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Abstract 

 

Self-assembled monolayers (SAMs) are frequently used for interfacial dipole engineering in 

organic electronics (OE) and photovoltaics. This is mostly done by the attachment of dipolar 

tail groups onto the molecular backbone of the SAM precursors. The alternative concept of 

embedded dipoles involves the incorporation of polar group(s) into the backbone. This allows 

to decouple the tuning of the electrostatic properties of the SAM from the chemical identity of 

the SAM-ambient interface. Here we present design and synthesis of particularly promising 

SAM precursors utilizing this concept. These precursors feature the thiol docking group and a 

short heteroaromatic backbone, consisting of a non-polar phenyl ring and a polar pyrimidine 

group, embedded in two opposite orientations. Packing density, molecular orientation, structure 

and wetting properties of the SAMs on Au substrates are found to be nearly independent of 

their chemical structure, as shown by a variety of complementary experimental techniques. A 

further important property of the studied SAMs is their good electrical conductivity, enabling 

their application as electrode modifiers for low contact resistances in organic electronics 

devices. Of particular interest are also the electronic properties of the SAMs, which were 

monitored by Kelvin probe and high-resolution x-ray photoelectron spectroscopy 

measurements. To obtain a fundamental understanding of these properties at an atomistic level, 

the experiments are combined with state-of-the-art band structure calculations. These not only 

confirm the structural properties of the films but also explain, how the C1s core-level binding 

energies of the various atoms are controlled by their chemical environments in conjunction with 

the local distribution of the electrostatic potential within the monolayer.  
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1. Introduction 

Interfacial engineering in organic electronics is an important subject of current research.1-3 The 

most essential aspects within this topic are a) the optimization of the charge carrier injection 

barrier by minimizing the energetic gap between the electrode Fermi level and the transport 

levels of the organic semiconductor (OSC) and b) the surface-mediated growth of the active 

layer at the electrodes and in the channel. Both aspects can be addressed by modifying the 

electrodes or gate dielectric with self-assembled monolayers (SAMs),4-7 which are 2D 

polycrystalline films of semirigid molecules that are chemically bound to a substrate by suitable 

docking groups.8,9  

A particularly important advantage of using SAMs is that they allow the optimization of charge 

carrier injection barriers at the electrode/OSC interface via the adjustment of the electrode work 

function (WF). Typically, the WF of an electrode increases when perfluorinated molecules are 

chemisorbed, while it decreases for the corresponding non-fluorinated, H-terminated 

derivatives.10,11 An additional tuning of the WF can then be achieved by attachment of polar 

tail groups like −CN, −F, −CF3, −NH2, or −NO2 to the SAM backbone, which is probably the 

most frequently used approach in this regard.11-15 This strategy, however, has significant 

drawbacks, such as (i) a strong influence of the nature of the polar tail groups on OSC growth 

(vide supra) and (ii) the risk of a possible modification of the (chemical) structure of the tail-

group substituents as a consequence of the interaction with the eventually deposited OSC. These 

problems can be avoided by embedding the polar groups into the backbone of the SAM 

constituents. This permits an independent adjustment of the dipole moment and the interfacial 

chemistry at the SAM/OSC interface and prevents direct contact between the dipolar groups 

and the OSC. First examples of such SAMs comprised aliphatic backbones with embedded 

polar ester groups at varying orientations16,17 and the embedded dipole concept has recently 

also been used to explain the electronic properties of partially fluorinated aliphatic SAMs.18 As 

an alternative, pyrimidine groups have been embedded into an aromatic backbone.19 Both for 

aliphatic and aromatic SAMs, the inclusion of the embedded dipoles results in only minor 

changes of the resulting monolayer structure as compared to the parent, non-substituted 

films.16,17,19 The SAMs not only allow increasing or decreasing the substrate work function (for 

dipole-down and dipole-up orientations, respectively), but enable also a continuous tuning of 

the WF between the ultimate values of the single-component SAMs by combining up- and 

down-constituents in mixed monolayers,7,20-22 in analogy to what has been observed also for 

mixtures of fluorinated and non-fluorinated alkanethiolate SAMs.23,24 
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The initial design of the prototypical SAMs with embedded dipoles, however, disregarded an 

important aspect, namely the electrical resistance caused by the organic monolayer, which 

reduces the efficiency of charge carrier injection at electrode-SAM-OSC interfaces. This is, on 

the one hand, a consequence of the transport properties of aliphatic SAMs, which are inferior 

to their aromatic counterparts.25-27 On the other hand, the prototypical (first generation) 

aromatic SAMs with embedded dipoles tested in recent years relied on comparably long 

backbones consisting of three rings and a methylene linker connecting the backbone to the 

thiolate docking group (see Figure S1 in the Supporting Information).19 The latter has been 

introduced primarily to improve molecular packing and lateral order in the SAMs.28-30 

Significantly, both long backbones and methylene linkers are detrimental to charge transport 

through the SAMs, as the conductance of molecular monolayers typically decreases 

exponentially with film thickness,25-27,31 while the introduction of the methylene linker 

electronically decouples the metal substrate from the conjugated segment.32-34  

Bearing the above considerations in mind, we designed a set of molecules (second generation)  

that exploits the concept of embedded dipoles in a fashion much more suitable for applications 

in organic electronic devices (Figure 1). As polar element (yellow in Figure 1), a pyrimidine 

ring ("Pm") with a dipole moment of 2.3 Debye35 was used. It was built into a biaryl system in 

two different orientations. To make sure that in all cases the same tail group (green in Figure 1) 

is exposed at the SAM/OSC interface, a phenyl ring (“P”) was employed as second aryl 

element. As anchoring group, the thiol group (orange in Figure 1) is directly attached to the 

aromatic system in a way that no other heteroatoms are close to it, as it has been shown that the 

presence of heteroatoms, such as N or O, often hampers the formation of high quality SAMs.36-

38 As reference, 4-biphenyl thiol (PP), with a non-polar backbone, was used. In some sense, PP 

can be considered as "parent" molecule for PmP-up and PPm-down, where one of the phenyl 

rings is substituted by pyrimidine.  

We have shown recently that SAMs consisting of PmP-up and PPm-down molecules can reduce 

or increase, respectively, contact resistances in p- and n-type transistors comprising established 

organic semiconductors (pentacene and C60).39 In the same study we also extensively 

characterized the properties of the pentacene layers grown on top of the SAM-modified 

electrodes, showing that there is only little difference in their structure and morphology for 

different dipole orientations. In the present work, we focus on the characteristics of the SAMs 

themselves, describing the synthesis of the precursors and studying their structural properties 

by ellipsometry, infrared reflection-absorption spectroscopy (IRRAS), scanning-tunneling 
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microscopy (STM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy, and 

contact angle goniometry. Moreover, x-ray photoelectron spectroscopy (XPS) reveals the 

integrity of the SAMs. In conjunction with dispersion-corrected density-functional theory 

(DFT) based simulations, it also provides insight into the electronic structure within the SAMs, 

correlating core-level binding energies with local shifts in the local electrostatic potential. The 

latter also gives rise to SAM-induced work function changes, which are quantified by the 

Kelvin Probe (KP) technique. Finally, we briefly review the charge-transport characteristics 

through the SAMs and their application as electrode modifiers in p- and n-type transistors. 

 

  

Figure 1: SAM-forming molecules used in this project along with their acronyms (P = phenyl, 

Pm = pyrimidine, up/down = direction of dipole moment (red arrows) with respect to the 

anchoring group). The structure of this series was optimized for the application of the 

corresponding SAMs in organic electronics and photovoltaics. Chemically similar parts of the 

molecular building blocks are marked by different colors (see text for details), with mixed 

colors reflecting the possible influence of the adjacent nitrogen atoms at the respective interface 

upon monomolecular assembly. Note that common acronyms for PP are also BPT 

(biphenylthiol) or BP0 and that, consequently, BP0-up and BP0-down has been used by us 

before for PmP-up and PPm-down.39 We, however, feel that the acronyms used in this work 

better reflect the molecular identity of the system and are also more easily adapted to more 

complex molecular structures (containing, e.g., multiple pyrimidine units).  

 

 

 

2. Experimental 

Chemicals and Synthesis Procedure: Solvents and chemicals necessary for the synthesis of 

the SAM precursors (Figure 1) were purchased from different vendors (see the Supporting 
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Information) and used as received. PP was synthesized according to a literature procedure.40 To 

synthesize PPm-down, a triisopropylsilylsulfide group was introduced to 5-bromo-2-phenyl-

pyrimidine by a cross coupling reaction with triisopropylsilythiol, Pd(dppf)Cl2 as catalyst and 

LiHMDS as base. By reaction with HCl in MeOH, the TIPS-group was cleaved to release the 

free thiol. For the synthesis of PmP-up, 4-bromophenyl(triisopropylsilyl)sulfide was first 

converted to the corresponding Grignard reagent and coupled with 2-chloropyrimidine 

catalyzed by Pd(dppf)Cl2 followed by deprotection with HCl in MeOH. A detailed description 

of the synthesis procedures and the characterization data for the intermediates and final products 

are given in the Supporting Information.  

