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How does a diode work?

1 What is a diode?

The diode is the working horse and the mother of all integrated devices. Understanding the

diode is key for almost all other devices encountered in integrated electronic circuits.

Without going into much detail on the actual fabrication, a diode is formed by placing a p-

doped semiconductor next to an n-doped semiconductor. The intersection of p- and n-doped

semiconductor is called a p-n junction or simply diode. A cross-section of a diode can be seen

in Figure 1.

Figure 1: Simplified cross-section of a diode. On the left hand side, there is the p-doped semi-
conductor. On the right hand side, there is the n-doped semiconductor. At the inter-
face between these two semiconductors, a p-n junction is formed.

A diode has the interesting property to conduct current in one direction only. It conducts current

while being forward biased (U > 0 V) and almost behaves like an insulator while reverse biased

(U < 0 V).

But how does a diode achieve this behaviour? Let’s see how a diode works.

2 How does a diode work?

In order to understand how a diode operates, this section is divided into three parts:

First, we will take a look on what happens at the interface between p- and n-doped semicon-

ductor when we form a p-n junction. Especially the movement of charge carriers and thermal

equilibrium will be of utter importance.

Second, we will investigate how the energy band diagram along the direction of current flow in

a diode changes. This gives a qualitative picture on why a diode behaves the way it does.

Third, we will grab the math hammer and derive the current-voltage relation of a diode. We

will solve the continuity equation to get the charge carrier concentration. The obtained charge

carrier concentration is used along with the drift-diffusion equation to get the current density ~J

as a function of applied voltage U. This gives a quantitative explanation of diode behaviour.
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2.1 Forming a p-n junction

As we have seen in previous lectures, doping can be used to change the concentration of

electrons n or holes p in a semiconductor. The concentrations of electrons and holes right after

forming the p-n junction are shown in Figure 2.

Figure 2: The charge carrier concentration for adjacent p- and n-doped semiconductors change
along distance. This gradient causes a diffusion current flow. The ionized dopants
create an electric field ~E. The resulting drift current cancels the diffusion current.
Top: Hole concentration p and electron concentration n over distance x .
Bottom: Cross-section of a p-n junction.

Placing a p- and n-doped semiconductor next to each other causes a gradient in the concentra-

tions of electrons n and holes p. A gradient in concentration leads to diffusion as governed by

Fick’s laws. The charge carriers start to move towards each other and eventually recombine. As

the charge carrier move and recombine, the ionized dopants stay behind and create an electric

field ~E. This electric field causes a drift current into the opposite direction of the aforementioned

diffusion current. In thermal equilibrium, the drift and diffusion currents are exactly equal but of

opposite sign and perfectly cancel each other. Hence, there is no net current flow ~J = 0 A/m2.

The layer in between the p- and n-doped regions has two different names. As there are no

mobile charge carriers present, in other words the region is depleted of mobile charge carrier,

the layer is called depletion layer. But there are still the immobile ionized dopants which are

fixed in space. This lead to the second name of space charge region. Both names, depletion

layer and space charge region can be used synonymously.

In a next step, we will take a look at the energy bands inside a diode. Because, as the charge

carrier concentration p and n have changed, surely the energy bands must be affected.
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2.2 Energy bands

Previously, we noted that a diode in thermal equilibrium does not feature any net current flow
~J = 0 A/m2. We could try to explain this with the drift-diffusion equation. But there is a much

more simplified expression for the current density. The upcoming explanation will focus on

electrons. But as holes are the dual particles of electrons, the same reasoning can be done for

holes.

Think of electrons like students. Both want to go to a state of minimal effort or energy. So,

the motivation for an electron to go somewhere could be a lower energy some-place else. The

direction to a place of lower energy is given by the gradient. The most dominant energy in semi-

conductors is of course the Fermi energy EF . The electron current density ~Jn is proportional to

the change (or gradient) in Fermi energy EF along x .

~Jn = µn · n ·
dEF

dx
(1)

And likewise for the hole current density ~Jp.

~Jp = µp · p ·
dEF

dx
(2)

If we ask for zero net current flow there are three possible options:

1. µn = 0 m2/Vs and µp = 0 m2/Vs

2. n = 0 /m3 and p = 0 /m3

3. dEF
dx = 0 J/m

From these option only the last one is reasonable, which means the Fermi energy is constant

along x . For zero current flowing through the diode in thermal equilibrium, the Fermi energy EF

has to be constant throughout the diode.

