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ABSTRACT: This research looks at the possibility to
actuate devices by looking at primary colors, which is
thought to be especially useful for impaired individuals
having restricted motor control. Such a brain-computer
interface (BCI) requires reliable detection of color related
features captured in electroencephalograph (EEG) data.
This paper presents analytic and empirical signal analy-
sis methods for analyzing EEG signals, motivated by the
search for features directly related to the color perception
in the human brain. Methods used are Fourier transform
(FT) and short time Fourier transform (STFT). Empiri-
cal mode decomposition (EMD) is used to extract infor-
mation used for feature extraction. Classification accu-
racies are tested using the machine learning algorithms:
random forest (RF), support vector machine (SVM), k-
nearest neighbors (kNN), decision tree (DT) and naive
Bayes (NB). Using data from 7 subjects, a general model
classifies RGB with 0.37, while the best subject specific
model achieves an accuracy of 0.58. The classification
accuracy between gray and any one of the RGB colors is
0.98 with NB. These results are encouraging and can be
improved by further exploring features and classification
techniques.

INTRODUCTION

Electroencephalographic signals (EEG) represent the
electrical activity in the brain. By placing electrodes
on the scalp, one can record these signals. One elec-
trode records the cumulative electrical activity of neu-
rons. EEG signals are non-stationary, time-dependent,
and because of cumulative electrical activity, most likely
multicomponent signals [1]. Also, non-invasive EEG sig-
nals have a small amplitude and are extremely noisy.
These properties are but a few of the reasons raw EEG
signals do not provide useful information alone, and ded-
icated signal analysis is therefore required to extract rel-
evant information contained within the signal.
Choosing a suitable signal analysis method is a crucial
step in the process of finding useful information in EEG
data. In general, no particular method will provide the
best results. Choice of signal analysis tool depends for
instance on the characteristics of the signal and the aim
of the experiment.
The goal of most EEG experiments is to classify sig-

nals produced by specific brain activity correctly. A fea-
ture is an individual measurable property of the process
being observed [2], and any recorded EEG activity in-
cludes many different features [3]. Researchers, there-
fore, search for a limited amount of features that can dif-
ferentiate signals with certainty.
The process of selecting only a subset of variables in the
input which can efficiently describe the data is called fea-
ture selection. Feature selection decreases the effect of
noise, irrelevant or redundant variables are reduced, and
the predictor performance improved [2][4].
Researchers have explored techniques to predict which
color a subject is looking at using different indirect ap-
proaches such as analyzing psychological and emotional
response to color [5][6]
Recently, classification of EEG signals produced by ran-
dom visual exposure to primary colors was presented in
[7]. Independent component analysis (ICA) was used
to remove artifacts. Event-related spectral perturbations
(ERSP) were used as features for a support vector ma-
chine (SVM), and the highest classification accuracy was
0.97, more information at [3]. In general, empirical mode
decomposition (EMD) for feature extraction from color
related EEG signals has proven to be successful in sev-
eral studies [8].
A neural signature of the unique hues (red, yellow, green,
and blue) were discovered 230 ms after stimulus onset at
a post-perceptual stage of visual processing [9]. This in-
teresting study uses ERPs (recorded neural activity time-
locked to an event) evoked in the response to different
hues.
In this paper, analytic and empirical signal analysis meth-
ods are investigated in order to evaluate their ability to
reveal color specific patterns in EEG signals produced by
exposure to primary colors. EMD is used as basis for
feature extraction. Identifying a set of features for color
identification in EEG signals would enable less complex
machine-learning based models, reducing the computa-
tional time for real-time color identification. A reliable
real-time classification of EEG signals produced by look-
ing at a color could enable physically disabled people
with cognitive functions to control their environment. For
instance, a user can open and close doors by looking at
colored signs.
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METHODS AND MATERIALS

Fast fourier transform (FFT):
Information is often contained in the frequencies of a sig-
nal. A signal is transformed from the time domain to the
frequency domain with the Fourier transform (FT). The
discrete Fourier transform (DFT) [10] is defined as

Fn =
N−1

∑
k=0

fk · e
(
− 2πink

N

)
For faster computation, FFT is often used. FFT com-
putes the DFT of a signal. For a signal of length N,
DFT needs 2N2 computations, while the FFT uses only
2N · log(N). A significant drawback of the FT is the loss
of time characteristics and is therefore not suitable for in-
terpreting time-dependent signals. Methods based on the
time-frequency domain have been developed for feature
extraction in non-stationary signals.

