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Abstract

Aortic Dissection (AD) has a high mortality rate. About 40% of the people with type
B AD do not live for more than a month. Aortic Dissection begins when a tear occurs
in the inner layer (intima) of the aortic wall. Moreover, a second blood-filled channel
called a false lumen is created where thrombosis occurs. The prognosis of AD is quite
challenging. Hence, we present a computational model for the formation and growth of
thrombus. Because of the complex nature of biological systems, we use a macroscopic
continuum-mechanical approach of the Theory of Porous Media.

The whole aggregate is divided into solid, liquid and nutrient constituents. The constituents
are assumed to be materially incompressible and isothermal, and the whole aggregate is
assumed to be fully saturated. Darcy’s law describes the flow of fluid in the porous me-
dia. The volume fractions quantify the constituents. Therefore, the regions with thrombus
formation are determined using the solid volume fraction. The balance equations of the
constituents have coupling terms, which are responsible for the mass exchange and inter-
actions between the phases. These terms play a crucial role in modelling the formation and
growth of the thrombus.

We introduce the set of equations and numerical examples for thrombosis in type B AD.
The equations are implemented in PANDAS, a finite element package designed to solve
strongly coupled multiphase porous media problems. However, the problem description
is quite complex due to the difficulty in quantitatively obtaining the data for biological
processes and no possibility of performing experiments on living tissues. Therefore, we
present computationally less expensive biphasic and more realistic triphasic models using
an idealised 2d geometry. The simulations show that the thrombus grows in the low-
velocity regions of the blood. Here we study the effects of different parameters and choose
reasonable parameters for the thrombus growth in the false lumen. Thereafter, we use
a realistic 2d geometry of false lumen to simulate thrombosis and present the model’s
usefulness in actual cases. The proposed model provides a reasonable approach for the
numerical simulation of thrombosis.



Zusammenfassung

Die Aortendissektion (AD) hat eine hohe Sterblichkeitsrate. Etwa 40% der Menschen mit
AD vom Typ B leben nicht länger als einen Monat. Eine Aortendissektion beginnt, wenn
ein Riss in der inneren Schicht der Aortenwand (Intima) auftritt. Außerdem entsteht ein
zweiter blutgefüllter Kanal, das so genannte ’false lumen’, in dem sich eine Thrombose
bildet. Die Prognose von AD ist sehr schwierig. Daher stellen wir ein Computermodell
vor welches die Bildung und das Wachstum eines Thrombus modelliert. Aufgrund der
komplexen Natur biologischer Systeme verwenden wir einen makroskopischen kontinu-
umsmechanischen Ansatz aus der Theorie Poröser Medien.

Das gesamte Kontinuum wird in feste, flüssige und nährstoffhaltige Bestandteile unter-
teilt. Die Bestandteile werden als materiell inkompressibel und isotherm angenommen.
Weiters wird das gesamte Kontinuum als vollständig gesättigt vorausgesetzt. Das Darcy-
sche Gesetz beschreibt den Flüssigkeitsstrom in den porösen Medien. Die Volumenanteile
quantifizieren die Bestandteile. Daher werden die Regionen mit Thrombenbildung anhand
des Feststoffvolumenanteils bestimmt. Die Bilanzgleichungen der Bestandteile enthal-
ten Kopplungsterme, die für den Stoffaustausch und die Wechselwirkungen zwischen den
Phasen verantwortlich sind. Diese Terme spielen eine entscheidende Rolle bei der Model-
lierung der Bildung und des Wachstums des Thrombus.

Nach Einführen der wesentlichen Grundgleichungen wird aufbauend auf der entsprechen-
den Variationsformulierung ein FE-code realisiert. Mit diesem werden numerische Bei-
spiele für die Thrombose bei AD Typ B gezeigt. Die Gleichungen sind in PANDAS imple-
mentiert, einem Finite-Elemente-Paket, das für die Lösung stark gekoppelter mehrphasiger
Probleme in porösen Medien entwickelt wurde. Die Problembeschreibung ist jedoch recht
komplex, da es schwierig ist, die Daten für biologische Prozesse quantitativ zu erfassen
und keine Möglichkeit besteht, Experimente an lebendem Gewebe durchzuführen. Daher
stellen wir rechnerisch günstigere biphasische und realistischere triphasische Modelle vor,
die eine idealisierte 2D-Geometrie verwenden. Es wird gezeigt, dass der Thrombus in den
Bereichen mit niedriger Geschwindigkeit im Blut wächst. Wir untersuchen die Auswir-
kungen verschiedener Parameter und wählen angemessene Parameter für das Thrombus-
wachstum im ’false lumen’. Anschließend verwenden wir eine realistische 2d-Geometrie
des ’false lumen’ um die Thrombose zu simulieren und zeigen die Nützlichkeit des Mo-
dells in tatsächlichen Fällen. Das vorgeschlagene Modell bietet einen geeigneten Ansatz
für die numerische Simulation von Thrombose.
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NOMENCLATURE

In this monograph, the notations follow the conventions commonly used in modern con-
tinuum mechanics, cf. Ehlers [1], Bonet & Wood [2], and Holzapfel [3]. In addition, the
symbols used follows the established nomenclature given by Ehlers [4] and De Boer [5].

General conventions

(·) placeholder for arbitrary quantities

a,b,... or φ , ψ ,... scalars

a, b, A, B,... or φφφ ,ψψψ , ΦΦΦ,ΨΨΨ,... vectors and second-order tensors

Index and suffix conventions

i,j,k indices as super- or subscripts

(·)α subscripts indicate kinematical quantities of a con-
stituent within porous-media

(·)α superscripts indicate non-kinematical quantities of a
constituent within porous-media

(·)α
Oα

initial values of non-kinematical quantities with re-
spect to the referential configuration of a constituent

˙(·) = d(·)/d t total time derivative with respect to the overall aggre-
gate ϕ

(·)′α = dα(·)/d t material time derivative following the motion of ϕα

(·̃) quantity in intermediate configuration (polar decom-
position)

(·)0 quantity at time t = 0

a ·b = aibi = c single contraction of vectors a and b

A : B = Ai jBi j = c double contraction of second-order tensors A and B

Ab = Ai jb j = ci = c matrix A and vector b multiplication

AB = Ai jB jk =Cik = C matrix-matrix multiplication of second-order tensors
A and B

a⊗b = aib j =Ci j = C tensor product of vectors a and b

iii



Symbol Unit Description

α constituent identifier, i.e., α =
{

S, L, N
}

µS [N/m2] Lamé constant

λ S [N/m2] Lamé constant

ϕ,ϕα whole aggregate and constituent α

A∗,A∗ pull-back and push-forward operators

B,Bα aggregate body and constituent body

B0 aggregate body at time zero

C [kg/m3s] maximum mass exchange

ε,εα [J/kg] mass-specific internal energy of ϕ and ϕα

ε̂α [J/m3s] volume-specific direct energy production of ϕα

ζ̂ α [J/Km3s] volume-specific direct entropy production of ϕα

η ,ηα [J/Kkg] mass-specific entropy of ϕ and ϕα

η̂ , η̂α [J/Km3s] volume-specific total entropy production of ϕ and ϕα

ση ,σ
α
η volume-specific external entropy supply of ϕ and ϕα

σ ,σα scalar-valued supply terms of mechanical quantities

σσσ ,σσσα vector-valued supply terms of mechanical quantities

φφφ ,φφφ α general vector-valued mechanical quantities

φφφ η ,φφφ
α
η [J/Km2s] entropy efflux vector of ϕ and ϕα

ΦΦΦ,ΦΦΦα general tensor-valued mechanical quantities

Θ,Θα [K] absolute Kelvin’s temperature of ϕ and ϕα

ρ [kg/m3] density of overall aggregate ϕ

ρα ,ραR [kg/m3] partial and realistic density of ϕα

ρ̂α [kg/m3s] volume-specific mass production of ϕα

P0,Pt subdomain at time zero and t

τττ,τττα ,τττα
E [N/m2] Kirchhoff (extra- (·)E) stress tensors of ϕ and ϕα

λ i
S eigenvalues of bS or CS

β1,β2 material parameters

γ,γγγ arbitrary scalar- and vector-valued field functions

ξ local coordinates

Ω spatial domain

iv



Symbol Unit Description

ψα [J/kg] mass-specific Helmholtz free energy of ϕα

Ψ,Ψα volume-specific densities of scalar mechanical quanti-
ties of ϕ and ϕα

Ψ̂,Ψ̂α volume-specific productions of scalar mechanical
quantities

Ψ
α chemical potential of ϕα

ΨΨΨ,ΨΨΨα volume-specific densities of vector mechanical quan-
tities of ϕ and ϕα

Ψ̂ΨΨ,Ψ̂ΨΨα volume-specific productions of vector mechanical
quantities

χα ,χ
−1
α motion and inverse motion function of ϕα

Lv Lie derivative

bS left Cauchy-Green solid deformation tensor

b [m/s2] mass-specific volume force vector

CS right Cauchy-Green solid deformation tensor

dS [1/s] symmetric part of spatial velocity gradient of solid

da [m2] area element of ϕ in current configuration

dAα [m2] area element of ϕα in reference configuration

dv [m3] bulk volume element of ϕ in current configuration

dvα [m3] partial volume element of ϕα in current configuration

dVα [m3] volume element of ϕα in reference configuration

dx [m] line element of ϕ in current configuration

dXα [m] line element of ϕα in reference configuration

êα [J/m3s] volume-specific total energy production of ϕα

eS Almansi solid strain tensor

fα [N] force vector of ϕα

ES Green-Lagrangean solid strain tensor

Fα material deformation gradient of ϕα

hS arbitrary spatial tensor field

ĥα [N/m2] volume-specific total angular momentum production
of ϕα

v



Symbol Unit Description

HS pull-back of hS to the reference configuration

IS, IIS, IIIS principal invariants of CS and bS

Jα Jacobian determinant of ϕα

Jn jacobian tangent matrix at time tn

kF [m/s] Darcy’s permeability

KF [m4/Ns] specific permeability

KS [m2] intrinsic permeability

lllS [1/s] spatial velocity gradient of solid

LS [1/s] material velocity gradient of solid

mα [kg] mass of the constituent ϕα

nα volume fraction of ϕα

n̂i
S eigenvectors of bS in the current configuration

Ne total number of elements

Nn number of nodes in each element

NN total number of nodes

N̂i
S eigenvectors of CS in the reference configuration

n outward-oriented unit surface normal vector

O origin of Euclidean space

p [N/m2] Lagrangean multiplier

pα [N/m2] Lagrangean multiplier of ϕα

p̂α , p̂α
E [N/m3] volume-specific (extra- (·)E) momentum production

of ϕα

Pα material points of ϕα

Pα [N/m2] 1st Piola-Kirchhoff stress tensor of ϕα

q,qα [J/m2s] heat influx vector of ϕ and ϕα

r,rα [J/kgs] mass- specific external heat supply

RS solid rotation tensor

Sα [N/m2] 2nd Piola-Kirchhoff Piola stress tensor of ϕα

t [s] time

t0 [s] initial time

vi



Symbol Unit Description

tα [N/m2] surface traction vector of ϕα

T,Tα ,Tα
E [N/m2] Cauchy (extra- (·)E) stress tensors of ϕ and ϕα

uS [m] solid displacement vector

US right solid stretch tensor

vα [m/s] diffusion velocity of ϕα

V,V α [m3] Volume of B and partial volume of Bα

VS left solid stretch tensor

wS [1/s] skew-symmetric part of solid spatial velocity gradient

wFS [m/s] seepage velocity

x [m] current position vector

x′α [m/s] velocity vector of ϕα

x′′α [m/s2] acceleration vector of ϕα

ẋ [m/s] velocity of overall aggregate ϕ

ẍ [m/s2] acceleration of overall aggregate ϕ

Xα [m] reference position vector of ϕα
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1 INTRODUCTION AND OVERVIEW

1.1 Motivation

Aorta is the largest blood vessel in the body and is the main artery that carries blood from
the heart to the whole body. The heart pumps the blood from the left ventricle into the aorta
via the aortic valve, which opens and closes with each heartbeat to allow a one-way blood
flow. One of the most common forms of the acute aortic syndrome is Aortic Dissection
(AD). It begins when a tear occurs in the inner layer (intima) of the aortic wall. This tear
allows the blood to flow between the inner and middle layers causing them to separate
(dissect). This second blood-filled channel is called the false lumen. It can lead to aortic
rupture or decreased blood flow to the organs and cause short- or long-term damage. AD is
a serious condition and may be fatal if not treated early. The risk and nature of the Aortic
Dissection complication depend strongly on the affected area of the aorta. There are two
types of AD depending on the location of the dissection. In type A AD, the dissection
happens in the ascending part of the aorta, where the expansion of the false lumen can
push other aorta branches and reduce blood flow. In contrast, the dissection occurs in the
descending part of the aorta in type B AD, which may extend into the abdomen, cf. Figure
1.1 [6, 7].

Complete or partial thrombosis in the false lumen is a significant predictor of mortality in
patients [9, 10]. Thrombosis is the process which prevents excessive bleeding by forming
a spatial structure called a thrombus (blood clot). The formation of a thrombus involves a
complex sequence of biochemical reactions. Humans possess an inbuilt system by which
blood remains fluid and protects against the dangers of haemorrhage (bleeding). However,
an injury to a blood vessel initiates haemostasis. Haemostasis is a mechanism which pre-
vents and stops bleeding from a blood vessel by forming a thrombus. Haemostasis involves
three major processes: constriction of blood vessels, primary hemostasis, and secondary
hemostasis [6, 11, 12]. We briefly overview these three processes as follows:

• The blood vessel constricts at the site as soon as an injury occurs. The constriction
happens due to the reflex neurogenic mechanism and secretion of endothelin, a vasocon-
strictor. This effect helps to decrease the blood flow/loss and begin the clotting process.
However, this effect is transient and occurs for a brief period.

• The next step is the activation of platelets and the coagulation cascade (clotting factors).
The small blood cells (platelets) and various clotting factors (I to XIII) are always in the
blood in their inactive form, ready to be activated within seconds of an injury. Once the
blood is exposed to components of the injured wall (collagen, subendothelial collagen,
von Willebrand factor), the platelets are activated. The von Willebrand factor acts as a
glue and mediates the linking of platelets to collagen. As a result, the activated platelets

1



2 1 Introduction and Overview

(a) Type A (b) Type B (c) Thrombosis

Figure 1.1: Illustrations of the entry tear, exit tear, true lumen, and false lumen in (a) type A
Aortic Dissection, (b) type B Aortic Dissection, and (c) formation of thrombus
in type B Aortic Dissection [8].

change their shape dramatically (from small rounded disks to flat plates with a moderately
increased surface area). As the platelets accumulate at the injury site, they form a platelet
plug. This is the process of primary haemostasis.

• In addition, the activated platelets release prothrombotic molecules leading to an increase
in platelet aggregation. Moreover, the clotting factors interact in a complicated series of
chemical reactions leading to thrombin formation. Thrombin converts the fibrinogen, a
blood clotting factor, into long, insoluble fibrin fibre. The fibrin forms a mesh, and it en-
traps more platelets essential for developing a stable clot. This is the process of secondary
haemostasis. It lasts longer than the initial platelet plug. Fibrin and platelets then form a
permanent plug to prevent further blood loss.

