
Computational Science Studies | A Tool-Based Methodology for
Studying Code
Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
Theory of Science and Technology, RWTH Aachen University, Germany

DOI: 10.3217/978-3-85125-668-0-21

Abstract

The practice of programming has become a key qualification for scientific research.

However, from a STS point of view, general methodologies to access the program code

and its semantics are still lacking. We present a new methodological approach called

“Computational Science Studies” (CSS). Our main argument is that to get access to the

program code on a semantic level, the code has to be considered as a research object.

This can be done with software tools that help us to analyse the semantics in the program

code. Therefore, we present a software tool, called the Isomorphic Comment Extractor

(ICE),1 to excavate the semantic content by analysing the comments of the code and its

data structures. Taking the program code of a geological research project as an example,

we argue that the programming practices shape research objects and embody the

transition of empirical data into simulations of computational models. Hence, we first

introduce the methodology of CSS and then discuss some methodological approaches

from the field of Code Studies that have already dealt with computer code as a research

object. Then we present the ICE in our geological case study and finally we argue why

new software tools in STS are necessary to analyse the impact of computer-driven

scientific knowledge.

1. We thank very much Lukas Böhres and Frederic Kerksieck for programming and co-conceptualizing the
ICE-Tool.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

384

1 Introduction: Computational Science Studies

In the last twenty years, the research on computer code witnessed an increasing interest

from humanities’ scholars. With the generally acclaimed importance of algorithms and the

impact of computerized models and simulations on scientific expertise, code became an

important research object regarding the digitalization of science. This also includes the

digitalization of scientific objects in the humanities like manuscripts or fragments, leading

to new methods and epistemologies that resulted in the foundation of new disciplines like

the Digital Humanities (see for an overview of this process, Jones 2016). However, for

sciences like Particle Physics or Climate Sciences, where scientific objects are no longer

directly observable, programming turned out to become an essential part of scientific

research and study (Gramelsberger 2010 & 2011). Surprisingly, a clear methodology how

to approach code as a research object has not been worked out yet. We therefore

introduce a new methodological approach called Computational Science Studies (CSS).

CSS can be considered as a sub-discipline of Science Studies. It focuses on the

computerization of scientific disciplines with an emphasis on the practices of programming.

It is thus related to STS as well as to Philosophy of Science and to the Social Studies of

Science. Our main argument is that with the growing importance of programming

practices, instruments become necessary to examine this hidden level of scientific

knowledge production. Since most of the program codes are opaque and written by more

than one person, STS scholars without an education in computer science won’t have the

code literacy needed to understand them. Hence, one goal of CSS is to develop software

tools that concede STS scholars and other scientists a semantic access to the code. This

can be done either by focusing on the temporal dimensions in coding (e.g. syntactic orders

like or by the structure and the content of the comments (semantic level of code). In what

follows, we will concentrate on the written comments although we are well aware of the

fact that programmers often do not comment at all (Gramelsberger 2010). However, since

an external observer barely understands the written lines, it has been our goal to extract

and visualize the comments to generate a first overview. Comments can be short

annotations to explain something in the code or point to a bug but they can also reveal a

deeper issue of the research project. That is why one leading question of the CSS and this

article will be: How can we use tools that help us to understand the genealogy of research

objects within the code?

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

385

Thus, we developed a software tool specialized on the extraction of comments and the

visualization of data structures, the so called Isomorphic Comment Extractor (ICE). With

this tool, STS scholars are able to trace content and meaning with the help of the

comments within a code project. This simple procedure helps to analyse the composition

of the code as well as to detect refinements, corrections or the integration of new libraries

that would otherwise be ignored in the analysis of scientific knowledge production. We

present the ICE in section 4 and exemplify it in our case study from the field of geology in

section 5. Using the ICE, we show the diverse functions and semantics of comments and

how a navigation through these comments can hint to some critical aspects of 3D-model-

building in geology. But before we start with the case study, we have to elaborate further

on the field of Code Studies. Since CSS is a methodological approach based on Code

Studies, we will first explain the core idea of this approach on Computational Sciences

from a Philosophy of Science perspective in section 2. In section 3, we discuss three

variations of code studies (ethnographic codes studies, software studies and critical code

studies) and compare them with our methodology on computer-driven sciences. In the

conclusion, we discuss the results of our case study and point to restrictions and further

research questions of our CSS methodology.

