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ABSTRACT: The paper presents an algorithm for blinks 

detection from an EOG (electrooculographic) signal. The 

algorithm is based on the analysis of time waveforms 

recorded from Fp1 and Fp2 and is capable to work as well 

in a fix trial length mode as in a free user mode. The paper 

covers the description of the algorithm and its 

verification via an experiment conducted with ten healthy 

subjects. During the experiment the recognition of nine 

blinking schemes was tested: single, double and triple 

blinks with left, right, and both eyes. The recognition rate 

calculated over nine blinking schemes and ten subjects 

was equal to 92%. When analyzing the results across 

different blinking schemes we found that: 1) it was much 

easier to recognize left-right blinks (96%) than both eyes 

blinks (83%); 2) the detection accuracy dropped with the 

increasing number of blinks (98% - single, 91% - double, 

87% - triple blinks) but it was sufficiently high even for 

triple blinks.  

 

INTRODUCTION 

 
Eye blinks have all the features needed to establish a 

successful communication channel. They can be 

precisely characterized for an individual, easily 

modulated or translated to express the intention, and can 

be detected and tracked consistently and reliably [1]. Of 

course, they need some motor control from the user but 

if such control is possible, they constitute a fairly stable 

channel. Comparing to control signals used in nowadays 

BCIs (Brain-Computer Interfaces), the eye blinks 

provide more comfortable communication that SSVEP-

BCI (Steady State Visually Evoked BCIs) and P300-BCI 

(BCI based on P300 component). First of all, they do not 

need any external device that would provide stimulations 

evoking the required brain response. That also means that 

nor flickering light or highlighting objects are constantly 

present at a user visual field. Moreover, since the 

different styles of eye blinks are evoked only at a user 

will, the user can decide when he wants to switch the 

interface from an ‘off’ to ‘on’ state. On the other hand, 

comparing EB-interface (Eye Blink) to MI-BCI (Motor 

Imagery BCI), the first one is much more stable and does 

not require any user training. At this moment both types 

of interfaces provide a comparable number of control 

states (usually no more than 2-4) but this can be easily 

changed with the algorithm described further in this 

paper.  

The papers on eye blink detection usually describe 

recognition systems providing a rather limited number of 

control states, often only 1-4 states, [1-3]. This paper 

aims to propose a recognition algorithm that significantly 

increases this number. The proposed algorithm enables 

the recognition of succeeding blinks of left, right and 

both eyes. Since the algorithm allows to detect different 

number of blinks, the number of control states provided 

by the interface using this algorithm is adaptable. It starts 

from two states, corresponding to single blinks of left and 

right eye but can easily be extended to three, six, nine or 

more by using double, triple, and more blinks. Of course, 

since a single simultaneous blink with both eyes is a 

spontaneous physiological activity, it is usually excluded 

from the set of control states.  

The algorithm is based on the EOG time waveforms 

recorded from two prefrontal contralateral channels. We 

do not use the EOG signal recorded from the standard 

positions, it is from the electrodes located around the eyes 

because we want to ensure the maximum comfort of the 

user using the EB-interface. In the experiment testing the 

algorithm accuracy, all the electrodes were incorporated 

into a forehead band and the users found it a more 

convenient solution than when the electrodes were placed 

around the eyes.  

The paper covers both, the detailed description of the 

algorithm and its experimental verification. The 

experiment described in the paper was conducted with 

ten healthy subjects whose task was to blink according to 

the blinking schemes presented in the computer screen. 

During the experiment the recognition of nine blinking 

schemes was tested: single, double and triple blinks with 

left, right, and both eyes.  

