboratory
research. The reasons for that are technical limitations,
such as the problem of motion artifacts [8] or the trade-
off between speed and performance of the BCI [9], and
practical limitations, such as costs and wearability [10].
Aiming to build a wearable device to use in daily life,
a non-invasive technique for brain activity measurement
must be considered. Electroencephalography (EEG) is
here taken into account. Indeed, EEG can be inexpen-
sive and safe, while providing a spatial resolution in the
order of centimeters and temporal resolution in the or-
der of milliseconds [11]. Several paradigms there exist
for BCI systems, such as motor-imagery [12, 13], P300
[14], or SSVEP [15–17]. In particular, “steady-state vi-
sually evoked potentials” (SSVEP) are highly reliable in

terms of accuracy and reproducibility [15, 18, 19] and
user training is not mandatory [20, 21]. Hence, a SSVEP-
based BCI is a suitable choice for a practical device.
In the present work, a single differential channel with dry
electrodes is considered for the acquisition of EEG sig-
nals. The resulting BCI is highly wearable and low-cost.
Clearly, this choice has some drawbacks, such as a low
signal-to-noise ratio (SNR) if compared to more invasive
techniques, where electrodes implanted inside the scalp
guarantee higher SNR, and few information on brain ac-
tivity due to the employment of a single channel. These
drawbacks are mitigated if SSVEP signals are considered
because they guarantee a good SNR with respect to other
paradigms. However, an SSVEP-based BCI requires vi-
sual stimuli, namely flickering LEDs or icons on a dis-
play. A possible solution is the employment of the LCD
displays of Augmented Reality (AR) glasses. They can
be employed for stimulus presentation without affecting
system wearability. The combination of BCI and AR
platforms is not new. In [22], research solutions were
surveyed, and it was highlighted that most state-of-the-art
systems made use of two VEP-based paradigms, SSVEP
or P300.
In a preceding phase, our research group demonstrated
the feasibility of employing AR glasses in conjunction
with a single-channel electroencephalography to build a
wearable SSVEP-based BCI system. Moreover, the pre-
sented system has been built with components available
off-the-shelf. The aim of the current work is to keep giv-
ing a contribution to the development of BCI systems that
could be employed in everyday life. A particular focus is
on the implementation of an algorithm for SSVEP signal
classification. The reminder of this paper is organized as
follows. The implementation of the system and the classi-
fication algorithm are first described. Then, the results of
a training and evaluation procedure for assessing the per-
formance of the SSVEP classifier are reported. Finally,
the results are discussed and future steps addressed.

MATERIALS AND METHODS

The architecture of the BCI system is here described,
along with the off-the-shelf components employed for its
implementation. The system of concern is divided into
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three parts, (i) the visual stimuli generator, (ii) the EEG
acquisition, and (iii) the signal processing.
As mentioned in the introduction, the stimulation consists
of flickering icons on the LCD display of AR glasses.
The Android-based “Epson Moverio BT-200” AR glasses
were chosen (Fig. 1). These are relatively low-cost (about
600 e per unit) and provide the necessary characteristics
for stimuli implementation. Notably, the 60 Hz refresh
rate of the display allows for many flickering frequencies
to be set. Two flickering icons were chosen as stimuli,
at nominal frequencies equal to 10.0 Hz and 12.0 Hz, re-
spectively. This choice is based on studies demonstrat-
ing that a good signal-to-noise ratio can be achieved at
these frequencies [15], and this was also confirmed with
some preliminary experiments. The AR glasses were pro-
grammed in Android Studio for the visual stimuli gener-
ation.

Figure 1: Epson Moverio BT-200 AR glasses.

The brain activity, containing the elicited SSVEP signals,
is acquired with a non-invasive electroencephalography.
A single differential channel consisting of two dry elec-
trodes has been employed. These electrodes are placed
on the user’s scalp according to the 10-20 system [23], at
the points "Fpz" and "Oz", as reported in Fig. 2. A third
electrode is also needed as a ground. This electrode is
usually placed on the forehead or ear location, but it can
also be placed on a wrist or a leg [24].