Short time Fourier transform (STFT):
STFT preserves information about time domain by win-
dowing the signal around a particular instant in time and
calculating the local FT for each time window. The infor-
mation obtained from the STFT is presented in a spectro-
gram. Spectrograms show how the spectral density of a
signal varies with time, giving the information about the
quantity of the frequency, and at what time this frequency
is present.
STFT is limited due to windowing of the signal, which
causes a trade-off between time precision and frequency
resolution. Frequency resolution must be sacrificed to
detect an event precisely in time, and vice verse. This
trade-off between time and frequency resolution makes it
essential to choose an appropriate window size to opti-
mize both time and frequency [11].

Empirical mode decomposition (EMD):
EMD is a well-known technique used to analyze non-
stationary and non-linear data [12]. EMD does not make
assumptions regarding stationary or linearity of data,
which motivates it’s use for analyzing EEG data [8]. In
contrast to FFT and STFT, EMD is data-driven, based on
the assumption that a signal consists of several intrinsic
mode functions (IMFs), that must satisfy two basic con-
ditions:

• Number of zero-crossings must equal or differ by
one compared with number of extrema in the signal.

• The mean value of the upper and lower envelope of
the signal must be equal to zero at any point.

The EMD algorithm finds all the IMFs trough a process
called Sifting. The calculation of the IMFs given a signal
x(t) are done as follows [12]:

1. Identify all extrema (maxima and minima) in x(t)
2. Interpolate between minima and maxima, generat-

ing the upper and lower envelope; eupper and elower

3. Determine the local mean as a(t) = eupper+elower
2

4. Extract the mean from the signal; h1(t) = x(t)−a(t)

5. Decide whether it is an IMF or not based on two
basic conditions for IMFs mentioned above

6. Repeat step 1 to 4 until an IMF is obtained.
7. Subtract the IMF from the original signal
8. Repeat steps 1-6 until there are no IMFs left to ex-

tract, the last extraction resulting in a residue

The decomposition is complete when the sum of the
IMFs and the residue is negligible.

Feature extraction and classification:
The main method used for feature extraction and clas-
sification is based on the work presented in [13]. The
feature extraction stage for each electrode consists on the
computation of energy (instantaneous and teager energy)
and fractal (Petrosian and Higuchi fractal dimension) fea-
tures, but additionally, in this paper, a set of statistical
values (min, max, mean, median, variance, standard de-
viation, kurtosis, skew) are computed for each channel.
This procedure is illustrated in Fig. 1. Lastly, super-
vised machine-learning based models were created using
10-folds cross validation using the accuracy metric. The
machine-learning based algorithms used are, random for-
est(RF), support vector machine (SVM), k-nearest neigh-
bors (kNN), decision tree (DT) and naive Bayes (NB).
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Figure 1: Flowchart illustrating the feature extraction procedure
using EMD. The procedure is the same for each channel

Dataset description:
The dataset consist of EEG signals that were recorded
from P1, P2, O1 and O2 channels according to the 10-20
international system using the BCI200 with g.tec’s MO-
BIlab portable device with a sample rate of 256 Hz [7].
The dataset consist of EEG signals from 7 Subjects while
watching RGB colors, each color was presented ran-
domly 60 times to each subject. Signals were band
pass filtered from 0.1 − 30Hz. To reduce the effect
of abnormal values, signals crossing ±60µV were re-
moved. In addition, some trails were excluded due to
electromyogram- (EMG) and electrooculogram (EOG)
artifacts. The final dataset used in this paper consist of 52
trails for each color, in order to obtain a balanced dataset
Next, the data was re-organized in 3 seconds long
“epochs” (768 data points). One epoch contains samples
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from all channels where the subject is looking at gray for
one second, followed by two seconds of looking at one of
the RGB colors. The colored light switched on at t = 1s
in all the following results.