Coagulation, a part of secondary hemostasis, is a complex chain reaction where one clot-
ting factor activates the next in a multistep pathway. Coagulation has two activation path-
ways: extrinsic and intrinsic, cf. Figure 1.2. The intrinsic pathway activates when blood
comes in contact with an abnormal surface and responds to the endothelial collagen, which
is exposed when endothelial damage occurs. It leads to the activation of factor XII and the
sequential activation of factors XI and IX. The activated IX combines with VIII in the
presence of calcium ions and platelet factor three (PF3) to form a complex that activates
factor X. The extrinsic pathway starts due to tissue damage. The endothelial cells release
the tissue factor (factor III) or thromboplastin on the damage. Factor VII and tissue factor
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Figure 1.2: Schematic representation of the coagulation mechanism’s intrinsic, extrinsic,
and common pathways [11].

form a complex called TF-VIIa. Finally, intrinsic and extrinsic pathways converge to a
common pathway, and the complexes formed in the respective pathways activate factor X.
The activated factor X leads to the activation of prothrombin (factor II) to thrombin (factor
IIa) in the presence of factor V, PF3, and calcium ions. It further converts the fibrinogen
(factor I) to fibrin monomers. Monomeric fibrin is then polymerised to form fibrin fibre
by activating factor XIII [13]. The fibrin fibres, along with the platelets, create a stable,
permanent plug called a thrombus. This process continues leading to the growth of throm-
bus. However, a negative feedback mechanism is in place to prevent over-coagulation. The
reader is referred to Mohan [11] for a detailed explanation of thrombosis.

Furthermore, Virchow’s triad describes three physiological factors that can result in throm-
bosis. These factors are endothelial injury, hypercoagulability of blood and stasis of blood
flow [14, 15]. As mentioned earlier, endothelial injury stimulates the platelets and coagu-
lation process. The thrombus consists of small blood cells (platelets) and fibrous protein
(fibrin) that stop the bleeding at the injury site. Hypercoagulability means an increased
tendency of coagulation in the body due to inherited or acquired disorders. Finally, stasis
of the blood flow refers to the condition of slow blood flow. In such a situation, the natural
anticoagulation properties are affected, and the possibility of the formation of thrombus
increases. Though all three factors are essential, blood stasis is considered the most con-
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sequential of the three factors [16].

Aortic Dissection is a catastrophic disease. AD can occur due to high blood pressure lead-
ing to increased stress on the aortic wall, weakening of the wall, pre-existing aneurysm
or defects in the aortic valve [17, 18]. It occurs principally in two epidemiologic groups.
The first group is men aged 40 to 60 years with pre-existing hypertension, and the second
is younger patients with systemic or localised connective tissue abnormalities affecting
the aorta. The estimated occurrence of AD is 5 to 30 cases per million people annually.
Among these, the acute cases are 2 to 3.5 cases per 100,000 people per year, accounting
for 6,000 to 10,000 cases in the United States alone [19]. To understand the gravity of Aor-
tic Dissection, in the case of a ruptured aortic aneurysm, approximately 75% of patients
make it to the emergency department alive, whereas 40% of the patients die immediately
from AD [19]. The speed of lethality and the mode of death for acute cases often involves
severe physiologic disorders from complications such as myocardial infarction, malperfu-
sion syndromes to the brain, kidney, spinal cord and gut or bleeding from aortic rupture.
This has boosted the importance of early diagnosis and treatment, which is critical for sur-
vival. [20]. Also, the mortality rate for AD is high, especially in acute cases. In the case of
type B AD, the mortality rate is excessive in the first seven days due to severe complica-
tions, such as malperfusion or rupture in the aorta. Even though a general agreement exists
regarding the need for immediate surgical repair for patients with acute ascending Aortic
Dissection (type A dissection), the optimal treatment of type B dissection stays a matter of
debate [21–25]. The short-term and long-term diagnosis for AD remains unclear, leading
to an interest in computational methods to help with the decision-making process for the
treatment. In addition, understanding the mechanics of growth in such chronic conditions
can open new directions in medical device design, personalised medicine, and controlling
disease progression [26].

1.2 Scope, Aims and State of the Art

Modelling of thrombus is a continuum-mechanical problem that cannot be uniquely clas-
sified within well-known solid or fluid mechanics disciplines. Instead, one has to consider
multiphasic aggregate and the associated characteristics of the constituents. Therefore, this
thesis aims to develop a thermodynamically consistent model that is as simple as possible
but simultaneously captures the relevant properties of the thrombus.

In the last decades, hard and soft biological tissues have been extensively modelled by
using continuum mechanics. In addition, there has been an increase in interest in modelling
the growth of biological tissues. The developments in the biomechanics of the growth and
remodelling of the biological tissues are given by Tabler [27], Fung [28,29], and Humphery
[30]. Different methods have been introduced and developed to describe the remodelling
and growth process from the continuum mechanics point of view. Cowin & Hegedus [31]
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presented the first continuum theory for describing growth in hard tissues like bones. They
introduced the open system theory, where the fluid constituents are neglected, and the solid
matrix is assumed to influence the overall mechanical behaviour. This model was then
further extended by various researchers, such as Nackenhorst [32], Kuhl et al. [33,34], and
Epstein & Maugin [35]. Ambrosi & Mollica [36,37] introduced a model for the growth of
tumour spheroids with nutrient-concentration triggered growth.

For biological tissues, it is clear that the internal structure and properties of the growing tis-
sue change other than its shape and size. It consists of many constituents such as different
cell types, fibres, and extracellular matrix (ECM) [38]. Therefore, the growth process can
alter the amount of these components and their mechanical properties. During thrombosis,
as platelets cohere into a platelet aggregate, they do not immediately form a solid mass.
Instead, they create a porous network with voids and channels. After many reactions, the
thrombus changes to a gel-like structure and finally to a stiff solid state ( cf. Section 1.1).
Therefore, we use a macroscopic continuum-mechanical approach of the Theory of Porous
Media (TPM) which provides an excellent framework to describe the overall behaviour of
the multiphasic thrombus.

Woltmann first attempted to model binary mixtures when he introduced the concept of
volume fractions [39,40]. After that, many scientists like Biot [41] and Heinrich & Desoyer
[42] used this concept to model consolidation problems. The TPM was developed based
on the Theory of Mixtures. The Theory of Mixtures describes multicomponent continua,
including the interactions between the constituents. The reader is referred to work by
Bowen [43], Truesdell & Toupin [44], Truesdell & Noll [45], and Truesdell [46]. After
that, Bowen [47, 48] restricted the Theory of Mixtures by the concept of volume fractions
to incorporate microscopic information. Therein, Bowen discusses all the kinematics and
balance relations valid for mixtures by considering the partial quantities and relations.
This was continuously improved and further developed by de Boer [5, 49], de Boer &
Ehlers [50], Ehlers [39, 51], and Ehlers & Bluhm [4] to the current understanding of the
TPM. De Boer [5] has presented an excellent insight into the historical development of
TPM in his book.

Based on TPM, various models have been proposed to model the mechanical behaviour
and the growth and remodelling process of the biological tissues. A biphasic model has
been proposed by Ehlers & Markert [52] for describing the mechanical behaviour of hy-
drated soft tissues and by Wagner & Ehlers [53] for describing the behaviour of brain
tissue. Furthermore, a biphasic model has been proposed by Karajan [54] to describe
the mechanical behaviour of the Intervertebral Disc (IVD). Ricken et al. [55] presented a
biphasic model for liver perfusion remodelling. Moreover, multiphasic models for growth
and remodelling have been proposed by Ricken & Bluhm [56] and Ricken et al. [57, 58]
for isotropic and transversely isotropic biological tissues. They have introduced stress-
dependent growth processes. Preziosi & Tosin [59] have presented multiphasic tumour
growth models. Krause [60] presented a tumour growth model, and Krause et al. [61]
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proposed a bone remodelling model where the growth energy concept is used. Certainly,
TPM has been used to describe the behaviour and growth of soft biological tissues [62],
but it has not appeared in literature with application to thrombosis. Therefore, the recent
works using TPM for modelling biological growth motivate the use of this approach in the
presented work. However, modelling the growth of living tissues has its challenges, which
is very well summarised by Ambrosi et al. [63].

As mentioned earlier, chemical, mechanical and metabolic factors drive the growth pro-
cess of the thrombus. Because of the multiphasic structure of the thrombus, we present
a triphasic model. The porous body is divided into three phases: solid, liquid and nu-
trients. All three phases simultaneously occupy each material point. We assume that all
the constituents are materially incompressible and isothermal, and the whole aggregate is
fully saturated. The balance equations of the constituents have coupling terms which take
care of the interactions between them. The essential coupling term for the growth process
is the mass exchange term in the volume balances. Due to the need for detailed knowl-
edge and parameters to quantify the influence of different factors, the model description
is more challenging. However, the effects of the blood velocity and the nutrients on the
growth of thrombus are well-researched [64,65]. The dependence of thrombus growth rate
on the blood velocity was found experimentally by Begent & Born [66]. Therefore, we
present a velocity- and nutrient-concentration-induced growth model based on TPM. We
treat the highly coupled set of differential equations within the framework of the standard
Galerkin procedure and implement the weak forms in the nonlinear finite element solver
PANDAS.

1.3 Outline of the Thesis

After the introduction and overview, Chapter 2 presents the fundamentals of continuum
mechanics needed to model the growth of porous thrombus. First, we briefly introduce the
Theory of Porous Media. Then, to describe the mechanical behaviour of the thrombus, we
model the whole aggregate as multiphase continua consisting of superimposed and inter-
acting solid, liquid and nutrient phases. Thereafter, we introduce the essential kinematical
relations for non-linear formulation. As a next step, the overall and constituent balance
equations are introduced.

The objective of Chapter 3 is to introduce suitable assumptions following the characteris-
tics of the model and thrombosis, and reformulate the balance equations accordingly. After
this, the fundamentals of the material theory, like determinism, equipresence, local action,
and material frame indifference, are introduced. Then, the entropy inequality is evaluated
to obtain the necessary restrictions to formulate the missing constitutive equations and de-
velop a thermodynamically consistent model. Finally, the principle of isotropic elasticity
is discussed, and the Helmholtz free energy function is formulated.
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Chapter 4 deals with the numerical treatment of the governing equations. Firstly, the
weak forms are formulated in the framework of the standard Galerkin procedure (Bubnov-
Galerkin). The system of equations is discretised in space using mixed finite elements.
Then, the concept of geometry transformation and numerical integration is introduced.
The system of equations is discretised in time using the implicit Euler scheme. There-
after, the Newton-Raphson scheme is introduced briefly to solve the system of non-linear
equations.

In Chapter 5, the presented model is applied to the problem of thrombosis. At first, the
implementation of a computationally less expensive biphasic model is presented using a
2-d idealised geometry. After that, the triphasic model is implemented, and its features
are discussed. Then, we use a 2-d realistic geometry of the false lumen while drawing an
analogy to the process of thrombosis. Finally, Chapter 6 presents the summary and outlook
of the presented work.





2 FUNDAMENTALS OF THEORY OF POROUS MEDIA

This section briefly overviews the continuum-mechanical fundamentals needed to under-
stand the modelling using the Theory of Porous Media framework. The kinematical rela-
tions, polar and spectral decomposition concepts, and strain and stress measures are intro-
duced in this context. Furthermore, we give a concise description of the balance equations
from the TPM point of view. This approach can be applied in fields where the mate-
rial’s porous structure needs to be considered for suitable modelling, such as geotechnical
problems and biomechanics. The book by de Boer [5] provides excellent insight into the
historical development and the current state of the Theory of Porous Media. The reader
is referred to Ehlers [39], Truesdell & Noll [45], and Markert [67] for more details on
TPM. Bonet & Wood [2] and Holzapfel [3] comprehensively describe the fundamentals of
non-linear continuum mechanics for single-phase materials.

2.1 The Theory of Porous Media

A thrombus is a multiphasic porous material formed by several interacting components.
Hence, we use the modelling approach of the TPM as it provides an excellent framework
to describe the multiphasic microstructure of the thrombus (cf. Section 1.2). Moreover, it
allows us to model the thrombus without detailed knowledge of its microstructure, which
would be almost impossible to know quantitatively. In this regard, we define a local rep-
resentative elementary volume (REV) and consider all the individual constituents of the
whole aggregate to be in a state of ideal disarrangement. Following this, we smear out
(homogenise) the actual microstructure through the considered domain by applying the
real or virtual averaging process, yielding a macroscopic substitute for the overall aggre-
gate. Therefore, all the geometric and physical quantities on the macroscale are understood
as statistical mean values of the microscale quantities. This process leads to a model with
superimposed and interacting continua [5, 39].

We obtain a macro-scale model on applying the homogenisation procedure over a REV
of the thrombus. The immiscible parts lead to a triphasic model ϕ consisting of the con-
stituents ϕα

ϕ =
⋃
α

ϕ
α = ϕ

S ∪ϕ
L ∪ϕ

N︸ ︷︷ ︸
ϕF

, (2.1)

where α =
{

S, L, N
}

, cf. Figure 2.1. The solid phase ϕS consists of subendothelial
collagen, activated platelets, fibrin and wall cells, which is saturated by fluid ϕF . The fluid
itself consists of nutrient phase ϕN , which are deactivated platelets and clotting factors,
and liquid phase ϕL, which represents blood minus the nutrients and activated platelets
(cf. Section 1.1).

9
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microstructure

dv

ϕ = ϕS ∪ϕL ∪ϕN

homogenised macroscale

dvL

dvS

dvN

superimposed continua

Figure 2.1: Illustration of the microstructure of the porous false lumen (left), macro-model
obtained by volumetric homogenisation process (center), and superimposed
continua (right).

2.2 The Concept of Volume Fractions

To account for the microstructure of the model ϕ , the sum of the constituent’s partial
volumes V α gives the volume V of the multiphasic body B

V =
∫
B

dv = ∑
α

V α , where V α =
∫
Bα

dv =
∫
B

dvα =:
∫
B

nα dv. (2.2)

Following this, the volume fractions nα are defined as the local ratio of the respective
partial volume element dvα with respect to the bulk volume element dv of the overall
aggregate ϕ reading

nα :=
dvα

dv
. (2.3)

Furthermore, the equations (2.2) and (2.3) lead to the saturation condition

∑
α

nα = nS +nL +nN = 1, (2.4)

which has to be permanently fulfilled to prevent the development of vacant space in the
overall aggregate ϕ . In the case of injury (Aortic Dissection), the nutrients are available
in large quantities involving complex biochemical reactions. Therefore in the presented
monograph, the saturated porous medium is treated as a combination of immiscible phases
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ϕα , described by their volume fractions nα . For miscible components, the approach of
molar concentrations should be used [60, 68]. Following the definition of the volume
fractions nα , partial and realistic densities are introduced. The partial density ρα is the
ratio of the constituent’s mass dmα to the bulk volume element dv. The realistic density
ραR is the ratio of the constituent’s mass dmα to the constituent’s volume element dvα

yielding

ρ
α =

dmα

dv
and ρ

αR =
dmα

dvα
. (2.5)

Inserting equation (2.3) in (2.5), we get the following relation between the densities

ρ
α = nα

ρ
αR. (2.6)

From the above equation, it is clear that the partial density ρα of a constituent can change
due to changes in its realistic density ραR or volume fraction nα . That means that the
material incompressibility (ραR = const.) of any constituent does not lead to the property
of bulk incompressibility (ρα = const.) because the volume fraction can change due to
deformation or mass exchange between the phases. Finally, the summation of all the partial
densities ρα yields the density ρ of the overall aggregate B.

ρ = ∑
α

ρ
α = ∑

α

nα
ρ

αR. (2.7)

2.3 Kinematics

The following section gives a brief overview of the kinematic relations needed to study the
motion and deformation of the continua and to describe the nonlinear model of a porous
material. First, we focus on providing the fundamentals and introducing the kinematic
relations for the multi-constituent modelling approach. After that, we briefly overview the
balance relations for the multiphasic materials. The reader is referred to Ehlers [39], de
Boer [5], and Markert [67] for multiphasic materials. Moreover, Bonet & Wood [2] and
Holzapfel [3] give a comprehensive introduction to the kinematical quantities.