 

RELATED WORK 

 

The eye blinks related signals are predominant in the 

frontal and prefrontal sites on the scalp. Peaks appearing 

in the signal waveform recorded from these areas inform 

that an eye open (negative peak) or eye close (positive 

peak) event took place. Hence, an eye blink event can be 

detected when the positive peak followed by a negative 

deflection in a signal waveform is formed. The 

algorithms on eye blink detection directly or indirectly 

utilize these features. For example, in [4] the kurtosis, a 

statistical coefficient that describes the relative flatness 

of the data distribution, was used to detect the eye blink 
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episodes. The kurtosis is a quite good indicator for eye 

blink episodes because it is positive for peaked data 

distribution (typical for eye blink) and negative for flat 

distribution (typical for noise). As the authors report in 

the paper, they were able to detect single, double and 

triple eye blinks only with kurtosis coefficient calculated 

from the data recorded with one bipolar EEG channel. 

However, the speed of the interface presented in the 

paper was somewhat limited because with these three 

choices one character per minute was selected from a 27-

letters keyboard. The information on the accuracy of the 

proposed solution was not provided.  

The kurtosis concept was also used in [5], where the 

kurtosis coefficient was applied in the RBF classifier. 

The classifiers inputs (calculated from a one-second 

window) were: maximum amplitude, minimum 

amplitude, kurtosis of the present window, kurtosis of the 

previous window, and kurtosis of the next window. The 

authors reported 76% accuracy over the test data. A 

neural classifier was also used in [3], where four control 

states corresponded to left wink, right wink, single blink, 

and double blink were applied to control the wheelchair 

movements. The classifier’s inputs were DWT (Discrete 

Wavelet Transform) coefficients extracted from F7 and 

F8 channels and its sensitivity and specificity were equal 

to 80% and 75%, respectively.  

Much more algorithms on eye blink detection and 

recognition can be found in the papers on eye blink 

artifacts correction [6,7]. However, these algorithms 

usually either deal with the signal in an offline mode, it 

is after the recording was completed, or correct the parts 

of the signal of the given characteristics. While the 

former often need long segments of signal acquired from 

a dense matrix of channels to work correctly (e.g. 

algorithms based on sources detection or trends 

recognition), the latter are not sensitive enough to 

distinguish between succeeding blinks.  

All the papers mentioned so far extracted information 

about the blinking pattern directly from the EOG signal. 

However, this is not the only possibility. Another 

approach is based on visual detection of gaze direction 

and blinking episodes. For example, in [8] a 4-steps 

detection system based on methods for image recognition 

was proposed. The system first detects a face region (with 

Haar-like features), then extracts and eye region (via 

analyzing geometrical dependencies), and finally detects 

and classifies the eye-blinks as spontaneous (shorter than 

200ms) or voluntary (longer than 200ms). Voluntary 

blinks are further classified as long or short and hence the 

algorithm provides two control signals that can be used 

for selecting letters from a virtual keyboard or controlling 

cursor movements on the screen. The authors reported 

the results of the experiment with 49 subjects where the 

average time of entering a single sign was equal to 16.8 

s before the training session and 11.7 s after the training 

session and the accuracy of detecting control eye-blinks 

was equal to 99%. 

 

 

 

RECOGNITION ALGORITHM 

 

The EOG activity is a result of the difference in 

charge between the cornea and the bottom of the eye. If 

this activity is recorded from the forehead electrodes, it 

is positive when the eyeballs go up and negative when 

they go down. Because of the so-called Bell effect 

(eyeballs go in the opposite direction to the eyelids) the 

eyes closure induces positive potential and eyes opening 

– negative potential.  

The eye-blink episode builds upon the phenomenon 

described above and hence has a very specific time 

pattern (Fig. 1a). It starts from a rapid and narrow 

positive peak that is followed by a slightly wider but also 

very deep negative trough. Exactly after the blink 

episode, two more components are formed, first – a 

significantly lower and wider positive component and 

second - a very small and wide negative come-back. 

When two or more blinks are followed one after another, 

the blinking scheme remains the same (one sharp positive 

peak followed by a negative trough) for each blink and 

the two after-blinking components at the end (Fig. 1b). 