Figure 2: Placement of EEG electrodes in the International stan-
dard framework 10-20 [23] (in black): "Fpz" and "Oz", in the
scalp frontal and occipital region, respectively.

An open source EEG device, which is commercially
available, was employed for the brain activity measure-
ment, i.e. the Olimex EEG-SMT. This is shown in Fig. 3.
Two active electrodes (CH1+ and CH1- respectively), and
a passive electrode (DRL) are depicted too. The active

electrodes differ from the passive one because of some
additional circuitry, based on operational amplifiers, for
high-frequency interference rejection. These two elec-
trodes were placed on the scalp, while the passive elec-
trode was placed on the left wrist. The device and the
electrodes total cost is less than 200 e. It is worth noting
that the unused differential channel (CH2) was connected
to the internal reference voltage as suggested by the EEG-
SMT manual for achieving less noise. Fig. 3 also shows
that some silver pins were soldered on one of the active
dry electrodes. This electrode is placed on the occipital
area (“Oz”), hence the pins aim to overcome the hair in
order to better reach the user’s scalp.

Figure 3: Olimex EEG-SMT and dry electrodes.

The acquired EEG signal is converted from analog to dig-
ital thanks to the micro-controller being part of the EEG-
SMT, and then it is continuously transferred through USB
on a computing unit for elaboration. In this regard, the
sampling frequency was set to 256 Sa/s, the A/D con-
verter has a 10-bit resolution, and the overall gain was
set to 6427 V/V. In the final integrated system, the dig-
ital EEG signal is directly transferred to the AR glasses
micro-processor, where it is elaborated and the SSVEP
signals classified. A command can then be associated to
each class, namely the "10 Hz" class and the "12 Hz"
class. However, to better study the signal processing, the
EEG signal has been first transferred to a PC in order
to be elaborated with MATLAB. After this step, whom
results are reported in the following, the algorithm was
ported in Android. A simple algorithm has been con-
ceived, so that it could results in a low computational
burden. This also means that the computational time
does not affect the response time of the system, which
is limited to some seconds because of the required stim-
ulation/acquisition time. The signal time length is fixed
within the algorithm. This acquisition time can be de-
cided for each subject after an algorithm training phase,
and it was initially fixed at 10.0 s for all the subjects.
The first processing step is a pass-band digital filtering.
The pass-band has been set to (8-28) Hz so that the fre-
quency components at the stimuli frequencies and their
respective second harmonic are not corrupted. Mean-
while, the stop-band tries to reduce the effect of artifacts
on the signal, especially EOG artifacts at low frequen-
cies [25]. Note that, for example, a regression method
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for artifact removal can not be employed aiming to adopt
a single EEG channel. A FIR filter based on the Ham-
ming windowing was designed. The order was set to 100,
which resulted as a good compromise between computa-
tional burden and desired filter performance. The coef-
ficients of the designed filter have been then employed
for filtering in on-line signal analysis. After this step,
the signal is zero-padded to the nearest power or 2 and
transformed into the frequency domain with an FFT algo-
rithm. In particular, the amplitude spectrum correspond-
ing to the (8-28) Hz interval is derived, and the power
spectral density (PSD) in the neighbour of the flickering
frequencies can be calculated as signal features to be clas-
sified. For each stimulus frequency and their second har-
monic, the power density is calculated as the sum of the
squared amplitudes associated to corresponding bin and
some nearest bins:

P( fi) =
1

∆k

n=ki+
∆k
2

∑
n=ki− ∆k

2

A2(n), (1)