2 What are Code Studies?

In a general sense, Code Studies gather together different fields from (mostly) the

humanities which explore the role of computer code for economic, social, political and

scientific processes, the aesthetics of code as well as the different practices of coding

(individual or collaborative coding, e.g., see Strathern 2005). Hence, Code Studies are not

systematically coherent, which might be the reason for their lack of a common

methodology. Instead, they focus on the practice of computer programming and its

significance for the impact of software, which can be described as follows: “Programming

languages are the medium of expression in the art of computer programming” (Mitchell

2002, 3). Letting aside the question whether programming computers is an art or a

handicraft, programming languages as a medium entail a syntax and certain semantics

that are written in the numerous lines of code. Scholars from Code Studies like David M.

Berry see in the code the “literary side” of the programming practice that has a “real code”

and an “absolute code”. While the first one is fragile and highly contingent, due to the

particularity of single solutions, the second one aims at “thinking in terms of both the

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

386

grammar of code itself, but also trying to capture how programmers think algorithmically,

or better, computationally” (Berry 2015, 33). This relation between the “grammar of code”

and the ways programmers are thinking through and with their programming languages is

essential and we will come back to this later. Another definition of Code Studies highlights

the aspect of performativity. Computational processes depend on a logic system with

statements such as “if something, then something else”. This turns the code to a two-fold

object that describes future events and sets the instructions to execute a specific task

(which is mainly the point where algorithms come into play) (Cox and McLean 2013, 41).

In other words: The description of the algorithm and prediction of the event are both

entangled in the lines of code so that “it [the code, L.S. & D.K.] can be history but

intervening in the very process of history” (Cox and McLean 2013, 42). This two-fold logic

of doing history and being part of a (research) history makes it hard to distinguish

functional practices (to make the history work) from scientific practices in coding (writing

the history of the research object).

What is so special for Code Studies is the claim that through code as a medium, the

research object is generated and observed at the same time. This does not refer to a

constructivist point of view. Moreover, it shows a new temporal regime in which the

computational data is controlled by code and processed as scientific data in computational

time. Hence, one can argue with the philosopher Sabina Leonelli that we have first to

distinguish a time of data maintenance and construction and second a time of the

“phenomena under investigation” (Leonelli 2018, 742-743). This distinction is important

since it shows how any scientific value – either true/false or valid/non-valid – depends on

this new temporality of data embedded in the medium of code. Parting from the idea of

Code Studies, the CSS look for ways how to reflect these new temporal data regimes that

highly depend on the media in which they are processed - whether this is a computational

model of a physical phenomenon or a visualized model of an unknown, anticipated

behaviour (e.g. the spread of an infection in a region over a certain time). Tools like the

ICE help to understand the dynamics in these relational structures of data between code,

database and the visualization on the interface. Of course, to extract comments out of the

code is not new and it also might not always lead to new insights. Nevertheless, especially

in collaborative coding we can use any programming editor to get an overview about the

justifications why some programmer has chosen one kind of algorithm and not the other

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

387

for a certain problem. Also, we find debugging processes where the computational model

did not work or where an important decision has been made so that a documentation of

the code modifications is needed.

Thus, taking this into account, Code Studies can be described as a loosely coupled field of

disciplines that explore the temporal (syntax) and structural (comments, merging of

versions in Version Control Systems1) dimensions of coding practices. We argue that

these dimensions have become increasingly influential in the production of scientific

knowledge. However, in all these cases, the reason why and how these “interventions in

the very process of history” have taken place might be difficult to understand for a STS

scholar who is neither a part of the scientific group nor one of the programmers. This

makes the question of an adequate methodological approach so necessary but at the

same time so demanding when it comes to the exploration of the computer code as a

research object. Our tool is here just one first step based on the argument that we have to

examine the dynamics of programming to know how computational sciences are shaping

their research objects. In this emphasis on coding, CSS relates to preceding approaches

of Code Studies that we would like to present now to highlight the similarities and

differences between them and our methodology.

3 Approaches in the Field of Code Studies

3.1 Ethnographic Code Studies

In the last 15-20 years, several approaches have been developed that try to grasp the

technical, ontological but also the ideological dimension of computer code (see for this

three-fold problem Chun 2004 & 2011). For our question how computer code could be

examined in the context of STS, we looked at three of them. The first, Ethnographic Code

Studies (ECS), focuses on the modelling practices in scientific communities. ECS describe

1. “Version control is a system that records changes to a file or set of files over time so that you can recall
specific versions later.” (Chacon and Straub, 2014, 9) From the developer’s perspective, this feature is
especially helpful for collaborations, as each collaborator can (simultaneously) work on their own local
copy and they update their changes in the shared repository, which then distributes this changes to all
the other local copies. From the Code Studies perspective, this presents us with the opportunity to
access many projects and their developmental stages without the need for a personal connection to the
developing team.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

