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ABSTRACT: “Flip-that-Bucket” is an open source, 
portable and enjoyable BCI game suitable for 
investigating or demonstrating movement intentions 
using scientific experiments or educational 
demonstrations in noisy environments. In the game, a 
sneaky virtual robot aims to predict a player’s intentions 
to act based on their action history, muscle activity, or 
brain activity. The game can be used to assess (1) the 
accuracy of brain-based movement predictions, (2) the 
timing of these predictions relative to movement onset, 
(3) the potential benefit of brain-based over behavior-
based predictions, and (4) the correlation between 
certain brain signals (e.g. the readiness potential and 
event-related desynchronization between 8-30Hz over 
the pre- and primary motor areas) and the experience of 
an intention to move. Answering each of these questions 
may greatly benefit future applications in prosthetics 
and motor rehabilitation. Flip-that-Bucket is made as an 
extension to the open-source buffer_bci toolbox, 
encouraging further development. Here, we demonstrate 
the idea, its practical implementation, the ‘fun factor’ 
and a first analysis of experimental results.  
 
INTRODUCTION 
 
When we move, imagine movement or observe 
movement, specific parts of our brain activate: the 
premotor, supplementary and primary motor cortices 
(termed ‘motor cortex’ in the remainder of this paper). 
When we perform self-paced voluntary movements, we 
typically see a readiness potential (RP) and event-
related desynchronization (ERD) at 8-30Hz across the 
motor cortex [3, 5, 6, 8, 11]. Interestingly, these brain 
signals are visible on average around 1.5s before a 
person reports a conscious feeling of wanting to move. 
This suggests that the brain starts preparing a movement 
before a person reports a conscious intention to move 
[7]. Other studies show that using a real-time probing 
method, awareness of an intention to move can be 
reported up to 2s prior to movement onset [12]. How 
exactly a conscious intention to move relates to these 
neural signals remains unclear. 
In this paper, we present “Flip-that-Bucket”: a BCI 
game that serves as a tool to investigate or demonstrate 
the relation between the neural preparation and reported 
awareness of movement intentions (see Figure 1). In 
contrast to previous research [1, 2, 3, 4, 5, 6, 7, 8], the  
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Figure 1. Screenshots of Flip-that-Bucket. The game 
consists of several rounds during which both the player 
(the scientist) and the robot can gather as much gooey 
green slime as possible. At the start of each round, an 
empty bucket is displayed for 2s. (A) This bucket fills 
with green slime over time, although the exact content 
of the bucket remains hidden. (B) The player and robot 
can flip over the bucket and empty its contents onto 
their opponent any time they want. Whoever flips the 
bucket first, will get points for the amount of slime they 
threw over their opponent. Whoever has been slimed the 
least wins the game.  
 
game provides an engaging real-time set-up to measure 
spontaneous self-paced right hand movements in an 
intuitive way. In the game, players try to beat a virtual 
robot opponent in a slime-bucket challenge. Across 
multiple rounds, both the participant and robot try to 
gather as much green slime as possible to throw it over 
their opponent’s head. Both the player and robot have 
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access to the same bucket, which can flip over only 
once each round to spill out its gooey content. The robot 
is sneaky: he tries to predict a player’s intention to 
move using their action history, muscle activity, or 
brain activity. As soon as the robot detects a player’s 
intention to move, he will flip over the bucket of slime. 
Because the robot uses different types of predictions 
(based on action history, muscle or brain activity), the 
game serves as a thought-provoking means to explain to 
a general public how movement intent travels from the 
brain to the muscles in order to perform a voluntary 
movement. 
In a first experiment, we use robot predictions based on 
action history. We collect EEG data to assess whether 
there is a strong correlation between the RP and/or ERD 
and the awareness of an intention. To do so, participants 
are asked to report whether they experienced an 
intention to move at the moment when a prediction is 
made (i.e. when the robot moves). This ante-hoc 
probing strategy measures awareness of movement 
intent prior to movement performance, which avoids the 
potential confound of movement execution on post-hoc 
awareness reports [4]. We expect to see a clear RP and 
ERD prior to a movement intent prediction that is 
reported as “intended” and no (or a weak) RP and ERD 
prior to a movement intent prediction that was reported 
as “unintended” (see Figure 2).  
Flip-that-Bucket is implemented as an extension to an 
existing open-source BCI development toolbox called 
“buffer_bci”,1 encouraging further development of our 
project ideas by both academics and the general 
developer community. Anyone with access to an EEG 
system can try the game. It can be used at home, during 
public events or in scientific experiments. 
 