X-ray Diffraction Analysis: The bulk structures of the single crystals of PPm-down and PmP-

up were determined by X-ray diffraction. The data were collected on a STOE IPDS II two-

circle diffractometer with a Genix Microfocus tube with mirror optics using Mo K radiation 

( = 0.71073 Å). The data were scaled using the frame-scaling procedure in the X-AREA 

program system.41 The structures were solved by direct methods using the program SHELXS42 

and refined against F2 with full-matrix least-squares techniques again employing SHELXL.42 

The CCDC deposition numbers are CCDC-1865408 (PmP-up) and CCDC-1865409 (PPm-

down). PmP-up: The H atom bonded to S is disordered over two equally occupied positions. 

Nevertheless, it was freely refined. PPm-down: The coordinates of the H-atom bonded to S 

were refined. Its U-value was set to 1.5Ueq(S). 

SAM Preparation: The PPm-down, PmP-up, and PP SAMs were prepared on gold substrates. 

The substrates were purchased from Georg Albert PVD- Beschichtungen (Silz, Germany). 

They were prepared by thermal evaporation of 30 nm of gold (99.99% purity) onto polished 

single-crystal silicon (100) wafers (Silicon Sense) that had been precoated with a 9 nm titanium 

adhesion layer. The films were polycrystalline, exposing mostly (111) orientated surfaces of 

individual crystallites. The RMS value for these substrates was estimated as 0.8 nm (5  5 µm2 

scan area); in our experience, this value does not change noticeably upon the SAM formation.  

Substrates for scanning tunneling microscopy (STM) measurements were purchased from 

Phasis (Geneva) or prepared by e-beam evaporation of gold (200 nm) onto high quality mica at 

400 °C in ultra-high vacuum (UHV). Before evaporation the mica substrates were annealed for 

3 h at 400 °C. First 150 nm of gold were deposited at a high evaporation rate (30-60 Å/s) 

followed by 50 nm at a lower rate (0.5 Å/s). A shutter was used to protect the substrate while 

adjusting the evaporation rate. After evaporation the substrates were annealed for 1 h at 400 °C. 

The SAMs were formed by immersion of the substrates into solutions of the SAM precursors 
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in either tetrahydrofuran (THF; Sigma-Aldrich) or ethanol (Sigma-Aldrich) for 24 h (also for a 

longer time, in the case of the STM experiments; see section 3.5) under nitrogen and at room 

temperature. After immersion, the samples were carefully rinsed with pure solvent and dried 

under a flow of N2. The SAMs prepared from both solvents did not show any significant 

differences, with only one exception (see section 3.4); therefore, mostly the data for the THF 

preparation are shown). Note that THF provides a better solubility of the thiols compared to 

ethanol and also, in the given case, a better reproducibility of the monolayers. However, in our 

previous study, dealing with the device applications of the PPm-down and PmP-up SAMs, we 

used the ethanol preparation, because of specific technical reasons.39   

In addition, reference SAMs of hexadecanethiolate (HDT) and perdeuterated dodecanethiolate 

on the same Au(111) substrates were prepared according to the literature procedures.43,44 HDT 

was purchased from Sigma-Aldrich; the perdeuterated dodecanethiol was synthesized from the 

respective bromoalkane using standard procedures. 

Characterization: General Comments: The SAMs were experimentally characterized by 

ellipsometry, contact angle goniometry, STM, IRRAS, synchrotron-based XPS, NEXAFS 

spectroscopy, KP measurements, and electric conductance measurements. In all cases, the 

characterization was performed at room temperature. XPS and NEXAFS spectroscopy 

experiments were conducted under UHV conditions, with special care taken to minimize 

potential modification of the SAMs induced by the primary X-rays.45-47 The SAMs were also 

characterized computationally by means of quantum mechanical simulations to analyze the 

experimental data and to support their interpretation. Note that a limited characterization of the 

PPm-down and PmP-up SAMs prepared from EtOH on "technical" gold substrates also used 

for device fabrication (for details see ref 39) has already been performed within the previous 

device study (contact angle goniometry, work function, and electric conductance).39 

Ellipsometry: Ellipsometry measurements on the SAMs were carried out with a Sentech SE 

400 ellipsometer equipped with a He/Ne laser (wavelength 632.8 nm, beam diameter 1-2 mm). 

The angle of incidence was 70° with respect to the sample surface normal. The complex 

refractive indices of the substrates, necessary for the data evaluation, were measured separately 

after a hydrogen plasma treatment for 2 min.48 For the refractive indices of the monolayers, the 

extinction coefficients were assumed to be zero, while the real part was assumed to be 1.55, a 

value that, according to our experience, is well applicable in the case of mainly aromatic 

molecules. 

Contact Angle Goniometry: Advancing and receding contact angles of millipore water were 
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measured on freshly prepared samples with a custom-made, computer-controlled goniometer. 

The measurements were performed under ambient conditions with the needle tip in contact with 

the drop. At least three measurements at different locations on each sample were made. The 

averaged values are reported. Deviations from the average were less than ±2°. 

IRRAS: All IR spectra were obtained using a Thermo Nicolet 6700 Fourier transform IR 

spectrometer with a narrow-band mercury cadmium telluride semiconductor detector at a 

resolution of 4 cm−1. The optical path was purged with dried and CO2-free air during the 

measurement. Neat substances were measured using a single-reflection diamond attenuated 

total reflection unit and the infrared reflection absorption spectra of the SAMs were recorded 

at an angle of 80° relative to the sample surface normal with p-polarized radiation against a 

reference SAM of perdeuterated dodecanethiolate on Au. 

IR spectra of isolated molecules were calculated using density functional theory (Gaussian 03 

program package49 with the BP86 functional50,51 and the SVP basis set52), helping to assign the 

vibrational modes and to identify the directions of their transition dipole moments (TDMs). 

Spectra were not scaled.  

STM: A Bruker Multimode 8 Nanoscope with a MultiMode V SPM Control Station was used 

for STM experiments. A low-current STM Converter (Model MMSTMLCE) allowed carrying 

out measurements in the pA regime. Therefore, a usual measurement current was 5-50 pA at a 

sample bias of about 200 mV. The scanner had a maximum range of 1.4 µm  1.4 µm. Probes 

were manufactured by cutting Pt-Ir (80:20) wires with a diameter of 0.25 mm. The tip quality 

was assessed by measuring highly oriented pyrolytic graphite (HOPG). Only monolayers 

deposited onto gold on mica substrates (vide infra) were measured.  

XPS: XPS measurements were performed at the HE-SGM beamline (bending magnet) of the 

synchrotron storage ring BESSY II in Berlin, Germany, using a custom-made experimental 

station.53 Primary photon energies (PE) of 350 eV and 580 eV were used. The spectra 

acquisition was carried out in normal emission geometry with a Scienta R3000 electron energy 

analyzer. The energy resolution was 0.3 eV and 0.6 eV at PEs of 350 eV and 580 eV, 

respectively.  

The binding energy (BE) scale of the spectra was referenced to the Au 4f7/2 emission at 84.0 

eV.54 When necessary, the spectra were fitted by symmetric Voigt functions and either a linear 

or Shirley-type background. To fit the S 2p3/2,1/2 doublets, we used two peaks with the same full 
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width at half-maximum (fwhm), a standard54 spin-orbit splitting of ~1.2 eV (verified by a fit), 

and a branching ratio of 2 (S 2p3/2/S 2p1/2).  

The effective thicknesses of the SAMs and their packing densities were calculated using 

standard procedures,43,55 based on the C1s/Au4f and S2p/Au4f intensity ratios, respectively. For 

the thickness evaluation, a standard expression for the attenuation of the photoemission signal 

was assumed56 and the literature values for attenuation lengths, relying on the measurements of 

alkanethiolate SAMs, were used, viz. 11.5 and 15.75 Å for kinetic energies of 295 and 490 eV, 

respectively.57 The spectrometer-specific coefficients were determined by using the PP SAM 

as a direct reference, relying on the well-known thickness of this monolayer (1.090.02 nm)44. 