388

the methodological change in the sciences from the experiment to complex models – like

in Climate Sciences – that are run via simulations. To do that, it is important to know how

the scientific objects have been shaped during the modelling process. For example, the

Social Studies of Science scholar Mikaela Sundberg described the development of a

meteorological model and its genealogy, going from the field experiments to the modelling

process that has taken place in the research group (Sundberg 2009).1 To have better

models means in this case to have a simulation running that produces more precise

weather forecasts. This means that data from the field has to be integrated into the

theoretical weather models, which means to decide what parameters are most important

for the computational model. As Sundberg explains:

“Predictive construction involves the application of existing scientific knowledge to develop

new parametrizations. At the weather service, there is a division of labor in this process

between researchers and programmers. Researchers transform equations into code or

more often make changes directly in the code. But this coding is generally preliminary.

Programmers continue where the researchers leave off and develop the code in ways that

enable the simulation model to use computer power more efficient but do not change the

basic operations that the code executes” (2009, 169).

This cooperation of researchers and programmers for the development of simulation

models is the main focus for ECS. On the one hand, this allows – like in the quote – to

analyse the transformation of theories and models into the lines of code. On the other

hand, Sundberg points out later in the text that it is never the code that becomes important

for the scientists but the graphical and numerical outcome of the simulated models. She

1. Computational Models in Climate Sciences are peculiar because they are also widely discussed in the
philosophy of science due to their impact on the relation of theory and experiment (Heymann,
Gramelsberger and Mahony 2017; Winsberg and Goodwin 2016). These models have two special
characteristics: First, the number of parameters (how many parameters, how long is the runtime of the
simulation etc.) has to be scaled down to the very necessary factors for the simulation. This necessitates
efficient use of the computer resources. The second point is that climate models are based on non-linear
equations which cannot be solved analytically but have to be calculated discretely, from one time-point to
another, which requires a huge amount of calculation power. Therefore, especially computer models in
Climate Sciences are paradigmatic for a new balance between a theoretical claim to be proved and the
practice of modelling. As Sundberg explains: “However, there is no algorithm for reading of models from
theories. Therefore, theories function as constraints and not as determinants in the process of simulation
model construction” (2009, 163).

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

389

also calls the code, in reference to Bruno Latour’s “immutable mobiles”, the “mutable

mobile”, a dynamic inscription hidden behind the visualized layers but indispensable for

the identity of the simulation model and the reproducibility (and therefore mobility) of the

scientific predictions (Sundberg 2009, 173 & 175). Hence, what Sundberg lays open are

the fragilities of the simulated computational models due to the mutability and modifiability

of computer code. But both in the work of the scientists as well as in the journal

publications the code is considered as something “secondary” (Sundberg 2009, 172).

Thus, it is still one of the open questions in ECR how to trace these changes of the model

in the code and to analyse their impact before they become a condensed visual result of

the simulation. Thus, the switches from researchers to programmers, as described in the

quote, might not only have an organizational and technical impact but also a scientific

one.1 To analyse that, one would have to go into the structure of the computer code itself

and look for syntactic and semantic indicators.

3.2 Software Studies

A wider perspective on the phenomenon of code has been taken by the interdisciplinary

field of Software Studies. Software studies include scholars from media and cultural

studies, sociology, computer science, and engineering. Since the 2000s their publications

have dealt with the technical impact, the media history and the political power lying behind

the everyday use of software (see as early examples Manovich 2001 and Fuller 2003).

Thus, for Software Studies, programming languages are a key-element not only to trace

the transformations of analog objects into the digital world, but also to take into account

the moral and ideological implications that are associated with the use of software (Fuller

2008). In this sense, programming always entails a certain mode of seeing the world, a

mode that anticipates its users. As the Software Studies scholar Adrian Mackenzie writes:

“Knowledge, truth, speculation and prediction are practically re-configured through

programming and coding” (Mackenzie 2013, 329). This view on software as a way of

subjectivity became more and more dominant in the last years. The increase of platforms

1. In her ethnographic study about a group of meteorologists, Mikaela Sundberg describes how the code
becomes part of a centre collective in the sense that the whoever enters the scientific organization also
enters the code until he leaves and loses the access to work with the code (Sundberg 2010, 50). Such
strict organizational models around code work are of great importance and they could be combined with
tools like the ICE to examine the scientific work done in the code.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

390

and online-connected things has led to another emphasis on the code as the element that

always mediates but never appears on your bill or your medical health card – something

always hidden behind “Coded Assemblages” (Kitchin and Dodge 2011, 7).1 However,

although most of Software Studies approaches emphasize the importance of the code as

more than just another technological tool, they rarely go into the code itself to show how

(and particularly when) the valuing aspects of programming come into play. There are two

reasons for that. First, looking into the code of private companies is almost impossible

(and they are often the target of critical Software Studies, see for example Rossiter 2016).

