
Michael Krisper

u www.iti.tugraz.at

23.10.2018

Michael Krisper

Georg Macher

Design Patterns

448.058 (VO)

1

This file is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

(CC BY 4.0) Michael Krisper

https://creativecommons.org/licenses/by/4.0/

Michael Krisper

Revision from last time…

• OBSERVER

Subjects notify registered observers.

• FACTORY METHOD

Delegate the creation of objects.

• STRATEGY

Substitute a function/behaviour later.

• COMMAND

Encapsulate a request

in its executing context.

(Revision)

2

Michael Krisper

Learning Goals for Today

• Understanding and describing some wrapper design patterns:
• ADAPTER

• WRAPPER FAÇADE

• DECORATOR

• PROXY

• Understanding and describing Architecture Patterns:
• LAYERS (RECAP)

• PIPES & FILTERS

• BROKER

• MASTER-SLAVE

• CLIENT-SERVER

• LEADER-FOLLOWER

• MODEL-VIEW-CONTROLLER

• MODEL-VIEW-PRESENTER

• MODEL-VIEW-VIEWMODEL

• PRESENTATION-ABSTRACTION-CONTROL

Learning Goals

3

Michael Krisper

Adapter
Wrap around a class to make it compatible to another

interface.

4

Goal: Adapter Pattern

Michael Krisper

Michael Krisper

Adapter

Context: Working with multiple

different frameworks or

libraries.

Problem: How to make

incompatible classes work

together?

Forces:

• Existing class interface does

not match the one you need.

• You want to reuse the

functionality (not just copy it).

• Source code of used class

may not be available (copying

or changing it is not possible)

• Class may be sealed

(inheritance is not possible)

Solution:

• Create an Adapter class which wraps around the Adaptee.

Variant: Class Adapter (inherits from Adaptee)

Variant: Object Adapter (contains Adaptee member)

• Implement the desired new interface using the methods of the

Adaptee as underlying basis.

Consequences: (Class Adapter)

+ Allows to use override mechanisms (e.g. protected methods, V-

table, access to protected members).

+ No additional indirection.

~ Inheritance approach (all methods of adaptee are inherited

automatically, only changes have to be implemented)

- Won't work when we want to adapt a class and all its subclasses

(liskov substitution!), because it is on a different branch of

subclasses.

Consequences: (Object Adapter)

+ Works with base Adaptees and all subclasses (allows liskov

substitution).

+ Adapter hides underlying type of Adaptee (breaks inheritance

hierarchy, composition over inheritance!).

~ Explicit implementation approach (no methods inherited

automatically, all needed methods have to be implemented

explicitly)

- Adds additional layer of indirection.

Goal: Adapter Pattern

5

Michael Krisper

Wrapper Façade
Encapsulate functions and data in a combined interface.

Goal: Wrapper Façade Pattern

6

Michael Krisper

Michael Krisper

Wrapper Façade

Context: Working with a complex structure having

many functions, maybe even with different

programming paradigms (e.g. object-oriented vs.

structured).

Problem:

• How to make it easier to use a complex system of

functions, or to use functions of different

programming paradigms in a more intuitive way?

Forces:

• Different programming paradigms have different

ways of decomposition, approaches, and calling

conventions.

• Developers are used to their own environments

and conventions.

• Developing heterogenous paradigms makes

programs more difficult to maintain.

• Concise and coherent code is more robust, easier

to learn and maintain.

• Changing dependent software is often not

possible (source code not available)

• Platform specific details should be hidden away.

Solution:

• Hide the complexities (implementation

details) of the larger system and

provide a simpler interface to the

client.

• Encapsulate no-OO API data &

functions within concise, robust,

portable, maintainable, cohesive OO

class interface.

Consequences:

+ Provides concise, cohesive and

robust higher-level object-oriented

programming interfaces.

+ Easier usability and maintainability.

- May diminish functionality and lose

benefits of underlying paradigm

- Performance degradation by adding

an additional layer of abstraction

Goal: Wrapper Façade Pattern

7

Michael Krisper

Decorator
Extend the functionality of an object, while maintaining the

same interface.

Goal: Describe Decorator Pattern

8

Michael Krisper

Michael Krisper

Decorator

Context: Functional extension of objects.

Problem: No arrangement last for long,

we need to support adding or extending

of functionalities.
There is nothing so stable as change – Bob Dylan

Forces:

• We want to add responsibilities to

individual objects dynamically and

transparently, without affecting other

objects.

• We want to be able to withdraw

responsibilities.

• The extension by subclassing is

impractical:

• large number of independent possible

extensions.

