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ABSTRACT: The use of an EEG expectation-related 
component, the expectancy wave (E-wave), in brain-
machine interaction was proposed more than 50 years 
ago, but active exploration of this possibility has started 
only recently, in the context of developing passive 
brain-computer interfaces for the enhancement of gaze 
interaction. We report, for the first time, the results of a 
systematic experimental study that revealed an EEG 
marker for selecting intentionally an object among other 
moving objects using smooth pursuit eye movements. 
This marker appeared to have the same nature as the E-
wave previously observed in the EEG accompanying 
the selection of static objects with gaze fixations. A 
convolutional neural network classified the intentional 
and spontaneous smooth pursuit eye movements with 
average ROC AUC 0.69±0.13 (M±SD). These results 
suggest that the E-wave might be robust enough to 
serve, after further improvement of the methodology, as 
the basis of hybrid eye-brain-computer interfaces 
applied for selection in dynamically changing visual 
environments.  

 
INTRODUCTION 
 
One of the oldest proposals for the design of a brain-
computer interface (BCI), put forward by Grey Walter 
more than 50 years ago, was the use of the expectancy 
wave (E-wave), the electroencephalogram (EEG) slow 
negative wave that arises when a person is waiting for a 
stimulus. In this paradoxical BCI design expectation of 
the interface triggering was proposed to be used to 
trigger the interface [1]. Although in the subsequent 
decades the E-wave (later known also under the name of 
stimulus preceding negativity, SPN) and the more 
complex phenomenon, the contingent negative variation 
(CNV), were among the most studied EEG phenomena, 
they still not received much attention in the BCI world. 
One important exception was the proposal to use an 
expectation based passive BCI to support gaze 
interaction [2, 3] – more specifically, to solve the Midas 
touch problem, one of the most serious obstacles for 
using gaze as a tool to control computers and other 
devices. The Midas touch problem is the inability of 
gaze based human-machine interfaces to differentiate, in 

many cases, eye movements and fixations intentionally 
used for control from spontaneous ones, e.g. those used 
for visual scene exploration [4]. Later, an EEG 
component with the time course and topography similar 
to a typical SPN/E-wave and enabling classification of 
the gaze fixation intentionally used to make moves in a 
game vs. spontaneous gaze fixations was described [5] 
and first online tests of a hybrid eye-brain-computer 
interface (EBCI) based on this design were run [6]. In 
these studies, static visual layout was used, while the 
Midas touch problem may be more severe when the 
scene is changing dynamically.  

Recently, the selection of moving objects with 
smooth pursuit eye movement was found to be very 
effective, in addition to the long-used gaze fixations and 
saccades [7]. In the presence of multiple moving 
objects, however, any of such objects can easily attract 
attention and become pursued with gaze automatically. 
The use of an EBCI instead of a merely gaze-based 
interface for moving object selection thus seems 
reasonable, however, only experimental studies can 
show if this is feasible, as multiple factors may change 
EEG components in such dynamical settings (see 
discussion on such factors for the case of selection of 
moving objects with the P300 BCI in [8] and for the 
case of using the fixation-related EEG P300 wave in the 
context of visual search in [9]). The EEG under smooth 
pursuit eye movements was studied very little, and we 
found no prior studies of EEG accompanying 
intentional object selection with the smooth pursuit eye 
movements.  

In our preliminary studies [10, 11] we observed an 
EEG component resembling the SPN/E-wave prior to 
moving object selection by gaze, but a similar wave also 
accompanied smooth pursuit eye movements in control 
conditions, where the intention to select an object could 
not appear. We concluded that certain form expectation 
or at least estimation of time to execute certain 
operation (a related cognitive activity) easily appears 
under various conditions when a pursuit is intentionally 
used to follow instruction. In the current study, we 
designed a control condition that was free from this 
shortcoming and corrected some other details of the 
study design. With the new design, we collected data 
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from a larger group of participants, which allowed us to 
analyze the difference between the EEG accompanying 
spontaneous smooth pursuit and intentional selection of 
moving objects by gaze, and also to model their 
classification in the framework of an EBCI using a 
convolutional neural network. 
 
METHODS 
 

Participants: 14 healthy volunteers (8 male, 6 
female), aged 22–52 (M±SD 28±8) years participated in 
our study (participant #1 participated in two sessions on 
different days). Except for four participants, others had 
prior experience with a gaze-based interface. Ten 
participants had normal vision, others had corrected to 
normal vision (3 with glasses and 1 with contact lenses).  