  

 

 

Figure 1: EOG signal from Fp1 during left eye blink 

event; a) single blink; b) double blink; non-filtered 

single-trial signals. 

 

The height and width of the peak formed in the time 

course of EOG signal recorded from a single channel 

(preferably located at Fpz position) are the two 

characteristics that can be used to take a decision whether 

the blinking episode occurred or not and to distinguish 

between one, two or more consecutive blinks of one/both 

eyes. However, the algorithm based exclusively on 

counting the number of blinks provides a highly limited 

number of possible control states. This number can be 

increased (by a factor of three) if not only the number of 

blinks but also a blinking eye is detected from the signal. 

Of course, since the blinking scheme is the same for both 

eyes, it would be extremally difficult to distinguish the 

blinking eye from the signal recorded from an electrode 

located between both eyes (Fig. 2). This task is much 

easier when instead of one, two EOG channels are used. 

a) 

b) 
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Figure 3 presents the EOG signal recorded from two 

prefrontal electrodes (Fp1 and Fp2) during a double blink 

of the left eye. As it can be noticed in this figure the 

involuntarily blink of the non-intended right eye is 

characterized by a much smaller amplitude at Fp2 (solid 

line) than the intended blink of the left eye (dashed line).  

 

Figure 2: EOG signal from Fpz during double left eye 

blink (signal between 0-700ms) and double right eye 

blink (signal between 700-1400ms); non-filtered single-

trial signal. 

 

 

Figure 3: EOG signal from Fp1 (dashed line) and Fp2 

(solid line) during double left eye blink; non-filtered 

single trial signal. 

 

The last figure from this section (Fig. 4) presents the 

waveforms recorded from Fp1 and Fp2 during 

simultaneous blinks of both eyes. As it can be noticed this 

time peaks of both waveforms have the amplitude 

significantly greater than the rest of the signal. Usually, 

the amplitude of both peaks is not equal (because of small 

shifts in electrodes montage and also because of 

physiological differences between eyes), however, it is 

always well beyond the ongoing EEG activity.  

 

Figure 4: EOG signal from Fp1 (dashed line) and Fp2 

(solid line) during double both eyes blink; non-filtered 

single-trial signal.  

The algorithm that we propose to use for recognizing 

different eye blinking patterns from the EOG signal starts 

from the calibration session. The calibration session is 

necessary not only because of the subjects’ differences in 

blink characteristics but also because these 

characteristics can be quite different even for the same 

subject in two succeeding experiments. Of course, the 

core of the blinking pattern does not change, the eye-

close event evokes the positive peak and the eye-open 

event – a negative peak. However, the amplitude of the 

peaks in both channels can differ significantly. This what 

evokes this change are small shifts in the electrodes 

montage. Even slight differences in the electrodes' 

localization on the skull can highly suppress or enhance 

the peaks formed for left, right or both eyes. The task of 

the calibration session is to prevent the influence of these 

shifts on the algorithm accuracy. Therefore, the 

calibration session should be performed anytime when 

the user starts his/her work with the interface applying 

the proposed algorithm.  

During the calibration session, the user is asked to 

blink once and twice with each eye individually and with 

both eyes together. Between both series, the user is asked 

not to blink at all. Hence, the calibration session is 

divided into seven segments, following one after another:  

• S1, S2, S3 - single blink with left, right, and both 

eyes, respectively; 

• S4 – no blinking period; 

• S5, S6, S7 – double blink with left, right, and both 

eyes, respectively. 

Assuming that three seconds are allocated to each 

condition, the whole calibration session lasts no more 

than 30 s. The signal acquired during the calibration 

session is used to calculate six parameters that are later 

used as thresholds in the recognition process. The 

description of parameters is presented in Tab. 1. All six 

parameters are calculated as the mean value from the two 

corresponding segments of the calibration session 

mentioned in the table.   