• hidden class definition or otherwise

unavailable for subclassing

Solution:

• Define a Decorator which forwards

requests to its Component object.

• The decorator may optionally perform

additional operations before and after

forwarding the request.

Consequences:

+ More flexibility by adding responsibilities

+ Flexibility responsibilities can be added

and removed also at runtime

+ Decorators also make it easy to add a

property twice

+ Avoids feature-laden classes high up in

the hierarchy

+ Avoids the class explosion issue

- Decorator and its component are not

identically

- Can be hard to learn and debug(lots of

little objects only different in the way of

their interconnection)

Goal: Describe Decorator Pattern

9

Michael Krisper

Proxy
Forward requests to a concrete subject.

Goal: Describe Proxy Pattern

10

Michael Krisper

Michael Krisper

Proxy

Context: Need for versatile references

to objects.

Problem: How to provide means for

access control for another object?

Forces:

• An object is in a different address

space (remote proxy).

• An expensive object needs to be

created on demand (virtual proxy).

• The access to the original object

must be supervised (access rights!

– protection proxy).

• A smart reference is needed as a

replacement for a bare pointer that

performs additional actions when an

object is accessed.

Solution:

• Maintain a reference that lets the proxy

access the real subject and provide

interface identical to Subject

• Control access to the real subject

(may also include creating and deleting)

and act like the real subject.

Consequences:

+ Introduces a level of indirection when

accessing an object (separation of

housekeeping and functionality)

+ Remote Proxy decouples client and

server

+ Virtual Proxy can perform hidden

optimizations

+ Caching Proxy could reuse subjects

+ Security Proxy can control access

- Overkill via sophisticated strategies

- Less efficiency due to indirection

Goal: Describe Proxy Pattern

11

Michael Krisper

Learning Goals for Today

• Understanding and describing some wrapper design patterns:
• ADAPTER

• WRAPPER FAÇADE

• DECORATOR

• PROXY

• Understanding and describing Architecture Patterns:
• LAYERS (RECAP)

• PIPES & FILTERS

• BROKER

• MASTER-SLAVE

• CLIENT-SERVER

• LEADER-FOLLOWER

• MODEL-VIEW-CONTROLLER

• MODEL-VIEW-PRESENTER

• MODEL-VIEW-VIEWMODEL

• PRESENTATION-ABSTRACTION-CONTROL

Learning Goals

12

Michael Krisper

Learning Goals for Today

• Understanding and describing some wrapper design patterns:
• ADAPTER

• WRAPPER FAÇADE

• DECORATOR

• PROXY

• Understanding and describing Architecture Patterns:
• LAYERS (RECAP)

• PIPES & FILTERS

• BROKER

• MASTER-SLAVE

• CLIENT-SERVER

• LEADER-FOLLOWER

• MODEL-VIEW-CONTROLLER

• MODEL-VIEW-PRESENTER

• MODEL-VIEW-VIEWMODEL

• PRESENTATION-ABSTRACTION-CONTROL

Learning Goals

13

Michael Krisper

Architectural Patterns14

• How are responsibilities distributed in a system?

• Who communicates with whom?

• Relations & Dependencies between Objects

Michael Krisper

Layers
Split your system into layers based on abstraction levels

(Revision) Goal: Describe Layers Pattern

15

Michael Krisper

Michael Krisper

Pipes & Filters
Form a sequence of processing steps using a common interface.

Goal: Describe Pipes & Filters Pattern

16

Michael Krisper

Michael Krisper

Pipes & Filters

Context: Processing of data streams.

Problem: How to can data streams be

decomposed into several processing

stages.

Forces:

• Exchanging or reordering of

processing steps shall be possible

(future system enhancements).

• Small processing steps are easier to

reuse than larger.

• Probably different sources of input

data exist (file, network, sensor,..)

• Results shall be storable in different

ways.

• Explicit storage of interim steps shall

be possible.

• Multiprocessing shall be enabled.

Solution:

• Divide System task into a sequence of

processing steps (dependent only on

output of predecessor and connected by the

dataflow)

• Define a data format to be passed along

each pipe.

• Implement each pipe connection either

push or pull

• Filter design and implementation

• Design Error handling (min. error

detection)

• Setup processing pipeline

Consequences:

+ Intermediate files possible

+ Flexible via filter exchange

+ Flexible via recombination

+ Efficient for parallel processing

- Sharing state infos is expensive

- Data transformation overhead

- Error handling is crucial

Goal: Describe Pipes & Filters Pattern

17

Michael Krisper

Broker
Manage dynamic communication between clients and

servers in distributed systems.