Second, the code is not treated as a research object but as part of a bigger cultural impact

which relates to our everyday usage of software – or, to quote from the title of another of

Manovich’s books: “Software Takes Command” (Manovich 2013). Although it is important

to emphasize the macrocultural context of software production and distribution, a deeper

code analysis is still secondary for most of the contributions to software studies. However,

scholars like Adrian Mackenzie have shown how the changing practices of coding

(Mackenzie 2017), like the increase of Version Control Systems, libraries, and platforms

for coding issues such as Stack Overflow2, transformed significantly the relation of pure

and applied sciences in the age of Machine Learning. Our methodology of CSS tries to

develop tools to lay open these connections between changing coding practices and data

visualizations, between the performance of the machine and the standardised procedures

of knowledge production. Here also, a combination of software studies and the CSS

methodology would be an option for the reflection of this double-sided nature of code as

written history and writing practice that intervenes in the process of history.

1. Kitchin and Dodge refer especially to the complexification of code through developments like the Internet
of Things and other so called smart applications. Moreover, the problem of an opaque computer code is
also crucial for the analyses of machine learning as an instrument in science. Adrian Mackenzie even
argues for a differentiation between “writing” and “growing” programming languages due to the increase
of open source programming, data software packages and further attachments like libraries. Hence,
although “machine learning utterly depends on code”, it would be insufficient just to focus on code to
explain the use of machine learning in science (Mackenzie 2017, 22-23). Instead, Mackenzie calls for a
hybrid methodology connecting code studies, ethnography, diagrammatic reasoning, media archaeology
and history of statistics.

2. Stack Overflow is a web-based platform for requests about code writing for private and business
programmers. It was developed in 2008 and runs since then under the Creative Common Licence.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

391

3.3 Critical Code Studies

The third way of developing a method for the analysis of code has resulted out of the

Software Studies movement in 2006 (Montfort et al. 2013, 6), the so called Critical Code

Studies (CCS). In the words of one of their founders, the humanities scholar Mark C.

Marino, Critical Code Studies “takes for its milieu the code layer of Software Studies […].

Rather than examining source code to the exclusion of these other aspects of technology

[…], CCS emphasizes the code layer in response to a lack of critical methodologies and

vocabulary for exploring code through this cultural lens” (Marino 2014). One way of filling

this methodological gap is to explore the “heteronormativity of code” in an experimental

way (Blas 2008 after Marino 2014), which has often been done with methods from artistic

research. The main goal here is to play with and through the practice of programming and

to offer a new look at programming that is not uniquely bound to its functional involvement

in software engineering. Thus, code is considered to be an aesthetic object that has also

to be explored by artists. Although there has been an increase in the humanities’ methods

to read code closely, it also became clear that only focusing on code would be too

restricted. Hence, Software Studies as well as Critical Code Studies do not represent

fields with a certain restricted or fixed methodological approach, but they entangle the

analysis of code with interviews, media histories, archive work and artworks (Montfort et

al. 2013, 7). This could also be a model for the methodology of CSS since the scientific

practices can’t be reduced to programming. In contrast, the steps between data gathering,

theory and model building, coding and simulation resemble more interwoven cascades

than linear work-flows. To show how these dynamics are processed, revised and inscribed

again to shape the research object, most analyses lack a new level of reflection. That is

why we argue that the CSS methodology depends on software tools that help us to draw

the connections between the interventions in the code and the dynamics of computational

model-building and its simulations. It is also here where the CSS distincts strongly from

the Critical Code Studies and other Software Studies in focusing on scientific processes.

