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ABSTRACT: In a case study with a person with high cer-
vical spinal cord injury, we show a first proof-of-concept
on how to detect and classify different movement at-
tempts of the same upper limb. The lesion was complete
(AIS A) at level C4 and no hand function was preserved.
We detected in a self-paced online setup hand open and
palmar grasp with an accuracy of 68.4 % (chance level
50%).

INTRODUCTION

A brain-computer interface (BCI) can detect various in-
tentionally modulated brain signals and use them as a
control signal or as a communication channel [15]. Per-
sons with cervical spinal cord injury (SCI) may profit
from a BCI combined with functional electrical stimu-
lation (FES) [26], a so called motor neuroprosthesis. The
BCI detects the user’s movement intention, and trans-
forms the movement intention into a real movement via
FES. It is a technical bypass of the lesion in the spinal
cord. So far, several attempts have been shown to restore
grasp function in persons with SCI using a BCI with FES
[16, 22, 24]. Non-invasive BCI/FES neuroprostheses of-
ten exploit modulations of brain oscillations in the mu or
beta band accompanying movement imaginations (MIs)
[21]. However, these BCIs have also a downside. Despite
using brain signals to control motor functions, the mental
strategy used to modulate the brain signals is often not
similar to the intended movement. For example, [16, 20,
22] used a repetitive foot MI or contralateral hand MI to
control the hand. Furthermore, details how the MI is per-
formed are hardly accessible in EEG brain oscillations.
EEG brain oscillations rather allow to detect the state of
performing repetitive MI, i.e. that one moves the limb but
not how it is moved [1]. However, there is evidence that
source imaging can be used to classify more complex MI
[6].
Instead of brain oscillations, we exploit another brain
signal called movement related cortical potentials (MR-
CPs) [28]. MRCPs were shown to encode, e.g. force [10]
or reaching directions/targets [7, 13, 29], and were fur-
thermore used to detect movements [18]. MRCPs could
provide a non-invasive control signal which allows for a
more natural neuroprosthesis control compared to EEG
brain oscillations. A BCI based on MRCPs could detect
movement attempts in persons with SCI like hand open,

Table 1: ISNCSCI motor scores of the right upper limb
motor key muscles score
elbow flexors C5 4

wrist extensors C6 1
elbow extensors C7 0

finger flexors C8 0
finger abductors T1 0

palmar grasp, pronation, supination, etc., and use these
detections for neuroprosthesis control. In that context,
we have shown that single movements of the same up-
per limb as well as grasps can be classified from MRCPs
in healthy persons [19, 27]. However, a classification of
self-paced attempted movements in the ongoing EEG of
a person with SCI is lacking. We therefore propose in
this work an MRCPs-based asynchronous online classi-
fier, and show a proof-of-concept (without FES) of de-
tecting hand open and palmar grasp in a person with SCI.

MATERIALS AND METHODS

Participant: We recruited a right-handed male partici-
pant of age 55 with a chronic cervical SCI. The SCI has
been sustained 6 years ago with a neurological level of
injury of C4 and AIS A classification, i.e. complete SCI.
No hand function is preserved, see Table 1 for ISNCSCI
motor scores. Written informed consent was obtained.

Paradigm: We measured two sessions with the partic-
ipant. He sat in his wheelchair in front of a computer
screen and carried out instructions given on the computer
screen. A training paradigm and a test paradigm were
used to evaluate the asynchronous online classifier.
The training paradigm comprised of two types of trials:
movement and rest. Movement trials were used to record
hand open and palmar grasp. A movement trial started
with a beep and a class cue which indicated either hand
open or palmar grasp, see Figure 1. At second 2, the
ready cue appeared and replaced the class cue. The ready
cue was a green circle with a smaller inner white cir-
cle. 0.5 s to 1 s after the appearance of the ready cue,
the green circle started to shrink within 2 s to 4 s to the
size of the inner white circle. We instructed the partic-
ipant to attempt the movement when the outer circle hit
the inner circle. We refer to this moment as go cue. In
session 1, we instructed the participant to attempt to open
or grasp, and deliberately hold the position until the end