RESULTS

Signal analysis:
Fig. 2 shows a single EEG signal, where the red vertical
line indicates the moment of color exposure, and green
background illustrates when green light is continuously
on.
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Figure 2: Example of one EEG signal where green light is
switched on at t = 1, from channel P1

As an example of FFT from the above EEG signal is pre-
sented in Fig. 3. A larger magnitude at lower frequencies
0−10Hz than 10−33Hz is observed. Presence of higher
magnitudes in 0 − 12Hz is expected. These frequency
bands corresponds to Delta, Theta and Alpha rhythms in
the brain [14]. It is reasonable to believe that the person
in the experiment was in a day dreaming / relaxed / wide
awake state during data collection, and FFT satisfies the
expectation. There are no frequencies above 33Hz, con-
firming successful prepossessing. As frequencies with
lower magnitude are by eye inspection uniformly spread,
it is difficult to draw further conclusions about frequen-
cies in the EEG signal based on FFT.
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Figure 3: FFT of grand average EEG signal (green)

Since the aspect of time is lost in FFT, STFT was applied

to investigate possible changes of frequencies over the
given time period. A STFT with a “Hanning” window
size of 200 samples, overlap off 200− 10 samples and
sampling frequency of 256 Hz was used to produce the
spectrogram in Fig.4
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Spectrogram of EEG signal - Red
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Spectrogram of EEG signal - Green
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Spectrogram of EEG signal - Blue

Figure 4: Spectrogram of grand average EEG signal for RGB

The spectrogram represents the grand average for RGB
respectively. Despite apparent prevalence of noise, there
is an amplitude increase in 2− 12Hz for all colors, and
for green there is also a notable amplitude increase for
0−5Hz in the time frame 1−2s. Hence, averaging data
reveals a change caused by visual stimuli from gray to
RGB colors 200 − 300ms after exposure. However, is
clear from their overlap that frequency alone is not suf-
ficient to separate three colors. In addition, there is no
lasting change in frequency, even though all subjects are
continuously looking at color from from t = 1s to t = 3s.
Information gain from STFT is limited, and doubtfully
sufficient to reveal a signal feature specific for each of
the colors.
For this reason, EMD algorithm was applied on the sig-
nal, and after 10 siftings, the residual fulfills IMF re-
quirements discussed in the methodology section. Fig.
5 shows an example of the 5 IMFs and the residual for
color green.
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Figure 5: Original EEG signal, extracted IMFs and the residual.
Green background represents green light is continuously on

EMD does not use windows. Using windows in analysis
of the signal would force the ends to zero, and therefore
mask end effects. The end effect problem has not been
taken into account in this paper. In Fig. 6 a spectrogram
of each of the IMFs are plotted. EMD successfully ex-
tracts the highest frequency components in the first IMFs.
IMF1 reveals slight increase in magnitude for all frequen-
cies at t ≈ 1.5. This might be related to color exposure
or change of mental state for the person in the experi-
ment. Extracted IMFs can be representing physical prop-
erties of the process from which the signal is obtained.
However, the problem of mode mixing in EMD caused by
presence of adjacent frequencies will cause loss of mean-
ingful information in the IMFs. A new method for sep-
arating closely spaced spectral tones using EMD is pre-
sented in [15][16], and could be implemented to improve
results.
Neither spectrograms nor IMFs reveal distinct color de-
pendent frequency or amplitude related characteristic by
visual inspection.

Classification:
To test if machine-learning models can classify RGB col-
ors from EEG signals using features based on EMD, the
following experiments are proposed:

1. Classify RGB colors from gray color
2. Classification of red, green and blue colors for each

subject
3. Classification of red, green and blue considering the

EEG signals from all the subjects

The aim of the first experiment is to provide experimen-
tal information about the performance of the method and
to check if there are feature that can separate these two
classes (gray or RGB colors).
In the second experiment mentioned, the classifier con-
sist of three classes (red, green and blue) with the aim to
check if using the proposed method is possible to differ-
entiate between them. It can be the second step for a real
implementation of a BCI based on RGB colors. Since the
first step can identify when a RGB color is presented and
then recognize the specific color. Following this aim is
important to check the feasibility of a general model for
the second experiment, that is why, the last experiment
consist of the same experiment but considering the EEG
signals from all the Subject to create the classifier.
For all experiments, the procedure described for Feature
extraction and classification is used. Accuracy metric af-
ter 10-fold cross-validation is presented. All the classi-
fiers are tested with different kernels, number of neigh-
bours or deph depending of each one and the best param-
eters are automatically selected. Unless otherwise stated,
default parameters of scikit-learn classifiers are used [17].
Note that the chance level for the first experiment is 0.5
of accuracy, and for experiment 2 and 3 it is 0.33

Experiment 1; gray vs RGB:
For a possible real-time application, it will be important
to clearly distinguish if the subject is looking at nothing
in particular, or decisively looking at a color. To simulate
“nothing in particular”, gray color is used. The complex-
ity of such differentiation was investigated by first clas-
sifying if subjects were looking at gray or an RGB color.
An event-related potential (ERP) (P300) is expected ap-
proximately 300ms after presentation of an infrequent
stimulus. The part of the signal where the subject is ex-
posed to the color will therefore contain the P300 com-
ponent, and it can easily be distinguished from a signal
not containing an ERP. Therefore, classification remov-
ing data points between t = 1− 2 was investigated, and
referred to as “data excluded”. Results for gray vs color
classification are presented in Tab. 1.

