
SCIENCE

PASSION

TECHNOLOGY

Design Patterns

Part 2: Principles and Guidelines

448.058 (VO)
Michael Krisper

Georg Macher



Principles and Guidelines

• SOLID
• Single Responsibility

• Open Closed Principle

• Liskov Substitution

• Interface Segregation

• Dependency Inversion

• Principles of Good Programming / Clean Code
• Decomposition

• Abstraction

• Decoupling

• Usability & Simplicity

• Examples for some well known Patterns: Iterator, Observer, Layers



SOLID Principles (in OOP)

• Single Responsibility: A class should have one, and 
only one, reason to change.

• Open Closed: You should be able to extend a class’s 
behavior, without modifying it.

• Liskov Substitution: Derived classes must be 
substitutable for their base classes.

• Interface Segregation: Make fine grained 
interfaces that are client specific.

• Dependency Inversion: Depend on abstractions, 
not on concrete implementations.

3



Principles of Good Programming

• Decomposition
make a problem manageable
decompose it into sub-problems

• Abstraction
wrap around a problem
abstract away the details

• Decoupling
reduce dependencies, late binding
shift binding time to “later”

• Usability & Simplicity
make things easy to use right, hard to use wrong
adhere to expectations, make usage intuitive

4



Decomposition

• Split up a problem until it gets manageable

• Divide and Conquer

• Separation of Concerns

• Orthogonality (Separation of Concepts)

• Single responsibility

• Curly’s Law (do just one thing and stick to that)

5

[Movie: City Slickers (1991)]

Problem

Subproblem

Solution to 
Subproblem

Solution

Solution to 
subproblem

Subproblem

Divide Divide

ConquerConquer

CombineCombine



Abstraction

• Hide implementation details

• Wrap another layer around a problem.

• Liskov substitution
Substitute Parent-Classes by Sub-Classes

• Fundamental theorem of software engineering:
"We can solve any problem by introducing an extra level of indirection.“

(David Wheeler)

6



Decoupling

• Minimise coupling / Maximize cohesion

• Separation of Concerns

• Shift Binding time to “later”

• Composition over inheritance

• Inversion of control
• Hollywood principle: 

“Don’t call us, we call you!”

• Open close - encapsulate what changes

• Embrace change

• Law of Demeter: Only use “direct” dependencies

7



Usability & Simplicity

• YAGNI – You ain’t gonna need it!

• DRY – Don’t repeat yourself!

• Principle of least astonishment
• Don’t make me think
• Easy to use right, hard to use wrong

• Code for the Maintainer

• Command / Query Separation

• Interface segregation

• Ockham’s razor
• Do the simplest thing possible
• KISS – Keep it simple, stupid!

• Avoid premature optimization (Knuth, 1974)

8



Self-Assessment

1. What are the SOLID principles? Explain each in one sentence.

2. Which Principles govern good software 
solutions? Name two principles of good programming, and describe them in detail.

3. What do YAGNI, KISS and DRY mean?

4. Which design pattern could be used if you want to access every 
element of a collection in an uniform way?