MATERIALS AND METHODS 
 
Participants: 41 healthy volunteers were tested at the 

                                                
1 www.github.com/jadref/buffer_bci  

InScience festival in Nijmegen, the Netherlands.2 The 
experiment was conducted in accordance with the 
ethical standards provided by the 1964 Declaration of 
Helsinki. The study protocol was approved by the local 
Ethics Committee of Faculty of Social Sciences of the 
Radboud University Nijmegen. All participants gave 
their written informed consent. Ten participants were 
excluded from analysis because they did not follow 
instructions correctly or would not stop talking or 
moving during the experiment. 
 
Task: Participants play 4 blocks of Flip-that-Bucket3 
(see Figure 1): a practice block of 3 trials, a training 
block of 60 trials, a hidden validation block of 15 trials 
and a test block of 60 trials. This experimental structure 
is used to accommodate future experimentation 
including brain-based robot predictions. In between the 
training and validation block is a self-paced break and a 
short questionnaire. Participants are informed that we 
are testing a new BCI that attempts to predict the 
moment at which they intend to move and asked to 
report whether or not they wanted to move when a 
prediction (i.e. robot move) was made. During the 
training block, predictions of movement intent are made 
based on the participant’s action history. Based on [12], 
we expected awareness of intending no earlier than 2s 
prior to action onset. Each trial, a minimum cost 
function takes the current mean and standard deviation 
of the player’s action times (relative to trial start) and 
calculates a distribution of possible robot action times 
such that: 1/5 of robot acts are performed earlier than 2s 
prior to the average scientist move, 3/5 of robot acts 
between 2s and 0s prior to the average scientist move, 
and 1/5 of robot acts are performed after the scientist 
moves (i.e. the robot loses). The robot action time for a 

                                                
2 www.insciencefestival.nl  
3 Flip-that-Bucket can be found at: 
www.github.com/jadref/buffer_bci/tree/master/matlab/
movementBCIgame  

Figure 2. Schematic visualization of the possible moments in time at which a robot could predict a player’s intention to 
move (movement onset is at time 0s). We distinguish four possible categories of robot predictions. (1) Too early: no 
visible ERD/RP, no visible muscle activity, only negative intention reports. (2) Early: no or weak ERD/RP, no visible 
muscle activity, more negative/unknown intention reports than positive ones. (3) On time: medium to strong ERD/RP 
(possibly including an LRP), low to high muscle activity, more positive intention reports than negative/unknown ones. 
(4) Too late: strong (lateralized) ERD/RP, high muscle activity, no intention reports collected. 
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given trial was drawn randomly from this distribution. 
After the training block, a combined features classifier 
(incorporating both RP and 8-30Hz ERD features of 
pre-move and non-move data) was trained on the 
collected labeled EEG data and used to provide brain-
based predictions during the test block. Unfortunately, 
due to technical errors (i.e. accidentally including post-
move data in the training set and switching class labels 
during real-time prediction) the brain-based predictions 
were not executed properly and the predictions made in 
the second block were roughly random.  
At the end of the train and test block, participants fill in 
a short questionnaire asking them (1) what they thought 
about the game on a scale of 1 (boring) to 5 (fun), (2) 
whether they felt free to do what they want (Yes/No), 
(3) how difficult it was to win on a scale of 1 (easy) to 5 
(difficult), and (4) how accurate the robot was in 
predicting their actions on a scale of 1 (inaccurate) to 5 
(accurate). At the end of the test block, they were asked 
how good they thought the robot predictions were in the 
second block compared to the first on a scale of 1  
(worse) to 5 (better). For additional motivation, a high-
score list across all players and robots is maintained. In 
total, the experiment took 24 minutes (excluding cap 
fitting).  
 