2.3.1 Motion of a Porous Material

In the context of the superimposed and interacting porous continua, particles Pα of all the
constituents ϕα simultaneously occupy each spatial point x of the current configuration at
any time t, cf. Figure 2.2. Since the particles at x proceed from the different reference
positions Xα at time t0, each constituent is assigned its own motion function

x = χχχα(Xα , t). (2.8)
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O

B

current configuration

(t)

PS,PL,PN

x

B0

reference configuration

(t0)

PS

PL

PN

XS

XL

XN

χχχS(XS, t)

χχχL(XL, t)

χχχN(XN , t)

(t +d t)

PS

PL

PN

Bt+d t

Figure 2.2: Motion of a triphasic aggregate.

Each point x in the current configuration is occupied by only one material point Pα of each
constituent ϕα . A unique inverse motion function χχχ−1

α must exist to have a unique refer-
ence position Xα at time t0 for each material point Pα at x. The necessary and sufficient
condition for this is the existence of non-singular Jacobian Jα

Xα = χχχ
−1
α (x, t), if Jα := det

∂χχχα

∂Xα

̸= 0, (2.9)

where det(·) denotes the determinant operator. Following this, equation (2.8) represents the
Lagrangean (material) description because it is expressed in terms of reference positions
Xα . On the other hand, equation (2.9) represents the Eulerian (spatial) description since it
is expressed in terms of the current positions x.

2.3.2 Velocity and Acceleration Fields

Since all the particles proceed from different reference positions, each constituent has its
own velocity x′α and acceleration x′′α fields. These are introduced in the Lagrangean setting
using the material time derivative as follows

x′α(Xα , t) =
dχχχα(Xα , t)

d t
and x′′α(Xα , t) =

d2
χχχα(Xα , t)

d t2 . (2.10)

We can obtain the Eulerian representation of velocity and acceleration by inserting the
inverse motion function (2.9) in equation (2.10)

x′α(x, t) = x′α [χχχ
−1
α (x, t), t] and x′′α(x, t) = x′′α [χχχ

−1
α (x, t), t]. (2.11)
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In addition, the mixture velocity ẋ of the aggregate ϕ and the diffusion velocity vα of the
constituent ϕα is given by

ẋ =
1
ρ

∑
α

ρ
αx′α , (2.12)

and

vα = x′α − ẋ with ∑
α

ρ
αvα = 0. (2.13)

All the time derivatives (·)′α and ˙(·) are the material time derivatives. In the case of the
Lagrangean description, the material time derivative reduces to the partial time deriva-
tive because the reference positions Xα are fixed in time. On the other hand, one must
be careful with the Eulerian description because the current positions x depend on time.
Therefore, one must include the inner (implicit) derivatives in the material time derivative.
For example, consider γ and γγγ as arbitrary scalar- and vector-valued field functions that are
steady and sufficiently steady differentiable. Then, the material time derivatives of γ and γγγ

following the motion of the constituents ϕα and the barycentric motion of the aggregate ϕ

are defined as follows

γ
′
α(x, t) =

dα γ

d t
=

∂γ

∂ t
+

∂γ

∂x
∂x
∂ t

=
∂γ

∂ t
+grad γ ·x′α ,

γγγ
′
α(x, t) =

dα γγγ

d t
=

∂γγγ

∂ t
+

∂γγγ

∂x
∂x
∂ t

=
∂γγγ

∂ t
+(grad γγγ)x′α ,

γ̇(x, t) =
dγ

d t
=

∂γ

∂ t
+

∂γ

∂x
∂x
∂ t

=
∂γ

∂ t
+grad γ · ẋ,

γ̇γγ(x, t) =
dγγγ

d t
=

∂γγγ

∂ t
+

∂γγγ

∂x
∂x
∂ t

=
∂γγγ

∂ t
+(grad γγγ)ẋ.

(2.14)

where grad(·) = ∂ (·)/∂x is the partial derivative of the (·) with respect to the current
position x.

Furthermore, in TPM, the description of the coupled solid-fluid problems leads to diffi-
culty in finding a suitable choice for the independent motions of the constituents. It is
generally convenient to describe the solid matrix in the Lagrange description because the
neighbouring points of the solid in the reference configuration are still close to each other
in the current configuration. However, this is not true for fluids which are described in
the Eulerian setting. Following this, the solid is described in the Lagrangean description
using the solid displacement field uS. Finally, the fluid is described in the modified Eule-
rian setting by seepage velocity wFS, which expresses the fluid motion with respect to the
deforming solid in the following way

uS = x−XS and wFS = x′F −x′S. (2.15)
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2.3.3 Deformation Gradient

From equation (2.8), the material deformation gradient Fα for each constituent ϕα is in-
troduced as

Fα = Gradα x =:
∂χχχα(Xα , t)

∂Xα

, (2.16)

where Gradα(·) = ∂ (·)/∂Xα is the partial derivative of the (·) with respect to the reference
position Xα . Here, Fα can be understood as a mapping which carries the elemental line
vector dXα from the reference configuration to the dx in the current configuration

dx = Fα dXα . (2.17)

Similarly, the elemental area vector dAα and the volume element dVα in the reference
configuration can be mapped to the current configuration using the following relations

da = cofFα dAα = (detFα)F−T
α dAα and dv = detFα dVα , (2.18)

where da and dv are the area and volume elements in the current configuration, respec-
tively.

Similarly, the inverse of the deformation gradient F−1
α does the reverse mapping from

the current configuration to the reference configuration. The inverse of the deformation
gradient can be defined as

F−1
α = grad Xα =:

∂χχχ−1
α (x, t)
∂x

, (2.19)

where grad(·) = ∂ (·)/∂x. The F−1
α mapping can be written as

dXα = F−1
α dx. (2.20)

According to equation (2.9)2, a uniquely invertible motion needs a non-zero Jacobian.
Starting with the undeformed state at time t0, the condition Fα(t0) = I holds for the de-
formation gradient. Here, I is the second-order identity tensor. Therefore, in combination
with the physical constraint (Jα < 0 meaning negative volume, cf. (2.18)2), the Jacobian
Jα is restricted to positive values

Jα = detFα > 0, with detFα(t0) = detI = 1. (2.21)

From equation (2.15), the solid displacement vector is the primary kinematic quantity,
whereas the fluid motion is represented relative to the deforming solid. Therefore, we do
not need the deformation gradient for the fluids FF . Instead, the solid deformation gradient
FS serves as a primary kinematic quantity in the large strain regime. Moreover, FS and F−1

S
can be expressed in terms of the solid displacement using equations (2.15)1, (2.16), and
(2.19)

FS = I+GradS uS and F−1
S = I−graduS. (2.22)
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2.3.4 Deformation and Strain Measures

After introducing the deformation gradient, we present the deformation and strain mea-
sures. Following the framework of continuum mechanics, the deformation measure de-
fines how a body is deformed during the motion, whereas the strain measure compares the
deformed body to its undeformed state.

To define the deformation measures, we begin with the polar decomposition of the defor-
mation gradient FS. We split the deformation gradient uniquely into positive definite and
symmetric stretch tensors US and VS, and a proper orthogonal rotation tensor RS ∈ SO3
which reads as

FS = RSUS︸ ︷︷ ︸
Right Decomposition

= VSRS︸ ︷︷ ︸
Left Decomposition

, (2.23)

where RT
S = R−1

S , detRS = 1,US = UT
S , and VS = UT

S . RSUS is the right decomposition
where US is called the right stretch tensor, and VSRS is the left decomposition where VS
is called the left stretch tensor. Hence, in two ways, a line element dXS in the reference
configuration can map to the line element dx in the current configuration

dx = RS(US dXS) = VS(RS dXS). (2.24)

Together with equation (2.24) and Figure 2.3, this can be understood well. If we apply
the right decomposition, the line element dXS is first stretched by the right stretch tensor
US and gives d X̃S in the intermediate configuration. The rotation vector RS then rotates
it to give dx in the current configuration. If we apply the left decomposition, dXS is first
rotated by RS to give d x̃ in the intermediate configuration. Then, it is stretched by VS to
give dx in the current configuration. From this, it is clear that the two-field character of FS
is included in the rotation tensors RS and not in the stretch tensors US and VS.

B
current configuration

dx

x

B0
reference configuration

stretch

US

rotation

RS
dXS

XS

intermediate configuration

rotation
RS stretch

VS

d X̃S

X̃S

d x̃

x̃

Figure 2.3: Polar Decomposition of FS.
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Furthermore, the line elements of one configuration can be represented by the elements of
the other configuration. Hence, we examine the variation in the length of the line elements
in the reference configuration

∥dx∥2 = dx ·dx
= (FS dXS) · (FS dXS)

= dXS · (FT
S FS)dXS

= dXS ·CS dXS.

(2.25)

From the equation (2.25), one obtains the right Cauchy-Green deformation tensor CS =
FT

S FS. Similarly, we examine the variation in the length of the line elements in the current
configuration

∥dXS∥2 = dXS ·dXS

= (F−1
S dx) · (F−1

S dx)
= dx · (F−T

S F−1
S︸ ︷︷ ︸

(FSFT
S )

−1

)dx

= dx ·b−1
S dx.

(2.26)

From the equation (2.26), one obtains the left Cauchy-Green deformation tensor bS =
FSFT

S . Additionally, the right and the left Cauchy-Green tensors can be written in the form
of stretch tensors

CS = FT
S FS = (RSUS)

T (RSUS) = USUS,

bS = FSFT
S = (VSRS)(VSRS)

T = VSVS.
(2.27)

Following equations (2.23) and (2.27), the right and the left Cauchy-Green tensors are
related by the forward and backward rotations

CS = RT
S bSRS, bS = RSCSRT

S . (2.28)

Furthermore, we introduce the strain tensors, which are dimensionless quantities and relate
the state of the material in the current configuration to the reference configuration. Hence,
they can capture the body’s deformation at any time. Here, we introduce two nonlinear
strain tensors: Green-Lagrangean ES and Almansi eS strain tensors. Using equation (2.25),
the Green-Lagrangean strain ES is derived as follows

dx ·dx−dXS ·dXS = dXS ·CS dXS −dXS ·dXS = dXS · (CS − I︸ ︷︷ ︸
2ES

)dXS, (2.29)

which gives ES = 1
2(CS − I). Using equation (2.26), the Almansi strain eS is derived as

follows
dx ·dx−dXS ·dXS = dx ·dx−dx ·b−1

S dx = dx · (I−b−1
S︸ ︷︷ ︸

2eS

)dx, (2.30)
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which gives eS =
1
2(I−b−1

S ). The Almansi strain tensor is the push-forward of the Green-
Lagrangean strain tensor and is in the current configuration. The Green-Lagrangean strain
is the pull-back of the Almansi strain and is present in the reference configuration, i.e.

ES =
1
2
(CS − I) = FT

S (eS)FS, eS =
1
2
(I−b−1

S ) = F−T
S (ES)F−1

S . (2.31)

There are further possibilities to define strain measures. For more information on the strain
tensors, the reader is referred to Bonet & Wood [2] and Holzapfel [3].

2.3.5 Spectral Decomposition

We briefly overview the spectral representation in this section. For constitutive modelling,
representing deformation tensors in the spectral form is often convenient. We introduce
the orthogonal, and normalised eigenvectors N̂i

S ̸= 0 in the reference configuration and the
respective eigenvalues λ i

S for the right stretch tensor US as

USN̂i
S = λ

i
SN̂i

S, with i = 1,2,3 (2.32)

Using equations (2.27)1 and (2.32), we obtain the eigenvalue problem for CS as

CSN̂i
S = U2

SN̂i
S = (λ i

S)
2N̂i

S. (2.33)

From the equations (2.32) and (2.33), it is clear that both US and CS have the same eigen-
vectors N̂i

S but their eigenvalues differ. The eigenvalues λ i
S of US are called principal

stretches. The eigenvalues of CS are the squares of the principal stretches denoted by
(λ i

S)
2.

From equation (2.23), we can get VS = RSUSRT
S . Using this relation and RT

S RS = I, we
obtain the eigenvalue problem for VS as

VS(RSN̂i
S) = RSUSRT

S (RSN̂i
S) = RSUSN̂i

S = λ
i
S(RSN̂i

S). (2.34)

Furthermore, we use equations (2.27)2 and (2.34) to obtain the eigenvalue problem for bS
as

bS(RSN̂i
S) = V2

S(RSN̂i
S) = (λ i

S)
2(RSN̂i

S). (2.35)

From equations (2.34) and (2.35), we can observe that both VS and bS have the same
eigenvectors RSN̂i

S but their eigenvalues are λ i
S and (λ i

S)
2, respectively.

From the equations (2.32) - (2.35) and the section 2.3.4, we see that the eigenvectors of US
and CS are rotated with RS to give the eigenvectors for VS and bS. The eigenvectors N̂i

S in
the reference configuration are rotated to give the orthogonal, and normalised eigenvectors
n̂i

S ̸= 0 in the current configuration via

n̂i
S = RSN̂i

S. (2.36)



18 2 Fundamentals of Theory of Porous Media

As a result, the spectral decomposition of the deformation tensors can be given in the
following way

U2
S = CS =

3

∑
i=1

(λ i
S)

2N̂i
S ⊗ N̂i

S,

V2
S = bS =

3

∑
i=1

(λ i
S)

2n̂i
S ⊗ n̂i

S.

(2.37)

Using the equations (2.23) and (2.36), the spectral decomposition of the deformation gra-
dient FS can be given as

FS = RSUS = RS

3

∑
i=1

λ
i
SN̂i

S ⊗ N̂i
S =

3

∑
i=1

λ
i
S(RSN̂i

S)⊗ N̂i
S =

3

∑
i=1

λ
i
Sn̂i

S ⊗ N̂i
S. (2.38)

Moreover, since unit tensor I can be written as N̂S ⊗ N̂S, the spectral decomposition of
rotation tensor RS can be obtained as

RS = RSI = (RSN̂S)⊗ N̂S =
3

∑
i=1

n̂i
S ⊗ N̂i

S. (2.39)

For a non-trivial solution of eigenvalue problems in (2.33) and (2.35), the characteristic
polynomial, which can be expressed using the Cayley Hamilton theorem, needs to be zero,
i.e.,

det(CS − (λ i
S)

2I) = det(bS − (λ i
S)

2I) = IIIS − (λ i
S)

2IIS +(λ i
S)

4IS − (λ i
S)

6 = 0. (2.40)

Due to the symmetry of the deformation tensors CS and bS, the third order characteristic
polynomial, equation (2.40), yields three real-valued eigenvectors λ 1

S ,λ
2
S ,λ

3
S . Further-

more, we introduce the principal invariants IS, IIS and IIIS in the following way

IS = IbS = ICS = trCS = CS : I = FS : FS,

IIS = IIbS = IICS =cofCS : I =
1
2
[(trCS)

2 − tr(CS ·CS)] = cofFS : cofFS,

IIIS = IIIbS = IIICS = detCS = (detFS)
2.

(2.41)

If the eigenvalues λ i
S are known, the principal invariants can be calculated as follows

IS =
3

∑
i=1

λ
i
S = λ

1
S +λ

2
S +λ

3
S ,

IIS =
1
2

3

∑
i, j=1
i̸= j

λ
i
Sλ

j
S = λ

1
S λ

2
S +λ

2
S λ

3
S +λ

3
S λ

1
S ,

IIIS =
3

∏
i=1

λ
i
S = λ

1
S λ

2
S λ

3
S .

(2.42)
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2.3.6 Deformation and Strain Rates

In this section, we focus on the evolution of the kinematic tensor fields. We proceed with
the Lagrangean representation of the velocity in equation (2.10) and obtain the material
velocity gradient LS as

LS(XS, t) = (FS)
′
S(XS, t) =

∂

∂ t

(
∂χχχS(XS, t)

∂XS

)
=

∂

∂XS

(
∂χχχS(XS, t)

∂ t

)
= GradS x′S. (2.43)

Similarly, proceeding with the Eulerian description of the velocity in equation (2.11), we
get the spatial velocity gradient lllS as

lllS(x, t) =
∂x′S(x, t)

∂x
= gradx′S(x, t). (2.44)

Using the equations (2.8), (2.10)1, (2.11)1, (2.44), and the definitions of FS and F−1
S , we

get

lllS(x, t) =
∂x′S(x, t)

∂x
=

∂

∂ t

(
∂χχχS(XS, t)

∂XS

)
︸ ︷︷ ︸

(FS)
′
S

∂XS

∂x︸︷︷︸
F−1

S

= (FS)
′
SF−1

S . (2.45)

Furthermore, we additively decompose the spatial velocity gradient lllS into the symmetric
and skew-symmetric parts

lllS(x, t) = dS(x, t)+wS(x, t), (2.46)

where

dS =
1
2
(lllS + lllT

S ) =
1
2
(gradx′S +gradT x′S) = dT

S ,

wS =
1
2
(lllS − lllT

S ) =
1
2
(gradx′S −gradT x′S) =−wT

S .