 

Table 1: Parameters calculated from the calibration 

session 

Name  Description Segment 

T1a_c Hight of Fp1 peak corresponding to 

the left eye blink  

S1, S5 

T1b_c Hight of Fp2 peak corresponding to 

the right eye blink  

S2, S6 

T1c_c Hight of Fp1 peak corresponding to 

both eyes blink  

S3, S7 

T1d_c Hight of Fp2 peak corresponding to 

both eyes blink  

S3, S7 

T2_c Distance between peak and the 

consecutive zero crossing point (in 

samples) 

S1, S2 

T3_c Distance between two succeeding 

peaks (in samples) 

S5, S6 

 

The parameters calculated over the calibration session 

are not directly used in the recognition process but first 

are modified to make them far less restrictive. The 
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modification rules are as follows: 

• all four T1_c parameters are modified by a factor 0.5 

(T1=0.5T1_c); 

• T2_c parameter is modified by a factor of 2.0 

(T2=2T2_c);    

• T3 parameter is modified by a factor 2.0 (T3=2T3_c). 

The algorithm is very flexible to the levels of these 

modification factors. It works correctly even if they are 

changed significantly. So far, we tested the algorithm for 

the levels: 0.4-0.6 (for T1s), 1.5-3 (for T2), and 1.5-3 (for 

T3).   

The core part of the algorithm is composed of nine 

steps: 

1. Find the first sample exceeding min(T1a, T1c) in Fp1 

channel and/or min(T1b, T1d) in Fp2 channel. 

2. Record the following samples (starting from the 

sample found in 1 until the signal crosses zero in both 

channels. 

3. Find max(Fp1) and max(Fp2) and the distance 

between the sample of maximum value and the last 

sample from the recorded signal (D1 – distance 

calculated over Fp1, D2 - distance calculated over 

Fp2). 

4. Decide on the eye (left, right, both) and the channel 

(Fp1, Fp2) that will be used in the process of 

searching for succeeding peaks. The decision on the 

eye (left, right, or both) and channel (chosenChannel) 

is taken according to one of two rules. Rule 1 is 

triggered when T1a+T1b > T1c+T1d and is defined 

as follows:  

a) if max(Fp1)>T1a & D1<T2 -> left, Fp1, T1=T1a 

b) if max(Fp2)>T1b & D2<T2 -> right, Fp2, T1=T1b 

c) both: if max(Fp1)>T1c & D1<T2 & 

max(Fp2)>T1d & D2<T2  

o if max(Fp1)>=max(Fp2) -> Fp1, T1=T1c 

o if max(Fp1)<max(Fp2) -> Fp2, T1=T1d 

Rule 2 is triggered when T1a+T1b < T1c+T1d. This 

rule is almost identical to Rule 1. The only difference 

is that condition c is tested before conditions a and b. 

The split into two rules is necessary because there are 

two blinking schemes across the subjects. While most 

subjects blink stronger when using both eyes 

simultaneously, there are also subjects who blink 

stronger when only one eye is used.  

5. If none of the conditions given in 4 is fulfilled, discard 

all the recorded samples and start from 1. In the other 

case set n=1 (n – number of peaks found in the signal), 

discard all the recorded samples and start looking for 

the next peak in the chosen channel (go to 6). 

6. Find the first sample exceeding T1 and record the 

following samples (starting from the this ‘exceeding’ 

sample) until the signal crosses zero.  

7. Find max(chosenChannel) and the distance between 

the sample of maximum value and the last sample 

from the recorded signal (D).  

8. If max(chosenChannel)>=T1 & D<=T2 set n=n+1, 

discard all the recorded samples and start looking for 

the next peak in the chosen channel (go to 6). 

9. If rule given in 8 is not fulfilled or the length of the 

recorded signal exceeds T3 (in a free user mode) or 

exceeds the trial length (in a fixed trial length mode) 

return the number of peaks n and the chosen eye (left, 

right, or both) and start from 1. 