Table 1: Accuracy (Acc) obtained for the first experiment using
all the features (feats.), the statistical features (S.) and only one
statistical feature (the mean).

Acc Acc, data excluded
All feat. 0.99 RF depth 5 0.87 RF depth 5
S. feat. 0.92 linear SVM 0.89 RF depth 6
Mean 0.91 8-NN 0.92 4-NN

Surprisingly, when excluding data from t = 1−2, the ac-
curacy only decreases accuracy by 0.12 using all features.
An interesting finding is a 0.92 accuracy when using data
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Figure 6: Spectrogram of original EEG signal, each IMF and residual

without ERP, and only one feature; the mean. These re-
sults yields a promising first step towards a less com-
plex real-time application for separating between gray
and RGB colors.

Second experiment; classification of red, green and
blue color:
Firstly, a model including data from all seven subjects
were developed, reaching an accuracy of 0.37 using a
Gaussian distributed NB. Limited amount of data and in-
dividual differences are believed to impair the result, and
hence subject specific models were developed. No clas-
sifier alone performed better for all subjects; but rather
different classified yield better result dependent on the
subject. There were in particular one subject that con-
sistently obtained higher accuracy, when testing with all
classifiers: 0.58 of accuracy using NB, 0.51 using linear
SVM, 0.47 with 6-NN, 0.53 using DT, and finally 0.57
using RF with depth 4. On the other hand, another sub-
ject model classified at chance level. Tab. 2 summarizes
accuracies of the RGB models considering each subject
separately.

Table 2: Accuracy (Acc) reached for the second experiment,
classifying red, green and blue colors considering each subject
separately

Accuracy Classifier
Average 0.42 Depends on the subject
Max 0.58 NB

The mean accuracy for the subject model is found by
finding the maximum accuracy for each subject individ-
ually, and then performing the mean of these. The best
performing classification algorithm differs dependent on
the subject, and hence no algorithm in particular can be
preferred. The maximum accuracy is the highest individ-
ual accuracy obtained for one subject.
Interestingly, the accuracy increase when including only
one feature - the mean. A possible explanation can be that
redundant features forms the model, due to very limited

source data.

CONCLUSIONS AND DISCUSSION

In this paper, several methods have been explored in or-
der to check if there exist features that can be useful to
describe the EEG data while the subject is looking at gray
or RGB colors, and also considering RGB separately. In
the signal analysis step, FFT, STFT and EMD were in-
vestigated.
The FFT indicates that the subject was in relaxed and/or
in an awake state during the data collection, which indi-
cates a realistic dataset. The STFT successfully identify
the P300 when averaging all the data for each color.
The EMD method decomposed the original signals from
each channel into several IMFs. Since the IMFs alone
do not provide any information, they are analyzed further
with STFT for visual inspection, and later used as basis
for feature extraction.
None of the methods yields a lasting unique frequency
marker sought after for RGB, however, there where clear
frequency modulations detected in the spectrogram of
each IMF. The frequency modulation after color expo-
sure is confirmed with a successful classification of gray
and RGB color with 0.99 of accuracy.
Accuracies from the second experiment, classifying RGB
considering all subjects together yields incomplete or
poor results, considering the chance level of 0.33 for the
3 classes, and with the best accuracy of 0.37 using NB.
The highest classification of RGB on individual subject
level was obtained using NB with and accuracy of 0.58.
It can be concluded that color classification suffers from
subject dependencies. Though NB yields highest accu-
racy in the classifications, it should not be concluded as a
general preference for RGB classification algorithm.
These results indicate the feasibility of using the method
for feature extraction and experimental evidence of dif-
ferences between RGB colors EEG-based. Considering
the results obtained in this paper and the experiments
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proposed, it is reasonable to assume that improving the
feature extraction stage with a subject tailored system,
the accuracy can improve, which will be tested in future
works.
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