This SAM also served as a reference for the evaluation of packing densities, relying on the 

packing density (4.631014 molecules/cm2) corresponding to the 3  3 molecular lattice, 

which is the dominant structural phase of the PP SAMs formed after long immersion time.58,59 

This value was additionally verified by referencing the PP SAM to the even better defined HDT 

monolayer on Au(111), also having an overall packing density of 4.631014 molecules/cm2.60 

The packing density of the PP SAM was found to be nearly identical to that of HDT, being only 

slightly (~4%) lower, which is presumably related to the specific morphology of the PP 

monolayer (small domains and a certain polymorphism).59 

NEXAFS Spectroscopy: The NEXAFS spectra were collected at the same beamline as the 

XPS data. They were measured at the carbon and nitrogen K-edges in the partial electron yield 

(PEY) mode with retarding voltages of −150 V and −300 V, respectively. Linearly polarized 

synchrotron light with a polarization factor of ~89 % was used as the primary X-ray source. 

The incidence angle of the X-rays was varied between the normal (90°) and grazing (20°) 

incidence geometry to monitor the linear dichroism reflecting the  molecular orientation in the 

SAMs.61 The energy resolution was ~0.3 eV at the C K-edge and ~0.45 eV at the N K-edge. 

The PE scale was referenced to the pronounced π* resonance of HOPG at 285.38 eV.62 The 

spectra were corrected for the PE dependence of the incident photon flux and reduced to the 

standard form with zero intensity in the pre-edge region and the unity jump in the far post-edge 

region.  

KP Measurements: Work function measurements were carried out using a UHV Kelvin Probe 

2001 system (KP technology Ltd., UK). The pressure in the UHV chamber was ~10-9 mbar. As 

reference, we used a HDT SAM with the work function value set to 4.3 eV according to 

literature.17 The latter value was additionally verified by its referencing to the work function of 

freshly sputtered gold set to 5.2 eV.63 
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Electrical Conductance Measurements: The measurements were performed with a custom-

made two-terminal tunneling junction setup, based on the Keithley 2635A source meter.64 The 

gold substrate and a sharp tip of eutectic GaIn (EGaIn)65 served as bottom and top electrodes.65 

Tunneling junctions were formed by contacting grounded SAM/Au samples with the EGaIn 

tips and applying a potential. The voltage was varied between −0.6 and +0.6 V in steps of 0.05 

V. At least 10 I-V curves measured at several different places were recorded for each sample; 

average values were calculated.  

Quantum Mechanical Simulations: The computational study was performed using the FHI-

aims code66 employing the PBE functional.67 To account for long-range van der Waals 

interactions, we employed the surface version68 of the Tkatchenko-Scheffler dispersion 

corrections69. The system was modeled using periodic boundary conditions and the repeated 

slab approach. The metallic substrate was described with five Au layers, holding the three 

bottom ones fixed during all calculations and turning off the dispersion corrections between the 

Au atoms. Two molecules arranged in a herringbone fashion were put in a (3√3)rect unit cell, 

whose dimensions in the x and y directions were defined according to the calculated Au lattice 

constant and held fixed in all calculations. The systems were optimized using the FHI-aims 

default “tight” setting and a 951 Γ centered k-points grid. The total energy criterion for the 

self-consistency cycle was set to 10-6 eV and geometry optimizations were continued until the 

maximum residual force component per atom was below 0.01 eV/Å.  

The C 1s XP spectra were simulated within the initial state approach, to avoid artifacts arising 

from combining periodic boundary conditions and explicit excitations in each unit cell.70 The 

spectra were modeled following the procedure described in ref 70 using an image potential 

model to account for the screening due to the highly polarizable metal substrate and weighting 

the contribution of every atom to account for the finite escape depth of the photoelectrons. 

Further information regarding the initial geometry, the numerical settings and the simulation of 

the XP spectra can be found in the Supporting Information. 

 

3. Results and Discussion 

3.1. Synthesis  

As mentioned in section 2, the new pyrimidine-containing molecules were obtained via 

palladium-catalyzed cross-coupling reactions from literature-known starting materials (Scheme 
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1).71,72 The use of the triisopropylsilyl (TIPS) moiety as protective group for the sulfur atoms 

was a key to this procedure, as this group is compatible with the Pd chemistry.72,73  

It is worth mentioning that the TIPS derivatives of thiophenols are, in contrast to aliphatic TIPS-

protected thiols, not very stable against the typical conditions of column chromatography or 

gradient sublimation. Therefore, the intermediates 2 and 4 were not isolated, but the crude 

products were directly deprotected following a literature known procedure.19 The resulting 

thiols (PPm-down and PmP-up) are very prone to oxidation during the typical work-up 

procedures, resulting in only moderate yields. 

3

PPm-down1

4

2

PmP-up

LiHMDS

TIPSSH
1. HCl, 

    MeOH

2. Na
3
citrate

Pd(dppf)Cl
2

Pd(dppf)Cl
2

1. HCl, 

    MeOH

2. Na
3
citrate

 

Scheme 1: Synthesis of dipolar SAM precursors 2-phenylpyrimidine-5-thiol (PPm-down) and 

2-(4-mercaptophenyl)pyrimidine (PmP-up).  

 

3.2. X-ray diffraction analysis 

In spite of the proneness of PPm-down and PmP-up to oxidation, it was nevertheless possible 

to obtain single crystals of both compounds and to determine the respective bulk structure by 

X-ray diffraction (see the Supporting Information, in particular Figures S9 and S11). Both 

structures have two features in common, viz. an antiparallel arrangement of the molecules 

compensating the molecular dipole moments and a close-to-coplanar arrangement of the 

aromatic rings within individual molecules. While for PmP-up the torsion is less than 1°, for 

PPm-down, an angle of about 17° could be determined. This is presumably due to sterical 

interactions and the specific packing motif mentioned above. The frequently observed 

coplanarity of 2-phenylpyrimidines74 provides a good electronic coupling between the π-

systems of individual rings, which is expected to be advantageous for the electric conductivity 

in the respective SAMs, provided that the bulk arrangement is mimicked in the monolayers 

(apart from the antiparallel arrangement not observed in the monolayers; see below). 
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In spite of the above similarities, there are certain differences in the packing of the molecules 

(see the Supporting Information), presumably because in the case of PPm-down an interaction 

between the π-system of the phenyl ring and the thiol proton of a neighboring molecule occurs, 

resulting in the formation of distinguished pairs. For PmP-up, this interaction would need to 

occur with the pyrimidine ring, which has a lower electron density. 

Note that although the X-ray diffraction analysis of the single crystals provides important 

reference data for the SAMs, such as a close-to-coplanar orientation of the aromatic rings within 

individual molecules, the antiparallel molecular arrangement observed in the crystals does not 

occur in the SAMs. There, the molecules are bonded by the anchoring group (thiolate in the 

present case) to the substrate and are, thus, arranged in a parallel fashion. 

 

3.3. Ellipsometry 

The ellipsometric thicknesses of the PP, PPm-down, and PmP-up SAMs were estimated as 

1.11±0.02 nm, 0.93±0.02 nm, and 1.10±0.03 nm, respectively. As all the molecules mentioned 

above have a similar length of ~1.0 nm and the length of S−Au bond is estimated as 0.24 nm,75,76 

it can be assumed that all three thiols form dense monolayers with similar packing densities, 

even though the PPm-down SAM might be not as closely packed as the two other monolayers. 

A simple comparison of the derived layer thickness to the sum of the molecular length and the 

length of the S−Au bond permits a rough estimation of the molecular tilt angles () relative to 

the surface normal, which amount to ~26° (PP), ~41° (PPm-down), and ~26° (PmP-up).  

 

3.4. Wetting Properties 

The wetting properties of the PmP-up, PPm-down and PP SAMs are important in the context 

of OSC growth on SAM-modified electrodes39 and as a fingerprint of the decoupling of the 

SAM-OSC (SAM/ambient) interface and the dipole engineering.  

Advancing (adv) and receding (rec) water contact angles (WCA) for the PmP-up, PPm-down, 

and PP SAMs prepared from THF and ethanol solutions are presented in Figures 2a and 2b, 

respectively. For the THF preparation, both adv and rec show similar values for the different 

monolayers, verifying the general notion of a decoupling the SAM-OSC (SAM/ambient) 

interface and the dipole engineering. There is, however, a weak, systematic dependence of 

WCA on the molecular dipole moment, which means that the influence of the molecular dipole 

cannot be completely neglected within the given two-rings molecular architecture. Note that, 
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generally, the relation between molecular dipole and surface energy represents an interesting 

issue (see e.g. ref 15). 

For the ethanol preparation, adv and rec are only similar for the PPm-down and PP SAMs 

(showing also a good correlation with the WCA values for the THF case), whereas the values 

for the PmP-up monolayers are noticeably lower, which agrees with the previous measurement 

performed in context of device applications of these SAMs and is mostly related to the polar 

component of the surface energy.39 The reasons for this behavior are unclear at the moment, 

since we could not observe any other distinct differences between the films prepared from THF 

and ethanol.  

Note that the WCA values for the reference PP SAMs are higher than those published in 

literature (adv and rec, viz. 73° and 69°),40 indicative of the very high quality of our films.  
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Figure 2. Advancing (red circles) and receding (blue squares) water contact angles for the PmP-

up ("up"), PPm-down ("down") and PP SAMs prepared from THF (a) and ethanol (b). 

