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Schedule Eg.

Date from to Content

07.10.2020 13:00 16:00 Introduction, Organisation

14.10.2020 13:00 16:00 Theory, Principles, and Guidelines, Iterator

21.10.2020 13:00 16:00 Adapter, Facade, Decorator, Proxy

28.10.2020 13:00 16:00 Layers, Broker, Pipes & Filters, Master/Slave, Client/Server, Broker

04.11.2020 13:00 16:00 Factory Method, Abstract Factory, Builder, Singleton, Prototype, Memento, State, Flyweight
11.11.2020 13:00 16:00 Visitor, Strategy, Command, Composite, Template Method, Fluent Interface

18.11.2020 13:00 16:00 Mediator, Bridge, Blackboard, Microkernel, Messages (Message, Endpoint, Translator, Router), Observer

Locks (Mutex, Semaphor, Condition Variable), Scoped Locking, Double Checked Locking, Monitor,

25.11.2020  13:00  16:00 Future/Asynchronous Completion Token, Active Object, Thread Specific Storage, Async-Await

Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching, Pooling, Leasing, Garbage Collector, Scoped

02.12.2020  13:00  16:00 oo ource, Active Record

09.12.2020 13:00 16:00 Chain of Responsibility, Counted Pointer, Interpreter/Abstract Syntax Tree, Proactor, Reactor
13.01.2021 12:00 15:00 Model-View-Controller, Model-View-Viewmodel, Model-View-Presenter, Presentation-Abstraction-Control

20.01.2021 13:00 16:00 Summary and Exam Preparation
27.01.2021 13:00 15:00 Exam




Patterns in this course... -Eg_

Wrapping: Adapter, Facade, Decorator, Proxy

Creation: Factory Method, Abstract Factory, Builder, Prototype, Singleton, Flyweight
Behaviour: Strategy, Command, State

Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-Server
Collections: Iterator, Visitor, Composite

Communication: Observer, Bridge, Broker, Mediator, Blackboard, Microkernel,
Client-Dispatcher-Server/Lookup, Messaging & Service-Orientation: Message,
Message-Endpoint, Message-Translator, Message-Router, MVC

Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking, Thread-
Specific Storage, Double-Checked-Locking, Async/Await, Proactor, Reactor

Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching &
Pooling, Leasing, Garbage Collector, Scoped Resource

Others: Memento, Counted Pointer, Chain of Responsibility, Interpreter/Abstract
Syntax Tree



Learning Goals -Eg.

Learning Goals

Design Patterns Theory

= What is a design pattern? Why do we need them?

= What are the core principles behind design patterns?
= How to describe design patterns?

= What is a pattern language?

Design Patterns in Detalil

= Know core ideas and application of
Important design patterns! (~50)

Application of Design Patterns
= When to use what?




Learning Goals -Eg_

Learning Goals

= You know common design patterns and their core idea (approx. 50 patterns).

= You can apply them In software development regardless of the programming
language or development environment.

= You can derive the consequences of design patterns and see the design
decisions.

= You decide if the consequences of a pattern are acceptable or not.
= You avoid overengineering and misuse of patterns.

= You can make reasonable design decisions by balancing out the forces,
consequences, and requirements for arbitrary problems and contexts.
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Design Patterns
What is a pattern? A proven solution template for a recurring problem.

 Name: A catchy name for the pattern
« Context: The situation where the problem occurs
* Problem: General Problem Description
. Requirements and Constraints - Why does the problem hurt in this context?

« Solution: Generic Description of a proven solution.
Static Structures, Dynamic Behaviour

 Conseguences (Rationale):
What are the benefits and liabilities?
What are the limitations and tradeoffs?
How are the forces resolved?

« Known-Uses: Real Life Examples



Design Patterns House ﬂl—g_

Name

Context

Problem Solution

Forces consequences

Known Uses
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SOLID Principles (in OOP)

Single Responsibility: A class should have one, and
only one, reason to change.

Open Closed: You should be able to extend a class’s
behavior, without modifying it.

Liskov Substitution: Derived classes must be
substitutable for their base classes.

Interface Segregation: Make fine grained
Interfaces that are client specific.

Dependency Inversion: Depend on abstractions,
not on concrete implementations.
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Principles of Good Programming

« Decomposition
make a problem manageable
decompose it into sub-problems

* Abstraction
wrap around a problem
abstract away the details

 Decoupling
reduce dependencies, late binding
shift binding time to “later”

e Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive
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Types of Design Patterns

Architectural Patterns

Fundamental structural patterns
Stencils for whole architectures

Examples: Layers, Pipes & Filters, Broker, Model-View-Controller, Microkernel

Design Patterns

Solution templates for more isolated problems
Examples: Composite, Adapter, Proxy, Factory

ldioms

Fine-Grained Patterns for problems in specific programming languages or
environments

Examples: Counted Pointer, Scoped Locking
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A few philosophical thoughts...

“Patterns are a universal principle”

* HoOw 1o ma
* HOw 10O ma
* HOw t0O ma
* HOW 10 ma

KE
KE
KE

KE

<KNOW
<KNOW
<KNOW

<KNOW

el
el
el

eC

How to transfer knowledge?

ge explicit?

ge findable?

ge understandable?
ge applicable?
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“Study hard what interests you the most
1n the most undisciplined, 1irreverent and
original manner possible.”

— Richard Feynmann
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