(2.47)

dS is the symmetric part and is referred to as the rate of deformation tensor (rate of strain
tensor), and the skew-symmetric part wS is known as the spin tensor (rate of rotation ten-
sor or vorticity tensor). Moreover, using the equations (2.31)2 and (2.44), the Green-
Lagrangean strain rate can be introduced as

(ES)
′
S =

1
2
(
(FT

S )
′
SFS +FT

S (FS)
′
S
)
=

1
2
(
FT

S lllT
S FS +FT

S lllSFS
)

= FT
S

1
2
(
lllT
S + lllS

)
FS = FT

S dSFS.

(2.48)

This gives the relation for the Cauchy-Green deformation tensor CS as

(CS)
′
S = 2(ES)

′
S = 2FT

S dSFS. (2.49)

Furthermore, the Lie time derivative for the spatial kinematic quantities can be introduced.
The Lie derivative can be obtained for an arbitrary tensor field hS in the current configura-
tion via three steps using the pull-back A∗(·) and push-forward A∗(·) operators as
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• Define the quantity in the reference configuration via pull-back operation as

HS =A∗(h). (2.50)

• Take the time derivative in the reference configuration as

(HS)
′
S =

dS HS

d t
. (2.51)

• Define the quantity in the current configuration via push-forward operation as

Lv(hS) =A∗((HS)
′
S). (2.52)

The Lie derivative computes the change of hS relative to the vector field v and is denoted
by Lv(hS).

Following the mentioned steps and using the equation (2.31), the Lie derivative Lv for the
Almansi strain eS can be calculated as

• Pull-back of the Almansi strain

ES = FT
S (eS)FS. (2.53)

• Time derivative in the reference configuration

(ES)
′
S =

1
2
(CS)

′
S =

1
2
(FT

S FS)
′
S =

1
2
(FT

S )
′
SFS +

1
2

FT
S (FS)

′
S. (2.54)

• Push-forward to the current configuration

Lv(eS) = F−T
S (ES)

′
SF−1

S =
1
2

(
F−T

S (FT
S )

′
S +(FS)

′
SF−1

S

)
=

1
2
(lllT

S + lllS) = dS. (2.55)

Hence, the Lie derivative of the Almansi strain is the rate of deformation tensor dS.
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2.3.7 Stress Measures

This section introduces the stress measures for a deformable body undergoing a finite
motion. In the current configuration, the stress is defined as force per unit area. This leads
to the definition of Cauchy stress, also known as true stress. Cauchy introduced it for
single-phase materials, which can be directly extended to the framework of TPM.

We begin with Euler’s cut principle, cf. Figure 2.4. Consider the open subdomain P0 ⊂B0
of the reference configuration, which is deformed to Pt in the current configuration for a
constituent ϕα . We obtain the outward normal vector Nα and the area element dAα on the
surface of P0. Similarly, we get the normal vector n and the area element da on the surface
of Pt . The reference configuration is assumed to be stress-free. However, we can replace
the action of the rest of the body on the subdomain Pt with the traction vector field defined
on the surface. The traction vector tα is defined as the force per unit area and is assumed
to be a function of the position x, time t and a linear function of the outward normal vector
n. This is expressed by Cauchy’s theorem as

tα(x, t;n) = Tα(x, t)n, (2.56)

where Tα is the partial Cauchy stress tensor of a constituent ϕα in the current configura-
tion. Following the definition of the surface traction vector and equation (2.56), for every
surface element, we get

d fα = tα da = Tαnda = Tα da, (2.57)

where fα is the force vector in the current configuration. Hence, the Cauchy stress is called
the true stress because it relates the actual force elements to the actual outward normal
vector, both in the current configuration. Following this, it is convenient to introduce
further stress definitions. We can define the Kirchhoff stress τττα in the current configuration
simply by scaling the Cauchy stress tensor by the Jacobian Jα = detFα as

τττ
α := JαTα . (2.58)

Furthermore, the first Piola-Kirchhoff stress Pα can be defined. The idea is to associate
the force in the current configuration with the area in the reference configuration. Using
equations (2.57) and (2.18)1, we get

d fα = Tα da = Tα cofFα dAα = Tα detFαF−T
α︸ ︷︷ ︸

Pα

dAα = Pα dAα , (2.59)

where
Pα = Tα detFαF−T

α = τττ
αF−T

α . (2.60)

The first Piola-Kirchhoff stress is significant from experiments point of view, where the
forces are related to the undeformed surfaces. Since we have stress measures in the actual
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Figure 2.4: Euler’s cut principle.

configuration (Tα and τττα ) and two-field stress measure (Pα ), we will now introduce the
second Piola-Kirchhoff stress Sα in the reference configuration, which is a pull-back of
Kirchhoff stress

Sα := F−1
α τττ

αF−T . (2.61)

2.4 Balance Relations for Porous Media

The following section briefly overviews the balance relations used in the TPM. We can
write the balance relations for the multi-phase materials in analogy to the mechanics of
single-phase materials. The formulation of the balance principles for the multi-phase ma-
terials is based on Truesdell’s metaphysical principles [69] of mixture theories:

1. All properties of the mixture must be mathematical consequences of properties of
the constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate it from
the rest of the mixture, provided we allow properly for the actions of the other con-
stituents upon it.

3. The motion of the mixture is governed by the same equations as in a single body.
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Following this, we must describe each constituent ϕα by individual motion functions and
balance equations and account for the possible interactions between the constituents by
introducing production terms. Moreover, the mixture (overall aggregate) ϕ balance equa-
tions are obtained by summation of the balance equations of all the constituents. Hence,
they have the same structure as the balance equations of single-phase materials.

In this context, we can briefly introduce the master balance principle from the single-
phase materials and extend it to the constituents as well as the overall aggregate. The
reader is referred to Ehlers [39], de Boer [5], Truesdell [69], and Holzapfel [3] for more
information.

2.4.1 Aggregate Balance Relations

To obtain the local balance relations for the aggregate ϕ , one starts with the mass balance
before evaluating higher balance equations. The higher balances are simplified by inserting
the lower balance equations. The balance equations can be formulated following the five-
step procedure as

• Formulate the balance laws in the current configuration where the physics happens.

• Pull-back the formulation to the reference configuration to obtain the time-independent
integration domain.

• Take the time derivative in the reference configuration.

• Push-forward the result to the current configuration.

• Apply the localisation theorem to obtain the local representation of the balance laws.

However, in this section, we provide the general structure of the balance laws. Proceed-
ing from the classical continuum mechanics of single-phase materials, the integral master
balance relations for aggregate body B can be presented as

d
d t

∫
B

Ψdv =
∫
S

(φφφ ·n)da+
∫
B

σ dv+
∫
B

Ψ̂dv,

d
d t

∫
B

ΨΨΨdv =
∫
S

(ΦΦΦn)da+
∫
B

σσσ dv+
∫
B

Ψ̂ΨΨdv.
(2.62)

From the general thermodynamic framework, Ψ or ΨΨΨ are volume-specific scalar- and
vector-valued densities of mechanical quantities that have to be balanced in the overall
aggregate ϕ . These quantities are given by the mass density, the linear momentum, the
moment of momentum, the total energy (internal and kinetic) and the entropy. The quanti-
ties φφφ ·n or ΦΦΦn represent the effluxes of the mechanical quantities defined per unit current
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area, which directly enter the aggregate body B over its surface S from the external vicin-
ity. n is the outward-oriented normal vector to the surface S and at point x. σ or σσσ are the
supply terms of external mechanical quantities defined per unit volume, resulting from a
distance. Ψ̂ or Ψ̂ΨΨ are the production terms allowing for a possible coupling of ϕ with its
surroundings.

We can now obtain the local balance relations from the master balance relations, provided
the integrands are steady and steadily differentiable. On transforming the surface integrals
on the right-hand side in (2.62) into the volume integrals, and applying the localisation
theorem, we can obtain the local balance relations

Ψ̇+Ψdiv ẋ = divφφφ +σ + Ψ̂,

Ψ̇ΨΨ+ΨΨΨdiv ẋ = divΦΦΦ+σσσ +Ψ̂ΨΨ,
(2.63)

where ˙(·) represents the material time derivative for the aggregate. The specific balance
principles, i.e., the balance of mechanical (mass, momentum, moment of momentum) and
thermodynamical quantities (energy and entropy) of the deforming body B, which apply
to any material and must be satisfied at all times, can be represented as

Ψ,ΨΨΨ φφφ ,ΦΦΦ σ ,σσσ Ψ̂,Ψ̂ΨΨ

mass ρ 0 0 0
momentum ρ ẋ T ρb 0

m.o.m. x× (ρ ẋ) x×T x× (ρb) 0
energy ρε + 1

2 ẋ · (ρ ẋ) TT ẋ−q ẋ · (ρb)+ρr 0
entropy ρη φφφ η ση η̂ ≥ 0

(2.64)

Here, ρ ẋ is the momentum of the aggregate, T is the Cauchy stress tensor, and b is the
external volume force per unit mass. x× (ρ ẋ) yields the moment of momentum, while ε

denotes the internal energy of the aggregate. Moreover, q is the heat influx vector, and r
is the external heat supply. η is the entropy, and φφφ η and ση denote the efflux of entropy
and the external entropy supply, respectively. η̂ is the entropy production which can never
be negative (η̂ ≥ 0) following the second law of thermodynamics. Furthermore, we can
insert the specific balance relations (2.64) in the local master balances (2.63). This gives
us the standard local balance equations for the single-phase materials and the aggregate ϕ
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in agreement with Truesdell’s third metaphysical principle as

mass : ρ̇ +ρ div ẋ = 0,
momentum : ρ ẍ = divT+ρb,

m.o.m. : 0 = I×T → T = TT, (2.65)
energy : ρε̇ = T : lll −divq+ρr,

entropy : ρη̇ ≥ divφφφ η +ση .

One should note that, as a result of the moment of momentum balance, we get the sym-
metric Cauchy stress tensor.

2.4.2 Constituent Balance Relations

We can obtain the master balance relations for the constituents ϕα in analogy to (2.62)
following Truesdell’s second metaphysical principle as

dα

d t

∫
B

Ψ
α dv =

∫
S

(φφφ α ·n)da+
∫
B

σ
α dv+

∫
B

Ψ̂
α dv,

dα

d t

∫
B

ΨΨΨ
α dv =

∫
S

(ΦΦΦαn)da+
∫
B

σσσ
α dv+

∫
B

Ψ̂ΨΨ
α dv.

(2.66)

Here, the partial quantities (·)α have the same physical meaning as in (2.62). The local
master balance relations for the constituents can be obtained in a similar way as (2.63)

(Ψα)′α +Ψ
α divx′α = divφφφ

α +σ
α + Ψ̂

α ,

(ΨΨΨα)′α +ΨΨΨ
α divx′α = divΦΦΦ

α +σσσ
α +Ψ̂ΨΨ

α .
(2.67)

Equation (2.63) gives the balance relations for the overall aggregate following the classical
continuum mechanics of single-phase materials. From Truesdell’s first metaphysical prin-
ciple, we can obtain these relations by the sum of the balance relations (2.67) over all the
constituents ϕα . Therefore, this leads to the following summation constraints for scalar-
and vector-valued quantities Ψ and ΨΨΨ

quantity : Ψ = ∑
α

Ψ
α , ΨΨΨ = ∑

α

ΨΨΨ
α ,

efflux : φφφ ·n = ∑
α

(φφφ α −Ψ
αvα) ·n, ΦΦΦn = ∑

α

(ΦΦΦα −ΨΨΨ
α ⊗vα)n

supply : σ = ∑
α

σ
α , σσσ = ∑

α

σσσ
α ,

production : Ψ̂ = ∑
α

Ψ̂
α , Ψ̂ΨΨ = ∑

α

Ψ̂ΨΨ
α .

(2.68)
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On comparing the divergence terms in (2.63) and (2.67), we obtain the additional diffu-
sion velocity term in (2.68)2. We can formulate the specific balance equations for the
constituents ϕα directly in analogy to the single-phase materials in (2.64) as

Ψα ,ΨΨΨα φφφ α ,ΦΦΦα σα ,σσσα Ψ̂α ,Ψ̂ΨΨα

mass ρα 0 0 ρ̂α

momentum ραx′α Tα ραbα ŝα

m.o.m. x× (ραx′α) x×Tα x× (ραbα) ĥα

energy ραεα + 1
2x′α · (ραx′α) (Tα)T x′α −qα x′α · (ραbα)+ραrα êα

entropy ραηα φφφ α
η σα

η η̂α

(2.69)
Here, ρ̂α represents the total mass production term, allowing for mass exchange or phase
transition among the constituents ϕα . ŝα is the total momentum production, and ĥα de-
notes the total moment of momentum production. êα and η̂α are the total energy and
entropy productions, respectively. On summing the specific balance relations of the con-
stituents (2.69), using the equations (2.68), and comparing the results with the specific
balance relations of the aggregate ϕ , we get the following summation constraints for the
total production terms

∑
α

ρ̂
α = 0, ∑

α

ŝα = 0, ∑
α

ĥα = 0, ∑
α

êα = 0, ∑
α

η̂
α ≥ 0. (2.70)

From the framework of single-phase materials, we can write the efflux and the supply of
the entropy of the constituents ϕα as

φφφ
α
η =

1
Θα

qα , σ
α
η =

1
Θα

ρ
αrα , (2.71)

where Θα > 0 allows for different Kelvin temperatures for each constituent. Now, inserting
the specific balance relations (2.69) into the local master balance relations (2.67) of the
constituents ϕα and using the lower balance relations for deriving the higher balances, we
obtain the following equations for non-polar constituents

mass : (ρα)′α +ρ
α divx′α = ρ̂

α ,

momentum : ρ
αx′′α = divTα +ρ

αbα + p̂α ,

m.o.m. : 0 = I×Tα → Tα = (Tα)T , (2.72)
energy : ρ

α(εα)′α = Tα : lllα −divqα +ρ
αrα + ε̂

α ,

entropy : ρ
α(ηα)′α = div

(
− 1

Θ
qα
)
+

1
Θα

ρ
αrα + ζ̂

α .

In the framework of the mixture theories, the total production terms can be split into direct
and additional production terms and give the following relations

ŝα = p̂α + ρ̂
αx′α , ĥα = x× ŝα ,

êα = ε̂
α + p̂α ·x′α + ρ̂

α(εα +
1
2

x′α ·x′α), η̂
α = ζ̂

α + ρ̂
α

η
α . (2.73)
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The direct momentum production term p̂α results from the interaction force between the
constituents ϕα . The second part ρ̂αx′α represents the momentum production due to the
mass exchange. Furthermore, ĥα is the total production of the moment of momentum,
accounting for the production of angular momentum from the mass exchange and the direct
moment production. Similarly, êα and ζ̂ α are the direct production terms of energy and
entropy, respectively. The derivations of the balance equations for non-polar constituents
can be found in Appendix A.1.