3.5. STM 

Molecular packings in the PP, PPm-down, and PmP-up SAMs were characterized by STM. 

Representative large scale and high resolution STM images of these monolayers are shown in 

Figure 3. For the PmP-up SAM, well-ordered structures could be obtained in a straightforward 

manner after an immersion time of 24 h. The domains have a size of about 20 nm and expose 

the well-known (√3√3)R30° superstructure corresponding to a packing density of 4.631014 

molecules/cm2. The situation was more complex for the PPm-down monolayers, for which 

domains were only observed after immersion times of at least seven days. The domains with a 

size of about 4-5 nm were still quite disordered after this time, consistent with the lower 

apparent film thickness determined in the ellipsometry experiments. When the immersion time 

was prolonged to twelve days, the average domain size increased to 8 nm and the order within 

the domains improved. A (√3√3)R30° unit cell could be observed.  
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Figure 3. Large scale (A, B, C) and high magnification (a, b, c) STM images of the dominant 

(√3√3)R30° phase in the PmP-up (A, a), PP (B, b) and PPm-down (C, c; after 8 days of 

immersion) SAMs along with a scheme of the respective molecular arrangement (D; for the 

sketch we arranged the sulfur on top of a three-fold hollow side). In panels a, b, and c the unit 

cell and the 〈𝟏𝟏𝟐̅〉 direction (white arrows) are marked. Parameters: (A) 1.0 pA, 200 mV; (a) 

12.0 pA, 220 mV; (B) 1.5 pA, 200 mV; (b) 20.0 pA, 60 mV; (C) 5.0 pA, 200 mV; (c) 40.0 pA, 

200 mV. 

 

Note that the PmP-up, PPm-down, and PP SAMs do not induce pronounced etch pits on 

Au(111) as typical for some thiol-based monolayers (see e.g. ref 77) but rather form Au islands 

as seen in the large scale images in Figure 3. Such a behavior is frequently observed if the 

anchoring S atom is directly attached to the aromatic system (see e.g. ref 59). 

Note also that the (√3√3)R30° structure was recorded as the dominant structural phase for the 

reference PP SAMs as well but it was difficult to obtain well-resolved images of this 

arrangement. In accordance with literature data,59 this issue is presumably related to the small 

size of the crystalline domains and some polymorphism. This can generally be explained by a 

mismatch of the optimal molecular packing and the underlying (111) lattice of the gold 

substrate;78 in particular, the preferred packing of bulk biphenyl deviates slightly from a 

hexagonal arrangement.79  

In addition to the (√3√3)R30° structure, a (22) phase was also observed in all three 

monolayers. Such a structure has, in fact, been reported previously for the PP SAMs prepared 
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on Au(111) by vapor deposition.80 This phase is characterized by a ~25% lower packing density 

compared to the (√3√3)R30° structure. In view of the XPS data (vide infra) it is, however, 

believed to be the minority phase and the (√3√3)R30° structure is considered as reference 

structure throughout the entire paper. In passing we note that the STM data do not provide 

information on the relative orientation of neighboring molecules. I.e., it cannot be deduced 

whether the molecules pack in a cofacial or in a herringbone structure, where the latter, due to 

the presence of two symmetry-inequivalent molecules, would require a larger unit cell than 

(√3√3)R30°. This issue will be addressed later, when modeling the structural properties of the 

investigated SAMs. 

 

3.6. XPS 

S 2p, N 1s, and C 1s XP spectra of the PmP-up, PPm-down, and PP SAMs are presented in 

Figure 4; the complementary Au 4f and O 1s spectra are compiled in Figure S12 in the 

Supporting Information.  

The S 2p XP spectra of all three films in Figure 4a exhibit a single S 2p3/2,1/2 doublet at ~162.0 

eV (S 2p3/2). The BE is representative of the thiolate species bound to noble metal substrates,46 

indicative of the distinct SAM character of all the studied films. The intensity of the doublet is 

similar over the series, being only slightly weaker for PmP-up/Au. This suggests a similar 

packing density of all three SAMs. This conclusion is supported by the similar intensities of the 

Au 4f signal, determined via the attenuation by the SAM overlayer (Figure S12a in the 

Supporting Information). 

The N 1s XP spectra of PmP-up/Au and PPm-down/Au are presented in Figure 4b. These 

spectra exhibit a single N 1s peak assigned to the nitrogen atoms in the pyrimidine ring of the 

SAM precursors. Consequently, the spectrum of PP/Au does not show any N 1s signal, in 

accordance with the chemical composition of the SAM. The BEs of the N 1s peak are, however, 

distinctly different for the PPm-down and PmP-up SAMs, being 398.05 eV and 398.65 eV, 

respectively. This difference cannot stem exclusively from the different screening of the 

photoemission hole by the substrate, resulting in a slightly lower N 1s BE value for PPm-

down/Au, since the respective effect is not that strong, and can be estimated as 0.05-0.1 eV in 

the given case.81 Rather, it is a consequence of electrostatically induced XPS shifts,16,17,70,82,83 

as shall be discussed in section 3.10. 
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Figure 4. S 2p (a), N 1s (b), and C 1s (c, d) XP spectra of the PmP-up, PPm-down, and PP 

SAMs. The spectra were acquired at photon energies of 350 eV (a, c) and 580 eV (b, d). The 

vertical dashed lines are guides to the eye. A feature with a strongly photon-energy dependent 

intensity between the two major peaks in the spectrum of PmP-up is marked by *. 

 

The C 1s XP spectra of PmP-up/Au and PPm-down/Au are presented in Figures 4c and 4d. 

They are distinctly different and cannot be explained by a mere superposition of a pyrimidine 

spectrum and a phenylene spectrum, as both SAMs consist of these two rings. Rather, the 

spectra are again strongly influenced by electrostatic effects, associated with the periodic 

arrangement of the dipole moments of the embedded pyrimidine moieties.17,70,82,83 These effects 

will be discussed in detail below, when analyzing the electronic structure of the SAMs (section 

3.10), relying on a comparison of our experiments with DFT simulations and on an analysis of 

literature data on related compounds. They are also mostly responsible for the larger apparent 

width of the XPS features in PmP-up. Beyond that, a direct comparison between calculated and 

measured spectra for both systems (see the Supporting Information) yields a minor additional 

broadening in PmP-up, hinting towards a slightly reduced order in these films. 
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Along with the qualitative analysis of the XPS data, their quantitative evaluation was performed 

(see section 2 for details), yielding the same packing density of ca. 4.51014 molecules/cm2 for 

both monolayers together with effective thicknesses of 0.93±0.05 nm and 1.00±0.05 nm for the 

PPm-down and PmP-up SAMs, respectively. Significantly, the values for the PPm-down and 

PmP-up SAMs are close to (albeit slightly lower than) those of PP/Au (1.09 nm and 4.61014 

molecules/cm2, corresponding to the (√3√3)R30° structure; see section 2). This suggests a 

similar molecular packing with some disorder due to the presence of the dipolar pyrimidine 

groups (or the occurrence of (22) structures as a minority phase, as discussed in section 3.5).  

 

3.7. IRRAS 

IRRAS offers a means to characterize the molecular identity as well as the orientation of surface 

bound species. In Figure 5, the IR spectra of the bulk PP, PPm-down and PmP-up materials as 

well as the IRRA spectra of the corresponding SAMs are displayed, along with the results of 

DFT calculations on isolated molecules. 

In Table 1 the most prominent vibrational modes for the PPm-down and PmP-up monolayers 

are compiled and assigned, based on the DFT calculations. Additionally, the TDMs of these 

modes with respect to the molecular backbone and the molecular plane (assuming a close-to-

planar conformation) are given as “||” (parallel), “⊥” (perpendicular, in plane), and “oop” 

(perpendicular, out of plane). From Figure 5 and Table 1 it is evident that in the IRRA spectra 

those bands are attenuated whose TDMs are perpendicular to the molecular axes, while the 

other bands stay intense. According to the surface selection rules for metal substrates,84 this 

indicates an almost upright molecular orientation in all studied SAMs. Apart from this 

qualitative conclusion, the tilt angle β (deviation of the direction of the molecular backbone 

from the surface normal; see Figure 6) for the PmP-up and PPm-down molecules on the gold 

substrate were estimated using the method established by Parikh and Allara.85 This method 

compares the relative intensities of three IR bands (each with an independent TDM) from the 

IR spectra of the SAM and the neat substance. For the PmP-up and PPm-down monolayers the 

intensities of bands 2 (oop), 7 (||) and 8 (⊥) were compared. This yields tilt angles of 24° ± 11° 

and 14° ± 10°, respectively. Note that the given approach in principle allows also evaluating 

the twist angle γ (rotation around the molecular axis; see Figure 6) but the low intensities of the 

⊥ and oop bands in the IRRA spectra cause very large error bars for this parameter, so that we 

refrain from presenting the respective results. Note also that the low intensities of these bands 
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prevent the evaluation of the tilt and twist angles for PP. Complementary data on molecular 

orientation were obtained using NEXAFS spectroscopy (vide infra). 