Data acquisition: The experiment was run in Matlab.4 
Instructions and visual stimuli were displayed using a 
17 inch TFT screen with a resolution of 800 by 600 
pixels and a refresh rate of 60Hz that was placed 
roughly at 70cm directly in front of the participant. To 
flip the bucket, participants press SPACE with their 
right hand on a regular keyboard. EEG data was 
collected using the TMSi Porti system,5 with water-
based electrodes sampled at 512 Hz placed at Fp1, Fp2 
F3, Fz, F4, C4, Cz, C4, P3, Pz, P4, POz, TP9 and TP10 
(according to the International 10/20 system). In 
addition, muscle activity was recorded using two EEG 
electrodes in a bipolar pair on the wrist and the center of 
the right forearm (flexor pollicis longus). 
 
Analysis: All analyses were performed on the 31 
participants who followed instructions correctly. To 
assess the correlation between the RP and/or ERD and a 
reported intention to move, epochs of -15 to 15s around 
a player and robot act are analyzed. Epochs around a 
robot act are further subdivided in epochs in which the 
robot acted when the participant did or did not want to 
move. To ensure a decent baseline period, only epochs 
in which the player or robot acted slower than 4s after 
trial start are kept for analysis. Linear trends are 
removed from the data. Subsequently, the data is re-
referenced by subtracting the average signal from all 
outer channels (Fp1, Fp2, F3, P3, POz, F4, P4, TP9, 
TP10) from each individual channel. This was done to 
subtract as much noise as possible without subtracting 
the signals of interest. Since most recorded channels 

                                                
4 www.mathworks.com  
5 www.tmsi.com/products/porti/  

cover the motor cortex, a full common average 
reference would subtract much of the signal of interest 
along with the noise (leading to a decrease in RP 
amplitude). Eye-artifacts are removed using linear de-
correlation of channels Fp1 and Fp2 with respect to the 
other EEG channels. Only the central channels (F3, C3, 
P3, Pz, Fz, F4, Cz, C4 and  P4) are kept for further 
analysis. Channels that differ more than 2 times the 
standard deviation in power from the median are 
removed. If necessary, spherical spline interpolation is 
used to reconstruct missing central channels. The data is 
band-pass filtered between 0.2 and 35Hz. Bad trials that 
differ more than two times the standard deviation in 
power from the median are removed. For the ERD, 
frequencies of interest are defined from 4 to 30Hz using 
2Hz bins. A flexible Hanning window is used such that 
it includes at least 7 cycles of each frequency of interest. 
The baseline activity is defined per electrode, frequency 
and trial as the median power between 3.5 and 2.5s 
prior to action. A relative baseline (where a value of 1 
means no signal change compared to baseline) is 
subtracted from the data. The ERD is calculated per 
participant by taking the median power across trials for 
each electrode, frequency and trial. 
 
Offline classification: For each participant, a linear 
classifier is trained using 10-fold cross-validation to 
distinguish baseline data from pre-movement data. 
Baseline data is extracted from the last 500ms of the 
baseline period. Pre-movement data is extracted from 
the last 500ms prior to a player move. All training data 
is extracted from the training block. The data is pre-
processed using the same steps as described in the 
Analysis section. The RP features consist of 257 time 
points for each channel and epoch. The ERD features 
consist of the average power of each of the 14 
frequencies (4,6,…,12,14Hz) for each channel and 
epoch. The classifier is trained on both RP and ERD 
features, giving a total of 2439 features per epoch. Data 
from the validation block is used to set an optimal 
threshold for classification. This threshold is set such 
that the number of on time (between 1 and 0s prior to a 
player move) predictions is maximized whereas the 
number of too early (more than 2s prior to a player 
move) predictions is minimized (see Figure 2). The 
accuracy of the classifier is assessed using data from the  
 

 
Figure 3. Distribution of player and robot moves 
relative to trial start (0s) across all participants during 
the training block.  
 

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-47



 

 

 
Figure 4. Questionnaire results. Participants felt 
significantly less free to do what they wanted during the 
test compared to the train block. In question 4, “this 
block” refers to the test block and “the previous one” 
refers to the training block.  
 
test block. The trained classifier is applied to non-
overlapping 500ms epochs starting from the start of a 
trial until a player or robot move. For each trial that 
includes an intention to move (the player moved or 
reported an intention to move at the time of a robot 
move), the first classifier prediction that exceeds the 
optimal threshold for motor intention detection is 
selected. The timing of each first motor intention 
prediction is determined relative to the corresponding 
robot or player move and categorized as too early, 
early, on time or too late (see Figure 2).  
 