Goal: Describe Broker Pattern

18

Michael Krisper

Michael Krisper

Broker

Context: Distributed / heterogeneous

systems with independent

cooperating components.

Problem: You want to build complex

SW systems as a set of decoupled

and interoperating components

Forces:

• Remote method invocation shall

be supported

• The architecture shall support

location transparency

• The addition, exchange, or

removal of services shall be

supported dynamically

• System details shall be omitted for

developer

Solution:

• Define an object model, or use an existing

model (use e.g. CORBA, OLE/COM/.NET…)

• Decide upon component operability

• Specify broker API (client side and server side)

• Use proxy object to hide implementation details

• Design the broker component (protocol between

client & server-side proxies, between brokers,

consider failures in comp and communication)

Consequences:

+ Broker is responsible for locating a server

(location transparency)

+ Changeability & extensibility of components

(due proxies & bridges)

+ Broker hides OS& network details (portability)

+ Interoperability between different broker

+ Reusabilitiy of components

- Restricted efficiency (communication overhead)

- Lower fault tolerance (server/client may fail

independently)

- Hard to test & debug (many components

involved)

Goal: Describe Broker Pattern

19

Michael Krisper

Client-Server
Clients send requests to central server which answers with

responses.

Goal: Describe Client - Server Pattern

20

Server

Client

Client

Client

Michael Krisper

Client-Server

Context: Distributed application.

Problem: You want to cooperate

(share resources, content or service

function) with multiple distributed

clients.

Forces:

• Availability of services (resources,

functions,..) is limited, but required

by multiple requesters.

• Service might be provided by only

one dedicated provider

(centralized system).

• Simpler clients might be required

• Number of possible service-

requester might be unknown.

Solution:

• Service-Interface: Define a protocol for serving a

request/response communication.

• Server-Side Implementation: Implement a Listener

which waits for requests from potentially multiple

clients and individually answers with responses.

• Client-Side Implementation: Implement a Client

which sends requests and waits for responses.

Consequences:

+ Encourages Service-Oriented Architectures

+ Centralization of specific services

+ Services get available for many clients

+ Doesn’t need to know exact number of clients

+ Workload gets moved to server. Clients are free to

do something else

+ Exchangeability and extensibility

- Server could get overloaded

- Single-Point-Of-Failure, Denial-Of-Service Attacks

are possible

- Communication overhead

Goal: Describe Client - Server Pattern

21

Michael Krisper

Master-Slave
A master distributes work amongst some helpers.

Goal: Describe Master - Slave Pattern

22

Michael Krisper

Michael Krisper

Master - Slave

Context: Partitioning of work into

semantically-identical sub-tasks.

Problem: You want to solve instances of

the same problem, partition identical

work and separate concerns.

Forces:

• Processing of sub-tasks should not

depend on algorithms for partitioning

work and assembling the result

• Sub-tasks might need coordination

• Many instances of the same

problem must be solved

• Different algorithm implementation

may be required

• Multi-threaded applications may be

wanted

Solution:

• Introduce a coordination instance

between clients of the service and the

processing of individual sub-tasks

• The master component divides work into

equal sub-tasks, distributes these sub-tasks

to Slave components & combines results

(maintaining slaves)

• Provide all slaves with a common interface.

The clients will only communicate with the

Master

Consequences:

+ Exchangeability and extensibility

+ Separation of concerns

+ Fault tolerance – several replicated

implementations can detect and handle

failures

+ Efficiency (support of parallel computation)

- Not always feasible

- Partitioning & control can be tricky

Goal: Describe Master - Slave Pattern

23

Michael Krisper

Leader-Follower
Multiple executors take turns in processing tasks,

always switching the leader role.

24

Examples: ThreadPool, Background Workers

Michael Krisper

Michael Krisper

Model-View-Controller (MVC) /

Model-View-Presenter (MVP) /

Model-View-Viewmodel (MVVM)
Separate the responsibilities of visualizing, processing and data

management for GUI applications.

Goal: Describe MVC / MVVM Pattern

25

Processing

Visualization

Data

Model

View

Controller

Michael Krisper

Summary of Today

• Wrapper design patterns:
• ADAPTER

• WRAPPER FAÇADE

• DECORATOR

• PROXY

• Architecture Patterns:
• LAYERS (RECAP)

• PIPES & FILTERS

• BROKER

• CLIENT-SERVER

• MASTER-SLAVE

• LEADER/FOLLOWER

• MVC / MVP / MVVM / PAC

Learning Goals

26

