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ABSTRACT
Broadband code modulated visual evoked potential (BB-
VEP, c-VEP) is the basis of one of the fastest brain-
computer interface (BCI) paradigms. Unlike other sys-
tems, like those based on steady-state visual evoked po-
tential (SSVEP, f-VEP), the stimulus specificity of c-VEP
has not been thoroughly studied yet. One of the impor-
tant stimulus characteristics that can influence both per-
formance and user comfort is the frequency (the bit clock
or frame rate). In this study, we evaluated the effect of
stimuli presented at various frame rates (40, 60, 90 and
120 Hz) on c-VEP using LED lights. Accuracy and ITR
were used to assess the performance and a questionnaire
was used to evaluate the visual comfort. No significant
differences in the performance of different frequencies
were found, so comfort can be the main factor in the de-
sign decision. However, there is a trend for the frame
rates of 40 and 90 Hz to yield a higher accuracy as com-
pared to 60 and 120 Hz.

INTRODUCTION

One of the well-known brain computer interface (BCI)
applications is a speller, in which the user can select a let-
ter and type it on the screen. Different paradigms are used
to develop such BCI spellers, in which the frequency-
modulated visual evoked potential (f-VEP) and the code-
modulated visual evoked potential (c-VEP) have gained
increasing attention due to their high information transfer
rate (ITR) [1].
In an f-VEP-based BCI, the user is presented with visual
stimuli flickering at different frequencies. The attended
stimulus generates steady-state visual evoked potential
(SSVEP) responses over the occipital brain areas at the
same (or harmonics) frequency of the stimulus [2]. A
wide range of frequencies (between 4 and 90 Hz) can be
used to elicit SSVEPs [2, 3]. The lower frequency range
(<20 Hz) induce higher amplitude SSVEP responses
compared to the higher frequency stimuli. However, the
higher frequency stimuli are visually more comfortable
and cause less visual fatigue [4]. Many research groups
have investigated the effect of different frequencies on the
SSVEPs response [5] and on the BCI performance [6].
For example, to compare the accuracies from high and
low frequencies, Won and colleagues designed an experi-
ment using 30 LED lights flickering at different frequen-
cies. In their studies, they achieved higher classification

accuracy using high-frequency stimuli (26-34.7 Hz) com-
pare to the low-frequency stimuli (6-14.7 Hz) [6, 7]. Un-
like the f-VEP, the stimulation frequency of c-VEP has
not been thoroughly studied yet.
In c-VEP, a set of pseudo-random bit-sequences (codes)
is used to modulate intensity of the visual stimuli.
Though many types of codes are used in BCI, the stim-
ulation codes are often a single m-sequence with a dif-
ferent phases, or are constructed as a Gold code fam-
ily generated with a special pair of m-sequences. They
can be run at different stimulation frequencies, we will
call them frame rates, even though we use LED’s and no
video frame is involved. In most of the c-VEP BCI stud-
ies, due to limitations in display refresh rates, 60 and 120
Hz are commonly used in the experimental setups. How-
ever, using the latest monitors with a higher refresh rate,
recent studies investigated the effect of higher stimulation
frequencies on c-VEP [8, 9]. In the study by Gembke and
colleagues, they compared the results of high-frequency
stimulation rates (120 and 200 Hz) with the traditional 60
Hz and found a lower but comparable result in terms of
accuracy and ITR for 200 Hz compared to 60 and 120
Hz. Başaklar and colleagues, examined stimulus presen-
tation rates of 60, 120, 240 Hz and revealed that 120 Hz is
better than 240 Hz for higher number of classes. Never-
theless, to understand the effects of different stimulation
frequencies and their boundaries on c-VEP systems more
research is needed.
In this study, we used modulated Gold codes to investi-
gate the effects of low and high stimulation frequencies
(40, 60, 90 and 120 Hz) in terms of performance and vi-
sual comfort. We used LEDs instead of a monitor to be
more flexible in presenting the stimulation frequencies.
In addition, in order to make the BCI experiment more
practical and pleasant for the participants, water-based
EEG electrodes were used.

MATERIALS AND METHODS

Participants: 10 subjects (age: 31.2 ± 11.71, average ±
standard deviation, 5 male) with normal or corrected-to-
normal vision took part in the experiment. The subjects
agreed voluntarily to participate in the experiment. The
study was approved by and conducted in accordance with
the guidelines of the Ethical Committee of the Faculty
of Social Sciences at the Radboud University. Prior to
the experiment, all subjects read and signed a written
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informed consent.