RESULTS 
 
An average of 69 (min:42, max:104) player moves, 20 
(min:5, max:54)  robot moves with player intent and 33 
(min:9, max:67) robot moves without player intent are 
collected across the experiment. An overview of player 
and robot move times during training is provided in 
Figure 3.  
The majority of participants reported the game as fun 
and slightly difficult to win (see Figure 4). Although 
opinions on the accuracy of the robot predictions varied 
greatly, participants judged the robot predictions of the 
second experimental block as more accurate than the 
first (even though these predictions were roughly 
random). Furthermore, a within-subject t-test on the 
questionnaire data of the first en second experimental 

blocks revealed that participants felt significantly (p < 
.05) less free to act during the second block of the 
experiment compared to the first. No significant 
differences were found between the number of robot 
actions that happened at a time when the player did or 
did not intend to move during the first and second 
experimental blocks.  
 

 
Figure 5. Grand average EEG data of Flip-that-Bucket. 
Left column: grand average ERPs including the 
standard error, and topoplots across the last 500ms 
prior to a player/robot move until action onset (0s). 
Right column: grand average spectrogram across 4 to 
30Hz before player/robot action onset (at 0s). Baseline 
activity between 3.5 and 2.5s prior to action onset is 
subtracted from the ERD data. Although a clear RP and 
ERD is visible prior to a player move (top row), no RP 
and or ERD is visible prior to a robot act that happened 
when the player did not intend to move (bottom row). A 
weak RP and ERD is visible when the player did intend 
to move when the robot acted (middle row). 
 
A clear RP and 8-30Hz ERD are visible in the grand 
average prior to a player move, starting 1 to 2s prior to 
movement onset respectively (see Figure 5).  A weak 
RP and ERD is visible prior to a robot act that happened 
at a time when the player intended to move (i.e. a 
correct prediction), and no RP or ERD is visible prior to 
a robot act that happened when the player did not intend 
to move (i.e. an incorrect prediction). After a robot acts, 
a big positive response is visible in the recorded EEG. 
This response is due to the additional button press that 
is required to report whether the robot moved at a time 
when the player wanted to move. Any differences 
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between the post robot move responses may be due to 
the presence or absence of an intention to move, leading 
to an superimposed error potential in one case rather 
than the other. Moreover, a player may show different 
levels of surprise or frustration after the robot moved, 
depending on the presence or absence of an intention to 
move.  
Classifiers are trained on an average of 48 (min:44, 
max:50)  pre-move and 47 (min:42, max:50) baseline 
epochs from the training block. A mean classifier 
performance of 74% across all participants is found on 
the training data. Although these results seem 
promising, the performance of the classifier on the 
sequential test data are rather poor. On average a mere 
12% of all motor intentions is detected on time (within 
1s prior to a player or robot move). The majority of 
motor intentions is detected too early (24%) or too late 
(54%).  
 
PP Perf. Too 

early 
Early  On time  Too  

late 
1 76 7 0 0 93 
2 92 0 8 13 79 
3 64 6 8 8 78 
4 90 17 0 12 71 
5 78 15 6 17 62 
6 90 18 0 20 63 
7 79 45 15 10 30 
8 61 64 31 6 0 
9 72 21 38 29 13 
10 60 41 14 5 41 
11 69 0 0 0 100 
12 83 56 12 9 23 
13 88 4 0 2 93 
14 66 29 3 12 56 
15 60 28 26 16 30 
16 74 70 17 4 9 
17 75 85 5 5 5 
18 61 21 3 18 59 
19 65 2 2 2 93 
20 84 0 0 0 100 
21 76 21 50 25 4 
22 59 35 13 15 37 
23 98 19 2 7 71 
24 71 17 22 26 35 
25 68 0 0 0 100 
26 80 24 10 19 48 
27 68 6 2 10 82 
28 60 32 6 3 58 
29 82 17 9 20 54 
30 70 23 12 37 28 
31 65 35 7 11 48 
mean 74 24 10 12 54 
Table 1. Offline classification results. For each 
participant the cross-validated test performance of the 
classifier on the data of the  training block is provided. 
Furthermore, for each trial in the test block that 
includes a motor intention, the first classifier prediction 
that exceeds the chosen threshold for motor intent is 
determined. These predictions are categorized as too 
early, early, on time or too late relative to the robot or 
player move. The percentage of predictions within each 
category compared to the total number of motor 
intentions present is provided in the remaining columns. 