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-35



of the trial, i.e. attempt a sustained movement. In ses-
sion 2, we gave the instruction not to hold the position,
but to make a short single movement attempt. Two sec-
onds after the go cue, the trial ended and the screen turned
black. During the movement trials, a cross was shown in
the middle of the screen to fixate the gaze. Trials were
spaced by a 2 s to 3 s time interval. In rest trials, a cross
was shown for 70 s, and we instructed the participant to
avoid any movement during this period. We recorded 5
movement runs and 4 rest runs. A movement run com-
prised of 30 movement trials, and a rest run comprised of
1 rest trial. In total we recorded 150 movement trials (75
trials per movement class) and 4 rest trials. We epoched
then the 70 s long rest trials at random positions so that
we had 150 rest trials.
The test paradigm is shown in Figure 2. The class cue
(hand open, palmar grasp, rest), a beep, and a fixation
cross were presented at the trial start. After 5 s, the class
cue disappeared and only the fixation cross remained
on the screen for 60 s. We instructed the participant to
attempt several self-paced movements of the respective
class during this 60 s period, or avoid any movement if it
was a rest class. The participant was instructed to wait at
least 5 s between movement attempts, and to report every
movement attempt 2 s later by a soft speech sound. How-
ever, due to a misunderstanding, the participant reported
movement attempts immediately afterwards in session
1 (but not session 2). When the participant reported a
movement attempt, the experimenter pressed a button on
the computer to log the time point of the movement event.
The online classifier was constantly active and showed
the respective movement icon (i.e. hand open or palmar
grasp) for 2s whenever a movement attempt was detected.
Thus, it was a closed-loop classification as feedback was
provided. We recorded 6 runs in session 1 and 5 runs in
session 2. Each run comprised of 4 movement trials and
1 rest trial.

Figure 1: Training paradigm. A green filled circle shrunk at ran-
dom speed. The participant attempted a hand open movement
or palmar grasp when the green circle hit the inner white circle
(the go cue).

Recording: We measured EEG with 61 electrodes cov-
ering frontal, central, parietal, and temporal areas. Refer-
ence was placed on the left earlobe and ground on AFF2h.
Signals were sampled with 256 Hz with four 16-channel
biosignal amplifiers and an active electrode system (g.tec

Figure 2: Test paradigm. The participant attempted several sin-
gle self-paced movements.

medical engineering GmbH, Austria). A notch filter at
50 Hz and a band-pass filter with 0.01 Hz to 100 Hz (8th
order Chebyshev filter) were used.

Preprocessing: We excluded channel AFz, and re-
referenced the remaining channels to a common average
reference (CAR). Next, we filtered signals with a causal
4th order Butterworth filter with 0.3 Hz to 3 Hz to extract
low-frequency signals. In the training paradigm, artifact
contaminated trials were removed with a statistical out-
lier rejection method like in [19].

Classifier and Detector: We classified the EEG from
the training paradigm with a multi-class shrinkage lin-
ear discriminant analysis (sLDA) [3]. The input fea-
tures to the sLDA classifier were the preprocessed EEG
data, which were extracted from a causal time-window of
length 1.4 s (feature extraction window). To find the opti-
mal training time point, we time-locked to the go cue and
calculated offline classification accuracies with a 10-fold
cross-validation. For this purpose, we shifted the right
corner of the feature extraction window from 1 s to 2 s
relative to the go cue, and calculated for each time point
the classification accuracy. The time point with the high-
est classification accuracy was then found as ttrain (ttrain =
1.875s in training session 1, and ttrain = 1.625s in training
session 2). The output of the classifier was subjected to a
softmax transformation to obtain class probabilities.
The classifier included two additional classes: a pre and a
post class. MRCPs have a duration of more than 2 s, and
the pre and post classes are supposed to detect the early
and late phases of MRCPs (irrespective of hand open or
palmar grasp). These MRCPs phases could otherwise in-
crease the chance of detecting a wrong movement class
if the MRCPs are not yet (or are no longer) fully covered
by the feature extraction window during online operation.
We grouped therefore the movement classes (hand open
and palmar grasp) at ttrain − 500ms and ttrain + 500ms
to pre and post classes, respectively. The final online
classifier was then trained on hand open, palmar grasp
and rest classes at ttrain, and on the time shifted pre and
post classes, yielding in fact a 5-class classifier. See Fig-
ure 3 for an explanation how the trial-averaged classifier
output looks like when applied on the training paradigm
and time-locked to the go cue. An attempted movement
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should lead to a peak of the pre class probability, followed
500ms later by a peak of the hand open or palmar grasp
class probability, and another 500ms later by a peak of
the post class probability.
We build then a detector which detected attempted move-
ments based on the time-sequences of the classifier out-
puts. This detector employed 3 time windows specified
relative to t0, see Figure 4. A movement was detected if
the 3 peaks of the pre class, movement class, and post
class fell within these 3 windows. The pre window was
centered at t0 −500ms, the movement window at t0, and
the post window at t0+500ms. Pre and post windows had
a length of 300 ms, the movement window had a length
of 100 ms. To detect a movement, the pre class probabil-
ity had to be above 0.7 for at least half of the pre window
(and analog for the post probability and window), and
hand open class or palmar grasp class probabilities had
to be above 0.9 for at least the full movement window. If
all conditions were fulfilled, the movement class with the
highest probability in the movement window (i.e. hand
open or palmar grasp) was then eventually detected. A
refractory period of 2 s followed every detection.

