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ABSTRACT: Group decision-making is the process
where two or more people are engaged in generating a so-
lution for a given problem. In the last decade, researchers
started exploiting collaborative Brain-Computer Inter-
faces to enhance group performance. Various meth-
ods have been proposed to integrate EEG data of mul-
tiple users showing the improvement in group decision-
making over single-user BCIs and non-BCI systems. In
this study, we investigate four EEG integration strategies:
EEG averaging across participants, the standard majority
voting rule and two weighted voting system. For each ap-
proach, we evaluate three different scenarios varying the
number of iterations necessary to perform a single selec-
tion. In all cases, it is possible to exceed 90% of accuracy
with at least one collaborative BCI.

INTRODUCTION

Group (or Collective, or Collaborative) decision-making
is the process where two or more people are engaged in
generating a solution for a given problem [1]. Combina-
tion of sensing and cognition capabilities allow a group
to make better decisions than single individuals [2]. Nev-
ertheless, group decisions can be negatively affected by
several factors, such as lacking of time, sharing of infor-
mation, group and leadership style and communication
biases [2, 3]. In the last decade, researchers started to
use Brain-Computer Interfaces (BCIs) to enhance group
decision-making. BCIs allow people to interact with the
environment without requiring any peripheral muscle ac-
tivity to complete the interaction [4]. Brain signals are
acquired and processed by a computer to identify a partic-
ular type of neural process called event-related potential
(ERP), which is the brain response resulting after spe-
cific sensory or cognitive events. ERP-based BCIs use an
oddball paradigm to elicit the ERP components: the user
has to focus on ’target’ (rare) stimuli which are inserted
in a stream of ’non-target’ (frequent) stimuli. As target
and non-target stimuli elicit different responses, they can
be distinguished and exploited by the BCI. Single-user
BCIs are widely exploited for clinical purposes, most
of them aiming at restoring communication capabilities
to severely disable people [5]. Instead, a collaborative
Brain-Computer Interface (cBCI) is a system designed
for integrating brain signals from a group of users for im-
proving a decision-making process.

In the last decade, various approaches to integrate EEG
signals have been proposed. For example, single-trial
ERPs can be averaged across group members and then
processed as a single-user BCI. Alternatively, neural fea-
tures can be inferred from the EEG data of each user and
concatenated afterwards to build a feature vector for the
group, which is then passed to a single classifier. Finally,
the output of several single-user BCI can be combined
by means of a voting system to compute the group deci-
sion [6]. In [7], these approaches have been applied to
the EEG data collected from 20 subjects in a movement-
planning experiment. In the voting method, a SVM clas-
sifier was trained for each subject. The classification out-
put was then weighted according to each user’s training
accuracy. All the three cBCIs outperformed the single-
user BCIs. Moreover, the voting strategy turned out to be
the optimal method for collaborative EEG-based classifi-
cation. In [8] and [9] the same strategy has been applied
to a visual target detection task and a visual Go/NoGo
task, respectively. The output of the single-user SVMs
has been used as the input for a second-layer SVM. In
[10], the authors integrated the EEG of 20 individuals en-
gaged in the discrimination among pictures of cars and
faces, using various voting decision rules for combining
information across user. The advantages of a cBCI has
been evaluated also in [11], where data recorded using a
P300 speller paradigm have been analyzed showing that
combining data from users led to an improved accuracy
with respect to fusing data from the same participant over
time. In [3], a completely different weighted majority
rule has been introduced. The authors developed a hybrid
cBCI that does not predict the user decision but combines
neural signals and response times to determine the deci-
sion confidence of each user and then weights their be-
havioral responses accordingly to produce the group de-
cision. This hybrid cBCI was evaluated on several tasks,
such as visual matching [3], visual search with simple
shapes [12], visual search with realistic stimuli [2].
In literature, cBCIs have been tested on several visual
tasks showing their reliability. Moreover, various stud-
ies suggest that voting methods are often optimal for
collaborative EEG-based classification, especially when
the scores of the single classifier (instead of the pre-
dicted class) are used for the integration [6]. In this work
we propose a voting method for a cBCI that exploits
several information behind a standard ERPs stimulation
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paradigm to achieve a global group decision.