 

Figure 5. IRRA spectra of PP (a), PmP-up (b), and PPm-down (c) SAMs (upper curves) along 

with the IR spectra of the neat substances (middle curves) and the DFT calculated spectra 

(bottom curves). Absorbance scale bars are given for the experimental spectra while the 

calculated spectra are displayed in arbitrary units. The modes, which were used for the 

calculation of the tilt and twist angles, are labeled as “||”, “⊥” and “oop”. Note that the selected 

“⊥” mode, which only has reasonable intensity for the PmP-up and PPm-down case, is partly 

merged with a “||” mode appearing at a higher wavenumber.  

Table 1. Positions (given in cm-1) of the most important vibrational modes in the IR spectra of 

the PPm-down and PmP-up molecules and corresponding SAMs, together with the respective 

theoretical values (DFT). The assignment of the vibrational modes was carried out on the basis 

of the DFT calculations, which also provided the orientations of the respective TDMs. 

    PPm-down   PmP-up  

No. Modea,b) TDMc) DFT Neat d) SAMd) DFT Neat d) SAMd) 

1 γ CH ring twist oop 696 695 s 688 w    

2 γ CH ring twist oop 749 747 s 741 w 794 789 s 790 w 

3 ν CC, δ NCN ||    979 1014 m 1012 w 

4 δ CH ||    1148 1179 m 1175 vw 

5 ν CC, δ NCN ||    1321 1322 w 1324 w 

6 ν CC CN, δ CH ⊥ 1386 1373 m     

7 ν CN(s) || 1418 1424 vs 1424 vs 1412 1410 vs 1422 vs 

8 ν CN(as) ⊥ 1512 1526 m 1511 w 1542 1544 m 1544 w 

9 δ CH, ν CN || 1565 1558 m 1546 m 1578 1567 s 1572 m 

10 ν SH  2604 2535 m  2617    2578 vw  

a) Due to the differences in the molecular structure of PPm-down and PmP-up, the equivalents of some strong bands in the spectrum of one of the molecules have 

very low intensities in the spectrum of the other molecule and can become almost invisible. Where this applies, we refrain from displaying their wavenumbers;   b) 

ν: stretch mode, δ: in plane bending mode, γ: out of plane bending mode, s: symmetric, as: asymmetric; c) ||: parallel to molecular backbone, ⊥: perpendicular to 

main molecular backbone and in plane of the aromatic ring, oop: perpendicular to the aromatic plane; d) vs: very strong, s: strong, m: medium, w: weak, vw: very 

weak.  
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Figure 6. Exemplary illustration of PmP-up in a coordinate system along with   (tilt angle of 

the main molecular axis with respect to the surface normal),  (molecular twist angle), and  

(tilt angle of the * orbitals: see section 3.8). Both aromatic rings are considered to be coplanar 

consistent with the results of the simulations (see below) and X-ray diffraction analysis for the 

single crystals (see section 3.2). The twist angle is defined such that it is zero when the tilt 

occurs perpendicular to the molecular plane. The transition dipole moment of the 1s-* 

resonance lies then in the plane spanned by the z- and the main molecular axis.  

3.8. NEXAFS Spectroscopy 

C and N K-edge NEXAFS data for the PmP-up and PPm-down SAMs are presented in Figures 

7 and 8, respectively; the reference data for PP/Au are compiled in Figure S13 in the Supporting 

Information. In Figures 7 and 8 two kinds of spectra are depicted. First, there are spectra 

acquired at an X-ray incidence angle of 55° (magic angle), which are representative of the 

electronic structure of the films (unoccupied molecular orbitals) and are not affected by 

orientational effects.61 Second, there are curves corresponding to the difference between the 

spectra collected under the normal (90°) and grazing (20°) incidence geometry. These curves 

are useful fingerprints of orientational order and molecular orientation,61 showing the extent of 

the resonance intensity change upon variation of the angle between the electric field vector of 

the primary X-ray beam and the TDMs of the relevant molecular orbitals. 
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Figure 7. C K-edge NEXAFS spectra of the PmP-up and PPm-down SAMs acquired at an X-

ray incidence angle of 55° (black lines), along with the respective difference between the 

spectra collected under the normal (90°) and grazing (20°) incidence geometry (gray lines). 

Individual absorption resonances are marked by numbers (see text for the assignments). The 

horizontal dashed lines correspond to zero. 

 

Let us first consider the 55° spectra, starting with the C K-edge ones. Within the generally 

acceptable building block scheme in X-ray absorption spectroscopy,61 the spectra of PmP-

up/Au and PPm-down/Au can be understood as superpositions of the component spectra of 

phenyl and pyrimidine rings. Generally, the spectrum of phenyl and oligophenyl SAMs is 

dominated by the strong 
 resonance at ~285.0 eV (1), accompanied by the respective 


 peak (2) at ~288.8 eV and several broader * resonances (6-8) at higher excitation energies 

(see Figure S13 in the Supporting Information).44,61,86,87 In addition, in oligophenyl SAMs a 

R/C-S* resonance (3) at ~287.0 eV is frequently observed.44 The spectrum of pyrimidine is 

dominated by a complex feature, with maxima at 284.7-285.1 eV (close to 1; low intensity), 

285.4 eV (4; high intensity), and 285.86 eV (5; high intensity), containing contributions from 

several  resonances.88,89 The spectrum exhibits also a variety of comparably weak  and 

Rydberg resonances as well as broader * resonances at higher excitation energies.88,89 

The above features are indeed observed in the 55° C K-edge NEXAFS spectra of PmP-up/Au 

and PPm-down/Au in Figure 7, with the weights modulated by the attenuation effects for the 

PEY signal90 and a certain decrease in intensity of absorption resonances for the moieties 

located far away from the SAM-ambient interface.44 Accordingly, the spectrum of PPm-
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down/Au, having the phenyl ring in the top position and the pyrimidine ring in the bottom 

position (Figure 1), is dominated by the features of the phenyl moiety, with just a "broadening" 

of the most intense 
 resonance (1) due to the admixture of the pyrimidine resonances 4 and 

5. In contrast, the spectrum of PmP-up/Au, having the pyrimidine ring in the top position and 

phenyl ring in the bottom position (Figure 1), is dominated by the pyrimidine resonances 4 and 

5 forming a complex absorption structure in the pre-edge region, with a contribution of the 


 resonance (1) of the phenyl ring. At the same time, both for PPm-down/Au and PmP-up/Au, 

the post-edge region is dominated by the * resonances of phenyl (compare with the data for 

PP/Au in Figure S13 in the Supporting Information) which are generally more distinct than 

those of pyrimidine. 

The 55° N K-edge NEXAFS spectra of PPm-down/Au and PmP-up/Au in Figure 8 exhibit the 

characteristic features of pyrimidine.88,89 The spectra are dominated by a strong * resonance 

at ~398.5 eV (1) accompanied by a mixed *-Rydberg feature at 402.7 eV (2) and Rydberg 

features at higher excitation energies (3 and 4). The intensity of the resonances is somewhat 

lower for PPm-down/Au, which is related to the stronger attenuation of the PEY signal for the 

pyrimidine ring in the bottom position as well as to the slightly lower coverage as compared to 

PmP-up/Au (see sections 3.3 and 3.6). 

While the 55° NEXAFS spectra allow to verify the chemical identity of the PPm-down and 

PmP-up SAMs, the difference 90°-20° spectra in Figures 7 and 8 give insight into the molecular 

orientation in the films. In these spectra, pronounced difference peaks at the positions of the 

absorption resonances are observed, indicative of a high orientational order. Further, the peaks 

associated with the * resonances are positive, whereas those related to the * resonances are 

negative. Considering that the TDMs of the * and * orbitals are directed perpendicular and 

parallel to the ring planes, respectively, the signs of the difference peaks mean a largely upright 

molecular orientation in the SAMs, in qualitative agreement with the ellipsometry, IR 

spectroscopy, and XPS results (see sections 3.3, 3.6 and 3.7).  
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Figure 8. N K-edge NEXAFS spectra of the PmP-up and PPm-down SAMs acquired at an X-

ray incidence angle of 55° (black lines), along with the respective difference between the 

spectra collected under the normal (90°) and grazing (20°) incidence geometry (gray lines). 

Individual absorption resonances are marked by numbers (see text for the assignments). The 

horizontal dashed lines correspond to zero.  