 

MATERIALS AND METHODS 

 
To test the algorithm described in the previous section, 

an experiment with ten healthy subjects (seven men and 

three women) was performed. All the subjects were right-

handed, had normal vision and did not report any mental 

disorders. The experiment was conducted according to 

the Helsinki declaration on proper treatments of human 

subjects. Written consent was obtained from the subject 

before the experiment.  

The detailed scheme of the experiment with one 

subject was as follows. The subject was placed in a 

comfortable chair and the electrodes were applied on his 

head. In front of the subject in an approximate distance 

of one meter an LCD monitor was located. A short sound 

signal announced the start of the experiment. Two 

seconds later the calibration session started. This session 

was performed two times: 1st - to make the subject 

familiar with the sequence of segments; 2nd - to calculate 

the algorithm parameters.  

 During the calibration session a sequence of pictures 

informing the subject of what was his/her task in the 

given segment was displayed (Fig. 5). Each picture was 

present on the screen for three seconds.  

 

 

Figure 5: One of the pictures displayed during the 

calibration session (single blink of the left eye).  

When the first calibration session ended, a picture 

presenting the EOG signal recorded during subject 

actions was displayed on the screen (Fig. 6). The 

experimenter discussed the subject’s mistakes (wrong 

eye or wrong number of blinks) and explained once again 

what was the subject’s task in each segment. Right then 

the real calibration session started.   

Ten seconds after the calibration session the actual 

experiment started. During the whole experiment, a 

picture with nine texts informing the subject about 

his/her task was displayed on the screen (Fig. 7). Every 

three seconds a frame was displayed around one of the 

nine texts. The subject’s task was to blink once, twice or 

three times with left, right or both eyes just as was 

indicated by the text surrounded by the frame. The 

experiment consisted of 36 trials, four trials per each 

blinking scheme.    
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Figure 6: EOG signals recorded during the first 

calibration session with one of the subjects (Fp1 - dashed 

line, Fp2 - solid line).  

 

EOG data was recorded from two monopolar 

channels at a sampling frequency of 250 Hz. Four passive 

gold cup electrodes were used in the experiments. Two 

of them were attached to the subject's skull at Fp1, and 

Fp2 positions according to the International 10-20 system 

[9]. The reference and ground electrodes were located at 

the left and right mastoid, respectively. The impedance 

of the electrodes was kept below 5 kΩ. The EOG signal 

was acquired with OpenBCI amplifier and recorded with 

OpenVibe Software [10]. The whole experiment, 

covering the preparation part, electrodes application, 2 

calibration sessions, the actual experiment, and the after-

cleaning lasted about 20 minutes with one subject. 

 

Figure 7: The tasks’ panel.  

 

RESULTS AND DISCUSSION 

 

The classification accuracy calculated from all 36 trials 

for each subject is presented in Fig. 8 and the last column 

of Tab. 3. As it can be noticed, the accuracy was quite 

high for most of the subjects. For S1, S7, S8, and S9 it 

was even higher than 97%. However, there were also 

some subjects (most of all S6 and S2) that achieved much 

lower accuracy (S6 - 78%, S2 – 83%). Of course, having 

in mind that this accuracy was obtained for 9-classes 

classification, it was still a very good result. To find out 

whether these differences in the classification precision 

were caused by a systematic algorithm error or rather a 

subject specificity, we decomposed the results into 6 

schemes. The three first schemes corresponded to a 

different blinking eye (left, right or both), the next three 

schemes - to a different number of blinks (1x - single, 2x 

- double, or 3x - triple). Each scheme covered 12 of the 

trials from our 36-trial experiment.  

 
Figure 8: Classification accuracy for each subject 

calculated over all 9 blinking schemes.  