Figure 3: Trial-averaged output of the classifier for hand open
trials in the training paradigm. The plot is time-locked to the
go cue (0 s). One can see the peak of the hand open class, and
preceding and subsequent peaks of the pre and post classes, re-
spectively.

Detection delay: Several factors caused a delay be-
tween the onset of the movement attempt and the detec-
tion. As we do not know the true onset of the movement
attempt we have to make some assumptions to estimate
the delay. First, we assume that the onset of the move-
ment attempt coincided with the go cue. Second, the
average post class probability was maximal 500 ms af-
ter ttrain and symmetric. There is a first delay between the
onset of the movement attempt and the classifier training
time point, found as ttrain. This delay is due to the fil-
ter delay and the length of the feature extraction window.
Furthermore, there is a second delay due to the detection
logic based on pre and post classes. We can only provide
a conservative estimation of this delay, i.e. the average
maximum delay. We presume that the average post class

Figure 4: Illustration of the pre, movement and post windows
of the detector. All windows had to be crossed for a certain
amount of time by their respective probability to cause a move-
ment detection.

probability crosses the post window probability-threshold
(0.7) for exactly the length of the time-threshold (150ms,
half the post window size). Shorter crossings do not cause
a detection, and longer crossings cause an earlier detec-
tion. This second delay is the time from ttrain to the point
when the post class probability falls below the post win-
dow probability, which would be (under the second as-
sumption) 500 ms + 75 ms after ttrain. Thus, the maxi-
mum detection delay is then on average ttrain + 500 ms +
75 ms.

Definition of the true-positive window:
We defined a true positive window to evaluate the on-
line classifier. Every detected movement onset within
the true positive window was counted as a true positive
(TP), irrespective if it was a hand open or palmar grasp
class. Every detection outside this window was a false
positive (FPwin). The length of the TP window was set
to 2 s which allowed for not more than one detection per
window due to the refractory period of the detector. The
center of the TP window was set with an offset to the
logged movement onset, and accounted for the detection
delay. Thus, the center should correspond to the assumed
movement onset (i.e. the detection time point corrected
by the detection delay). To find the offset between the
TP window center and the logged movement onsets, it
was necessary to compensate for the response time of the
participant and the reaction time of the experimenter dur-
ing reporting. As the average response and reaction times
were unknown, we used a systematic approach to deter-
mine the offset. We iterated the offset from 0 s to 5 s and
calculated the TP/FPwin ratio for each offset. The offset
with the maximal TP/FPwin ratio was then determined as
the final offset (the offset was 2.2 s in session 1, and 4.2 s
in session 2).

RESULTS

We present our results separately for detection and clas-
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Figure 5: Electrode potentials of the test paradigm in session 1.
Shown are the 95% confidence intervals at electrode Cz time
locked to the assumed movement onset. The detection time
point and the assumed onset are shown (i.e. the detection time
point corrected by the detection delay).

Figure 6: Electrode potentials of the test paradigm in session 2.
Shown are the 95% confidence intervals at electrode Cz time
locked to the assumed movement onset. The detection time
point and the assumed onset are shown (i.e. the detection time
point corrected by the detection delay).

Figure 7: Test paradigm topoplots. The time lags are the input
to the classifier when a movement was detected (the topoplots
are time-locked to true positive movement detections, second
0 corresponds to ttrain). a: Topoplots from session 1. b:
Topoplots from session 2.

Table 2: Detection and classification results of both sessions.
TPR and FP/min were calculated independent of the movement
class. Accuracy was calculated on TPs.

sess. TPR [%] FP/min acc. [%] sig. level [%]
1 26.6 3.2 66.0 62.4
2 36.9 3.6 70.8 65.3

sification. Detection refers to the identification of any
movement class in the ongoing EEG, regardless if it was
hand open or palmar grasp. Here, the detection perfor-
mance is quantified with true positive ratio (TPR) and
false positives per minute (FP/min). TPs were all de-
tections within the TP window, FPs were all detections
during the 70 s rest trials (not to be confused with FPwin).
Classification refers to the identification of the movement
class itself and considers only TPs. Thus, detections out-
side the true positive window were ignored. The classi-
fication performance is quantified with the classification
accuracy. The results of both sessions are shown in Ta-
ble 2; the significance levels were determined with an ad-
justed wald interval [2, 17] with α = 0.05. When aver-
aging over both sessions, we obtained a TPR of 31.8 and
3.4 FP/min, with an accuracy of 68.4 %.
We also analyzed if the classification in the test paradigm
is based on plausible brain signals. The electrode poten-
tials on Cz are therefore shown in Figure 5 (session 1)
and Figure 6 (session 2) for both movement classes. We
considered only TP, and aligned to the assumed move-
ment onset, i.e. the detection time point minus the detec-
tion delay. The detection delay was 2.5s in session 1 and
2.2s in session 2. The plots include 95% confidence in-
tervals based on a t-distribution over trials. Both plots
show around movement onset the characteristic negative
deflection present in MRCPs. Noteworthy, the EEG sig-
nal in Figure 5 and Figure 6 are non-causally filtered to
avoid phase distortion and ease the interpretation.
Furthermore we show in Figure 7 the topoplots of the
trial-averaged time lags used as input to the classifier
when a movement was detected (i.e. the feature extraction
window). The topoplots indicate that the classifier used
brain signals originating from lateral and central motor
areas.