 

In addition to the above-described qualitative analysis, a quantitative evaluation of the entire 

set of the NEXAFS data for PPm-down/Au and PmP-up/Au was performed, relying on the most 

prominent * resonances at the C and N K-edge and using the standard theoretical framework 

for the vector-like orbitals, suitable in the given case.61 Within the respective evaluation 

procedure, the intensity of a particular * resonance was derived from the spectra, plotted as a 

function of the X-ray incidence angle and fitted by the theoretical curves for a vector-like 

orbital, with the average tilt angle of the * orbital with respect to the surface normal,  (see 

Figure 6), being the only parameter.44,91 The derived values of this parameter for the C and N 

K-edge resonances are compiled in Table 2. The very similar values obtained evaluating the C 

and N K-edge resonances suggest that the two rings are coplanar or close-to-coplanar in the 

SAMs, since the derived angles are predominantly (C K-edge) or exclusively (N K-edge) 

representative of the orientation of the phenyl and pyrimidine rings, respectively. Furthermore, 

it is consistent with the simulations discussed in the following section and with the very small, 

respectively, vanishing inter-ring torsions seen in the single crystal data for the precursor 

materials in section 3.2. 
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Table 2. Average tilt angles of the * orbitals in the PmP-up and PPm-down SAMs, calculated 

on the basis of the C K-edge and N K-edge NEXAFS data. The accuracy of the values is 3°. 

Monolayer Tilt angle () from  

the C K-edge data 

Tilt angle () from  

the N K-edge data 

Average value 

PmP-up/Au  65.6°  69.1°  67.5° 

PPm-down/Au 65.9° 65.8°  66° 

 

Based on the average tilt angles of the * orbitals, average molecular tilt angles with respect to 

the surface normal, , can be calculated  using cos  = sin   cos  where  is the molecular 

twist angle (see Section 3.7). The latter angle cannot be determined from the NEXAFS data 

(except for a specially derivatized molecules)72. Thus, it is usually derived from bulk structures, 

IR data, or from simulations. In the present case, we will rely on the latter (see next section), 

taking the level of agreement between the experimental and theoretical values of  as a criterion 

for the reliability of the simulations. Provided that this agreement is satisfactory, molecular tilt 

and twist angles can then be directly determined from the simulated structures. 

 

3.9. Modeling the Structural Properties of the SAMs 

The optimized geometries of the PmP-up and PPm-down SAMs are shown in Figure 9. As 

mentioned in the methodology section, all SAMs were modeled using a (3x√3)rect unit cell 

containing two molecules, which yields the same packing density as the (√3x√3)R30° structure 

(4.6 1014 molecules/cm²; in line with the value observed experimentally). It, however, allows 

for a herringbone arrangement of the molecules. To determine the actual film structure, we then 

compared the energetics of the herringbone and cofacial arrangements of the molecules and 

found the former to be more stable in both studied systems (by 0.12 eV per molecule for PmP-

up/Au and by 0.11 eV for PPm-down/Au). The individual molecules assume a planar 

conformation (with inter-ring torsions below 3° for PmP-up/Au and 7° for PPm-down/Au) 

consistent with the experimental results discussed above. A detailed analysis of the 

intermolecular interactions causing this specific intra- and intermolecular arrangement is 

provided in ref 92 for the reference PP/Au system. 
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Figure 9. DFT-optimized structures of the PmP-up (a,b) and PPm-down (c,d) SAMs. Color 

code: H – white, C – grey, N – blue, S – light yellow, and Au - dark yellow. 

 

From the simulated geometries, the structural parameters can be directly obtained and compared 

to the experimental ones. The derived tilt angles of the * orbitals, , the molecular tilt angles, 

 and the molecular twist angles, γ, are reported in Table 3, where the subscripts 1 and 2 refer 

to the symmetry inequivalent molecules in the unit cell. For  also the value averaged over the 

two molecules, αav, is given. To be consistent with the NEXAFS evaluation, it is obtained via 

cos2αav=(cos2α1+cos2α2)/2, since the tilt angle enters the formula for the intensity of an 

absorption resonance associated with a vector-like orbital as cos2α.61  

The calculated average tilt angles of the π* orbitals agree very well with the values obtained in 

the NEXAFS experiments (see Table 2), which underlines the reliability of the theoretical 

modelling and makes the respective  values reasonable estimates for the molecular tilt in the 

studied SAMs. The calculated tilt angle for the PPm-down SAM is somewhat larger than for 

the PmP-up monolayer. This agrees with the ellipsometry (section 3.3) and XPS (section 3.6) 

data, which suggest higher effective thickness in the PmP-up case (corresponding to a smaller 

molecular tilt). The non-negligible differences in the  values between the two molecules in the 

unit cell are not due to different tilts, but result from strongly different twists (caused by 
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different directions into which the molecules tilt). Therefore, they can be considered as a 

consequence of the herringbone-arrangement of the molecules. 

 

Table 3. DFT calculated average tilt angles of the * orbitals α, molecular tilt angles β and 

molecular twist angles γ in the PmP-up and PPm-down SAMs. 1, and 2 denote the values for 

the two symmetry inequivalent molecules in the unit cell. The value of av is obtained 

employing the averaging described in the main text. The twist angle is defined such that it is 

zero when the tilt occurs perpendicular to the molecular plane.72  

Monolayer αav α1 α2 β1 β2 γ1 γ2 

PmP-up/Au 69.5° 75.8° 64.6° 29.6° 25.6° 60.2° 7.7° 

PPm-down/Au 66.5° 75.7° 59.5° 31.5° 30.8° 61.8° 7.2° 

 

3.10 Electronic Properties of the SAMs – Simulated XP Spectra 

As a first step to analyze the electronic structure of the SAMs, we calculated their XP core-

level spectra. They are shown in the top panel of Figure 10 for a signal damping consistent with 

a primary photon energy of 580 eV. As simulations within the initial-state approach rely on the 

calculation of the Kohn-Sham orbital energies of the core levels, they provide information only 

on the relative energetics of the different atoms.93-96 Therefore, the values have been rigidly 

shifted to higher binding energies (BEs) by 18.94 eV (a value we typically observe for SAMs), 

such that the experimental and calculated spectra of the "parent" PP SAM are aligned. 

The overall shape of the spectra agrees well with the experiments (see Figures 4c and 4d): The 

spectrum of the PP SAM is characterized by a single peak with a binding energy of 284.2 eV 

(in general agreement with the experimental data)46,97. Also for PPm-down/Au the spectrum is 

clearly dominated by a single feature, which is, however, shifted to lower binding energies by 

ca. 0.6 eV. Moreover, there is a pronounced tail at the high binding-energy side of the spectrum 

with a shoulder at ca. 284.8 eV. In contrast, in the 580 eV spectrum of PmP-up/Au, two more 

clearly separated main features, split by 1.4 eV, can be identified, with the more intense feature 

essentially coinciding with the main peak for the PP SAM. Interestingly, for smaller primary 

photon energies (350 eV) in the experiments, a third feature appears between the two peaks of 

the 580 eV spectra (see Figures 4c and 4d), which is also seen in the corresponding simulations, 

albeit with a reduced relative intensity (see the simulated spectrum of PmP-up/Au for 350 eV 

contained in the Supporting Information, Figure S14).  
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Figure 10.  Top: DFT calculated XP spectra for the PP (blue), the PPm-down (red) and the 

PmP-up (green) SAMs. The spectra have been aligned to the experimental spectrum of PP and 

a damping consistent with a primary photon energy of 580 eV was assumed (for details see the 

main text, respectively, the Supporting Information). Bottom: atom-resolved, (shifted) core-

level binding energies of individual C atoms in the PP (blue diamonds), PPm-down (red 

hexagons) and PmP-up (green triangles) SAMs. The energies are averaged over equivalent 

atoms in the two molecules contained in the unit cell. The PP SAM shown in the background 

serves to identify the z-position (vertical axis) of individual C atoms. The z axis is perpendicular 

to the substrate, with its origin corresponding to the position of the image plane (i.e., 0.9 Å 

above the average z position of the topmost Au layer, see the Supporting Information). The 

average positions of the N atoms in the PPm-down and PmP-up SAMs are indicated by red and 

green arrows, respectively. For both spectra and energies of the individual levels, screening 

effects by the substrate according to the electrostatic model described in the Supporting 

Information have been considered. 

A distinct advantage of the calculated XP spectra is that it is straightforward to decompose them 

into contributions from individual C atoms. This is done based on the bottom panel of Figure 

10, which shows the core level energies for all C atoms of the three systems considered here. 

For the case of PP/Au, the core-levels of most of the C atoms are located at comparable energies. 

The small, continuous shift to higher BEs with increasing the distance to the substrate is 

attributed to differences in screening. Only the positions of the C atom bonded to the thiolate 

and of the two C atoms forming the bridge between the two rings are somewhat shifted to even 
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higher BEs. This can be attributed to their different chemical environments (chemical shifts) 

and, especially for the lowest C atom, also to particularly large screening effects by the 

substrate.  