4 What can Computational Science Studies Offer?

These three examples of Code Studies show how important the impact of programming

has become – not only for programming software but also for the genealogy of scientific

objects. If we take the phrase by Adrian Mackenzie, that “[k]nowledge, truth, speculation

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

392

and prediction” are reconfigured through coding, then we have to ask again how to

approach code more specifically. What remains problematic in all three examples is that

the notion of code has been considered as a neutral tool - in other words, a tool that does

not affect the practices of valuing and knowing which influence each other in scientific

practice. So first, if we look at code as a research object for STS and Philosophy of

Science, we have to make sure how the correlation of valuing and knowing as a scientific

practice is expanded through programming. That means also that writing code is

influenced by programming languages and the way these languages restrict or expand the

scientific ideas that have to be implemented in the code. This can lead to the genealogy of

scientific objects but also to tensions between the scientific model and its transformation

into code. In-between model building and data visualisation, the practice of programming –

and not the ontology of software, as so long claimed by Software Studies – becomes

crucial. However, to look more closely at code as an empirical object without being an

expert in programming can become difficult. That is why for our approach of CSS, the

development of tools to do research in and with the code is fundamental for the study of

computerized sciences.

In 2018, we founded the CSS Lab for this purpose where we intend to establish an open

science infrastructure for Computational Science Studies in order to facilitate the scientific

analysis of code. In the Lab, we are currently developing software tools designed to

support STS scholars and other scientists in their case studies on code projects. The tools

open up new elements of code analysis by helping to visualize software structures,

supporting code genealogies and code comparisons, and allowing for an analysis of the

scientific content of software projects (such as scientific models, scientific data analysis

algorithms, and measurement procedures). The last of these, in particular, is an entirely

new demand resulting from the requirements of conducting Computational Science

Studies.

The Isomorphic Comment Extractor (ICE)1 is the first of our CSS Tools and visualizes

comments within the code for the most common programming languages such as Python,

C/C++, Fortran, etc. The interface provides a special environment which is easy to use if

1. The ICE can be found on our website: https://www.css-lab.rwth-aachen.de/tools/overview [Accessed 16
September 2019].

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

393

you are not familiar with software projects (see Fig. 75). It is rooted in the isomorphic basis

of all our tools, which represents and depicts the file structure of a software project in

isomorphic form. In comments, there may be links to scientific papers on which the code is

founded, documentation about ownership and other legal aspects, general hints on how to

use the code, explanations about what the code should do, indications of problems that

still need to be solved or other aspects related to the genesis of the code. So while not

every software project is well documented through comments, it is still a reasonable

endeavour to start any analysis by looking for the comments since that is the main location

for background information on the code.

5 Case Study: Comments in GemPy’s geophysics.py

5.1 The Project GemPy: Modelling of Geological Structures

One main aspect of geological research is “understanding and visualizing how rocks are

organized below the Earth surface, both for practical reasons and out of scientific curiosity

to understand the world below our feet.” (Wellmann and Caumon 2019, 4) In recent years,

the visualisation of geological structures is not only done in two-dimensional maps but has

been extended to three-dimensional computer models of different types of geological

layers. Since real-world measurements are sparse, one important aspect of geological

modelling is to combine all existing data points as well as theories of geological events,

changes, and concepts into one model.

Various tools, mostly commercial products, exist for the modelling of geological structures.

One of them is the software GemPy (de la Varga and Wellmann 2019) which is an open-

source project developed in Python by the Chair of Computational Geosciences and

Reservoir Engineering at RWTH Aachen University, led by Prof. Florian Wellmann, who

kindly allowed us to use their software as a case study for this paper.1 The output of

GemPy are malleable 3D models such as the one you can see in Fig. 74. The different

colours represent different types of geological layers.

1. We are looking at GemPy version 1.16, which was released on May 1st, 2019. Since then, the project
has been revised and completely redesigned for version 2.0. The version used for this article can be
found at https://github.com/cgre-aachen/gempy/releases/tag/v1.16 [Accessed 16 September 2019].

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

394

Fig. 74: Example of a geological model generated with GemPy (de la Varga and Wellmann 2019).

5.2 Studying Geological Modelling with the ICE

In the following, we will showcase the three main functions of the ICE, followed by an

exemplary analysis of one part of GemPy. This analysis exemplifies the relation of model

building and comment structure. In order to use the ICE, one needs to have a local copy of

the project one is interested in. With GemPy, as with many others of today’s software

projects, this does not pose a problem, since the code is an open-source project and

available for download on GitHub1. For starting the analysis, one has then simply to select

the local directory of the code.

The main view in the ICE is divided into three parts that represent the main functions (see

Fig. 75). The first aspect, which is directly visible after loading a project, is the graphical

analysis of the data structure in the upper left corner. The tree structure shows grey boxes

representing directories, whereas the coloured squares symbol single code files. The

different programming languages are depicted in different colours. In well-maintained

software projects, the file structure should give a first overview on the different

functionalities of the project because files with similar functions are grouped together in a

directory. In object-oriented2 software projects, each file directly represents one object, i.e.

one functionality, which should help even more for identifying the purposes of the different

parts of a project. Therefore, a careful look at this structure can be beneficial for

understanding the project. With the ICE, this is facilitated by the possibilities to zoom in on

the tree and to showcase different branches.