where ki is the bin associated to the i-th frequency fi, ∆k
is the number of bins in the neighbour of ki, and A(n)
the amplitude associated to the n-th bin. In principle, ki
is found dividing fi by the spectral resolution. However,
fi has an uncertainty due to the refresh rate frequency,
which is not exactly 60 Hz. Hence, the algorithm auto-
matically adjusts the ki value looking for a peak (i.e. a
maximum amplitude) in the neighbor of its initial value.
This neighbor was chosen as the corresponding of a 0.5
Hz interval. Then, the ∆k for the PSD calculation was
chosen as the corresponding of a 0.2 Hz interval.
The last processing step is the SSVEP classification. In
the present discussion, there are two features to take into
account for each stimulus frequency (corresponding to a
possible SSVEP frequency). The PSD corresponding to
10 Hz and 20 Hz are considered for the 10 Hz flicker-
ing icon, while the PSD corresponding to 12 Hz and 24
Hz are considered for the 12 Hz flickering icon. These
pairs of PSD are classified with a simple machine learn-
ing supervised algorithm, the Support Vector Machine
(SVM) [26]. Notably, a linear kernel was adopted and the
SVM model was trained with experimental data from ten
subjects consisting in labeled SSVEP signals. Then, fur-
ther experimental data from the same subjects were em-
ployed for the SVM model evaluation, where the model
is adopted to classify unlabeled signals. The details of
this procedure are presented in the next section.

RESULTS

Ten subjects, 5 males and 5 females between 22 and 29
years old, took part to the experiments. Each subject was
asked to seat on a comfortable chair and limit unneces-
sary movements. Fig. 4 represents one of the subjects
wearing the system. At this moment, the system is still a
prototype, and the electrodes are placed with the help of
tight bands.

Figure 4: A subject wearing the BCI system during the experi-
mental campaign.

In a first phase, signals were acquired for the training of
the SVM model. Hence, the EEG-SMT was connected
to a laptop with MATLAB. The laptop was disconnected
from the AC power. At the beginning of each test, the
raw EEG signal amplitude was checked in the frequency
domain in absence of stimulation. A typical signal mea-
sured after wearing the EEG-SMT transducer is repre-
sented in Fig. 5. In this algorithm training phase, 12
trials were conducted. The brain signal was acquired
for 10.0 s, with few seconds between consecutive tri-
als. The subject could chose the icon to stare at, with
the constraint that he/she had to choose 6 times 10 Hz
and 6 times 12 Hz. The time the user had to stare at the
icon corresponded to the acquisition duration, i.e. 10.0
s. Then, the subject declared the choice to the tester in
order to assign a label to the trial. The features are ex-
tracted for these labeled data as explained in the previ-
ous section, and the labeled features are employed for the
SVM training thanks to the MATLAB function ’fitcsvm’.
The classification accuracy of the trained model was then
evaluated with 12 further trials. Labels were necessary
for these signals too in order to compare the guessed la-
bels with the actual ones. Moreover, several time win-
dows were considered: with less samples of the signals
acquired for 10.0 s, it was possible to analyze the classi-
fication accuracy with latencies from 2 s to 10 s. As al-
ready mentioned, a linear kernel was taken into account.
The employment of a Gaussian ("rbf") kernel was also
attempted, but a lower classification accuracy resulted.
The classification accuracy obtained in the evaluation
phase is reported in Tab. 1 for the ten subjects. It is to
note that, in case of a single subject, one wrongly classi-
fied signal corresponds to an accuracy diminishing equal
about to 8.3% (1/12). The mean classification accuracy
is reported too in Fig. 6, where the accuracy of a random
classifier is highlighted: since two classes (two stimuli)
are considered, the accuracy of such a classifier is 50%.

DISCUSSION

The trade-off between classification accuracy and latency
has been considered. The usual trend is an accuracy di-
minishing when a shorter time window is taken into ac-
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time [s] S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
2 100.0 100.0 58.3 83.3 91.7 83.3 91.7 91.7 50.0 66.7
3 100.0 100.0 91.7 91.7 100.0 83.3 91.7 91.7 50.0 58.3
4 100.0 100.0 91.7 58.3 91.7 91.7 91.7 66.7 50.0 58.3
5 100.0 100.0 100.0 91.7 91.7 91.7 91.7 75.0 91.7 75.0
6 100.0 100.0 100.0 91.7 91.7 91.7 91.7 83.3 83.3 66.7
7 100.0 100.0 100.0 91.7 100.0 91.7 100.0 75.0 91.7 58.3
8 100.0 100.0 100.0 91.7 100.0 100.0 100.0 83.3 83.3 58.3
9 100.0 100.0 100.0 83.3 100.0 100.0 91.7 100.0 83.3 75.0

10 100.0 100.0 100.0 83.3 100.0 100.0 91.7 100.0 83.3 83.3

Table 1: Classification accuracy of SSVEP signals for each subject (S1-S10) at varying time windows (2 s to 10 s).