Experimental design: The visual stimuli were pre-
sented to the subjects using eight RGB LED lights.
Each LED was surrounded by a plastic cylinder to
create a circular target (4 cm diameter, 1 cm inter-target
distance). Then, all LEDs were covered using a light
diffusion sheet to prevent uneven light distribution.
Subsequently, eight small transparent sheets with a
picture of an animal were placed at the center of each
light as shown in Figure 1(A). The LEDs were controlled
by an ARDUINO UNO micro-controller to send the
eight flashing patterns of the modulated Gold codes (See
further, m-Gold codes). During the experiment, subjects
were sitting on a chair in front of the LED box with a
distance of 35 to 50 centimeters. The exact distance was
chosen by each participant for a comfortable view of the
LED box. The experiment consisted of four runs, one for
each frame rate stimuli (i.e., 40, 60, 90, 120 Hz). Each
run consisted of 10 trials of 4.2 seconds at that specific
frame rate with an inter-trial interval of one second. In
each trial, one LED was cued randomly as a target. After
the cue, all LEDs started flashing their own code at the
specific frame rate, for 4.2 seconds. The time course
of one trial is shown in Figure 1(B). The subjects were
instructed to focus their attention to the cued target and
gaze at its center during the stimulation. The stimulation
frequencies were presented to the subjects in a random
order. To prevent visual fatigue, the subjects could take a
short break between each run.

Figure 1: A. Layout design of the LED box, all are blinking at
the same frame rate, but with different bit sequences; B. Time-
course of one trial during the experiment. ITI: Inter trial inter-
val.

m-Gold codes: Gold codes are a set of pseudo-random
bit sequences with minimum cross-correlation and opti-
mal auto-correlation [10]. A set of Gold codes is formed
by XORing a preferred pair of m-sequences of the same
length with a time-lag. Each time-lag yields a new mem-
ber of a Gold code family. An m-sequence is gener-
ated by a special type of linear feedback shift register
(LFSR) that has a longest non-repeating sequence for a
given tap sequence. Although an m-sequences has bet-
ter auto-correlation properties than a Gold code, a set
of m-sequences may have large and unpredictable cross-

correlation values.
In this study, we used a set of Gold codes created with
a 6-bit linear feedback shift register and feedback taps
at positions 6,5,2,1 and at 6,1 (See [10, 11] for the
generation process). In our study, the Gold codes were
modulated with a double bit clock to force a transition
in each bit. These modulated codes (m-Gold codes)
retained the good correlation properties while restricting
the run-length distribution, as a code can be considered
as a series of short (i.e., ‘10’ or ‘100’) and long (i.e.,
‘110’ or ‘1100’) on-off runs, which represent short and
long flashes, respectively (See Figure 2). The family
consisted of 65 codes, each with a 126 bits length. In this
study, we used the first eight sequences of these m-Gold
codes to send to the eight LED lights.

Figure 2: Pulse duration for 4 bits of the first sequence of the
modulated Gold codes in different frequencies. S: short event;
L: Long event.

Recording: EEG was recorded using the Twente
Medical Systems International (TMSi) Porti system with
32 EEG channels and a common average reference at a
sampling rate of 1000 Hz. The EEG data was collected
using seven water-based electrodes located over the
parietal and occipital cortex at CP5, P3, Pz, POz, Oz, P4,
and CP6 according to the international system of EEG
measurement [12]. The ground (GND) electrode was
located over the left temporal site (T7).

Preprocessing: The raw signals were down sampled
to 360 Hz. To be able to create suitable roll-on roll-off
spectral sensitivity the down sampled signals were high-
pass filtered at 2 Hz using a 2nd order Butterworth filter,
and low-pass filtered at 50 Hz using a 4th order Cheby-
shev type II filter with 50 dB stop-band attenuation.
The stimuli presentation and the preprocessing were
implemented online using the BrainStream software
[www.brainstream.nu].

Comfort scores: To assess the visual comfort at each
frame rate, subjects filled out a four-level satisfaction
questionnaire, (with levels: very uncomfortable = 0,
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uncomfortable = 3, comfortable = 7, very comfortable =
10). Participants rated the questionnaire based on their
subjective experience after each run of the experiment.
Thereafter, we calculated the mean score over all subjects
for each frame rate.