DISCUSSION

We show a first proof-of-concept on how to detect and
classify attempted hand open and palmar grasp move-
ments in a closed-loop. Noteworthy, the participant suf-
fered from a complete SCI at level C4 and was not able
to execute any movements with his hand.
The motivation of detecting movements online is to con-
nect a BCI with a motor neuroprosthesis and restore
movements in persons with SCI. We did another step to-
wards that goal with an online detection in a closed-loop
in a person with SCI. However, the performance is mod-
est and at the moment not sufficient to control a motor
neuroprosthesis in daily life activities. Most of all, the FP
rate is not acceptable. Other movement detectors were
shown to achieve better performances [10, 18]. Reasons
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may be that those studies did not test participants with
SCI, and furthermore relied on lower limb movements
which produce larger amplitude MRCPs than upper limb
movements [14]. The brain is adaptive and user train-
ing could therefore improve the performance, as seen in
oscillation-based BCIs [8]. However, there is evidence
that such a training is of limited benefit [11], and – if pos-
sible at all – novel training strategies need to be found.
We chose hand open and palmar grasp as movement
classes because the participant was not able to execute
these movements. We have shown in healthy partici-
pants that MRCPs encode other movements like prona-
tion, supination, or different grasps [19, 27]. We expect
therefore that the detection and classification is not lim-
ited to hand open and palmar grasp and generalizes also
to other movements.
The externally-cued MRCPs elicited in the training
paradigm should be similar to the MRCPs elicited in
the self-paced test paradigm. Otherwise the classifier
would haven been trained with improper data. We can ex-
pect that this is the case as MRCPs preceding self-paced
and regular-cued movements are similar in shape and to-
pography [5, 9]. Furthermore, we employed a training
paradigm with no sudden appearance of any visual or au-
ditory stimulus around the go cue. With that strategy we
avoided any evoked potential related to low-level stimu-
lus processing in the brain. However, we can not exclude
that our training paradigm was contaminated with con-
tingent negative variation (CNV) potentials [30]. CNVs
can be elicited with a warning and an imperative (i.e. go)
stimulus, which is also the basic structure of our training
paradigm. CNVs comprise of two main components: one
after the warning stimulus and one before the imperative
stimulus. The latter component could form a potential
complex with the Bereitschaftspotential (BP) [12]. How-
ever, with longer intervals between the warning and im-
perative stimulus (in the second range), the second com-
ponent of the CNV becomes similar to the late BP in time
course and scalp distribution [4, 23, 25], and therefore
should not have strongly affected the classifier calibra-
tion.
We show that the source signals originate from the brain
and are not residual movement artifacts for example. The
topoplots indicate that the classifier mainly exploited a
lateralized positivity for movement classification (pre-
ceded by a broad but centralized negativity). This positive
deflection followed the typical negative peak of MRCPs
[28] (c.f. Figure 5 and Figure 6).
The offset of the true positive window was chosen sys-
tematically to avoid any subjective influence on the clas-
sification accuracy. As the offset was chosen to maximize
the TP/FPwin ratio of the movement trials, we may have
made an overoptimistic estimation of the TPR (the FP
measure is not affected as FP were counted on the rest tri-
als). Nevertheless, the main result of this work is the clas-
sification of hand open vs palmar grasp in a closed-loop.
A suboptimal choice of the true positive window would
have led to a suboptimal estimation of the true classifica-

tion accuracy, as the estimation would then consider more
false positives and/or less true positives.

CONCLUSION

We introduce a proof-of-concept on how to detect and
classify attempted hand opening and palmar grasp move-
ments based on MRCPs. We tested our proof-of-concept
on a person with a complete cervical SCI without any
preserved hand function. We achieved a significant clas-
sification accuracy but also a high number of false pos-
itive detections. Thus, attempted hand movements can
be non-invasively decoded from EEG, even if no hand
function has been preserved. If the detection and classi-
fication performances can be improved, this may provide
a control option for future neuroprostheses.
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