Data acquisition: A consumer grade eye tracker 
Tobii 4C (Tobii, Sweden) was attached to the lower 
edge of the monitor. EEG was recorded from 19 
locations (F3, Fz, F4, C3, Cz, C4, P1, P3, Pz, P2, P4, 
PO7, PO3, POz, PO4, PO8, O1, Oz, O2) at 500 Hz with 
NVX52 amplifier (MCS, Russia). Digitally connected 
electrodes at earlobes served as reference. The vertical 
electrooculogram (EOG) was recorded using electrodes 
about 2 cm below the right eye, and the horizontal EOG 
with electrodes above the eyebrow and near the outer 
canthi, both with the same amplifier. Impedance was 
kept below 20 KOhm. In the last four experiments, a 
signal from a microphone was also recorded with the 
same amplifier to enable detection of time periods when 
the participants reported their answers.  

Task: The participants were presented with 15 
“balls” (circles), each 80 px in diameter (2.8°), 
displayed on an 18.5" monitor, at a distance of about 64 
cm from their eyes (Fig. 1). The balls were numbered 1 
to 15 and contained 5 to 8 dots around the number (Fig. 
1, right). In the “dynamic” conditions (SMB, FA, CT) 
balls moved linearly on the screen at ~230 px/s (6.8°/s) 
speed, changing their movement direction in a natural 
way when hitting each other or the screen edges.  

Balls with randomly varying numbers of dots were 
generated as 15 different images, separately for each 
block of four runs. Each image was assigned to each 
ball number at the start of a run.  

In a run, the participants were asked to complete one 
of the following tasks: 

Select moving balls (SMB) – select 15 balls one by 
one according to their numbers in ascending order and 
then (only for subjects 7-14) in descending order (see 
details about selection below). 

Select static balls (SSB) – select 15 balls one by one 
as in the SMB condition, but in this case, the balls were 
fixed at their initial positions. 

Find accelerated (FA) – find the ball that was 
moving faster than the other balls. This target ball, 
randomly chosen, accelerated once after 15 to 20 s from 
the block start by 1.3˚/s (19% of the basic speed). 
Participants were advised to announce the number of 
the ball that appeared to be the fast one only when they 
made sure that it was actually faster than the others.  

Counting task (CT) – find, one by one, five objects 
with a specified number of dots and summarize the 
objects’ numbers. In the CT condition, participants were 
asked, five times in a row, to find a ball with the 
number of dots specified by the experimenter (this 
number could be from 5 to 8, chosen randomly each 
time). After they had heard the number, they had to find 
an appropriate ball and summarize its labeling number 
with previous the number(s) of the previous ball(s).  

 

 

Figure 1: A screenshot of a typical experimental layout 
(left), and examples of “balls” with different amount 
and positioning of dots (right). 

 
The SMB and SSB tasks modeled intentional gaze 

selection, while FA and CT tasks served to collect data 
on smooth pursuit eye movements without intention to 
make a selection. The SMB task was similar to the task 
used in [12] where gaze based selection was compared 
to a mouse-based one. However, in the current study the 
number of balls and their speed were set at lower levels 
in all tasks, otherwise, FA and CT tasks appeared to be 
too difficult. 

At the beginning of the run, all the balls were dark 
grey. In the SMB and SSB conditions, a selected ball 
was highlighted with a green color. Ball color returned 
to dark grey when another ball was selected. 
Participants were asked to select the 15 balls in 
ascending order (all participants) and then in descending 
order (only participants 7-14) as soon as possible. In the 
FA and CT conditions, the balls that were considered 
selected by the online selection algorithm were not 
highlighted.  

Online Gaze-Based Selection: In all conditions, the 
median distance from the gaze position to each ball’s 
center was calculated in a moving window of ~867 ms 
length. If this measure computed for a ball did not 
exceed 55 pixels (in other words, the distance from the 
gaze position to this ball’s center did not exceed 55 px 
longer than half of the length of this window) and was 
the smallest among all balls, this ball was selected. 
Some samples from the eye tracker (sampling rate 90 
Hz) were discarded from time to time to maintain 
synchrony with the monitor (its refresh rate was 75 Hz). 
Using a high-speed video camera (240 fps) we found 
out that a delay between a saccade start and the start of 
a gaze-controlled cursor moving was approximately 140 
ms. To improve synchronization between the gaze and 
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balls coordinate streams, the latter was intentionally 
delayed by the same value. The eye trackers’ built-in 
alignment filter was not applied. With a few exceptions, 
the selection algorithm followed one described in [12]. 