DISCUSSION 
 
Moving your body at will seems trivially easy. You 
probably do it all the time. You can knock on a table, 
stomp with your feet and flap your arms whenever you 
want to. But what mechanism enables you to initiate 
these movements? Moreover, how does this mechanism 
relate to your conscious experience of wanting to move? 
Flip-that-Bucket is a fun and thought-provoking EEG-
BCI game on movement intentions. In the game, a 
virtual robot tries to predict a player’s intention to move 
using the player’s history of action times, the onset of 
muscle activity or the neural preparation for movement. 
Flip-that-Bucket can serve as a means to educate a 
general public about the neural mechanisms that 
underlie our ability to perform voluntary movements: 
the connection between a participant’s brain signals and 
their voluntary movements are made explicit to them by 
means of the robot opponent.  
Here, we demonstrate that predictions based on action 
history are effective to create a competitive game. 
Furthermore, we demonstrate that both the RP and 8-
30Hz ERD are clearly visible across the motor cortex 
prior to a player move, whereas it is not visible prior to 
an incorrect robot prediction (i.e. the robot acted when 
the participant did not experience an intention to move). 
In case of a correct robot prediction (i.e. the robot acts 
when the participant experienced an intention to move), 
a weak RP and 8-30Hz ERD are visible across the 
motor cortex. Along with previous research [1, 2, 9, 10], 
these results suggest that brain-based predictions of 
movement intent may be reasonably successful. If this is 
the case, brain-based predictions may be used to assess 
the relation between the RP and ERD in real-time in 
further experiments. It would be interesting to see 
whether brain-based predictions are more accurate 
compared to behavior-based predictions (i.e. the robot 
predictions are more often reported to be correct when 
using brain-based rather than behavior-based data). 
Flip-that-Bucket can also facilitate scientific 
investigations on the neural preparation for a voluntary 
movement. Although some studies aimed to predict 
movement onset in real-time prior to movement 
performance based on the RP and 8-30Hz ERD across 
the motor cortex, e.g. [1, 2, 9, 10], the accuracy and 
timing of single-trial predictions remains difficult to 
assess since often only averages across participants are 
reported. Flip-that-Bucket can be used to assess the 
accuracy and timing of brain-based predictions on  
single-trial continuous data. A correct prediction of 
movement intent would happen at a time when a 
participant reports that they want to move, their muscles 
are active in preparation of the upcoming movement or 
when it coincides with movement performance. 
Furthermore, predictions that happen very early (more 
than 2s) prior to movement onset would be considered 
incorrect (false positive), whereas those happening 
shortly (within 1s) prior to movement onset would be 
correct (true positive). A first offline analysis of these 
prediction results suggests that our combined features 
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classifier would perform rather poorly, detecting only 
about 12% of all motor intentions. The current 
discrepancy between the performance on the training 
and test data, may be due to a potential expectation 
effect that builds up during a trial: the longer a trial 
develops, the more likely a player or the robot is to act. 
This expectation effect may induce additional brain 
responses that are maximally different between baseline 
and pre-move training data, but less so between 
subsequent epochs of test data. Based on previous 
research [1, 2, 9, 10], we expect that better results 
should be possible. Possible improvements could be 
made by (1) including more instances of “non-move” 
data during classifier training, (2) implementing a more 
sophisticated method to set an optimal threshold for 
detecting a motor intention or (3) using different brain 
signals that are indicative of movement preparation.  
Assessing the accuracy and timing of real-time 
predictions of movement intent on continuous data may 
greatly benefit future applications in prosthetics and 
motor rehabilitation. Delays in activating an assistive 
device could be minimized by detecting movement 
intent early on, which potentially increases the 
therapeutic benefit by minimizing the time between 
motor planning in the cortex and the execution of that 
plan with the assistive device. 
Flip-that-Bucket is made as an extension to the existing 
open-source buffer_bci development toolbox, 
encouraging further development of the game by both 
academics and the general developer community. This 
extended toolbox is available to anyone with access to 
an EEG system. It can be used at home, during public 
events or in scientific experiments. 
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