We now know how the Fermi energy looks like in thermal equilibrium. But what about the

valence and conduction band edges, EV and EC?

In a p-doped semiconductor, the Fermi energy is close to the valence band. This can be seen

on the left hand side of Figure 3 on the following page. Contrary for an n-doped semiconductor,

in which the Fermi energy is close to the conduction band as shown on the right hand side

of Figure 3 on the next page.
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Figure 3: Energy band diagram of a diode in thermal equilibrium. The Fermi energy EF is
constant throughout the diode. The valence and conduction band edges EV and EC
change along x . The curvature of EV and EC can be derived from electrostatics.

While the Fermi energy EF is constant, the conduction band edge EC and valence band edge

EV change along x . How EV and EC change can be explained by electrostatics. The argumen-

tation will be supported by Figure 4 on the facing page.

In Section 2.1 on page 4, we noted that the ionized dopants create an electric field ~E. Gauss

law in Equation 3 relates the charge density ρ to the divergence of the electric field.

∇ · ~E =
ρ

ε
(3)

Restricting to one dimension and integrating along distance x gives us the electric field.

~E =
∫ +∞

−∞

d~E
dx

dx =
∫ +∞

−∞

ρ

ε
dx (4)

The electric potential distribution Φ(x) can be calculated by the line integral of the electric field.

Φ(x) =
∫ x

−∞
~E(x ′)dx ′ (5)

As the electric potential is the electric potential energy E normalized by the charge, we simply

de-normalize by multiplying with the elementary charge q.

E(x) = −q · Φ(x) (6)

The valence band edge EV and the conduction band edge EC can be calculated by Equation 61.

Furthermore, the so called mid-gap energy level Ei is defined

Ei =
EV + EC

2
(7)

The mid-gap energy level is similar to the Fermi energy of an intrinsic semiconductor.

1Note that the energy diagram gives the energy of electrons and their charge is negative. −q = −1.602 · 10−19 C
Hence, the energy bands bend in the opposite direction of the electric potential.
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Figure 4: The change in band edges EV and EC is derived from electrostatics.
Top: The concentration of ionized dopants (ND − NA) is the starting point.
Above centre: The electric field ~E can be obtained via Gauss law.
Below centre: The electric potential Φ results from the line integral of the electric field.
Bottom: Energy bands equals the electric potential times elementary charge q.

Observing Figure 4, a difference in electric potential from p- to n-doped side can be identified.

This difference is called the built-in potential Φbi and can be approximated by

Φbi ≈
k · T

q
· ln

∣∣∣∣∣NA · ND

n2
i

∣∣∣∣∣ (8)

here k is the Boltzmann constant, T is the temperature, NA and ND are the acceptor and donor

doping concentrations, and ni is the intrinsic charge carrier concentration.

For Silicon with typical doping concentrations, the built-in potential is around 0.7 V. The built-in

potential forms a barrier for current flow in reverse bias and gives a qualitative explanation for

the behaviour of a diode.

In order to calculate the current-voltage relation of a diode, we have to solve the continuity

equation.
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2.3 Charge carrier concentration

To get a quantitative explanation for diode operation, we first think about how to tackle this

problem. The current flowing through the diode is the very same current flowing through the

depletion layer. If we know how many charge carriers make it to the particular opposite end

of the depletion layer, we immediately are ready to solve for the current. Hence, we have to

calculate how many electrons travel from the n-doped region through the depletion layer and

reach the p-side. And vice versa, we have to know how many holes from the p-doped region

go through the depletion layer and reach the n-side. Lets focus on the p-doped region. Instead

of dealing with the holes in the p-doped semiconductor, we work with the electrons. We will

call the holes in the p-doped region majority charge carriers pp
2, while the electrons are called

minority charge carriers np. Dual for the n-doped region, where electrons are the majority

charge carriers nn and holes are the minority charge carriers pn. This leads to something very

interesting and can be encountered in almost every semi-conducting device. With doping we

determine the majority charge carriers, but the operation is governed by the minority charge

carriers.

To summarize the last paragraph: We have to calculate the minority charge carrier concentra-

tion in the p- and n-doped regions. Further on we will focus on the electrons as minority charge

carriers in the p-doped region np.