MATERIALS AND METHODS

Datasets: In this study, we test our voting strategy on
a healthy-subject dataset recorded using a P300-Speller
paradigm. The dataset can be downloaded from the BNCI
Horizon 2020 database data09 (Dataset 9: Covert and
overt ERP-based BCI (009-2014)). In a standard P300-
Speller paradigm [13], cues are organized in a 6 × 6 ma-
trix. Given a character (also referred as a trial) to select,
each row and column of the matrix flash every 250ms in
a pseudo-random order. A single flash is called stimu-
lus. A block of twelve different stimuli, six rows and six
columns, constitutes a stimulation sequence (or an itera-
tion). Due to the low signal-to-noise ratio (SNR) of EEG
signals, several iterations have to be carried out and then
averaged in order to perform a single selection step. We
analyzed data recorded from 10 participants that had to
select a total of eighteen characters. Each selection con-
sists of eight iterations. In summary, for each participant,
we analyzed a total of 1728 stimuli (18 trials × 8 itera-
tions × (6 columns + 6 rows)). The characters to select
as well as the used pseudo-random stimulation sequences
and timings are the same for all participants. Therefore
it is possible to test offline the benefits of combining this
EEG data to perform a group decision.

Pre-Processing and Classification: For each partici-
pant, we analyze six pairs of training and test sets. Pairs
differ in terms of the number of training trials. More in
detail, the number of training characters ranges from one
to six. As a result, the number of test trials varies from
seventeen to twelve. We use a linear Support Vector Ma-
chine (SVM) [14] to classify the response of each stimu-
lus. This classifier discriminate brain responses by means
of a separating hyperplane, that is built on the basis of the
training data, and it is defined as:

f (x) = wT x+b (1)

where w is the vector containing classification weights
and b is the bias term. In (1) the right-hand side is called
decision value. Its absolute value represents a measure
of the distance of the sample point x from the separat-
ing hyperplane. In a typical P300-Speller [13], based on
the assumption that the P300 is elicited by one of the six
rows/columns stimuli, the target class is assigned to the
stimulus matching the maximum decision value for the
respective rows, as well as for the columns. The pre-
dicted character is identified as the intersection of the pre-
dicted row and column in the matrix [15]. In this work we
use the Decision Weighted Function (DWF), introduced
in [16] to classify the brain responses. Consider, without
loss of generality, the rows stimuli. The computed de-
cision values are normalized by dividing for the norm of
vector w and sorted in decreasing order. We assign a score
to each stimulus based on both the sign of their decision
values and their position with respect to the separating
hyperplane. We set a distance-threshold (t) equal to the

Figure 1: Score assignment procedure. Consider rows stim-
uli. The stimulus having the maximum decision value (the blue
square) gets the maximum score, that is equal to 9 (obtained
as round(1.5× 6). The stimuli that fulfill the second condition
in (2) get a score equal to 5 (obtained as round(0.85× 6)). A
score equal to 4 (obtained as round(0.6×6)) is assigned to stim-
uli fulfilling the third condition. Stimuli with negative decision
values and that fulfill condition number four get a score equal to
1 (obtained as round(0.1×6)), otherwise they get a score equal
to 0.

median of the normalized decision values. This threshold
represents an overall measure of the stimuli’s distribution
with respect to the separating hyperplane. We assign a
score to each stimulus based on both the sign of their de-
cision values and their position with respect to t. The
score s j

i is defined for redstimulus i at the iteration j as:

s j
i =



1.5×n, if d j
i = m

i
ax(d j

i )

0.85×n, if d j
i ≥ 0∧|d j

i | ≥ t
0.65×n, if d j

i ≥ 0∧|d j
i |< t

0.1×n, if d j
i < 0∧|d j

i |< t
0, otherwise

(2)