2.4.3 Entropy Principle

In a thermodynamic process, the first law of thermodynamics is responsible for energy
transfer. However, it has no information on the direction of the energy transfer. The
entropy balance, together with the second law of thermodynamics (governs the direction
of energy transfer), gives the entropy principle. The entropy principle provides us with the
restriction, which plays an essential role in the constitutive modelling of a material. We get
the entropy principle by restricting the total entropy production in (2.73)4 via the relation
(2.70)5 and using the specific entropy balance of the constituents (2.72)5 as

η̂ = ∑
α

η̂
α = ∑

α

[
ρ

α(ηα)′α + ρ̂
α

η
α +div

( 1
Θα

qα

)
− 1

Θα
ρ

αrα

]
≥ 0. (2.74)

Following this, we use the Legendre transformation between the entropy and its conjugate
variable, the temperature and introduce the Helmholtz free energy density ψα as

ψ
α := ε

α −Θ
α

η
α (2.75)

Furthermore, the lower balance relations of the constituents (2.72)1−3 along with the equa-
tion (2.75) gives the Clausius-Duhem representation of the entropy inequality

D = ∑
α

1
Θα

{
Tα : lllα −ρ

α
[
(ψα)′α +(Θα)′αη

α
]
− p̂α ·x′α−

− ρ̂
α(ψα +

1
2

x′α ·x′α)−
1

Θα
qα ·gradΘ

α + êα

}
≥ 0.

(2.76)

This equation is essential for developing a thermodynamically consistent model.





3 CONSTITUTIVE MODELLING

In the previous chapter, we presented kinematics and balance relations. However, these do
not provide enough equations to determine all the unknown quantities. As a result, further
constitutive equations need to be developed to close the model. Therefore, we consider the
characteristics of the model and thrombosis, and consequently present the assumptions to
simplify the balance equations of the constituents accordingly. Moreover, we evaluate the
entropy inequality to provide the necessary restrictions to develop the missing constitutive
equations for a thermodynamically consistent model.

3.1 Saturated Triphasic TPM Model

This section aims to specify the balance equations presented in Section 2.4 by giving the
assumptions for the saturated triphasic porous media.

3.1.1 Preliminaries and Assumptions

At first, we introduce meaningful assumptions to be able to adapt the model according to
the theoretical background. This also leads to simplifying the modelling approach to a
reasonable scope. In this context, we introduce the following assumptions for the triphasic
aggregate ϕ and its constituents ϕα .

• We assume the aggregate to be fully saturated to prevent the development of vacant space
in the overall aggregate

nS +nL +nN︸ ︷︷ ︸
nF

= 1. (3.1)

• The constituents are assumed to be materially incompressible. This implies that the re-
alistic densities of the constituents ραR are constant. However, material incompressibility
does not lead to bulk incompressibility because the partial densities ρα can still change
due to changes in volume fractions following the equation (2.6)

ρ
αR = constant, (ραR)′α = 0. (3.2)

• Quasi-static conditions (slow deformations) are assumed for the aggregate as well as the
constituents

x′′α ≡ 0, ẍ ≡ 0. (3.3)

• A uniform temperature for all the constituents is considered. Due to isothermal con-
ditions, the energy balance in the set of governing equations is needless and is not used
explicitly

Θ
α ≡ Θ = constant. (3.4)

29
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• We consider a uniform body force for all the constituents

bα = b. (3.5)

• Non-polar constituents are considered which gives the symmetric stress tensor

Tα = (Tα)T . (3.6)

• Both liquid and nutrients are assumed to be in the fluid phase. Therefore, we assign both
phases the same velocity x′α as fluid

x′N = x′L = x′F . (3.7)

• We assume that the liquid phase is not involved in the mass exchange. Consequently, the
mass exchange occurs between the solid and the nutrient phase. This assumption, along
with the equation (2.70)1 gives

ρ̂
L = 0 → ρ̂

S =−ρ̂
N . (3.8)

Furthermore, energy transfer due to chemical reactions is neglected, the diffusion velocity
is neglected, and the internal structure of the thrombus is considered to be isotropic.

3.1.2 Volume Balances

Volume Balance of the Mixture

Initially, we extend the relation (2.6) to the total mass production term ρ̂α as

ρ̂
α = n̂α

ρ
αR. (3.9)

Furthermore, the local mass balance of the constituents (2.72)1 can be reformulated to the
local volume balance using the assumption (3.2), relation (2.6), and (3.9) as

(nα)′α +nα divx′α = n̂α . (3.10)

Following this, we get the volume balance for each constituent ϕα as

(nS)′S +nS divx′S = n̂S, (nL)′L +nL divx′L = n̂L, (nN)′N +nN divx′N = n̂N . (3.11)

Moreover, using the material time derivative (2.14) of a scalar quantity γ , definition of the
seepage velocity (2.15)2, and assumption (3.7), we get

γS
′ =

∂γ

∂ t
+gradγ ·x′S,

γL
′ =

∂γ

∂ t
+gradγ ·x′L,

 −→ γL
′ = γS

′+gradγ · (x′L −x′S)︸ ︷︷ ︸
wFS

. (3.12)
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Similarly, we use the assumption (3.7)1 to obtain

γN
′ = γS

′+gradγ · (x′N −x′S)︸ ︷︷ ︸
wFS

(3.13)

We can further get the following relation from the saturation condition (2.4)

nS +nL +nN = 1 −→ (nS +nL +nN)′S = 0. (3.14)

Furthermore, on summing the volume balance of all the constituents (3.11) and using
relations (3.12), (3.13), and (3.14), we get

gradnL · (x′L−x′S)+gradnN · (x′N −x′S)+nS divx′S+nL divx′L+nN divx′N =∑
α

n̂α . (3.15)

Now, we use the rules for gradient and divergence operators and rearrange the terms

div(nLwFS)+div(nNwFS)+divx′S = ∑
α

n̂α . (3.16)

Finally, we use the equation (3.9) to get the volume balance of the mixture as

div(x′S +nFwFS)+ ρ̂
S
(

1
ρNR − 1

ρSR

)
= 0, (3.17)

where nF = nL +nN .

Volume Balance of the Solid

In order to use the concept of volume fractions for identifying the regions with thrombus
formation, we introduce the volume balance of solid using (3.11)1 as

(nS)′S +nS divx′S = n̂S. (3.18)

Volume Balance of the Nutrients

Similarly, we can introduce the volume balance of nutrients using the equation (3.11)3

(nN)′N +nN divx′N = n̂N . (3.19)

Now, using the equation (3.13), the above equation can be reformulated to obtain the vol-
ume balance of nutrients as

(nN)′S +div(nNwFS)+nN divx′S = n̂N . (3.20)
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Momentum Balance of the Mixture

The momentum balance equations for the constituents ϕα can be directly formulated from
the equations (2.72) and (2.73) as

ρ
αx′′α = divTα +ρ

αbα + p̂α . (3.21)

Now, using the quasi-static assumptions (3.3) and (3.5), we obtain the individual momen-
tum balance for each constituent

divTS +ρ
Sb+ p̂S = 0,

divTL +ρ
Lb+ p̂L = 0,

divTN +ρ
Nb+ p̂N = 0.

(3.22)

Furthermore, we use the summation constraint for the total production of momentum
(2.70)2, velocity assumption (3.7), and the mass production constraint (3.8)

∑
α

p̂α = ∑
α

(ŝα − ρ̂
αx′α) = ρ̂

SwFS. (3.23)

We can now sum up the momentum balance of all the constituents (3.22) to obtain the
momentum balance of the mixture as

div(TS +TL +TN)+(ρS +ρ
L +ρ

N)b+ ρ̂
SwFS = 0. (3.24)

3.1.3 Entropy Inequality

We have the Clausius-Duhem representation of the entropy inequality from equation (2.76)
and symmetric partial stresses (3.6)

D = ∑
α

1
Θα

{
Tα : dα −ρ

α
[
(ψα)′α +(Θα)′αη

α
]
− p̂α ·x′α−

− ρ̂
α(ψα +

1
2

x′α ·x′α)−
1

Θα
qα ·gradΘ

α + êα

}
≥ 0.

(3.25)

For the isothermal conditions (3.4), heat influx (qα = 0), and the vanishing total energy
production (2.70), the Clausius-Duhem inequality reduces to the local part giving the
Clausius-Planck inequality as

∑
α

[
Tα : dα −ρ

α(ψα)′α − p̂α ·x′α − ρ̂
α(ψα +

1
2

x′α ·x′α)
]
≥ 0. (3.26)
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3.2 Thermodynamic Principles

After introducing the adapted balance relations, we have to formulate constitutive rela-
tions to characterise the material behaviour. Therefore, we must take care that none of the
constitutive relations violates these principles to develop a thermodynamically consistent
model. Thus, we briefly overview the fundamental principles of determinism, local ac-
tion, equipresence, material frame indifference, and universal dissipation from the work of
Coleman & Noll [70], Noll [71, 72], Tuesdell [73], and Ehlers [39].

3.2.1 Determinism, Equipresence and Local Action

Following the principle of determinism, we determine the following set of response func-
tions uniquely defined at any time

R=
{

ψ
α ,Tα , p̂α , ρ̂α

}
. (3.27)

According to the principle of equipresence, the response functions depend on the same set
of process variables

V =
{

FS, GradS FS, nα , gradnα , wFS,Jα

}
. (3.28)

Furthermore, Ehlers [39] introduce the principle of phase separation where the free energy
function ψα of a given constituent ϕα depends on the non-dissipative process variables of
the respective constituent, i.e., the velocities are excluded. Also, according to the principle
of local action, the constitutive response at a point can be formulated using first-grade,
second-grade or higher-order theories. Following Bowen [48], the second-grade character
applies only to the production terms eliminating GradS FS. However, to restrict the com-
plexity to a reasonable scope, the following dependencies for the Helmholtz free energy
function ψα are chosen

ψ
S = ψ

S(FS,nS), ψ
L = ψ

L(nL), ψ
N = ψ

N(nN). (3.29)

3.2.2 Material Frame Indifference

The principle of material frame indifference, also known as the principle of objectivity, is
an essential part of non-linear continuum mechanics. This principle means that the material
properties of the body and the constitutive equations should not depend on the position of
the observer and must be invariant with respect to the rigid body motion superimposed
on the current configuration. In this context, we introduce

+++
χα as the rigid body motion

function and
∗∗∗
χα as the superimposed rigid body motion function, cf. Figure 3.1, where

+++x =
+++
χα(x, t) = c(t)+Q(t)x and

∗∗∗
χα =

+++
χα ◦χα , (3.30)
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where c is the superimposed rigid body translation for which any material point move in
an identical way. Also, the orientation is preserved as Q is a proper orthogonal rotation
tensor

detQ =+1, and Q−1 = QT ∀Q ∈ SO3. (3.31)

B
current

configuration

B0 ∗∗∗
χα =

+++
χα ◦χα

reference configuration

x

∗∗∗
B

rotated current configuration

Xα

χα

∗∗∗x/+++x

+++
χα

Figure 3.1: Principle of material frame indifference

Following equation (3.30)1, we consider another point
+++y in a similar way. This gives us

the transformation rule for a spatial vector as
+++u =

+++y− +++x = c(t)+Q(t)(y−x)− c(t) = Q(t)u, (3.32)

where u and
+++u are the displacement vectors in the current and rotated current configura-

tions, respectively. On differentiating equation (3.30)1, we get the relation for rotated line
elements as

∂
+++x

∂x
=

∂
∗∗∗x

∂x
= Q. (3.33)

One should note that the quantities in the reference configuration are a priori invariant
for the rotations of the current configuration. Following the equation (3.33), we obtain
the relationship between the deformation gradients with respect to the current and rotated
configurations as

∗∗∗
Fα =

∂
∗∗∗x

∂Xα

=
∂

∗∗∗x
∂x

∂x
∂Xα

= QFα . (3.34)
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Now, we can show that the volume element dv is objective using relations (2.18), (3.31)1,
and (3.34)

d ∗∗∗v =
∗∗∗

Jα dVα = det(QFα)dVα = (detQ)(detFα)dVα = Jα dVα = dv, (3.35)

which also proves the objectivity of volume fractions nα using its definition (2.3). Now,
we introduce the objectivity condition for the solid Helmholtz energy function keeping in
mind the objectivity of scalar-valued quantities, i.e.,

∗∗∗
ψ(

∗∗∗·) = ψ(·)
∗∗∗

ψ
S(

∗∗∗
FS,

∗∗∗nS) = ψ
S(FS,nS), −→ ψ

S(QFS,nS) = ψ
S(FS,nS). (3.36)

We see that ψS cannot be an arbitrary function of FS. Therefore, we use the transpose of
the orthogonal rotation tensor RT

S = Q and the right polar decomposition of FS (cf. Section
2.3.4) to obtain

ψ
S(FS,nS) = ψ

S(RSFS,nS) = ψ
S(RT RUS,nS) = ψ

S(US,nS). (3.37)

which holds for arbitrary FS. Since the right Cauchy-Green deformation tensor CS can be
expressed by the right stretch tensor US using the equation (2.27), the Helmholtz energy
function can be written as

∗∗∗
ψ

S(CS,nS) = ψ
S(CS,nS). (3.38)

Therefore, ψS depends only on the referential stretch parts of the solid deformation ten-
sor and the scalar objective quantity. Finally, we can show that the rest of the quantities
(gradnα ,wFS) follow the principle of material indifference. Consider the spatial gradient
of the objective scalar nα

∗∗∗
gradnα =

∂nα

∂
∗∗∗x

∂x
∂x

=
∂nα

∂x
QT = gradnαQT . (3.39)

This proves the objectivity of gradnα . Also, one should note that we can obtain the relation
Q′

α = Q̇ from the definition of the material time derivative. Also, gradQ = 0 because the
rotation Q is independent of the constituent it is applied to. We can further make use of
the material time derivative to establish the objective nature of the seepage velocity

(
∗∗∗x′S) = (Qx)′S = Q̇x+Qx′S,
(
∗∗∗x′F) = (Qx)′F = Q̇x+Qx′F ,

}
−→ ∗∗∗wFS = (

∗∗∗x′S)−
∗∗∗x′F = Q(x′S −x′F)︸ ︷︷ ︸

wFS

. (3.40)

Furthermore, the objectivity requirements for a scalar a, vector a, and tensor A can be
summarised as

∗∗∗
A(

∗∗∗·) = QA(·)QT ,
∗∗∗a(∗∗∗·) = Qa(·),
∗∗∗a(∗∗∗·) = a(·).

(3.41)
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Now, the objectivity of Cauchy stress TS, First Piola Kirchhoff stress PS, and Second Piola
Kirchhoff SS can be shown. The Cauchy traction vector is given by equation (2.56). The
transformed Cauchy vector can be written as

∗∗∗
tS =

∗∗∗
TS ∗∗∗n. (3.42)

Using the transformation rule for vectors (3.41)2, we obtain

Qt =
∗∗∗
TSQn. (3.43)

On comparing equations (3.43) and (2.56), we get the following relation leading to the
objectivity of Cauchy stress tensor

∗∗∗
TS = QTQT . (3.44)

Similarly, using the relation (2.60), the transformed first Piola Kirchhoff stress tensor can
be written as

∗∗∗
PS(

∗∗∗
FS)

T =
∗∗∗

JS
∗∗∗
TS. (3.45)

We obtain the objectivity relation for the two-point first Piola Kirchhoff stress tensor by
using the objectivity of JS, (3.34), and (3.44)

∗∗∗
PS(QFS)

T = JSQTSQT ,
∗∗∗
PS(FT

S QT ) = QJSTSQT = QPS(FT
S QT ),

∗∗∗
PS = QPS.

(3.46)

Finally, the Second Piola Kirchhoff S is parameterised only by the material coordinates.
Therefore, it does not depend on any superimposed rigid body motion leading to objectiv-
ity

∗∗∗
S = S. (3.47)

3.2.3 Universal Dissipation

The preceding sections lead to a reduction in the set of process variables allowing for a
simplified evaluation of the entropy inequality. In constitutive modelling, the universal
dissipation principle must be satisfied by the constitutive relations. Therefore, we evaluate
the Clausius Plank inequality by following the procedure of Coleman & Noll [70]. For
more information regarding the evaluation of the entropy principle, the reader is referred
to Bowen [43] and Ehlers [39].
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At first, we evaluate ρα(ψα)′α for all the constituents ϕα knowing the Helmholtz free
energy dependence following the equations (3.29) and (3.38).