Analysis: In the c-VEP, template matching is applied
to identify the attended target. To create a template, we
used a generative model called re-convolution (see [13]
for details). Re-convolution is a method that models the
brain response to a sequence of events (here, m-Gold
codes) as the linear summation of the responses to the in-
dividual events (i.e., short and long flashes, see Figure 2).
The re-convolution method used in [13] has been imple-
mented in two sequential steps. First, it generates tran-
sient responses by performing deconvolution and subse-
quently learns the spatial distribution by means of Canon-
ical Correlation Analysis (CCA). Here, we integrated re-
convolution in the CCA to simultaneously derive both
temporal as well as spatial dynamics of the responses
[14]. Therefore, we defined the CCA as follows:

W,R = argmax
W,R

W>X ·M>R√
W>XX>W ·R>MM>R

(1)

Where, X ∈ Rk·m,c is the concatenation of k single-trials
of m samples and c channels, and m ∈ Rk·m,c is the con-
catenation of k structure matrices of m samples and c
channels. The structure matrix, M, is a design matrix
created for each event type (i.e short and a long flash),
which in the first column, lists a 1 whenever the event
type occurred, and zero elsewhere, and in each subse-
quent column the ones shifts down a row to the length of
the transients (See Fig.5 in [13]). Therefore, M contains
two structure matrices, M = [Ms,Ml ], with Ms the struc-
ture matrix listing a 1 when the short event happened, and
Ml listing 1 whenever the long event happened. Thus, the
CCA derives a spatial filter W ∈ Rc,1 and a temporal fil-
ter R ∈Rl,1 with the responses to the short (Rs ) and long
(Rl ) events, R = [Rs,Rl ]. The CCA does that by opti-
mizing the spatial and temporal filter in such a way that
the correlation between spatially filtered data (W>X) and
the predicted responses (R>M) is maximized. Thereafter,
a template matching can be performed to classify a new
single-trial using W and R as follows:

y = argmax
i
{corr(W>x,R>Mi)} (2)

in which, Mi is the structure matrix for the ith class and
Ti = R>Mi is the predicted responses for stimulus i.

Performance evaluation: To estimate the system per-
formance, we measured the accuracy of the classifier,
the corresponding information transfer rate (ITR) [15], as
well as (correct) symbols per minute (SPM) [16], which
includes the time needed for a backspace to correct mis-
spelled symbols. The accuracy was measured using 10-
fold cross-validation. The maximum correlation between
the spatially filtered data and the generated templates was

used as an indicator of the predicted class. We mea-
sured the ITR (in bits/minute) and the SPM (in sym-
bols/minute) calculated as follows:

IT R = (log2 N +P log2 P+(1−P) log2
1−P
N−1

)∗ (60
T
)

(3)

SPM = (P− (1−P))∗ 60
T

(4)

Where N is the number of classes, P is the detection
accuracy of targets and T is the time needed to convey
each symbol, including both trial time and inter-trial
time (in seconds). The maximum ITR value during the
stimulation time was determined for each subject at each
bit rate, to report as ITR.

Statistics: Since accuracy rates and comfort scores
were not normally distributed, a non-parametric Fried-
man test was performed. This test was used to compare
the result of each pair of frame rate stimuli. The signifi-
cant threshold was set to 0.05.

RESULTS

Comfort scores: Figure 3 shows the score provided by
volunteers about the level of visual comfort regarding dif-
ferent frame rate stimuli. As can be seen, the higher fre-
quencies tend to be more comfortable than the lower fre-
quencies. None of the subjects reported "(very) uncom-
fortable" for the frame rate of 120 Hz and in contrary, no
subjects reported "very comfortable" for the frame rate of
40 Hz. Interestingly, some subjects reported a difficulty
to attend the 120 Hz stimulation because the flicker was
less perceptible compared to the other frequencies.
To determine any significant differences in the comfort
scores due to different frame rate stimuli, we performed
non-parametric Friedman test. The results from Fried-
man test revealed a significant main effect of frame rate
(x2(3) = 17.077, p = 0.001) on comfort scores. Subse-
quent post-hoc analysis with Wilcoxon signed-rank tests
was conducted with a Bonferroni correction, resulting in
a significance level set at p < 0.008. Interestingly, the
results showed only a statistically significant difference
between the frame rates of 40 and 120 Hz (Z = -2.762, p
= 0.006). No significant differences were found between
other pairs of the frame rate stimuli (40 vs. 60 Hz (Z =
-1.801, p = 0.072); 40 vs. 90 Hz (Z = -2.585, p = 0.010);
60 vs. 90 Hz (Z = -1.633, p = 0.102); 60 vs. 120 Hz
(Z = -2.264, p = 0.024); 90 vs. 120 Hz (Z = -1.511, p =
0.131)).

