ﬂTu

SCIENCE
S PASSION
- TECHNOLOGY

Design Patterns
Part 12: Summary & Wrap-Up

Schedule Eg.

Date from to Content

07.10.2020 13:00 16:00 Introduction, Organisation

14.10.2020 13:00 16:00 Theory, Principles, and Guidelines, Iterator

21.10.2020 13:00 16:00 Adapter, Facade, Decorator, Proxy

28.10.2020 13:00 16:00 Layers, Broker, Pipes & Filters, Master/Slave, Client/Server, Broker

04.11.2020 13:00 16:00 Factory Method, Abstract Factory, Builder, Singleton, Prototype, Memento, State, Flyweight
11.11.2020 13:00 16:00 Visitor, Strategy, Command, Composite, Template Method, Fluent Interface

18.11.2020 13:00 16:00 Mediator, Bridge, Blackboard, Microkernel, Messages (Message, Endpoint, Translator, Router), Observer

Locks (Mutex, Semaphor, Condition Variable), Scoped Locking, Double Checked Locking, Monitor,

25.11.2020 13:00 16:00 Future/Asynchronous Completion Token, Active Object, Thread Specific Storage, Async-Await

Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching, Pooling, Leasing, Garbage Collector, Scoped

02.12.2020 13:00 16:00 oo ource, Active Record

09.12.2020 13:00 16:00 Chain of Responsibility, Counted Pointer, Interpreter/Abstract Syntax Tree, Proactor, Reactor
13.01.2021 12:00 15:00 Model-View-Controller, Model-View-Viewmodel, Model-View-Presenter, Presentation-Abstraction-Control

20.01.2021 13:00 16:00 Summary and Exam Preparation
27.01.2021 13:00 15:00 Exam

Patterns in this course... -Eg_

Wrapping: Adapter, Facade, Decorator, Proxy

Creation: Factory Method, Abstract Factory, Builder, Prototype, Singleton, Flyweight
Behaviour: Strategy, Command, State

Architecture: Layers, Pipes & Filters, Broker, Master-Slave, Client-Server
Collections: Iterator, Visitor, Composite

Communication: Observer, Bridge, Broker, Mediator, Blackboard, Microkernel,
Client-Dispatcher-Server/Lookup, Messaging & Service-Orientation: Message,
Message-Endpoint, Message-Translator, Message-Router, MVC

Concurrency: Locks, Monitor, Active Object, Future, Scoped Locking, Thread-
Specific Storage, Double-Checked-Locking, Async/Await, Proactor, Reactor

Resources: Lazy Acquisition, Eager Acquisition, Partial Acquisition, Caching &
Pooling, Leasing, Garbage Collector, Scoped Resource

Others: Memento, Counted Pointer, Chain of Responsibility, Interpreter/Abstract
Syntax Tree

Learning Goals -Eg.

Learning Goals

Design Patterns Theory

= What is a design pattern? Why do we need them?

= What are the core principles behind design patterns?
= How to describe design patterns?

= What is a pattern language?

Design Patterns in Detalil

= Know core ideas and application of
Important design patterns! (~50)

Application of Design Patterns
= When to use what?

Learning Goals -Eg_

Learning Goals

= You know common design patterns and their core idea (approx. 50 patterns).

= You can apply them In software development regardless of the programming
language or development environment.

= You can derive the consequences of design patterns and see the design
decisions.

= You decide if the consequences of a pattern are acceptable or not.
= You avoid overengineering and misuse of patterns.

= You can make reasonable design decisions by balancing out the forces,
consequences, and requirements for arbitrary problems and contexts.

TU

Grazm

Design Patterns
What is a pattern? A proven solution template for a recurring problem.

 Name: A catchy name for the pattern
« Context: The situation where the problem occurs
* Problem: General Problem Description
. Requirements and Constraints - Why does the problem hurt in this context?

« Solution: Generic Description of a proven solution.
Static Structures, Dynamic Behaviour

 Conseguences (Rationale):
What are the benefits and liabilities?
What are the limitations and tradeoffs?
How are the forces resolved?

« Known-Uses: Real Life Examples

Design Patterns House ﬂl—g_

Name

Context

Problem Solution

Forces consequences

Known Uses

TU

Grazm

SOLID Principles (in OOP)

Single Responsibility: A class should have one, and
only one, reason to change.

Open Closed: You should be able to extend a class’s
behavior, without modifying it.

Liskov Substitution: Derived classes must be
substitutable for their base classes.

Interface Segregation: Make fine grained
Interfaces that are client specific.

Dependency Inversion: Depend on abstractions,
not on concrete implementations.

B U,

Principles of Good Programming

« Decomposition
make a problem manageable
decompose it into sub-problems

* Abstraction
wrap around a problem
abstract away the details

 Decoupling
reduce dependencies, late binding
shift binding time to “later”

e Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive

TU

Grazm

Types of Design Patterns

Architectural Patterns

Fundamental structural patterns
Stencils for whole architectures

Examples: Layers, Pipes & Filters, Broker, Model-View-Controller, Microkernel

Design Patterns

Solution templates for more isolated problems
Examples: Composite, Adapter, Proxy, Factory

ldioms

Fine-Grained Patterns for problems in specific programming languages or
environments

Examples: Counted Pointer, Scoped Locking

TU

Grazm

A few philosophical thoughts...

“Patterns are a universal principle”

* HoOw 1o ma
* HOw 10O ma
* HOw t0O ma
* HOW 10 ma

KE
KE
KE

KE

<KNOW
<KNOW
<KNOW

<KNOW

el
el
el

eC

How to transfer knowledge?

ge explicit?

ge findable?

ge understandable?
ge applicable?

TU

Grazm

“Study hard what interests you the most
1n the most undisciplined, 1irreverent and
original manner possible.”

— Richard Feynmann

B T,

Michael Krisper Georg Macher

michael.krisper@tugraz.at georg.macher@tugraz.at
Uncertainty and Risk Propagation Safety & Security
Expert Judgment for Cyber-Security Automotive & Autonomous Driving
Vehicle CO, Simulation Distributed Industrial Systems

Institute of Technical Informatics m|HE .
Web: https://iti.tugraz.at
Discord: https://discord.qa/rEXP{W3 m

https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=83853E349B81F903&pPersonenGruppe=3
https://online.tugraz.at/tug_online/visitenkarte.show_vcard?pPersonenId=E5D3277309238092&pPersonenGruppe=3
https://iti.tugraz.at/
https://discord.gg/rFXPjW3