ρ
S(ψS)′S = 2nS

ρ
SRFS

∂ψS

∂CS
FT

S : dS +nS
ρ

SR ∂ψS

∂nS (n
S)′S,

ρ
L(ψS)′L = nL

ρ
LR ∂ψL

∂nL (nL)′L,

ρ
N(ψS)′N = nN

ρ
NR ∂ψN

∂nN (nN)′N .

(3.48)

Initially, an additional saturation constraint (2.4) is added to the entropy inequality to en-
sure the fully saturated condition in the overall aggregate at any given time. This is done
by introducing a Lagrangean multiplier p as a weight to the saturation condition as [5]

p(nS +nL +nN︸ ︷︷ ︸
nF

)′S = p(gradnF ·wFS − (nS)′S − (nL)′L − (nN)′N). (3.49)

Moreover, we multiply the volume balance of the individual constituent ϕα with the re-
spective Lagrangean multipliers pα and make use of the relation lllα : I = dα : I = divx′α
[74]

pα

[
(nα)′α +nα(dα : I)− ρ̂α

ραR

]
= 0. (3.50)

Now using the relations (3.48), (3.49), (3.50), (3.7) and the summation assumption (2.70)1,2,
we can evaluate the entropy inequality (3.26)

dS :
{

TS −2nS
ρ

SRFS
∂ψS

∂CS
FT

S + pSnSI
}
+dL :

{
TL + pLnLI

}
+dN :

{
TN + pNnNI

}
− (nS)′S

{
p− pS +nS

ρ
SR ∂ψS

∂nS

}
− (nL)′L

{
p− pL +nL

ρ
LR ∂ψL

∂nL

}
− (nN)′N

{
p− pN +nN

ρ
NR ∂ψN

∂nN

}
− ρ̂

L
{
(ψL − 1

2
x′L ·x′L +

1
ρLR pL)− (ψS − 1

2
x′S ·x′S +

1
ρSR pS)

}
− ρ̂

N
{
(ψN − 1

2
x′N ·x′N +

1
ρNR pN)− (ψS − 1

2
x′S ·x′S +

1
ρSR pS)

}
−wFS ·

{
p̂F − pgradnF + ρ̂

Sx′S
}
≥ 0,

(3.51)

which must hold for fixed values of the process variables and arbitrary values of free-
available quantities dα ,(nα)′α [74]. Therefore, we obtain the following structure of the
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entropy inequality

dS :
{
...
}︸︷︷︸

=0

+dL :
{
...
}︸︷︷︸

=0

+dN :
{
...
}︸︷︷︸

=0

−(nS)′S
{
...
}︸︷︷︸

=0

− (nL)′L
{
...
}︸︷︷︸

=0

−(nN)′N
{
...
}︸︷︷︸

=0

+ Dis︸︷︷︸
≥0

≥ 0.
(3.52)

In this context, we obtain the necessary and sufficient thermodynamic restrictions. The
parts concerning (nα)′α give

pα = p+nα
ρ

αR ∂ψα

∂nα
. (3.53)

Furthermore, we obtain the relations for the partial Cauchy stresses using (3.51) and
(3.53)

TS =−nS pI− (nS)2
ρ

SR ∂ψS

∂nS I+TS
E , TS

E = 2ρ
SFS

∂ψS

∂CS
FT

S ,

TL =−nL pI− (nL)2
ρ

LR ∂ψL

∂nL I,

TN =−nN pI− (nN)2
ρ

NR ∂ψN

∂nN I.

(3.54)

We can now introduce the chemical potentials Ψ
α using (3.53) and (3.51) as

Ψ
α
= ψ

α − 1
2

x′α ·xα +nα ∂ψα

∂nα
+

1
ραR p. (3.55)

For more information on chemical potentials, the reader is referred to Bowen [43]. Fur-
thermore, we make use of the assumption ρ̂L = 0 and (3.1) which gives us the dissipative
part as

Dis =− ρ̂
N
{
(ψN − 1

2
x′N ·x′N +

1
ρNR pN)− (ψS − 1

2
x′S ·x′S +

1
ρSR pS)

}
︸ ︷︷ ︸

Ψ
N−Ψ

S

−wFS ·
{

p̂F − pgradnF + ρ̂
Sx′S
}

︸ ︷︷ ︸
p̂F

E

≥ 0,
(3.56)

where the postulations for the chemical potentials have been outlined. Here, p̂F
E is called

the extra momentum production [75]. Moreover, this gives the restrictions for the solid
mass production ρ̂S and momentum production p̂F as postulated by Ricken and Bluhm
[74]

ρ̂
S = δ

NS(Ψ
N −Ψ

S
), where δ

NS ≥ 0,

p̂F = pgradnF − ρ̂
Sx′S −GFwFS,

(3.57)
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where GF = GL+GN is the permeability tensor between the solid and fluid phases. These
restrictions give us the possibility to further formulate stresses, mass production and inter-
action forces.

3.2.4 Stress

The stress relations can be introduced following the restrictions from the entropy inequality
(3.54) and neglecting the effective or frictional fluid stress, i.e., TF

E ≈ 0. It is assumed that
the fluid extra stress is much smaller in comparison with p̂F

E also known as the effective
drag force. Therefore, assuming ∂ψF/∂nF = 0 where ϕF = ϕL +ϕN yields [39, 74]

TS =−nS pI− (nS)2
ρ

SR ∂ψS

∂nS I+TS
E , where TS

E = 2ρ
SFS

∂ψS

∂CS
FT

S

TF = TL +TN =−(nL +nN)pI =−nF pI,
(3.58)

where TS
E is the effective or extra solid stress [75, 76]. Furthermore, p is identified as the

unspecified pore pressure. The total Cauchy stress is defined as the sum of partial stresses
as

T = TS +TF = TS
E − (nS)2

ρ
SR ∂ψS

∂nS I− pI. (3.59)

3.2.5 Filter Velocity

The seepage velocity wFS = x′F − x′S determines the motion of the fluid in relation to the
solid. For the restriction obtained from the evaluation of entropy inequality (3.57)2, we
make use of the permeability tensor proposed by Ricken and Bluhm [74] for anisotropic
material and simplify it for the case of isotropic material to obtain

GF = αFSI, (3.60)

where αFS is the material parameter which can be described either by using initial Darcy’s
permeability of fluid kF

OS [m/s] and effective fluid weight γFR [N/m3] or by using initial
intrinsic permeability of solid KS

OS [m
2] and dynamic fluid viscosity µFR [Ns/m2] [74]

(nF)2

αFS
=

(
nF

nF
OS

)m kF
OS

γFR =

(
nF

nF
OS

)m KS
OS

µFR , (3.61)

where m is a dimensionless parameter which accounts for the change of permeability [5,
39, 58, 77]. Furthermore, we can introduce the relation for the filter velocity nFwFS using
the fluid momentum balance (3.22)2+3

divTF +ρ
Fb+ p̂F = 0. (3.62)
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Inserting equation (3.58)2 and (3.60) in (3.62) gives

nFwFS =
(nF)2

αFS

(
−grad p+ρ

FRb− ρ̂S

nF x′S

)
. (3.63)

Using the assumption (3.8) and relation (3.61), we obtain Darcy’s law for the filter velocity
[74, 78]

nFwFS =−
(

nF

nF
OS

)m KS
OS

µFR

(
grad p−ρ

FRb+
ρ̂S

nF x′S

)
, (3.64)

where (nF/nF
0S)

mKS
0S = KS

E is referred to as effective permeability and accounts for the
permeability due to change in volume fractions. The filter law can also be written in terms
of the specific permeability KF [m4/Ns]. These can be related to each other using the
following relations

Darcy : kF := γ
FRKF =

γFR

µFR KS

Specific : KF :=
kF

γFR =
KS

µFR

Intrinsic : KS = µ
FRKF =

µFR

γFR kF

(3.65)

3.2.6 Mass Production

According to the assumption (3.8), the mass exchange occurs between the solid and nutri-
ent phases ρ̂S =−ρ̂N . Following the evaluation of the entropy inequality and making use
of the postulations proposed by Ricken et al. [57, 58, 74], the solid mass supply is defined
by (3.57)1. For the solid growth process, the chemical potential functions are related as

ρ̂
S ≥ 0 −→ Ψ

N ≥ Ψ
S
. (3.66)

In view of the solid growth, we formulate the mass supply term of the solid phase following
the description of thrombus formation and growth process. Therefore, we postulate the
solid mass production ρ̂S[kg/m3s] as a function of wFS and nN as

ρ̂
S = ρ̂

S(wFS,nN) = C ρ̂
S
wFS

(wFS) ρ̂
S
nN (nN),

ρ̂
S
wFS

(wFS) = exp
{
−∥wFS∥2/β1

}
,

ρ̂
S
nN (nN) =−exp

{
−(nN)2

β2
}
+1,

(3.67)

where C represents the maximum mass exchange, and β1 and β2 are the material param-
eters added in the respective formats for convenient formulation. β1 and β2 reflect the
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dependence of mass exchange rate on the seepage velocity and nutrient volume fraction,
cf. Figure 3.2.
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F
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nN

ρ̂
S nN

Figure 3.2: Mass exchange rate dependence on the seepage velocity wFS and nutrient vol-
ume fraction nN with β1 = 0.05 and β2 = 5.0.

Even though the effects of the blood velocity and the nutrients on thrombus growth are
well-researched [64–66], the data for the parameters are difficult to obtain for this ap-
proach. Therefore, we choose the parameters that give reasonable results.

3.2.7 Isotropic Elasticity

In the presented monograph, we consider the thrombus to be an isotropic material, cf.
3.1.1. An isotropic material does not have a preferred direction. Therefore, the material
response must be invariant with respect to all the rotations superimposed on the reference
configuration following the principle of material symmetry. Since we know from (3.29)
and Section 3.2.4 that only ψS remains, we formulate the following relations from the solid
constituent point of view.

The rotation tensor Q rotates the neighbourhood of the material point XS because it is a
local concept, cf. Figure 3.3. This gives

XS = c+QXS. (3.68)

(·), in this section, denotes the quantities after rotation of the reference configuration. Here
Q belongs to the symmetry group Gsym, which is the complete set of SO3 for an isotropic
material. Now we can introduce the motion function χS which maps XS to x

x = χS(XS, t) = χS(XS, t). (3.69)
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B

current configuration

B0

XS

reference configuration rotated neighborhood

XS

FS

xFS

Q

Figure 3.3: Principle of material symmetry

Using the chain rule, (3.68), and (3.69), we obtain

FS =
∂x

∂XS
=

∂x
∂XS

∂XS

∂XS
= FSQ −→ FS = FQT . (3.70)

The position vector XS can be transformed to the current configuration using FS. This
means that we can arbitrarily pre-rotate the material. This gives the condition for CS

CS = (FS)
T FS = QFT

S FαQT = QCSQT . (3.71)

In this context, the invariance requirement for the Helmholtz free energy is

ψ
S(CS,nS) = ψ

S(CS,nS). (3.72)

From the definition of nS (2.3), one can see that nS = nS. This leaves us with

ψ
S(CS,nS) = ψ

S(CS,nS). (3.73)

The relation between ψα and Cα must be independent of the chosen material axes. There-
fore, we represent Cα in terms of its invariants. This can be achieved by inserting the
spectral decomposition of Cα (2.37)1 in (3.73) which yields

ψ
S(

3

∑
i=1

(λ i
S)

2N̂i
S ⊗ N̂i

S,n
S) = ψ

S(Q(
3

∑
i=1

(λ i
S)

2N̂i
S ⊗ N̂i

S)Q
T ,nS)

= ψ
S(

3

∑
i=1

(λ i
S)

2(QN̂i
S)⊗ (QN̂i

S),n
S).

(3.74)
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Consequently, the Helmholtz free energy function depends only on principle stretches λ i
S

and not on the eigenvectors because ∥Ni
S∥= 1 and ∥QNi

S∥= 1, which yields the following
representation for isotropy

ψ
S(CS,nS) = ψ

S(λ 1
S ,λ

2
S ,λ

3
S ,n

S). (3.75)

Furthermore, following the characteristic polynomial (2.40) of the eigenvalue problem and
the definition of the invariants (2.41) and (2.42), the Helmholtz free energy function can
be written as a function of principal invariants and solid volume fraction

ψ
S = ψ

S(nS, ICS , IICS , IIICS). (3.76)

The structure of the equation satisfies the invariance and polyconvexity condition, which
also implies quasiconvexity. That would ensure the existence of minimizers of the related
variational principles in finite elasticity. For a detailed discussion on convexity conditions,
the reader is referred to Dacorogna [79].

3.2.8 Material Law

The purpose of this section is to present the material law for the porous solid matrix.
Following the dependency of the Helmholtz free energy function from equation (3.76), a
modified neo-Hookean law is introduced as [80]

ψ
S =

(
nS

nS
OS

)n
1

ρS
OS

{
µS

2
(ICS −3)−µ

Sln JS +λ
S 1

2
(ln JS)

2
}
, (3.77)

where the term in the front with solid volume fraction nS accounts for the change in solid
rigidity with respect to the initial volume fraction nS

OS. The rest of the part is the standard
Neo-Hookean material law. µS and λ S are the macroscopic Lamé constants and IIIS = J2

S
(2.41)3. From (3.77) and (3.58), the effective solid Cauchy stress can be obtained

TS
E =

(
nS

nS
OS

)(n+1){
µ

S(bS − I)+λ
S(ln JS)I

}
. (3.78)

With equations (3.77), (3.58) and (3.78), total solid Cauchy stress can be written as

TS =−nS pI−n

(
nS

nS
OS

)n+1{
µS

2
(ICS −3)−µ

Sln JS +
λ S

2
(ln JS)

2
}

I

+

(
nS

nS
OS

)n+1{
µ

S(bS − I)+λ
S(ln JS)I

}
.

(3.79)
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The effective solid Kirchhoff stress and total solid Kirchhoff stress then reads as

τ
S
E = JS TS

E = JS

(
nS

nS
OS

)(n+1){
µ

S(bS − I)+λ
S(ln JS)I

}
,

τ
S =−JS nS pI− JS n

(
nS

nS
OS

)n+1{
µS

2
(ICS −3)−µ

Sln JS +λ
S 1

2
(ln JS)

2
}

I

+ JS

(
nS

nS
OS

)(n+1){
µ

S(bS − I)+λ
S(ln JS)I

}
.

(3.80)



4 NUMERICAL TREATMENT
The purpose of this section is to briefly introduce the numerical tools needed to treat the
initial boundary value problem. At first, we obtain the weak formulation of the governing
partial differential equations (PDE). Then, the equations are discretised in space using
finite elements and in time using the finite difference method. Afterwards, we present a
solution scheme for the unknown quantities of the discretised system.

4.1 Weak Formulation

As a first step, we need to formulate the local strong form of the governing equations into
an integral weak form. This is done by the method of weighted residuals. Let us assume a
boundary value problem with a differential equation

F(u) = 0, (4.1)

and given boundary conditions. We can choose a linear trial function ũ given by

ũ =
N

∑
i=1

φiũi, (4.2)

where φi are the set of shape functions and ũi are free parameters. In general, the trial
function will not fulfil the differential equation exactly and will lead to an error or a residual
R,

F(ũ) = R(ũi) ̸= 0. (4.3)

We need to find the parameters ũi that will minimize the residual. However, equation
(4.3) gives us only one equation to determine N unknown ũi. To have more equations, we
introduce a set of N distinct weight functions w j, j = 1, ...,N, which needs to satisfy∫

Ω

w jRdv = 0. (4.4)

Following this, we require the integral of the residual weighted with test functions (weight
functions) to vanish over the domain Ω instead of the residual vanishing everywhere.
Since this is a much weaker requirement than the exact satisfaction of the differential
equation, equation (4.4) is known as a weak form of the differential equation (4.1). There-
after, we introduce the weak forms of the momentum balance of mixture, volume balance
of mixture, volume balance of solid and volume balance of nutrients by multiplying them
with respective test functions.