Algorithm triggering time was recorded using a 
photosensor attached to the lower left edge of the 
screen, where a circle not visible to a participant 
changed its brightness as selection algorithm triggered 
(in the SMB and SSB conditions, it was in the same 
video frame when the visual feedback was given). The 
signal from the sensor was recorded synchronously with 
the EEG by the amplifier. In addition, the ID of the 
selected ball was recorded regardless of its highlighting. 

The visual task and the selection algorithm were 
implemented in C++ and QML with the use of the Qt 
framework. 

Procedure: Participants were seated in an adjustable 
chair in front of an office table with the monitor. To 
ensure head position stabilization a chin rest was used. 

The experiment consisted of six blocks, each 
containing all four tasks (conditions). The order of 
conditions was the same over the blocks for a single 
participant but counterbalanced in the group of 
participants. Conditions where balls were intentionally 
selected with gaze (SMB, SSB) were not allowed to 
immediately follow each other. Each condition in a 
block included one run of ~2 min duration.  

Before the start of the first block, the experimenter 
showed the moving balls and in detail explained the 
tasks. The first block was considered as a practice, and 
the participants were allowed to ask any questions 
during the tasks. The data from the subsequent five 
blocks were used for analysis. Before each block, native 
7-points calibration of the eye tracker was used. Also, 
calibration was monitored by the experimenter during 
SMB and SSB conditions. If the participant felt 
discomfort at those conditions, re-calibration was run 
and the condition was overwritten. Within a single 
block, participants were asked to avoid movements to 
prevent calibration distortion. After completing one 
block, the participants were allowed to rest for a few 
minutes. 10 minutes break came after the third block. 

In the end of an experiment, participants were asked 
to rate how difficult was performing a task by putting a 
mark on four visual analog scales (VAS), one per 
condition. Left end of the scale was labeled “very easy” 
and the right end was labeled "very difficult". 

Data Analysis: In SMB and SSB conditions we 
considered only selections in right order (balls #1, #2, 
… #15, #14, … #1).  

Averaging of pursuit-related EEG was triggered 
using a sensor (photodiode) placed in the bottom left 
screen corner, which was activated (not visible to the 
participant) as the algorithm triggered. In SMB and SSB 
conditions, this was followed with a ball highlighting. 
In FA and CT conditions, highlighting didn’t happen, 
but the data about fixations still recorded.  

Preprocessing: All EEG analysis was made offline 
using the data collected during the experiments. For 
individual trial analysis, EEG data were filtered with 

lowpass Butterworth 4th order filter with cutoff at 30 
Hz and then cut into epochs around the time of interest, 
including the time of online gaze-based selection 
algorithm triggering and the time of gaze pursuit initial 
fixation onset. The latter was found using gaze velocity 
estimated from the EOG prior to the algorithm 
triggering (our Tobii eye tracker license did not allow 
for gaze coordinate offline analysis). Epochs (trials) 
were discarded from analysis if either of the following 
conditions were met: 

1) Pursuit duration was shorter than 450 ms or 
exceeded 1200 ms 

2) The trial was not in the correct selection 
sequence (for SMB and SSB) 

3) The trial resulted in the selection of the 
accelerated ball (for FA) 

4) Speech sounds were detected between fixation 
onset and algorithm triggering (for participants 
11 and 14) 

5) Amplitude range in any EEG or EOG signal 
exceeded 150 μV during gaze pursuit 

The resulting dataset was used for the EEG data 
analysis and classification.  

Signal preprocessing, segmentation and visualization 
was performed using MATLAB (MathWorks, USA). 
Function topoplot from the EEGLAB package [13] was 
used to create topographical amplitude maps.  
Сlassification: For training, the SMB and SSB data 

were joined together and the second class consisted of 
the CT data, while during testing the SMB and SSB data 
were considered separately, and the second class again 
was CT. Features were amplitudes from the time 
interval starting -400..0 ms relative to online gaze-based 
selection triggering. Average over -100..0 ms interval 
was subtracted from the same channel data in each trial, 
i.e., was used as a baseline. Note that a saccade 
typically preceded the start of pursuit, thus we could not 
use the pre-pursuit EEG as the baseline in single-trial 
processing without special measures to remove the 
EOG, while such measures could introduce data 
distortions that are difficult to control.  