We already derived the continuity equation in a previous lecture. Here once again restricted to

one direction
∂np

∂t
= Dn ·

∂2np

∂x2 + µn · ~E ·
∂np

∂x
+ G − R (9)

Yes, you are right. This is an inhomogeneous partial differential equation. If you wonder, now

would be the perfect moment to start running around the room in panic and scream your terror

out for the world to hear. Because we are set to solve this thing.

To tame this beast of an equation, we simplify things by making a few assumptions and omitting

units.

We are mainly interested in the static current-voltage relation. Hence, we consider steady state

only ∂np
∂t = 0.

The entire electric field is assumed to be located in the depletion layer. The p- and n-doped

regions are free of an electric field ~E = 0.

The number of generated charge carriers in the diode are considered to be negligible, i.e. the

generation rate G = 0.

Last but not least, the recombination rate is assumed to be proportional to the concentration

of excess charge carrier. Excess charge carriers are there in addition to the ones in thermal

2The index denotes the region of interest. pp are the holes in the p-region. pn are the holes in the n-region.
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equilibrium. The total concentration is np and the thermal equilibrium concentration is np0. This

results in an excess charge carrier concentration of np − np0. Every charge carrier recombines

after its life time τn has passed. The recombination rate becomes R = np−np0
τn

.

Summarizing the assumptions:

Steady state ∂np
∂t = 0

No electric field in the p-doped region ~E = 0

No generation G = 0

Recombination rate equals R = np−np0
τn

The above assumptions simplify the continuity equation in Equation 9 on the preceding page to

Dn ·
d2np

dx2 −
np − np0

τn
= 0

Dn ·
d2np

dx2 −
np

τn
= −

np0

τn
(10)

This is an inhomogeneous differential equation. As you know from your math classes, such an

equation is solved in two steps. First, we deal with the homogeneous equation by setting the

right hand side in Equation 10 to 0. Second, we solve the inhomogeneous equation by using

the solution from the homogeneous equation.

2.3.1 Homogeneous Solution

Setting the right hand side of Equation 10 to 0 gives

Dn ·
d2np

dx2 −
np

τn
= 0

d2np

dx2 =
1

Dn · τn
· np (11)

Let’s take a closer look at the above equation. We are searching for a function np which derived

twice d2np
dx2 gives exactly the same function np times a constant 1

Dn·τn
. Anything in mind? Yes,

right! The Euler function is the way to go.

We use the ansatz

np = k · eλ·x (12)

Calculating the second derivative
d2np

dx2 = λ2 · k · eλ·x (13)
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Substituting the ansatz and the second derivative in Equation 11 on the preceding page yields

λ2 · k · eλ·x =
1

Dn · τn
· k · eλ·x

λ2 =
1

Dn · τn
(14)

The product of the diffusion constant Dn and the life time τn is defined as the squared diffusion

length L2
n.

Ln
2 = Dn · τn

Ln =
√

Dn · τn (15)

λ can now be written as

λ = ± 1
Ln

(16)

We got two different λ, λ1 = + 1
Ln

and λ2 = − 1
Ln

. But we only had one k in our ansatz up to now.

For the sake of generality, we re-write our ansatz and include k1 and k2.

np = k1 · e+ x
Ln + k2 · e−

x
Ln (17)

The above equation is the solution for the homogeneous equation in Equation 11 on the previ-

ous page. Now we have to determine the inhomogeneous solution.

2.3.2 Inhomogeneous Solution

To solve the inhomogeneous differential equation in Equation 10 on the preceding page we

again choose a suitable ansatz. The inhomogeneous solution has to fulfill the homogeneous

equation of course. Thus, the homogeneous solution is part of the inhomogeneous. But we

have to add something else in order to satisfy the inhomogeneous equation. Investigating the

inhomogeneous equation in Equation 10 on the previous page, we can see that the right hand

side is a constant over x . We might also want to use a constant C for our ansatz.

np = k1 · e+ x
Ln + k2 · e−

x
Ln + C (18)

Calculating the second derivative

d2np

dx2 =
k1

Ln
2 · k1 · eλ1·x +

k2

Ln
2 · k2 · e−λ2·x (19)
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Using the ansatz and second derivative in the inhomogeneous differential equation in Equa-

tion 10 on page 9 gives

Dn ·
k1

Ln
2 · e

+ x
Ln + Dn ·

k2

Ln
2 · e

− x
Ln − k1

τn
· e+ x

Ln − k2

τn
· e−

x
Ln − C

τn
= −

np0

τn

Reformulating Equation 15 on the preceding page to

1
τn

=
Dn

Ln
2

results in
k1

τn
· e+ x

Ln +
k2

τn
· e−

x
Ln − k1

τn
· e+ x

Ln − k2

τn
· e−

x
Ln − C

τn
= −

np0

τn

Hence, the constant C in our ansatz equals

C = np0 (20)

And our inhomogeneous solution becomes

np = k1 · e+ x
Ln + k2 · e−

x
Ln + np0 (21)

This function for np solves the continuity equation. But there are two missing pieces. What

about k1 and k2?