The situation becomes much more complex for the pyrimidine containing systems. There, one 

encounters a superposition of strong chemical shifts (due to C atoms bonded to the N atoms)98 

and electrostatic shifts due to the pyrimidine dipoles. The origin of the latter shifts are so-called 

collective electrostatic effects caused by a parallel alignment of dipoles.99-101 This results in a 

sharp step in the electrostatic energy at the position of the dipole layer, which shifts the core-

level energies relative to the Fermi level for all atoms further away from the substrate than that 

dipole layer. As the Fermi level of the substrate serves as the reference energy for the XPS 

experiment, the consequence is a change in the respective core-level binding energies.70 

Notably, this shift is not related to any change in the local charge density around the said atoms, 

as it is observed for chemically identical species solely separated by a dipole layer;16,17 it is also 

not related to the evanescent field of the dipole assembly as the decay length of that field is 

extremely short.99  

For PPm-down/Au, such electrostatic shifts caused by the pyrimidine dipoles result in a 

reduction of the BEs of the C atoms of the upper ring compared to the PP/Au reference system 

in spite of the identical atomic charges on the outermost rings found for both systems (see the 

Supporting Information). In contrast, the BEs of the C atoms in the bottom pyrimidine ring are 

increased compared to PP/Au (with the exception of the atom bonded to S). This is due to 

chemical shifts, as all these atoms are bonded to electronegative N atoms. These chemical shifts 

reach a maximum for the topmost C atom of that ring, which is bonded to two N atoms. 

Consequently, the low-lying C atoms are responsible for the high-BE tail in the spectra, which 

is consistent with the experimental observation that the intensity of that tail decreases for 

primary photon energies of 350 eV. 

For PmP-up/Au, the core-level energies of the bottom ring are hardly shifted relative to the 

PP/Au reference, as these C atoms do not experience any extra electrostatic shifts (the only 

dipoles between them and the metal are those associated with the dipoles of the thiolate groups 

present in all monolayers). Additionally, compared to PPm-down/Au, none of the respective C 

atoms experiences a chemical shift. Conversely, the core-levels of the C atoms in the pyrimidine 

ring are strongly shifted to higher BEs. This can be understood as a superposition of a chemical 

shift (due to the bonding to the N atoms) and an electrostatic shift (originating from the 

pyrimidine dipole). As both shifts go in the same direction for PmP-up/Au, the associated BEs 
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are particularly large, which explains the pronounced high-BE peak observed for this system 

both in the experiments and in the simulations. Interestingly, the core-level of the topmost C 

atom in the PmP-up SAM is found at a smaller BE, as it is not directly bonded to the nitrogen 

atoms. Therefore, we hold this atom responsible for the peak at 284.6 eV visible in the 

experimental 350 eV spectrum (Figure 4c; where the features of the lower-lying C atoms are 

attenuated due to the very small escape depth of the photoelectrons). 

The above-described different combinations of chemical and electrostatic shifts in PmP-up/Au 

and PPm-down/Au explain both the different lineshapes of the XPS spectra and the different 

binding energies of the main peak.  

The above-discussed electrostatic shifts are also responsible for the different core-level BEs of 

the N atoms. Qualitatively consistent with the experiments, we calculated the N 1s energy of 

PPm-down/Au to be 0.5 eV smaller than for PmP-up/Au. As the chemical environments of the 

N atoms are essentially identical in both systems, the reason for the shift is that the N atoms are 

located on different “sides” of the primary components of the differently oriented pyrimidine 

dipoles.   

 

3.11. Electronic Properties of the SAMs – Measured and Calculated SAM-Induced Work 

Function Changes 

The parallel alignment of the pyrimidine dipoles also causes a shift in the sample work function. 

This is shown for the PmP-up, PPm-down, and PP SAMs in Figures 11a and 11b for films 

grown from THF and ethanol, respectively. Significantly, the THF values are only slightly 

smaller than the ethanol ones. This suggests that the ability of the PmP-up and PPm-down films 

to manipulate charge carrier injection barriers in organic electronics assemblies does not depend 

significantly on the solvent applied for their preparation. Also, the values presented here for the 

SAM prepared from ethanol on high-quality, commercial gold substrates (see section 2) are 

very close to those for "technical gold substrates" (a RMS value of 1.8 nm over a scan area of 

4  4 m2) treated analogous to electrodes patterned device structures (see ref 39 for details); 

viz. the value for  PmP-up/Au is identical and that for PPm-down/Au is only slightly higher (by 

~0.1 eV). This means that the dipole engineering by the PmP-up and PPm-down SAMs is 

sufficiently robust with respect to the character of the substrate.  
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Figure 11. Work function values for the PmP-up, PPm-down, and PP SAMs prepared from 

THF (a) and ethanol (b) measured with a Kelvin probe on high-quality, commercial Au 

substrates (see section 2). The gray scale code is given in the panels.  

 

In line with the orientation of the dipole moment of the embedded pyrimidine group, the work 

functions of PPm-down/Au and PmP-up/Au are higher (by +0.52 eV), respectively lower (by 

−0.37 eV), than for PP/Au (THF preparation). The observed WF shifts are very close to those 

observed for the previously reported terphenylmethanethiol-based SAMs, also containing a 

single pyrimidine unit per molecule (see Figure S1 in the Supporting Information), viz. +0.56 

eV and −0.42 eV.19 The slightly larger shifts in the latter systems can in part be explained by a 

somewhat smaller molecular inclination, which results in a larger projection of the dipole 

moment onto the surface normal, which defines the SAM-induced change of the work function. 

The work function difference between PPm-down/Au and PmP-up/Au is ~0.9 eV, where we 

expect that the work function can be adjusted continuously within this range by mixing PPm-

down and PmP-up molecules in a single SAM, as it has been demonstrated for a variety of 

different mixed SAMs7,23,102-104 including systems with embedded dipoles20-22. 

The experimental trend is confirmed by the simulations with a decrease of the work function 

for PmP-up/Au and an increase for PPm-down/Au (compared to the reference PP SAM). The 

absolute magnitude of the effect (±0.65 eV) is, however, overestimated, which is in line with 

what we have observed for a variety of other systems, especially other pyrimidine-containing 

compounds.19 This is in part a consequence of the simulations assuming a densely packed 

periodic structure, with the entire film in a (3×√3)rect arrangement. Such a model  does not 

account for disordered regions like grain boundaries19 or the patches of lower-coverage films 

with molecules arranged in a (2×2) pattern, as recorded in the STM measurements (see section 

3.5). Additionally, we observe that both the dipole moment of the pyrimidine unit and the bond-

dipole associated with the thiolate docking group depend on the used methodology (i.e., there 



30 

 

is an inevitable systematic error associated with using a specific functional like PBE; see the 

Supporting Information for more details). Interestingly, the calculated work function changes 

for PPm-down/Au and PmP-up/Au relative to PP/Au are identical in the simulations, while they 

somewhat differ in the experiments. This could again be a consequence of disorder within the 

experimentally studied SAM, as discussed in the Supporting Information. 

 

3.12. Electrical Conductance 

Besides the changes of the electrode work function, also the electrical conductance of the 

monolayer is a crucial parameter for the application of the SAMs as interfacial layers between 

the electrode and the active layer in organic electronic devices. Semilogarithmic current-density 

versus voltage plots for Au/SAM//EGaIn junctions with the PmP-up, PPm-down, and PP 

(reference) SAMs are presented in Figure 12; they agree well with the analogous data measured 

within the previous device study.39 The currents are higher by ca. one order of magnitude than 

those observed for the analogous terphenylmethanethiol-based molecules with embedded 

pyrimidine group (see Figure S1 in the Supporting Information).39,105 This indicates superior 

electric transport properties of the PmP-up and PPm-down monolayers, making these SAMs 

particularly promising for applications in organic electronics and photovoltaic devices. Such a 

stronger coupling in the absence of a methyl spacer has been found in various experiments106,107 

and is also consistent with the massively broadened transmission functions calculated for thiol-

bonded SAMs.108,109 

An interesting side aspect are quite similar current values for the SAMs with opposite directions 

of the dipole moment. This is consistent with the observation for terphenylmethanethiol-based 

SAMs containing central pyrimidine units at varying orientation, where a careful statistical 

analysis of the current-voltage curves yielded a rectification of only ~1.2.110 Also, alkyl SAMs 

including polar groups either into the backbones or as tail groups did not yield significant 

rectification ratios.111 What is somewhat surprising for the present systems is that increasing 

the coupling to the Au electrode by skipping the methyl linker does not have a distinct impact 

on rectification, considering that asymmetries of the coupling to the two electrodes have been 

predicted to yield more sizable rectification ratios in related systems.112  
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Figure 12. Semilogarithmic current-density versus voltage plots for Au/SAM//EGaIn junctions 

with the PmP-up (red circles), PPm-down (blue squares), and PP (black triangles) SAMs.  