 

Figures 9-10 and Tab. 2 present classification 

accuracy obtained for each subject under different 

blinking eye schemes (Fig. 9) and different number of 

blinks (Fig. 10). The first conclusion that should be made 

here is that regardless of the number of blinks, it was 

much easier to recognize left-right blink than both eyes 

blink. While the single eye recognition rate (averaged 

over different number of blinks) was equal to almost 96% 

(for both: right eye and left eye), it was significantly 

smaller (83%) for both eyes (according to paired sample 

t-student test with p=0.05).  

The second observation that can be deduced from 

Tab. 2 and Fig. 10 is that the accuracy dropped with the 

increasing number of blinks from 98% (for single blinks) 

to 91% (for double blinks) and 87% (for triple blinks). 

While this drop was significant when comparing single 

to triple blinks (according to paired sample t-student test 

with p=0.05), it was incidental for single and double or 

double and triple blinks.  

 
Figure 9: Classification accuracy for each subject 

calculated separately for left, right, and both eyes 

condition.  

 
Figure 10: Classification accuracy for each subject 

calculated separately for single, double, and triple blinks.  
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Table 2: Classification accuracy for each subject across 

analyzed number of blinks and blinking eyes (1x, 2x, 3x 

– single, double, and triple blinks; L, R, B – left, right, 

and both eyes). 

  L R B 1x 2x 3x All 

S1 91.7 100.0 100.0 100.0 100.0 91.7 97.2 

S2 91.7 75.0 83.3 100.0 66.7 83.3 83.3 

S3 100.0 91.7 75.0 91.7 91.7 83.3 88.9 

S4 100.0 100.0 83.3 100.0 91.7 91.7 94.4 

S5 83.3 100.0 83.3 91.7 91.7 83.3 88.9 

S6 100.0 100.0 33.3 91.7 75.0 66.7 77.8 

S7 100.0 100.0 91.7 100.0 100.0 91.7 97.2 

S8 100.0 100.0 91.7 100.0 100.0 91.7 97.2 

S9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

S10 91.7 91.7 91.7 100.0 91.7 83.3 91.7 

Mean 95.8 95.8 83.3 97.5 90.8 86.7 91.7 

 

 Finally, we aggregated the results obtained from 

different subjects to find out which of our 9 classification 

schemes was correctly recognized in most cases. The 

aggregated results are presented in Tab. 3. As it can be 

noticed in the table the best detection rate was obtained 

for single right eye blink (100%), then for single and 

double left eye blink (98%), and next for double right and 

single both eyes blink (95%). If instead of the nine 

blinking schemes, only the first four were used 

(excluding single blink with both eyes as spontaneous 

physiological activity), the average accuracy would reach 

exactly 97.5%.  

 

Table 3: The mean classification accuracy for each of the 

nine blinking schemes; results aggregated over all 

subjects. 

 Left Right Both Mean 

1 x  97.50 100.00 95.00 97.50 

2 x 97.50 95.00 80.00 90.83 

3 x 92.50 92.50 75.00 86.67 

Mean 95.83 95.83 83.33  

 

CONCLUSION 

 

As it was shown in the paper, the proposed detection 

algorithm can recognize a quite high number of control 

states with a high detection rate, without any external 

stimulations and with use of a very short (30 s) 

calibration. Therefore, for the users that can still control 

their eyelids muscles, it can provide a good alternative to 

the brain-computer interfaces.  

 The main outcomes from the experiment described in 

the paper are: 1) the overall detection rate calculated over 

nine blinking schemes and ten subjects was equal to 92%; 

2) the detection rate calculated over four best blinking 

schemes was equal to 98%; 3) it was much easier to 

recognize left-right blinks (96% - right eye and 96% - left 

eye) than both eyes blinks (83%); 4) the detection 

accuracy dropped with the increasing number of blinks 

(98% - single, 91% - double, 87% - triple blinks). 

 We believe that the algorithm described in this paper 

might be further improved by enhancing the recognition 

of both eyes’ blinks. Moreover, to formulate more valid 

conclusions we plan to conduct experiments with more 

subjects and a greater number of blinks.  
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