45
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Considering the assumptions, balance equations and constitutive relations from the
preceding Chapter, we have a set of six independent variables

U = U(x, t) =
{

uS,wFS,nS,nN ,nL, p
}

(4.5)

Using Darcy’s formulation for seepage velocity wFS (3.64), the set of unknowns could be
decreased to five. Furthermore, the saturation condition (3.14) (nL = 1−nS −nN) reduces
the set of unknowns to four

U = U(x, t) =
{

uS, p,nN ,nS}. (4.6)

The strong forms of the governing equations are

• Momentum balance of mixture :

div(TS +TL +TN)+(ρS +ρ
L +ρ

N)b+ ρ̂
SwFS = 0. (4.7)

• Volume balance of mixture :

div(x′S +nFwFS)+ ρ̂
S
(

1
ρNR − 1

ρSR

)
= 0. (4.8)

• Volume balance of nutrients :

(nN)′S +div(nNwFS)+nN divx′S = n̂N . (4.9)

• Volume balance of solid :
(nS)′S +nS divx′S = n̂S. (4.10)

We use the solid volume fraction nS as an additional degree of freedom to calculate the
growth process globally, with the solid volume balance as the governing equation. Here,
wFS and ρ̂S can be substituted by the equations (3.64) and (3.67), respectively. To obtain
the weak forms of the balance equations, we multiply the momentum balance of mixture
(4.7), volume balance of mixture (4.8), volume balance of nutrients (4.9), and volume
balance of solid (4.10) with the test functions δuS, δ p, δnN , and δnS, respectively. Then
we integrate the equations over the spatial domain Ω, occupied by the body B at time t.
We use the integration by parts and the divergence theorem for equations (4.7) - (4.9) to
introduce the Neumann (natural) boundary terms. This yields the weak formulation of the
governing equations

• Momentum balance of mixture:

GuS =
∫
Ω

(T) : gradδuS dv−
∫
Ω

(ρS +ρ
F)b · δuS dv

−
∫
Ω

ρ̂
SwFS · δuS dv−

∫
Γt

t · δuS da = 0.
(4.11)
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• Volume balance of mixture:

Gp =
∫
Ω

divx′S δ pdv−
∫
Ω

nFwFS ·gradδ pdv

+
∫
Ω

ρ̂
S(

1
ρNR − 1

ρSR )δ pdv+
∫
Γq

nFwFS ·n︸ ︷︷ ︸
:=q

δ pda = 0.
(4.12)

• Volume balance of nutrients:

GnN =
∫
Ω

(
(nN)′S +nN divx′S −

ρ̂N

ρNR

)
δnN dv+

∫
Ω

gradnN ·gradδnN dv

︸ ︷︷ ︸
:=r

−
∫
Ω

nNwFS ·gradδnN dv+
∫

Γυ

nNwFS · n︸ ︷︷ ︸
:=υ

δnN da = 0.

(4.13)

• Volume balance of solid:

GnS =
∫
Ω

(nS)′S δnS dv+
∫
Ω

nS divx′S δnS dv−
∫
Ω

ρ̂S

ρSR δnS dv = 0. (4.14)

Here, the mass transport equation (4.9) consists of the general structure of an advection
equation with the source term on the right-hand side. It is known that using the given
approach for formulating weak forms, the equation (4.13) generates large oscillations if
not properly stabilised or if the mesh size is not excessively small. Therefore, an artifi-
cial diffusion term (r) is added only to the volume balance of nutrients (4.13) to stabilise
the transport equation. For more information on the mass transport equation and the sta-
bilisation schemes, the reader is referred to Santos et al. [81] and the references therein.
Furthermore, we can see from the above equations that some of the volume integrals have
been transformed into surface integrals to give the Neumann boundary conditions. There-
fore, the overall surface Γ = ∂Ω of the spatial domain Ω is decomposed in the following
way

Γ = ΓuS ∪Γt with ΓuS ∩Γt = φ ,

Γ = Γp ∪Γq with Γp ∩Γq = φ ,

Γ = ΓnN ∪Γυ with ΓnN ∩Γυ = φ .

(4.15)

Here, ΓuS , Γp, and ΓnN are identified as the Dirichlet boundaries. Γt, Γq, and Γυ are
the Neumann boundaries. There is only Dirichlet boundary ΓnS for the volume balance of
solid as there is no Neumann boundary condition. t is the external load vector acting on the
Neumann boundary Γt, q = nFwFS ·n is the fluid volume efflux on the Neumann boundary
Γq and υ = nNwFS · n is the nutrient volume efflux on the Neumann boundary Γυ , where n
is the outward-oriented unit surface normal. Here, one should notice that an application of
Dirichlet and Neumann conditions simultaneously at a surface is not allowed (4.15). Also,
the order of PDE (4.7) is reduced by one order in the weak form (4.11).
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Furthermore, we need an appropriate ansatz for the trial functions of the primary variables{
uS, p,nN ,nS} and the test functions

{
δuS,δ p,δnN ,δnS}. The respective functions are

taken from the Sobolev space H1(Ω) which yields

SuS(t) =
{

uS ∈H1(Ω)D : uS(x) = ūS(x, t) on ΓuS

}
,

Sp(t) =
{

p ∈H1(Ω) : p(x) = p̄(x, t) on Γp
}
,

SnN (t) =
{

nN ∈H1(Ω) : nN(x) = n̄N(x, t) on ΓnN
}
,

SnS(t) =
{

nS ∈H1(Ω) : nS(x) = n̄S(x, t) on ΓnS
}
,

TuS =
{

δuS ∈H1(Ω)D : δuS(x) = 0 on ΓuS

}
,

Tp =
{

δ p ∈H1(Ω) : δ p(x) = 0 on Γp
}
,

TnN =
{

δnN ∈H1(Ω) : δnN(x) = 0 on ΓnN
}
,

TnS =
{

δnS ∈H1(Ω) : δnS(x) = 0 on ΓnS
}
,

(4.16)

where D ∈
{

1,2
}

(dimension in space) because we work on 2-d problems in this mono-
graph. ūS, p̄, n̄N , and n̄S are the Dirichlet (essential) boundary conditions which are exactly
fulfilled by the proper choice of the trial functions uS ∈ SuS(t), p ∈ Sp(t),nN ∈ SnN (t), and
nS ∈SnS(t). Also, the test functions δuS ∈ TuS ,δ p∈ Tp,δnN ∈ TnN and δnS ∈ TnS vanish at
the Dirichlet boundaries. For a clear and compact representation, the variational problem
is summarised using the functional GGGu containing weak formulations (4.11) - (4.14) and
the vector of unknowns u containing the unknown field variables

GGGu =


GuS

Gp
GnN

GnS

 , u =


uS
p

nN

nS

 , δu =


δuS
δ p

δnN

δnS

 , u′
S =


(uS)

′
S

(p)′S
(nN)′S
(nS)′S

 , u0 =


uS0
p0
nN

0
nS

0

 . (4.17)

Here, vector δu consists of the test functions, vector u′
S represents the time derivative

of the unknowns for which a suitable time integration scheme will be used, and vector
u0 = u(x, t0) contains the initial value of the unknowns. Following this, we can write a
generalised form of the variational problem (4.11) - (4.14) as

Find u ∈ Su(t) such that GGGu(u,δu) = 0 ∀ δu ∈ Tu, t ∈
[
t0,T

]
, (4.18)

where Su(t) is the combination of the trial spaces SuS ,Sp,SnN , and SnS . Tu is the combi-
nation of the test spaces TuS ,Tp,TnN , and TnS .

[
t0,T

]
is the considered time interval. As a

next step, we define the function spaces Su and Tu.
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4.2 Bubnov-Galerkin Method and Mixed Finite Elements

For spatial discretisation, we need to partition the spatial domain Ω into smaller and non-
overlapping subdomains Ωe, which on summation, yields an approximate domain Ωh

Ω ≈ Ω
h =

Ne⋃
e=1

Ωe. (4.19)

The subdomains Ωe are known as finite elements (FE). These Ne elements constitute the
FE mesh Ωh. Each element consists of Nn nodes leading to NN nodes in the FE mesh,
which approximates the discretised spatial domain Ωh. Moreover, this allows replacing
the continuous trial and test spaces Su and Tu by the discrete NN-dimentional spaces Sh

u
and T h

u , respectively. We can define the discrete trial and test functions as

uS(x, t)≈ uh
S(x, t) =

NuS

∑
j=1

N j
uS(x)u

j
S(t) ∈ Sh

uS
(t),

p(x, t)≈ ph(x, t) =
Np

∑
j=1

N j
p(x)p j(t) ∈ Sh

p(t),

nN(x, t)≈ nNh
(x, t) =

NnN

∑
j=1

N j
nN (x)nN j

(t) ∈ Sh
nN (t),

nS(x, t)≈ nSh
(x, t) =

NnS

∑
j=1

N j
nS(x)nS j

(t) ∈ Sh
nS(t),

δuS(x)≈ δuh
S(x) =

NuS

∑
j=1

M j
uS(x)δu j

S ∈ T h
uS
,

δ p(x)≈ δ ph(x) =
Np

∑
j=1

M j
p(x)δ p j ∈ T h

p ,

δnN(x)≈ δnNh
(x) =

NnN

∑
j=1

M j
nN (x)δnN j ∈ T h

nN ,

δnS(x)≈ δnSh
(x) =

NnS

∑
j=1

M j
nS(x)δnS j ∈ T h

nS .

(4.20)

Here,
{

NuS ,Np,NnN ,NnS
}

denotes the number of nodes used for approximation of the
fields.

{
Nα

}
≤ NN may differ depending on the chosen accuracy of the approxi-

mation.
{

N j
uS ,N

j
p,N

j
nN ,N

j
nS

}
represent the global basis functions for the trial func-

tions.
{

u j
S, p j,nN j

,nS j} denote the time-dependent values of nodal degrees of freedom
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(DOF).
{

M j
uS ,M

j
p,M

j
nN ,M

j
nS

}
denotes the global basis functions for the test functions and{

δuS
j,δ p j,δnN j

,δnS j} are the nodal values of the test functions. We apply the standard
Bubnov-Galerkin procedure where the basis functions of the trial and test functions are
the same N j

(·) ≡ M j
(·) = φ

j
(·). The test functions δ (·) naturally vanish at the homogeneous

Dirichlet boundaries where discrete values are prescribed. Here, one should note that the
basis functions

{
φ

j
uS ,φ

j
p,φ

j
nN ,φ

j
nS

}
depend on the position x whereas the unknown nodal

quantities
{

u j
S, p j,nN j

,nS j} are a function of time. Using the discrete trial and test func-
tions (4.20), the discretised variational problem (4.18) can be summarised as

Find uh ∈ Sh
u(t) such that GGGh

u(u
h,δuh) = 0 ∀ δuh ∈ T h

u , t ∈
[
t0,T

]
. (4.21)

The discretised variational problem (4.21) gives a system of D · NuS + Np + NnN + NnS

linearly independent equations which is obtained by setting one test function at a given
node to unity and rest of them to zero, e.g., δ p1 = 1, while δ p j = 0 for j = 2, ...,Np,
δu j

SD = 0 for j = 1, ...,NuS , δnN j for j = 1, ...,NnN , and δnS j
= 0 for j = 1, ...,NnS .

During the spatial discretisation of the triphasic model within the FEM framework,
we need to use mixed formulation because the unknowns have to be approximated
simultaneously. Special care must be taken during the choice of shape functions as the
governing equations are highly coupled, and the shape functions must satisfy the so-called
inf-sup condition, often known as Ladyzhenskaya-Babuška-Brezzi (LLB) condition, for
a stable formulation. The reader is referred to Wieners [82], Langtangen & Tveito [83],
Brezzi & Fortin [84], and Braess [85].

solid displacement uS, pressure p,
nutrient volume fraction nN , and solid volume fraction nS

solid displacement uS

Figure 4.1: Two-dimensional Taylor-Hood elements.

In the presented monograph, we choose quadratic shape functions for the solid displace-
ment uS and linear shape functions for the pressure p, nutrient volume fraction nN , and
solid volume fraction nS. This combination of the shape functions leads to the choice of
mixed finite elements, also known as the Taylor-Hood elements, as suggested by Taylor &
Hood [86]. The examples of two-dimensional Taylor-Hood elements are shown in Figure
4.1.
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4.3 Geometry Transformation and Numerical Integration

Moreover, the trial and test functions are expressed in terms of the reference element lead-
ing to the introduction of the geometry transformation and local coordinates ξ . Consid-
ering a reference element Er, the relation between the local coordinates ξ and the global
coordinates x is given as

x(ξ ) =
Nn

∑
i=1

φ
i
geo(ξ )xi, (4.22)

where x(ξ ) is the position depending on the local coordinates ξ and φ i
geo are the basis

functions of the geometry transformation. Furthermore, we use the same quadratic basis
functions for the geometry transformation as for the solid displacements uS. Therefore,
we use isoparametric mapping with respect to the solid displacement and superparametric
(ansatz for geometry transformation higher than primary variables) mapping with respect
to the other primary variables. For evaluation within a reference element Er, we reformu-
late the integrals with respect to the local coordinates ξ , which yields∫

Ωe

f (x)dv =
∫
Er

f (x(ξ ))Jr(ξ )dvr, (4.23)

where dvr is the volume element of the reference element Er. Jr is the Jacobin determinant
of the reference element given by

Jr(ξ ) = det

(
dx(ξ )

dξ

)
. (4.24)

We obtain the following relation for the quantities involving derivatives with respect to the
global coordinates like a gradient or divergence

d f (x)
dx

= J−1
r

d f (x(ξ ))
dξ

. (4.25)

Moreover, we use numerical integration schemes like Gauss quadrature for the numerical
integration of the weak forms. The integral is evaluated depending on the total number k̃
of integration points ξk and the weights wk as

∫
f (x)dv ≈

k̃

∑
k=1

f (x(ξk))Jr(ξk)wk. (4.26)

The Gauss quadrature can evaluate an integral containing the polynomials of order (2k̃−1)
with k̃ integration points exactly. For the number of integration points and the weights
for different reference elements, the reader is referred to Stroud [87] and Zienkiewicz &
Taylor [88].
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4.4 Time Discretisation

After the spatial discretisation, the semi-discrete system can be formulated in an abstract
manner. Therefore, all the degrees of freedom (nodal values) of each primary variable are
gathered in the vector u yielding

u =
[(

u1
S, p1,nN1

,nS1
)
, ...,

(
uNN

S , pNN ,nNNN ,nSNN
)]T

. (4.27)

Now, we make use of the abbreviation (·)′ = (·)′S to obtain the semi-discrete initial-value
problem of differential algebraic equations (DAE) in time

FFF(t,u,u′) ≡ Mu′+ku− f !
= 0, (4.28)

where FFF = 0 denotes the discretisation of the governing equations, M is the generalised
mass matrix, k is the generalised stiffness matrix, and f is the external force vector. The ini-
tial conditions are given by u(t0) = u0, where t0 is initial time. However, this semi-discrete
system is still continuous in time and needs to be discretised in the time domain. We need a
stable time integration scheme for the problem (4.28). An explicit time integration scheme
will result in unstable solutions unless the time interval is quite small. Therefore, an im-
plicit time integration scheme would be a more suitable choice. We choose the implicit
(backward) Euler scheme included in the general class of Runge-Kutta methods, which is
suitable for the solution of index-1 systems of DAE. We can now briefly review the implicit
(backward) Euler scheme, which is based on the backward Taylor-series expansion. The
time interval

[
t0,T

]
is divided into a finite number of sub-intervals

[
tn−1, tn

]
. An implicit

Euler scheme discretise u′(tn) as

u′
n = u′(tn) =

un −un−1

∆tn
=

∆un

∆tn
with un = un−1 +∆un, (4.29)

where ∆tn = tn − tn−1. Inserting (4.29) in (4.28), we get a nonlinear system of equations
because of k containing nonlinear dependencies on u where ∆un appears in an implicit
manner as

FFF(t,u,u′) = 0 −→ FFF(tn,un−1 +∆un,
∆un

∆tn
) =: Rn(∆un) = 0. (4.30)

The non-linear functional Rn(∆un) is solved using the Newton-Raphson scheme [2].
Therefore, the Jacobian (tangent) matrix is needed

Jn =
dRn

d∆un
=

∂FFF
∂u

∣∣∣∣
z
+

1
∆tn

∂FFF
∂u′

∣∣∣∣
z
, (4.31)

where z = (tn,un,u′
n) represent the current set of arguments ofFFF in Rn. Once the Jacobian

is calculated, the current stage increment can be calculated as

∆uk+1
n =−(Jk

n)
−1Rk

n, (4.32)
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where k is the Newton iteration step. The solution vector uk+1
n is then updated using

uk+1
n = uk

n +∆uk+1
n . (4.33)

Newton iteration procedure can be applied at the current time step n until a convergence
criterion like

∥Rk+1
n ∥< TOLR (4.34)

is met.