We used Keras implementation of the convolutional 
neural network EEGNet [14] 
(https://github.com/vlawhern/arl-eegmodels) under 
Python 3.6. The procedure consisted of 4-fold cross-
validation (80% of the whole dataset) and testing on the 
holdout set (20% of the whole dataset). Target to non-
target class ratio was preserved when forming the test 
subset. For each fold, we saved the best model after the 
optimal number of training iterations with respect to 
performance on the validation set of each fold, and for 
each trial from the testing set, we averaged predicted 
probabilities from these four models. We used 
hyperparameters optimized for the case of classifying 
the EEG accompanying static object selection by gaze 
in our study [15] (see it also for other details of the 
classification procedure). Since the EBCI design makes 
possible the use of classifiers with relatively low 
sensitivity while maintaining high specificity, but the 
balance between them might be dependent of the use 
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case [3, 5, 6], we found more relevant to present the test 
results using the ROC AUC measure which is not 
related to the choice of the classifier threshold. 
 
RESULTS 
 
In the responses to the questionnaire, the FA condition 
was ranked as the most “difficult” (M±SD 71.8±17.6), 
while for the CT condition the difficulty score was  
46.3±22.7 (the score could be between 0 and 100). Only 
two participants perceived CT as more difficult than 
FA. The intentional selection conditions, SMB and 
SSB, were scored as less difficult: 19.2±21.3 and 
10.2±9.1, respectively (the difference from the CT 
condition was significant, with p=0.33 in both cases, 
according to Wilcoxon matched pairs test). 

According to visual inspection of the averaged EEGs 
with and without rejection of epochs containing speech 
signal, they did not substantially differ. For further EEG 
analysis and classification, we excluded data obtained 
from two participants: #12, who often did not follow 
instructions correctly enough, and #13, who had issues 
with several EEG electrodes. The number of EEG 
epochs obtained in each condition for the remaining 12 
participants is shown in Table 1. 

Fig. 2 shows the grand average EEG amplitude at 
the electrode POz. In all conditions, a similar EEG 
pattern was observed about 0.5-0.6 s prior to the 
selection algorithm triggering, i.e., near the beginning of 
the pursuit (the largest positive peak could be the 
lambda wave, well known in the EEG accompanying 
static gaze fixations). In SMB and SSB, a slow negative 
wave was developing up to the time of the online gaze-
based selection algorithm triggering; soon after it, the 
amplitude abruptly went in the opposite direction 
(evidently, in response to the visual feedback). The time 
course of EEG amplitude in the FA condition was quite 
similar to the SMB and SSB conditions along most time 
before the selection algorithm triggering, while in the 
CT condition only very light deviation to negative 
direction was observed.  

The EEG amplitude head maps (Fig. 2, bottom) 
demonstrated a pattern similar to previously reported for 
the intentional static object selection with gaze [5] in the 
SMB and SSB conditions, and its weaker variant in the 
FA condition, but nothing similar in the CT conditions. 

Mean EEG amplitude at POz over the last 100 ms 
before selection triggering varied significantly across 
conditions, as determined by one-way ANOVA (F(3,43) 
= 6.97, p = 0.0006). A Tukey post hoc test revealed that 
POz was significantly more negative in SMB and SSB 
compared to CT (p=0.003 and p=0.001, respectively). 
Amplitude in FA showed no significant difference when 
compared to any other condition. 

 

 
 
Figure 2: (Top) The grand average EEG amplitude at 
electrode POz relative to gaze-based selection algorithm 
triggering (N=12, baseline -1200...-700 ms). Feedback 
was provided to the participants at zero time in SMB 
and SSB but not in CT and FA conditions. (Bottom) 
Topographical maps of the EEG amplitude averaged 
over the last 100 ms before triggering.  
 

Fig. 3 demonstrates the variability of the individual 
EEG data and shows (in its right part) the EEG 
dynamics with a more precise synchronization with the 
pursuit start. As in the studies of static object selection 
with gaze [5, 6], the E-wave was evident in the 
intentional selection conditions in all participants. 
Improvement of synchronization with the pursuit start 
tended to improve tracking the E-wave, although the 
difference between the two types of averaging was not 
large. In some participants (here, S09 and S10) the EEG 
dynamics in the pre-triggering time interval in the CT 
condition was similar to the SMB and SSB. Visual 
comparison of the averaged posterior EEG and EOG 
waveforms revealed no correspondence between them.  

Classification results are presented in Table 1. We 
did not obtain enough data in the FA condition, so the 
classifier was trained and tested on both intentional 
conditions only against the CT condition (for training, 
the SMB and SSB subsets were collapsed). Note that 
intentional moving object selection with smooth pursuit 
eye movements (SMB) was classified almost as good as 
the selection of static objects with gaze fixations (SSB). 
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Figure 3: Averaged EEG amplitude at POz for two 
participants with good (S01, S02) and weak (S09, S10) 
separation of the SMB and SSB conditions from the CT 
condition: (Left) Synchronized (zero time) with gaze-
based selection algorithm triggering (baseline -1200...-
700 ms). (Right) Synchronized (zero time) with smooth 
pursuit start and truncated at online algorithm triggering 
(averaged curves truncated where n of trials was < 25; 
baseline -700 to -200 ms). 
 