To uniquely determine the charge carrier concentration, we have to use boundary conditions.

2.3.3 Boundary Conditions

Boundary conditions allow to uniquely define the charge carrier concentration. As we have still

two unknown quantities k1 and k2, we will need two boundary conditions.

The first and more simple one is related to the far left hand side of the p-region. There, the

depletion layer and n-doped region are far away and have negligible influence on the p-region.

The electron concentration np has to converge towards its thermal equilibrium value np0 for x

going to −∞.

np(x → −∞) != np0 (22)

Applying the limit to Equation 21 yields

lim
x→−∞

np(x) = lim
x→−∞

k1 · e+ x
Ln + k2 · e−

x
Ln + np0

!= np0 (23)
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k1 cancels as its exponential drops to 0. But the exponential with k2 approaches∞. Thus,

k2 = 0 (24)

in order to satisfy the boundary condition.

To get k1, we need a boundary condition for the right hand side of the p-region np(x = −WDp).

This is the interface to the depletion layer which will be subject to further discussions.

What we will need is the so called mass-action law. Remember the formula for the intrinsic

charge carrier concentration ni and pi of the previous lecture.

pi = ni =
√

NV · NC · e−
Eg

2·k·T (25)

where NV and NC are the density of states in the valence and conduction band, Eg is the band

gap energy, k is the Boltzmann constant, and T is the temperature.

Multiplying Equation 25 with ni gives

pi · ni = ni
2 = NV · NC · e−

Eg
k·T (26)

The right hand side depends on properties of silicon NV , NC , and Eg , and the temperature T .

Moderate doping does not change any of these properties significantly. The individual concen-

trations for electrons n and holes p change tremendously due to doping of course. But their

product stays ni
2 constantly. Hence, the relation

p · n = ni
2 (27)

is also valid for doped semiconductors, as long as the band gap does not change due to heavy

doping. The relation in Equation 27 is called the mass-action law and is the first piece of the

puzzle. Note the mass-action law is valid for thermal equilibrium only, i.e. no voltage is applied.

The individual concentrations for holes and electrons depend on the Fermi energy EF . If we

change the Fermi energy from its intrinsic value or the mid-gap energy level Ei , the hole and

electron concentrations can be written as

p = ni · e
Ei−EF

k·T n = ni · e
EF −Ei

k·T (28)

Note, the product p · n equals ni
2 as given by the mass-action law in Equation 27.

p · n = ni · e
Ei−EF

k·T · ni · e
EF −Ei

k·T = ni
2 (29)
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Up to now we worked in thermal equilibrium, i.e. without any external voltage. If we apply an

external voltage U, we change the Fermi energies of holes and electrons. We introduce the

quasi-Fermi energies for holes EFp and electrons EFn and replace the previous Fermi energy

in Equation 28 on the facing page.

p = ni · e
Ei−EFp

k·T n = ni · e
EFp−Ei

k·T (30)

Calculating the product p · n gives

p · n = ni · e
Ei−EFp

k·T · ni · e
EFp−Ei

k·T

p · n = ni
2 · e

EFn−EFp
k·T (31)

As we can see from the equation above, the mass-action law of Equation 27 on the preceding

page is no longer valid. This is expected since the mass-action law only holds for thermal

equilibrium. With an applied voltage the diode is no longer in thermal equilibrium.

The difference in the quasi-Fermi energies is proportional to the applied voltage.

EFn − EFp = q · U (32)

Rewriting Equation 31 results in

p · n = ni
2 · e

q·U
k·T (33)

And this is huge. We can now control the charge carrier concentration in the depletion layer by

applying a voltage. For reverse bias, i.e. U < 0 V the charge carrier concentration becomes

smaller compared to thermal equilibrium. For forward bias, i.e. U > 0 V the charge carrier

concentration becomes larger compared to thermal equilibrium.

p · n < ni
2 for U < 0 V

p · n > ni
2 for U > 0 V (34)

This is great. But back to our initial problem with the boundary conditions.