1. GitHub is a host for Git repositories which are part of version control systems.

2. The concept of object-oriented programing “combines data abstraction and inheritance. The central
feature is the object [… which] comprises a data structure definition and its defined procedures in a
single structure” (Butterfield and Ngondi 2016, 377).

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

395

If one of the files in the data structure is selected by a click, the second section in the

column on the right side will show all the comments from the selected file. If the project is

well maintained, this can provide a good overview on what this file in particular is

supposed to do. Especially helpful for this objective are the comments at the beginning of

a file, which are usually more of a general nature. They describe the overall purpose of the

file as well as general comments with a link to a reference, e.g. a scientific paper. But even

if it is not well maintained, it is still possible to infer useful information from the comments:

programmers often indicate aspects that do not (yet) work as they should or point out

features that are still on the to-do list. If the project is not in a final version, these kinds of

comments are vital tools for communication within the team of programmers (they are also

fundamental for remembering different aspects if one programmer works alone) and the

language used can sometimes be colloquial and/or explicit.

Fig. 75: Main view in the ICE, exemplified on the GemPy file geophysics.py (authors’ illustration).

The third aspect of the main view in the ICE is the section in the lower left corner. It shows

the source code from your selected file. By clicking on one of the comments in the

comment analysis section on the right side, one can then add another layer of information:

the comment clicked on will be highlighted in the centre of the source code section. This is

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

396

especially helpful if it is of interest what happens in the direct environment of a comment

because comments often introduce the next few steps that will be executed in the code or

explain the details of a specific variable. Or, as explained before, they indicate problematic

features which can also indicate areas of interest for the STS researcher. It might be also

useful in case that there is a paper on the conceptual ideas behind a project and one

wants to compare the code with the paper. In this case, it is necessary to see not only the

comments but also the specific equations in the code in order to compare them.

When using the ICE with GemPy, one can see a number of Python files (indicated in dark

blue) in the project directory and some sub-directories that themselves bear more Python

files. This indicates that the files of interest for understanding the geology behind the project

are probably in the main directory, since all the names of the sub-directories suggest that

they contain auxiliary functions (as they are called “plotting”, “add-ons”, and “utils”).

Looking at the files in the GemPy directory, the file name geophysics.py leaps to the eye,

so we choose this file for the starting point of our analysis. The class name

“GravityPreprocessing(object)” already hints at a possible functionality of this file, namely

the calculation of the influence of gravity on some given object. By reading the comments,

we can confirm that the influence of gravity is indeed calculated in this file, since there are

comments indicating that a block of code is supposed to do exactly that. We can also infer

that this file seems to be responsible for calculating distances and other relational aspects

between the measurements and the voxels1 of an object in the geological model. Since

real-world measurements are sparse, the interpolation of those measurements is an

important step in the model generation. It simulates the data for the areas in between the

geological measurement points. Furthermore, the comments show some aspects that are

work-in-progress, as there are comments including “TODO”, one of the main indicators for

further work which automatically gets highlighted in many editors used for programming.

These work-in-progress comments show a less formal writing style and are not as refined

as some of the others. They seem to be meant as reminders for the programming team

and not so much as a documentation for outsiders. For example, this difference can be

seen in the comparison between line 152 “TODO Include all in the loop. At the moment I

am tiling all grids and is useless” and line 106 “This is the vector that determines the sign

1. A voxel is the 3D equivalent of a 2D pixel, i.e. the representation of one value in a grid.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

397

of the corner of the voxel”. The first is an example for an informal comment that is not

meant for the general public. It seems rashly written and has a slip in grammar. The

second one on the other hand is a very descriptive comment on the calculation in the line

following it. That is a very common type of comment used for the documentation of a

project for people not involved in the programming.

Even though this was just a first glance at a complex project, this analysis of the

comments already clarifies many things. The comments reveal the purpose of the file and

they bring out (some of) the steps taken to achieve this aim. Furthermore, it is possible to

infer the state of development in which the file currently is in. The comments open up a

temporal dimension in the code, as they sometimes refer to the point of their creation,

sometimes to the future in which a programmer is supposed to work on some aspect, and

sometimes to the present of the reader understanding the sequence of the program.