DISCUSSION 
 
This study, with the preceding preliminary studies [10, 
11], demonstrated for the first time that intentional 
selection of a moving object with smooth pursuit eye 
movements can be accompanied by a posterior EEG 
negativity, similar to the phenomenon observed earlier 
in the selection of static objects with gaze fixations.  

In our preliminary studies in small groups of 
participants who selected moving objects with their 
gaze [10, 11] we found it difficult to find appropriate 
control condition in which moving objects are often 
pursued but without expecting any upcoming event. 
Moreover, when the participants were instructed just to 
pursue a moving object for a certain time without any 
other task, a similar negative wave also developed, 
likely due to mental counting time. In the current study, 
pursuit under the instruction to look for a faster ball also 
evoked a similar EEG dynamics, which could be related 
to waiting for a good opportunity to compare the speed 
of the pursued ball with the speed of some other ball(s) 
(a common strategy to solve this task). Surprisingly, 
even the less expectation-loaded condition, the CT 
(counting the dots on the moving balls and adding up 

the number of the ball to the previous sum), was 
accompanied with a similar deviation of the averaged 
EEG in some participants. Thus, cautions are due 
concerning the specific relation of the marker to 
intentional selection. Nevertheless, in the majority of 
participants and in the grand average (Fig. 2) the 
difference between the intentional selection and this 
control condition was clear.  

 
Table 1: Number of epochs per condition used for EEG 
analysis and classification, and the classification results.  

Subject 
N of epochs ROC AUC 

SMB SSB CT 
SMB vs 
CT 

SSB vs 
CT 

1 124 148 149 0.59 0.69 
2 47 62 99 0.50 0.46 
3 62 62 112 0.70 0.65 
4 40 34 49 0.89 0.86 
5 58 62 90 0.45 0.53 
6 60 64 121 0.74 0.74 
7 184 165 140 0.76 0.70 
8 155 161 139 0.74 0.77 
9 123 123 155 0.68 0.76 
10 122 128 66 0.69 0.85 
11 123 130 61 0.89 0.89 
14 118 128 74 0.71 0.67 
M 101.3 105.6 104.6 0.69 0.71 
SD 46.4 45.6 36.8 0.13 0.13 

 
Another concern could be inflation of the 

classification results due to the EEG contamination by 
the EOG. However, we used only features from the 
pursuit time interval. While it was accompanied by 
certain EOG dynamics, the longest possible distance 
during the time interval used for feature extraction 
could be 3° and in the majority of trials the distance was 
much lower, so the EOG contribution to EEG could not 
be strong. Removing the frontal electrodes from the 
analysis did not lead to a substantial decrease in ROC 
AUC, demonstrating that the EOG contribution could 
not strongly support classification. Nevertheless, 
additional study will be needed to quantify possible 
effects from the EOG or other sources not specific to 
the intentional selection that may inflate the 
classification results. Moreover, cleaning data from 
EOG might even help to improve classification. 

Unlike in the studies of static object selection with 
gaze fixations [5, 6], the task in the current study was 
not free from visual search, and the pursuit could often 
start just after identification of the target object. Thus, 
the P300 wave that provides the most useful features for 
classification in the case of visual search [9] could also 
contribute to classification in our case. However, we did 
not observe a strong P300 wave in the averaged 
waveforms (Fig. 2, 3; as the first large positive peak 
was likely the lambda wave, the P300 peak could be 
expected 200 ms after it or later), so its contribution to 
classification could not be high. 

We used an advanced classifier that demonstrated 
impressive performance in several BCI paradigms [14] 
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and also in the EBCI paradigm, i.e. in the classification 
of intentional vs. spontaneous gaze fixations [15]. The 
hyperparameters used in this study, however, were 
tuned for a different setup. It is possible that their more 
specifical tuning would provide better classification 
results. It is also possible that other improvements can 
enhance the interface design and the data processing 
pipeline, making the EBCI performance sufficiently 
good at least for certain applications requiring selection 
in a dynamically changing visual environment. 
 
CONCLUSION 
 
The results obtained in this study suggest that the EEG 
negative wave that is developing when a gaze-based 
input user expects feedback from the interface might be 
robust enough to serve, after further improvement of the 
methodology, as the basis of hybrid eye-brain-computer 
interfaces applied for selection in dynamically changing 
visual environment.  
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