We were looking for a suitable boundary condition at the interface p-doped region and depletion

layer. What we need is np(x = −WDp). Fortunately, the charge carrier concentration is a steady

function in space, i.e. it does not abruptly change along x and we can state

pp(x = −WDp) · np(x = −WDp) = p · n = ni
2 · e

q·U
k·T (35)
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We divide Equation 33 on the previous page by the majority charge carrier concentration pp.

np(x = −WDp) =
ni

2

pp(x = −WDp)
· e

q·U
k·T (36)

The concentration of majority charge carriers pp(x = −WDp) is a very large number and as-

sumed not to change significantly with applied voltage.

pp(x = −WDp) ≈ pp0 (37)

Combining the two equation above gives

np(x = −WDp) =
ni

2

pp0
· e

q·U
k·T (38)

With the mass-action law of Equation 27 on page 12 we can re-write the fraction ni
2

pp0
as np0 and

get

np(x = −WDp) = np0 · e
q·U
k·T (39)

This is the missing boundary condition to obtain k1 in Equation 21 on page 11. As k2 = 0, we

can write

np(x = −WDp) = k1 · e−
WDp

Ln + np0
!= np0 · e

q·U
k·T (40)

and get k1

k1 = np0 ·
(

e
q·U
k·T − 1

)
· e+

WDp
Ln (41)

Finally, we have the electron concentration in the p-doped region.

np = np0 ·
(

e
q·U
k·T − 1

)
· e

x+WDp
Ln + np0 (42)

Without repeating the entire calculations, the hole concentration in the n-doped region is given

by

pn = pn0 ·
(

e
q·U
k·T − 1

)
· e−

x−WDn
Lp + pn0 (43)

Now marvel at the beauty of these two equations. We can see that the minority charge carrier

concentrations are an exponential function in space. But what really matters is that we can

control the sign of this exponential by applying a voltage.

np ∼


−np0 · e

x+WDp
Ln + np0 for U < 0 V

np0 for U = 0 V

+np0 · e
x+WDp

Ln + np0 for U > 0 V

(44)
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This control over the minority charge carrier concentrations by means of a voltage is shown

in Figure 5.

Figure 5: The minority charge carrier concentration can be controlled by applying a voltage.
Left: For reverse bias U < 0 V, the concentrations decrease at the depletion layer.
Right: For forward bias U > 0 V, the concentrations increase at the depletion layer.

The most exhausting part lies behind us. The only thing that’s left is the current density.

2.4 Current density

The current can easily be calculated using the drift-diffusion equation. Again we focus on the

electrons in the p-doped region.

~Jn = q · np · µn · ~E + q · Dn · ∇np (45)

On Section 2.3 on page 9, we assumed an electric field of ~E = 0. This eliminates the drift

component of the current density and leaves only the diffusion component. Also, we use one

dimension for our calculations only.

~Jn = q · Dn ·
dnp

dx
(46)

Substituting the minority charge carrier concentration np from Equation 42 on the facing page

results in
~Jn =

q · Dn · np0

Ln
·
(

e
q·U
k·T − 1

)
· e

x+WDp
Ln (47)

As detailed at the very beginning, the current flowing through the diode is the one through the

depletion layer. The electron current density at the depletion layer interface can be obtained by

setting x = −WDp.

~Jn =
q · Dn · np0

Ln
·
(

e
q·U
k·T − 1

)
(48)

A similar argumentation can be done for holes in the n-doped region pn to get the hole current

density ~Jp.
~Jp =

q · Dp · pn0

Lp
·
(

e
q·U
k·T − 1

)
(49)
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The total diode current density is the some of hole and electron current density.

~J = ~Jp + ~Jn =
(

q · Dp · pn0

Lp
+

q · Dn · np0

Ln

)
·
(

e
q·U
k·T − 1

)
(50)

Defining the saturation current density J0

J0 =
q · Dp · pn0

Lp
+

q · Dn · np0

Ln
(51)

results in the famous Shockley equation.

~J = J0 ·
(

e
q·U
k·T − 1

)
(52)

The Shockley equation is shown in Figure 6 for a very small range of voltage U.
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Figure 6: Normalized diode current density J/J0 over applied voltage U according to the Shock-
ley equation. For negative voltages, the current density approaches the saturation
current density J0. Positive voltages cause an exponential increase in current density.
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