 

3.13. Applications in Organic Thin Film Transistors 

Due to their structural and electrostatic properties, the PmP-up and PPm-down SAMs can be 

used in organic electronics and photovoltaics, providing energy level adjustment at the 

interfaces between the electrodes and OSC or between the electrodes and buffer layers. The 

application of these monolayers in organic thin film transistors (OTFTs) and related electronic 

circuits on solid (glass) and flexible (polycarbonate plastic film) substrates is described in detail 

in our recent dedicated study.39 To illustrate the potential of the PmP-up and PPm-down SAMs, 

Figure 13 shows the output curves of both p-type (pentacene as OSC) and n-type (C60 as OSC) 

OTFTs featuring SAM-modified Au source and drain electrodes. The curves in Figure 13 show 

a clear effect of the embedded dipole. For pentacene-based devices, the currents increase by a 

factor of ~25 when employing PPm-down SAMs compared to the PmP-up case, while the trend 

is reversed for the C60 devices with the ratio here even exceeding a factor of 60. This can be 

associated with the contact resistance changing by more than two orders of magnitude39 for 

electrodes modified with the two SAMs. Generally, PPm-down favors hole and PmP-up favors 

electron injection. This is fully consistent with the changes in the respective injection barriers39 

arising from the work function modifications described in section 3.11. 
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Figure 13. Schematic of the bottom gate, bottom contact OTFTs (a) featuring SAM-modified 

source and drain gold electrodes (50 nm) and either pentacene or C60 as OSC. The SAMs are 

indicated by red line. The description of the fabrication process and the technical details can be 

found elsewhere.39 Panels (b)-(d) show typical output characteristics of p-type pentacene 

OTFTs with the electrodes modified by the PPm-down (b; "down"), PP (c), and PmP-up (d; 

"up") SAMs; panels (e)-(g) contain typical output characteristics of n-type C60 OTFTs with the 

electrodes modified by the PPm-down (e; "down"), PP (f) and PmP-up (g; "up") SAMs. The 

curves were acquired at several different VGS values varied in 0.5 steps from 0.5 to −2.5 V (b), 

from 1 to −2 V (c), from 1.2 to −1.8 V (d), from 3.4 to 6.4 V (e), and from 2.1 to 5.1 V (f and 

g). The different VGS ranges for the different OTFTs are a consequence of the different onset 

voltages (Von) observed in the different devices. In this way, the values of VGS - Von (defining 

the output current of OTFTs) are varied similarly for either p-type or n-type devices. 

Accordingly, the output characteristics become directly comparable. The OTFTs were 

fabricated either on glass (p-type) or polycarbonate plastic film (n-type). Adapted from ref 39.  

 

 

3.14. Summary of the Results 
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The basic structural parameters of the PP, PPm-down, and PmP-up monolayers derived by 

ellipsometry, XPS, STM, IR, and NEXAFS spectroscopy experiments as well as by the 

quantum mechanical simulations are compiled in Table 4. The values obtained with the 

different techniques correlate well with each other, even though there is a certain scattering of 

individual parameters. The effective thicknesses and packing densities of the PP, PPm-down, 

and PmP-up SAMs are similar, suggesting similar molecular packing. The packing density 

values correlate well with the packing density of the (√3√3)R30° structure, which was indeed 

directly observed by STM (Figure 3), even though the imaging was not easy and a certain 

polymorphism was recorded. The molecular conformation in the PPm-down and PmP-up 

monolayers is essentially planar, as suggested by the bulk crystallography (Figures S9 and S11 

in the Supporting Information) and the NEXAFS spectroscopy data and additionally confirmed 

by the DFT simulations (Figure 9). The simulations favor a herringbone molecular arrangement 

(Figure 9), which requires a (3√3)rect unit cell, which however has the same packing density 

and is compatible with the (√3√3)R30° structure. The simulations also shed light on the 

molecular orientation in the PPm-down and PmP-up SAMs (Table 3), with a very good 

agreement with the results of the NEXAFS spectroscopy (Table 2) and with the IR-derived 

value for PmP-up/Au. The particularly small tilt calculated from the IR data for PPm-down/Au 

appears less realistic and is presumably related to a low intensity of specific vibration modes 

used for the evaluation (see section 3.7). Insights into the electronic structure of the SAMs could 

be gained from comparing calculated and measured XPS data (Figures 4 and 10) revealing a 

superposition of electrostatic and chemical shifts of the core-level binding energies. We also 

observed a good correlation between the KP data (Figure 11) and calculated electrostatic 

properties of the PPm-down and PmP-up SAMs. The electric conductance of these monolayers 

is found to be rather high (Figure 12), which is a sizable advantage for their applications in 

organic electronics and photovoltaics. The potential of the PmP-up and PPm-down SAMs in 

organic electronics is illustrated by representative experimental data for the bottom gate, bottom 

contact OTFTs, featuring SAM-modified source and drain gold electrodes (Figure 13).  

 

 

 

Table 4. Basic parameters of the PP, PmP-up, and PPm-down SAMs derived from the 

experimental data and theoretical simulations.  
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Monolayer         Effective thickness [nm] Packing density 
[molecules cm-2] 

Molecular tilt angle [°] Twist 

angle [°] 

Method XPS ellipsometry XPS ellipsometry NEXAFS IR theory theory 

PP 1.09 ± 0.05 1.11 ± 0.02  4.61014 26±10 19±3b) n.d. 27.1/24.7 56.1/13.1. 

PmP-up 1.0 ± 0.05 1.10 ± 0.03 4.51014 26±10 29±3a) 24 ± 11 29.6/25.6 60.2/7.7 

PPm-down 0.93 ± 0.05 0.93 ± 0.02 4.51014 41±10 31.5±3a) 14 ± 10  31.5/30.8 61.8/7.2 

a) The NEXAFS-derived tilt angles for PmP-up/Au and PPm-down/Au were calculated from the average values given in Table 2, assuming the twist angles from 

Table 3 and the same tilt angles of both nonequivalent molecules in the unit cell. For the simulations, the tilt and twist angles for both nonequivalent molecules in 

the unit cell are given. b) The NEXAFS-derived tilt angle for PP/Au was calculated assuming a twist angle of 32° taken from the bulk crystal data.79,113 

 

4. Conclusions 

Based on the concept of the embedded dipoles in molecular self-assembly on solid substrates, 

we designed and synthesized optimal molecules for controlling the energy level alignment at 

interfaces between electrode and organic semiconductor layers. The molecules, PmP-up and 

PPm-down, feature the thiol docking group and a short heteroaromatic backbone consisting of 

a non-polar phenyl ring and a polar pyrimidine group. The latter is "embedded" in two opposite 

orientations in a way that its nitrogen atoms are buried with respect to the SAM-substrate and 

SAM-ambient interfaces. This decouples these interfaces from the dipole engineering. The 

resulting dipolar systems have significant inherent flexibility and are relatively easy to modify 

as the key functionality of the SAM is maintained when changing, e.g., the docking group (now 

thiol to bind to noble metals) or when adjusting the tail-group polarity and reactivity (now inert 

C−H).  

In view of the popularity of gold as substrate when studying SAMs and as electrode material in 

organic electronics, we fabricated and characterized in detail PmP-up, PPm-down, as well as 

reference non-polar PP monolayers on Au(111) substrates, putting particular emphasis on the 

electronic properties. The results of a variety of complementary spectroscopic and microscopic 

techniques consistently suggest the formation of densely packed and well-defined SAMs, with 

all molecules bonded to the substrate via the thiolate docking group in an almost upright 

geometry. Packing density, molecular orientation, structure and wetting properties of these 

SAMs were found to be nearly independent of their electrostatic properties (with only one 

exception; see section 3.4). The latter correlate precisely with the molecular architecture and 

the orientation of the embedded dipolar group. More insights into the electrostatic properties of 

the SAM can be obtained by comparing XP spectra with calculated core-level binding-energies, 

which reveals pronounced shifts due to collective electrostatic effects on top of chemical shifts. 

Concomitantly, depending on the pyrimidine orientation, the SAMs studied here can change 
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the Au work function by ~0.9 eV. Moreover, currents through the studied SAMs measured in 

EGaIn junctions are relatively high. These aspects place the PmP-up and PPm-down SAMs as 

ideal systems for model studies in the context of interfacial dipole engineering but also as highly 

suitable functional blocks for device applications. The latter is illustrated by realizing highly 

promising p- and n-type transistors using Au as electrode material, while optimizing the level 

alignment through chemisorbing SAMs containing suitably oriented pyrimidine groups.  
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