For each stimulus, the assigned scores are summed up
iteration by iteration. We assign the target class to the
stimulus having the highest total score at the last itera-
tion. Whenever the maximum score at the last iteration
corresponds to more than one stimulus, a suitable rule for
breaking the ties is applied looking to the scores at the
previous iterations. The same procedure is applied over
columns stimuli. The predicted character is identified as
the intersection of the predicted row and column in the
matrix. Figure 1 shows an example of score assignment
procedure given the distribution of the decision values as-
signed to six stimuli (think as an example to six rows of
P300 Speller matrix).
Collaborative BCI: Four different collaborative decision
making approaches are evaluated.
EEG Grand-Averaging (Avg_EEG): For each stimulus,
the EEG responses are averaged across participants. The
obtained responses are then classified using the DWF.
Majority (Maj): For each participant a single classifica-
tion task is performed. According to a standard majority
voting system, the target class is assigned to the character
chosen by the majority of the participants. Ties are ran-

Proceedings of the 
8th Graz Brain-Computer Interface Conference 2019 DOI: 10.3217/978-3-85125-682-6-57



domly broken by a flip of coin.
Accuracy-weighted voting rule (AW): For each partici-
pant a single classification task is performed. Let yi be the
character chosen by the participant i among the j avail-
able characters. The accuracy-weighted voting rule is de-
fined as follows:

y∗ = max j ∑
i

wiyi (3)

where wi is the weight of the i-th participant. The weight
wi is given by the training accuracy of the i-th participant.
In case of parity, a random selection is performed among
the contenders.
Confidence-weighted voting rule (CW): A classifi-
cation task is performed for each participant. The
confidence-weighted voting rule is defined as in (3), but
the weight wi is defined as follows: let t be the target
trial, and let si

t be the total score assigned to it by DWF,
the confidence of the i-th subject is computed as

wi =
∑

n
t=1 si

t

nS

where n is the number of training trials and S is the max-
imum achievable score. Note that wi ∈ [0,1].
In case of ties, a random decision is made.
We also investigate whether a cBCI approach can be ap-
plied in order to reduce the number of iterations necessary
to select a single character and, therefore to speed up the
selection rate. Indeed, in BCI systems, to perform a sin-
gle selection step, several iterations are carried out and
averaged in order to improve the EEG signal-to-noise ra-
tio. Typically, a larger number of iterations implies higher
accuracy but lower selection rate. We then evaluate three
different scenarios: in the first scenario, we consider each
iteration as a single selection step. As a result, let n be the
number of characters to copy-spell and let t the number of
iteration we perform n× t selection steps. In the second
scenario we consider two iterations as a single selection
step, therefore we perform n× t/2 selection steps. In the
third scenario we evaluate four iterations at a time, thus
performing n× t/4 selection steps.

RESULTS

Table 1 shows the accuracy (i.e., the percentage of cor-
rectly classified characters) over the test set for both
single-user and collaborative BCIs using all the available
iterations (i.e., considering a block of eight iteration as a
single selection step). The single-user classification ac-
curacy varies according to the number of characters used
to train the model. It is not possible to identify a com-
mon trend across the participants. Six training charac-
ters allow participants 01, 02, 05, 07 and 10 reaching the
100% of accuracy. For users 02, 05 and 10 the same result
can be obtained also with a number of training characters
ranging from three to six. Three or at most four training
characters are necessary to achieve the 100% of accuracy
for subjects 04 and 09. Subjects 03, 06 and 08 reach their

best result using five and four training characters, respec-
tively. Note that for the single-user BCIs in some cases
increasing the number of training characters can lead to
a decay of the performance due to overfitting. Except for
the accuracy-weighted voting rule with two training char-
acters, all the evaluated cBCIs allow to get the 100% of
accuracy with any number of training characters.