Performance evaluation: In addition to classification
accuracies, Figure 4 also shows the corresponding ITRs
(in bits/min) and the SPM (in sym/min) for the different
frame rate stimuli. In terms of accuracy, the frame rates
of 40 and 90 Hz gained higher accuracy and SPM com-
pared to the 60 and 120 Hz. Looking at the results of the
ITR, the frame rate of 40 Hz leads to the highest ITR of
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Figure 3: Scores of visual comforts provided by subjects for dif-
ferent frame rate stimuli. The error bars represent the maximum
and minimum of the scores. ** p < 0.01.

53.69 ± 7.33 (mean ± SE, in bits/min) and followed by
the frame rate of 60 Hz (50.41 ± 6.75) and 90 Hz (50.03
± 6.52). In comparison, the frame rate of 120 Hz gained
the lowest ITR (37.53 ± 6.89). However, the correspond-
ing Friedman test did not reveal a significant difference
between any pair of stimulation frequencies, neither in
accuracy (x2(3) = 5.76, p = 0.12) nor ITR (x2(3) = 6.45, p
= 0.09).
To inspect the evolving classification performance over
time, we calculated the accuracy for each frame rate,
starting from 0.5 second with time intervals of 0.1
second. The average results are depicted in Figure 5.
As can be seen in this figure, the lower frequencies (40
and 60 Hz) have a tendency for better performance for
short time intervals below 2 seconds as compared to the
higher frequencies (90 and 120 Hz). The performances
then converge close to ceiling performance at 4 second
without significant difference. The frame rate of 120 Hz
has a tendency to the lowest accuracy.

Figure 4: Average accuracy, ITR and SPM over subjects for
different frame rate stimuli. The error bars indicate the standard
errors. The starts show the maximum and the minimum ITR
over subjects. Note: the ITR is calculated based on the maxi-
mum value during the stimulation time at each frame rate with
an inter-trial interval of one second.

DISCUSSION AND CONCLUSION

Figure 5: Average classification accuracy with respect to time
for all frame rate stimuli. The shaded bars show standard errors.

In this study, we investigated the effect of high and low
stimulation frequencies (40, 60, 90, 120 Hz) on c-VEP in
terms of accuracy and ITR. A family of modulated Gold
codes was used to control the visual stimuli on eight LED
lights. The responses to these m-Gold codes were pre-
dicted by re-convolution and used as templates for a tem-
plate matching classifier. To evaluate the visual comfort,
a questionnaire was filled in by the subjects after each run
of the experiment.

Comfort scores: The results from the questionnaire
showed that most participants favor the higher stimula-
tion frequencies especially 120 Hz while 40 Hz was ir-
ritating for most of the participants. This can be due
to the fact that for high frame rates the stimuli are less
perceived as flicker and this may be less tiring and more
comfortable.

Performance evaluation: In terms of performance,
there was a tendency for 40 and 90 Hz to yield higher
accuracy compared to 60 and 120 Hz and for 90 Hz to
achieve the highest accuracy and SPM. If we assume this
gain will prove to be robust, 90 Hz should be considered
as a good frame rate for c-VEP where traditional 60 and
120 Hz has been used. It is a happy coincidence that in
Virtual Reality goggles 90 HZ is used often as frame rate.
Previous studies have shown that the average accuracy
from 120 Hz monitor refresh rate was slightly higher than
60 Hz [8, 9], however, our results don’t substantiate that.
Although the results about visual comfort showed the
highest score for 120 Hz, some subjects reported a dif-
ficulty to attend the 120 Hz. This can be explained by the
fact that the higher frequencies are less perceivable com-
pared to the lower frequencies which can make it difficult
for subjects to attend.
Our results showed no significant differences in the per-
formance (accuracy and ITR) of different stimulation fre-
quencies. This may be due to the effect of two compet-
ing mechanisms: higher frame rates yield more events
per time unit thus in principle can support higher trans-
fer rates, but the responses to fast events become smaller
thus leading to a weaker discrimination. The fact that the
frame rate does not affect performance much allows for
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choosing 120 Hz, the most comfortable one without loss
of performance. However there was a tendency for 90 Hz
to be better than 120 Hz in terms of accuracy and ITR
that may turn out to make up for somewhat less comfort.
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