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Abstract

Active contribution to a movement is crucial for motor learning. Previously, we showed
that active participation is related to a suppression of mu and beta band activities over
sensorimotor areas. In the current analysis, we aim at differentiating active and passive
movements during robotic assisted gait training based on measures that quantify interac-
tions between brain areas. Due to high artifact contamination of the EEG during walking,
the data was pruned using independent component analysis (ICA). Single trial connectiv-
ity between brain sources was estimated using the ffDTF (full frequency directed transfer
function). Three frequency bands were used for classification: µ (7-12Hz), β (15-21Hz),
and a subject specific frequency band ranging from 24-40 Hz. Based on the connectivity
measures, we were able to separate active and passive movements with classification accu-
racies of 81.0% ± 6.7 on average. However a major challenge for the online application of
these methods during gait rehabilitation remains automatic artifact correction.

1 Introduction

Extensive training in gait rehabilitation after stroke may be provided by using a robotic gait
orthosis. Robotic rehabilitation requires little effort from the individual and can lead patients
to move passively. However active contribution to a movement, has been shown to be crucial
for motor learning [3].

Neural correlates of active participation during gait training have previously been shown by
our group. We showed significant differences between active and passive walking in EEG µ and
β sensorimotor rhythms over the foot area of the sensory cortex [6]. The Authors showed that
it is possible to distinguish between active and passive walking in single trials (mean accuracy:
68%) in 6 subjects using EEG band power features [5].

In the current manuscript, we show single trial connectivity analysis from the EEG recorded
during active and passive walking in a gait robot. The goal of this analysis is twofold: First, we
want to evaluate whether single trial connectivity measures allow to distinguish between active
and passive walking. Second, we want to investigate the cortical networks related to active
participation in gait training. This may help to better understand the underlying mechanisms
and the optimal activation patterns for gait recovery.
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Figure 1: Experimental setup. Walking in
the robotic gait orthosis. Speed (1.8-2.2 km/h)
and body weight support (∼ 30%) were ad-
justed for each participant.

Participant mean accuracy std
1 76.4 6.0
2 83.7 7.9
3 75.7 4.7
4 82.3 4.5
5 75.6 5.9
6 92.8 3.8
mean 81.0 6.7

Table 1: Mean classification accuracy
and standard deviation (std) for each
participant in %.

2 Methods

We recorded the electroencephalogram (EEG) from 120 sites from 6 healthy volunteers (24±
2 years, 5 male) during active and passive walking (4 runs of 6 min each) with a robotic gait
orthosis (Lokomat, Hocoma). In the active walking condition, participants were instructed to
walk independently in the gait robot at the speed of the treadmill supporting their own weight.
Passive walking demanded participants to let their legs be moved by the robot. Foot contact
was measured by electrical foot switches placed on the heels of both feet. Figure 1 summarizes
the experiments. For a more detailed description of the experiment see [6]

2.1 EEG Analysis

Preprocessing

Due to the high artifact contamination of the EEG during walking the data was pruned us-
ing Independent Component Analysis (ICA) prior to single trial analysis. Preprocessing for
ICA included filtering from 1 to 200 Hz, resampling at 500 Hz, and manual rejection of non-
stereotyped artifacts. Typical stereotyped artifacts (eye movements, muscle tension) were kept
in the analysis as they are separated by ICA into only a few independent components (ICs). In-
fomax ICA [4] decomposed the EEG into ICs, representing brain, muscle, and artifact sources.
The ICs were then categorized into cortical sources and artefact components considering scalp
map, power spectrum, and event-locked time course. This procedure left on average 14 cortical
sources per participant (range: 6-18 ICs). These cortical sources were then backprojected to
the EEG data. To minimize computational effort, only 62 channels equally distributed over
the scalp were selected for further analysis. PCA (Principal Component Analysis) was applied
to the remaining 62 channels to reduce the dimensions of the remaining EEG channels to the
number of backprojected ICs. The data was segmented from -0.5 to 2.5 seconds around the
right heelstrike (time between contralateral steps 1 s). Around 250 trials were used for each
class.
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Figure 2: Directed connectivity with CSPVARICA for participant 1 (left) and 6 (right). The
ffDTF between four components is plotted for active (blue) and passive (green) walking. The
x-axis corresponds to the frequencies from 0 to 40 Hz, the y-axes to the magnitude of the ffDTF
(in arbitrary units). Columns represent sources and rows sinks. The power spectral density of
each source is plotted along the diagonal.

Single trial connectivity analysis

For single trial connectivity analysis, the Python-based source connectivity toolbox SCoT [1]
was used. Single trial analysis is performed in two steps. In the first step independent compo-
nents are estimated with CSPVARICA [1]. The method transforms the EEG with Common
Spatial Patterns (CSP) to find components that maximize the variance between conditions.
Then a VAR model is fitted to the CSP components, and the residuals of the VAR model are
decomposed by ICA to estimate the final unmixing matrix U. In the second step single trial
component activations are obtained by multiplying the EEG with U. Then an autoregressive
model is fitted for these component activations. The ffDTF (full frequency directed transfer
function) [2] was calculated from the model to measure connectivity. This method estimates
the direction of causal influences between sources. The ffDTF was averaged in the frequency
bands µ (7-12Hz), β (15-21Hz) and a subject specific frequency band ranging from 24 to 40 Hz.
We have previously shown in [6] that these frequency bands account for differences between
active and passive walking. The number of components was four and model order was set to
100. This resulted in 48 features for classification. Classification was performed with linear dis-
criminant analysis. The whole procedure was applied in a 10 fold cross-validation to estimate
the performance. For a more detailed description of the method see [1].

3 Results

Connectivity measures allowed differentiation between active and passive movements with an
average classification accuracy over subjects of 81.0% ± 6.7. Classification accuracies for single
subjects are displayed in Table 1. Visual inspection revealed that connectivity magnitude in
classification relevant frequency bands µ and β was higher during passive compared to active
walking. Most participants had at least one contributing source in the central midline area and
in posterior areas. For the results of two exemplary subjects see Figure 2.
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4 Discussion

Our results show that it is possible to separate active and passive walking in single trial EEG
data based on connectivity measures. Classification accuracies were above chance in all subjects,
and were on average 10% higher compared to our previous results using band power features
[5]. However, it still has to be evaluated whether this improvement is due to the method used,
the features or to the pruning of the EEG with ICA prior to feature selection. Furthermore, a
major challenge for the online application of these methods during gait rehabilitation remains
automatic artifact correction.

From a neurophysiological perspective, the analysis revealed that connectivity magnitude
in µ and β bands between sensorimotor sources is higher during passive compared to active
walking. The magnitude of the ffDTF depends on spectral power, thus the results fit with
our previous findings showing a suppression of µ and β bands related to active participation.
Suppression of µ and β rhythms has previously been related to the activation of sensorimotor
areas. Thus, our results suggest that active walking increases the activation of sensorimotor
regions and reduces information flow between these areas. Further analysis should evaluate
in more detail the sources contributing to differences in connectivity over subjects. This may
reveal neural networks underlying active participation in gait training.
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