Models
Number of training trials

1 2 3 4 5 6
01 29.41 81.25 86.67 78.57 84.61 100
02 47.06 62.5 93.33 92.86 100 100
03 23.53 43.75 60.0 50.0 61.54 58.33
04 64.71 68.75 100 100 92.31 91.67
05 94.12 87.5 100 100 100 100
06 52.94 50.0 80.0 85.71 84.61 83.33
07 23.53 43.75 86.67 57.14 76.92 100
08 47.06 37.5 73.33 85.71 76.92 75.0
09 82.35 93.75 93.33 100 92.31 91.67
10 94.12 93.75 100 100 100 100

Avg_EEG 100 100 100 100 100 100
AW 100 93.75 100 100 100 100
Maj 100 100 100 100 100 100
CW 100 100 100 100 100 100

Table 1: Single-user and collaborative BCIs test accuracy using
all the available iteration with training characters ranging from
1 to 6

Figure 2 shows the cBCI accuracy over the test set con-
sidering each iteration as a single selection step varying
the number of training characters. None of the cBCIs al-
low to reach the 100% of accuracy. All the cBCIs reach
a high accuracy (> 85%) using only three training char-
acters. This implies that these systems can be efficiently
used to communicate.

Figure 2: Comparison of the different cBCIs considering each
iteration as a single selection step with training characters rang-
ing from 1 to 6

Figure 3 depicts the cBCI accuracy over the test set con-
sidering each pair of iteration as a single selection step
varying the number of training characters. Except for the
Avg_EEG approach, all the cBCIs guarantee an accuracy
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> 90% using only two training characters. The grand-
average of the EEG signals across the users allows reach-
ing 100% of accuracy using only four training characters.
Figure 4 shows the cBCI accuracy over the test set look-

Figure 3: Comparison of the different cBCIs considering each
pair of iteration as a single selection step with training charac-
ters ranging from 1 to 6

ing upon a block of four iterations as a single selection
step and varying the number of training characters. All
the cBCIs allow reaching an accuracy > 90% using only
one training character. Moreover, three training trials are
sufficient to get 100% of accuracy with any collaborative
approach.

Figure 4: Comparison of the different cBCIs looking upon a
block of four iterations as a single selection step with training
characters ranging from 1 to 6

DISCUSSION AND CONCLUSION

In the last decade, researchers started exploiting col-
laborative BCIs to enhance group performance. Vari-
ous methods have been proposed to integrate EEG data
of multiple users showing the improvement in group

decision-making over single-user BCIs and non-BCI sys-
tems. In this study, we investigated four EEG integra-
tion strategies: EEG averaging across participants, the
standard majority voting rule and two weighted voting
system. All the evaluated cBCIs outperform single-user
BCIs confirming the trend found in the collaborative BCI
literature. Moreover considering all the available itera-
tions per selection step, it is possible to obtain 100% of
accuracy with just one training character. The possibility
to reduce the number of training characters preserving the
test accuracy not only reduces the training computational
effort but also corroborates the reliability of the evalu-
ated cBCIs. A high number of iterations typically means
higher accuracy but lower selection rate. In this work,
we also investigated whether it was possible to reduce
the number of iterations necessary to make a group deci-
sion preserving the 100% of accuracy. We thus evaluated
three different scenarios choosing three different values
for the number of iterations necessary to perform a sin-
gle step selection: one iteration, pairs of iterations and
blocks of four iterations. Note that this implies that we
could speed up the test phase of a factor of 8, 4 or 2 de-
pending on the chosen number of repetitions. In all the
examined scenarios, it is possible to exceed 90% of ac-
curacy with at least one collaborative BCI. Thus the sys-
tems can be efficiently used for communication. More
in details, at least four iterations per selection step are
necessary with one training character. With two or three
training characters two iterations per selection step are
enough. From four training characters on, a single itera-
tion is enough. The minimum number of training charac-
ters and iterations that allow reaching 100% of accuracy
is two and four respectively. Our results corroborate the
cBCIs stability and indicate that it is possible to choose
the best scenario depending on the application, in other
terms based on the desired trade-off between accuracy
and communication speed.
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