5.3 Benefits from Using the ICE

In contrast to code analysis tools aimed at software programmers which also allow for

highlighting of comments, the ICE is easy to navigate and understand even if one is

unfamiliar with the peculiarities of programming languages or the structure of software

projects. This is especially facilitated by the combination of file structure navigation and the

highlighting of comments. The user becomes able to detect hierarchies and connections

between the different parts of the project which in comparison to the other forms of Code

Studies creates an additional value since it provides a deeper access to the code itself.

Even though no contact to the developing team is needed, the researcher can still trace

(some) of the interactions through comments (especially with comments that include a “to

do”-memo or the authorship of a file). Furthermore, comments can also provide an indication

for the intention behind the code (e.g. an explanation which specific problem a certain piece

of code is supposed to solve). An analysis of these kinds of comments can make explicit

where the programmer has interpreted a scientific idea. In some cases, this can even be

extended by showing interconnections between scientific papers, theories, or ideas and their

implementations in the code. While the ICE can be used as a stand-alone application as

shown here, it is meant to be one of many aspects of a full analysis of a software project. Of

course, any analysis that depends on the code as the central textual basis operates under

the assumption that the project is well-maintained. Our tools as well as methods from other

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

398

forms of code studies are envisioned to supplement many different angles from which the

analysis of a software project may be fruitful. This also includes established visual forms of

knowledge representation like graphs, flow charts, or diagrams. But they all should not

supersede an intensive examination of the code by the STS researcher.

6 Discussion

In this paper, we presented a new perspective on Science Studies and Code Studies. We

claim that with the increasing impact of computation in science, the practice of

programming becomes crucial for the analyses and interpretation of Computational

Sciences. Hence, our methodology called Computational Science Studies stresses the

point that coding is opaque and mostly written in collaboration. This demands for a new

approach that enables STS and other Studies of Science to examine the transformation of

empirical objects and scientific models into code. In following positions from Code Studies,

we distinguished the syntactical and semantic dimension of programming languages. We

emphasized the two-fold logic of coding in doing research history and being part of a

research history which is important for the constructive but not constructivist character of

computational sciences. To confine our approach more precisely which stems from a

philosophy of science perspective, we presented the basic ideas of Ethnographic Code

Studies, Software Studies and Critical Codes Studies and compared them with our

methodology. We concluded that it is urgent not only to determine the heterogeneous

impacts of writing software or the ontology of the code but to develop software tools that

concede an access to the functional, organizational and scientific levels of programming.

One such tool has been presented in this paper – the Isomorphic Comment Extractor.

In our case study from computational model building in geology, we examined the multiple

functions of comments in the practice of programming. Thus, the semantic level of

comments embodied functional, organizational and scientific contents around the issue of

calculating in-between spaces of geological models. These models are based on

measurements of different geological layers, but what they lack are empirical data about

the space in-between the measuring points. Consequently, it is this space that has to be

simulated and written down in code. Analysing the comments and the data structure with

the ICE revealed the points in the project in which the simulated data points were

incorporated through the code.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

399

Tools like the ICE offer another point of view to this hidden layer of scientific knowledge

production. However, such tools are only one possible way of looking at techniques of

knowledge production. Another would be to take the graphs, diagrams or flow-charts into

account and to compare their function for the representation and construction of

knowledge with the analysis from tools like ICE. Therefore, the ICE is only one possible

way to approach the structure of code and it could be complemented with visual tools,

leading to what Karin Knorr-Cetina called a “viscourse” (Knorr Cetina 2001, 307), a

visualization of knowledge embedded in an ongoing scientific discourse. Hence, the ICE is

just a beginning for a tool-based methodology of CSS and not every scientific code offers

the quantity and diversity of comments that is adequate to use the ICE as an analytic tool.

However, in further research, the comparison of program codes of scientific projects could

provide new insights. In particular, a first scheme of semantic code layers with their

specific comments would ease the way how to use code as research object in the

philosophical and social studies of science.

References

Berry, David M. (2015): The Philosophy of Software. Code and Mediation in the Digital Age. New York.

Butterfield, A. and Ngondi, G. (2016): A Dictionary of Computer Science. 7th ed. Oxford.

Chacon, Scott; Straub, Ben (2014): Pro Git. 2nd ed. Berkeley, CA.

Chun, Wendy H.K. (2004): On Software, or the Persistence of Visual Knowledge. In Grey Room 18 (4), pp.
26-51.

Chun, Wendy H.K. (2011): Programmed Vision. Software and Memory. Cambridge, MA.