5 10 15 20 25 30 35

Frequency [Hz]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

B
ra

in
 p

o
te

n
ti
a

ls
 [

 V
]

Figure 5: Amplitude spectrum of the raw EEG signal when the
user is not stimulated.

count. In our case, the results of the experimental cam-
paign show that, even with a BCI system built with com-
ponents off-the-shelf and a simple signal processing, the
accuracy is as high as 94% with a latency of 10.0 s, drop-
ping to about 80% at 2.0 s. However, some exceptions in
the accuracy trend are present depending on the subject.
From one side, this could be explained with a varying
attention level of the user during the stimulation time or
the presence of artifacts localized in time, so that a longer
time window is not necessarily better than a shorter one.
On the other hand, these variations also depend on the
adopted algorithm. Hence, it would be necessary to com-
plicate the algorithm while trying to keep the compu-
tational burden low. The algorithm for SSVEP recog-
nition should also be more robust with respect to arti-
facts. Nonetheless, it is worth noting that artifacts rejec-
tion could also be improved by enhancing the mechanical
stability of electrodes placing. This implies that there is
the need of a first level of engineerization for the adopted
prototype.

These results are to be compared with other recent BCI-
based systems proposed in literature. In [27], the em-
ployment of a single-channel BCI is proposed to build
a speller. The user is stimulated for 10.0 s and the re-
ported accuracy is 99.2%. This value was obtained con-
sidering 5 subjects. Another example is a speller based
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Figure 6: Mean classification accuracy of SSVEP signals cal-
culated across 10 subjects at varying time windows.

again on a single-channel BCI and deep neural networks-
based processing [28]. An example of solution integrat-
ing AR glasses and BCI is then reported in [29] for the
control of a quadcopter. This system employs 14 dry
electrodes and 2 reference electrodes, and the achieved
accuracy was 85%, by considering 5 subjects executing
a flight task. Hence, the performance of the system pro-
posed in this manuscript are compatible with state-of-the
art results, though the system was built with off-the-shelf
components.
Regarding the final system, it is possible to directly con-
nect the EEG-SMT to the Moverio BT-200. In the An-
droid application developed for the stimuli generation,
the possibility to acquire the EEG data from USB and
elaborate it was added. This was done to ensure the wear-
ability of the system. However, it has been remarked
there is still the need to investigate better signal process-
ing algorithms prior to the porting of this algorithm in
Android.
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CONCLUSION

A wearable BCI system with off-the-shelf components
has been proposed. The BCI relies on SSVEP signals,
elicited with flickering icons on AR glasses. It is easy to
build such a system with relatively low-cost components
as described within the paper, and applications are fore-
seen in daily life. As an example, the presented device is
currently studied for an alternative communication chan-
nel with sensors in industrial or domotics applications.
An important aspect that was treated is the classification
algorithm. Signal features were extracted with a simple
power spectral density analysis, and the PSD was calcu-
lated, for each icon, at the corresponding flickering fre-
quency and its second harmonic. An experimental cam-
paign was carried out to assess the classification accuracy
for varying latencies. Classification was conducted with
a Support Vector Machine.
Results demonstrated that the minimum stimulation and
acquisition time for the SSVEP signals in our single-
channel BCI can be as low as 2.0 s with mean accuracy
equal to 80%, going up to 90.0% - 100.0% for some sub-
jects. However, the need of further advances has been
highlighted. Future research will deal with the optimiza-
tion of the integrated system, enhancing the mechanical
stability of electrodes placed both on the scalp and on
the wrist, and moving on to wireless solutions to avoid
the cumbersome wires that were needed in this prototype.
An important performance increase is then expected with
an improved algorithm, which should however remain
enough "light" for an on-line EEG signal processing.
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