Cox, Geoff; McLean, Christopher A. (2013): Speaking Code. Coding as aesthetic and political expression.
Cambridge, MA.

de la Varga, M. and Wellmann, F. (2019): cgre-aachen/gempy. [online] https://github.com/cgre-aachen/
gempy [Accessed 22 May 2019].

Fuller, Matthew (2003): Behind the Blip. Essays on the Culture of Software. New York.

Fuller, Matthew (2008): Software Studies. A Lexicon. Cambridge, MA.

Gramelsberger, Gabriele (2010): Computerexperimente. Zum Wandel der Wissenschaft im Zeitalter des
Computers. Bielefeld.

Gramelsberger, Gabriele (2011): What do numerical models really represent? In Studies in History and
Philosophy of Science 42 (2), pp. 296-302. DOI: 10.1016/j.shpsa.2010.11.037

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

400

Heymann, Matthias; Gramelsberger, Gabriele; Mahony, Martin (2017): Key Characteristics of Cultures of
Prediction. Heymann, Matthias; Gramelsberger, Gabriele; Mahony, Martin (Eds.): Cultures of Prediction in
Atmospheric and Climate Science. London, pp. 18-42.

Jones, Steve E. (2016): Emergence of the Digital Humanities (as the Network Is Everything). Gold, Matthew
K.; Klein, Lauren F. (Eds.): Debates in the Digital Humanities 2016. Minneapolis and London. [online] https:/
/dhdebates.gc.cuny.edu/read/65be1a40-6473-4d9e-ba75-6380e5a72138/section/09efe573-98e0-4a10-
aaa3-e4b222d018fe#ch01 [Accessed 12 September 2019],

Kitchin, Rob; Dodge, Martin (2011): Code/Space. Software Everyday Life. Cambridge, MA.

Knorr-Cetina, Karin (2001): “Viskurse” der Physik: Wie visuelle Darstellungen ein Wissenschaftsgebiet
ordnen. Heintz, Bettina; Huber, Jörg (Eds.): Mit dem Auge denken. Strategien der Sichtbarmachung in
wissenschaftlichen virtuellen Welten. Wien and New York, pp. 305-320.

Leonelli, Sabina (2018): The Time of Data: Timescales of Data Use in the Life Sciences. In Philosophy of
Science 85, pp. 741-754.

Mackenzie, Adrian (2013): Programming Subjects in the Regime of Anticipation: Software Studies and
Subjectivity. In Subjectivity 6, pp. 391-405.

Mackenzie, Adrian (2017): Machine Learners. Archaeology of a Data Practice. Cambridge, MA.

Manovich, Lev (2001): The Language of New Media. Cambridge, MA.

Manovich, Lev (2013): Software Takes Command. New York.

Marino, Mark C. (2014): Field Report for Critical Code Studies. In Computational Culture. A Journal for
Software Studies. Published 9th November 2014. [online] http://computationalculture.net/field-report-for-
critical-code-studies-2014%E2%80%A8/ [Accessed 23 May 2019].

Montfort, Nick et al. (2013): 10 Print CHR$(205.5+RND(1)); : GOTO 10. Cambridge, MA.

Mitchell, John C. (2002): Concepts in Programming Language. Cambridge, MA.

Rossiter, Ned (2016): Software, Infrastructure, Labor: A Media Theory of Logistical Nightmares. New York.

Strathern, Marilyn (2005): Imagined Collectivities and Multiple Authorship. Ghosh, Rishab Aiyer (Ed.):
Collaborative Ownership and the Digital Economy. Cambridge, MA, pp. 13-28.

Sundberg, Mikaela (2009): The Everyday World of Simulation Modeling: The Development of
Parametrizations in Meteorology. In Science, Technology, & Human Values 34 (2), pp. 162-181.

Sundberg, Mikaela (2010): Organizing Simulation Code Collectives. In Science Studies 23 (1), pp. 37-57.

Wellmann, Jan Florian; Caumon, Guillaume (2019): 3-D Structural geological models: Concepts, methods,
and uncertainties. [online] http://publications.rwth-aachen.de/record/754773/files/754773.pdf [Accessed 12
September 2019].

Winsberg, Eric; Goodwin, William M. (2016): The adventure of climate science in the sweet land of idle
arguments. In Studies in History and Philosophy of Modern Physics 54, pp. 9-17.

Proceedings of the STS Conference Graz 2019
––

Lisa SCHÜTTLER, Dawid KASPROWICZ, G. GRAMELSBERGER
DOI: 10.3217/978-3-85125-668-0-21

401