4.5 Verification of Implementation

Initially, we implement a biphasic model to test the correct implementation and compare
the results against the consolidation problem given in the PANDAS manual [89]. A similar
example is also given in the book by Ehlers [39]. In this problem of water-saturated soil,
cf. Figure 4.2, the load q(t) is increased to the maximum value of 15000 N/m for up to 20
seconds. Then, the load is kept constant at this value until the end of the simulation (t =
2000s).

q(t)
drained

undrained

undrained

10.0m

5.0m 5.0m

Figure 4.2: Geometry and boundary conditions for the consolidation problem.

The boundary conditions for the problem can be seen in Figure 4.2. The top edge has
drained and undrained surfaces, and all the other surfaces are undrained. The left/right and
the bottom edges are fixed in the x and y directions, respectively. The governing equations
for the biphasic model can be obtained by considering only the solid and fluid phases and
mass exchange ρ̂S = 0. Therefore, the momentum balance and volume balance of the
mixture are used. The analytical integration of the solid volume balance (3.18) gives the
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relation (4.39). The nutrient volume balance and the stabilisation scheme are not needed.
Furthermore, we use simplified Darcy’s law and Cauchy stress. The governing equations
for the biphasic consolidation are summarised as

• Momentum balance of mixture:

GuS =
∫
Ω

(T) : gradδuS dv−
∫
Ω

(ρS +ρ
F)b · δuS dv−

∫
Γt

t · δuS da = 0. (4.35)

• Volume balance of mixture:

Gp =
∫
Ω

divx′S δ pdv−
∫
Ω

nFwFS ·gradδ pdv+
∫
Γq

nFwFS ·n︸ ︷︷ ︸
:=q

δ pda = 0. (4.36)

• Darcy’s filter law

nFwFS =−
kF

OS
γFR

(
grad p−ρ

FRb
)
. (4.37)

• Cauchy stress

T = TS
E − pI, where TS

E =
1
JS

{
µ

S(bS − I)+λ
S(ln JS)I

}
. (4.38)

• Solid volume fraction

nS = nS
OSJ−1

S → nF = 1−nS. (4.39)

Parameter Symbol Value Unit

Lamé constant µS 5.58×106 N/m2

Lamé constant λ S 8.38×106 N/m2

Darcy’s permeability fluid kF
OS 1×10−4 m/s

Effective fluid weight γFR 1×104 N/m3

Realistic density solid ρSR 2×103 kg/m3

Realistic density fluid ρFR 1×103 kg/m3

Initial solid volume fraction nS
OS 0.67 −

Table 4.1: Parameters for consolidation problem.

Due to the symmetry, only the left half of the geometry is discretised. A quadratic approx-
imation is chosen for the solid displacements and a linear approximation for the pressure.
The geometry is prepared and discretised in the program package CUBIT [90] and can be
imported to PANDAS [89], cf. Figure 4.3. The material parameters used for the consol-
idation problem are given in Table 4.1. As the pressure profile is given in the PANDAS
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Figure 4.3: Discretisation of left half of the geometry with 1056 elements.

manual, we compare the results to confirm the correct implementation of the biphasic
model. Due to the load on the soil, the pressure builds up in the soil. However, this pres-
sure decreases to the value of p = 0 with the time approaching infinity (t → ∞). This is
because of the outflow of the water through the drained surface at the top, cf. Figure 4.4.

p[N/m2]

(a) t = 20 sec (b) t = 250 sec

(c) t = 500 sec (d) t = 2000 sec

Figure 4.4: Pressure profiles in the water-saturated soil at the time (a) 20 sec, (b) 250 sec,
(d) 500 sec and (c) 2000 sec.



56 4 Numerical Treatment

Furthermore, we implement a triphasic growth model presented by Ricken & Bluhm [56]
and compare the results for verification. This example presents the characteristic of
adaptation of internal structure. The structures are formed where it is necessary for
stability. Figure 4.5 represents a cantilever beam fixed on the left side in the x and y
directions. A load of 4N is applied at the bottom right edge of the beam. The governing
equations (4.11) - (4.14), stress equation (3.79), and Darcy’s law (3.64) for the triphasic
model are used. Furthermore, we use the equation (4.40) for the solid mass production as
a function of nutrient volume fraction nN and solid Jacobian JS. We focus on case three
presented in [56], where the solid mass production does not depend on the von Mises or
Rankine stress measures.

• Solid mass production:

ρ̂
S = ρ̂

S(nN ,JS) = C ρ̂
S
nN (nN) ρ̂

S
JS
(JS),

ρ̂
S
nN (nN) =−exp

{
−κnN (nN)2}+1,

ρ̂
S
JS
(JS) =−exp

{
−κJS(JS −1)2}+1,

(4.40)

4N

0.05m

0.7m

1.4m

Figure 4.5: Geometry and boundary conditions for the triphasic problem.
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Parameter Symbol Value Unit

Lamé constant µS 1.0×104 N/m2

Lamé constant λ S 2.0×103 N/m2

Darcy’s permeability fluid kF
OS 8.3×105 m/d

Effective fluid weight γFR 1×104 N/m3

Realistic density solid ρSR 2.0 kg/m3

Realistic density liquid ρLR 1.0 kg/m3

Realistic density nutrient ρNR 2.0 kg/m3

Initial solid volume fraction nS
OS 0.5 −

Initial nutrient volume fraction nN
OS 0.4 −

Maximum mass exchange C 10 kg/dm3

Material paramaeter κnN 5.0 −
Material paramaeter κJS 2.0×10−6 −
Material paramaeter n 2.0 −
Material paramaeter m 0.0 −

Table 4.2: Parameters for triphasic problem.

A quadratic approximation is chosen for the solid displacements and a linear approxima-
tion for the pressure, nutrient volume fractions, and solid volume fractions. The geometry
is discretised in CUBIT (1568 elements), which is then imported to PANDAS. The param-
eters used for the simulation are mentioned in Table 4.2 where d represents days. Now,
we compare the solid volume fraction plots to confirm the correct implementation of the
triphasic growth model. The increase in solid volume fraction depends on the availability
of the nutrients, cf. (3.8), and the volumetric deformation. It can be seen that the inner
structure adjusts itself to form an optimal structure in response to the given load, cf. Figure
4.6.
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Figure 4.6: Structure optimisation: red and white areas represent high and low mass con-
tent, respectively.



5 MODELLING OF THROMBOSIS

In this chapter, we present the application of the developed model for thrombosis using
two-dimensional geometries. The constitutive equations for the solid stress TS, the
mass production term ρ̂S, and the seepage velocity wFS provide the thrombus-specific
material laws. In addition, the coupled set of governing equations presents the capabilities
of the model. The model is implemented in the FE code PANDAS, a finite element
package designed to solve strongly coupled multiphase porous media problems. However,
modelling the growth of living tissues has its challenges. In the case of thrombosis,
it is not straightforward to obtain the data and perform experiments on living tissues.
Therefore, the parameters are chosen that give reasonable results.

Although the preceding chapters deal with the triphasic model, we first implement
a biphasic model by introducing the growth in the model. We test it for the case of type
B Aortic Dissection (AD) using an idealised 2-d rectangular geometry. Furthermore,
considering the crucial role nutrients play in the growth and formation of thrombus, we
implement the triphasic model presented in this monograph for the idealised geometry.
We study the effects of various parameters on mass exchange and then give a numerical
example using the chosen parameters. Finally, the model is applied to a realistic 2-d
cross-section of a false lumen obtained from a 3-d model of an aorta to present the model’s
usefulness in actual cases while drawing an analogy to thrombosis.

5.1 Biphasic Model

In this section, we expand the biphasic model presented in Section 4.5 for the application
of thrombus formation and growth in type B AD. For the presented numerical example,
we replace the geometry of the false lumen with an idealised rectangular 2-d geometry.
It consists of a solid matrix saturated with fluid. The dimensions of the false lumen are
considered in the physiological range, and the boundary conditions can be seen in Figure
5.1 [91–94]. The right and bottom walls are fixed in the x and y directions, respectively.
There is an entry tear at the top left wall from where the fluid enters the false lumen. We
apply a Neumann boundary condition for fluid volume efflux q = 0.1 m/s. The dotted line
(drained surface) at the bottom left wall represents the exit tear from where the fluid is
allowed to exit (p = 0.0 N/m2), which is the only drained surface. All the other boundaries
are undrained surfaces.

For the presented problem with only solid and liquid phases (nF = 1 − nS), we
want to measure the growth of the thrombus. As mentioned in the preceding chapter,
we can introduce solid volume fraction nS as an additional field variable to calculate
the growth process globally, and the solid volume balance can be used as the governing
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equation for nS. Therefore, the set of equations includes the balance equations (4.11),
(4.12), and (4.14), Cauchy stress (3.79), and Darcy’s filter law (3.64) for the thrombus
growth model. In addition, we need to reformulate the mass exchange rate ρ̂S (3.67) to
allow growth in the biphasic model as

ρ̂
S = ρ̂

S(wFS) = C exp
{
−∥wFS∥2/β1

}
. (5.1)

Entry tear
q = 0.1 m/s0.02 m

Exit tear
p = 0.00.01 m

0.018 m

0.22 m

Figure 5.1: Illustration of type B AD (left), boundary conditions and discretization of false
lumen for biphasic model (right).

Parameter Symbol Value Unit

Lamé constant µS 1×105 N/m2

Lamé constant λ S 0.0 N/m2

Dynamic fluid viscosity µFR 1×10−3 Ns/m2

Initial darcy permeability fluid kF
OS 1×10−6 m/s

Maximum mass exchange C 5×10−2 kg/sm3

Realistic density solid ρSR 2×103 kg/m3

Realistic density fluid ρFR 1×103 kg/m3

Initial solid volume fraction nS
OS 0.2 -

Material parameter β1 0.05 -
Material paramaeter n 3.0 −
Material paramaeter m 3.0 −

Table 5.1: Parameters for thrombus growth.
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We discretized the geometry using CUBIT and implemented the equations in PANDAS.
The mesh consists of 560 elements. A quadratic approximation is used for the solid dis-
placements uS and linear approximation for the pressure p and solid volume fraction nS.
Furthermore, we assume zero Poisson’s ratio (λ S = 0) for the solid skeleton. The sim-
ulation is performed using the parameters mentioned in Table 5.1 [57, 58, 95–97] with a
time step size of 100 seconds. Due to the fluid entering through the entry tear and exiting
through the exit tear, there are high seepage velocity regions in the middle and low velocity
regions at the top and bottom, cf. Figure 5.3. The mass exchange formulation (5.1) leads
to high growth of thrombus in the regions with low seepage velocity (top and bottom) and
vice versa, following the Figure 3.2 (left). This can be seen in Figure 5.2, where the false
lumen has an initial solid volume fraction of 0.2 at time t = 0 hours. The thrombus grows
more in the top and bottom regions with time, cf. Figure 5.2.

nS

(a) t = 0 hours (b) t = 41 hours (c) t = 83 hours

Figure 5.2: Solid volume fraction nS (right) at different times for the biphasic model.

In Figure 5.3, we can see that the norm of the seepage velocity increases with time. This
is because as the solid volume fraction increases, there is less space available (decrease
in pore area) for the fluid to flow. This also leads to an increase in the pressure gradient.
Consequently, there is an increase in the velocity following Darcy’s filter law and the
continuity of the flow. Moreover, we observe a singularity at the exit tear due to the sharp
edges, which is a numerical artefact [98–100]. We zoom in on the exit tear in Figure 5.3
(b) and observe what happens in the case of coarse mesh (285 elements), fine mesh (560
elements) and finest mesh (1035 elements). Figure 5.4 represents the seepage velocity, and
the black line represents the exit tear. Here, we can see that the sharp edge at the exit tear
results in singularity where the peak in the values is localised. The smaller the size of the
element, the higher the seepage velocity value. The results will not converge if the element
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size is extremely small, as the solution tends toward an infinite value.

∥wFS∥[m/s]

(a) t = 0 hours (b) t = 41 hours (c) t = 83 hours

Figure 5.3: Norm of the seepage velocity at different times for the biphasic model.

∥wFS∥[m/s]

(a) coarse mesh (b) fine mesh (c) finest mesh

Figure 5.4: Singularity at the exit tear at time t = 41 hours for the seepage velocity.

Moreover, we know from the literature that poor mass conservation creates numerical and
stabilisation issues [101, 102]. Therefore, we test the mass conservation in a closed ini-
tial boundary value problem (IBVP) with the mass exchange between the solid and fluid
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0.018 m

0.22 m

Figure 5.5: Boundary conditions and discretisation of closed IBVP.

phases. The boundary conditions and discretisation (560 elements) for the problem are
shown in Figure 5.5. We perform the simulations for three different cases of ραR[kg/m3]:
(a) ρSR = 2000 > ρFR = 1000, (b) ρSR = 1000 < ρFR = 2000, and (c) ρSR = ρFR = 1000.
The rest of the material parameters are taken from Table 5.1. Looking at the mass plots
over the time 60,000 seconds, cf. Figure 5.6, we observe that the mass (nSρSR+nFρFR)JS
over the domain remains approximately constant. There are deviations of 0.11%, 0.09%,
and 0% in cases (a), (b), and (c), respectively. However, these errors can be reduced by
refining the mesh further.

Figure 5.6: Average mass over the whole domain.
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5.2 Triphasic Model

In this section, we expand the biphasic model to the triphasic model for thrombosis, dis-
cussed in previous chapters. We use the idealised rectangular 2-d geometry for the numer-
ical example, cf. Figure 5.7. It consists of a solid matrix saturated with fluid, consisting of
liquid and nutrient phases. The boundary conditions can be seen in Figure 5.7. The dotted
line at the bottom left wall represents the exit tear. The exit tear is a drained surface (p = 0)
from where the fluid is allowed to exit. The rest of the boundaries are undrained surfaces.
We apply boundary condition for the fluid volume efflux q = nFwFS ·n at the Neumann
boundary Γq at the entry tear. Also, the nutrient volume fraction nN is fixed at the entry
tear. The right and bottom walls are fixed in the x and y directions, respectively. For the
presented problem with solid, liquid and nutrient phases, we want to measure the growth
of the thrombus. Therefore, we have solid volume fraction nS as the primary variable.
Furthermore, we consider the nutrient phase to include the influence of the nutrients in the
growth process, as discussed in this monograph. Therefore, the set of equations consists of
balance equations (4.11) - (4.14), Cauchy stress (3.79), Darcy’s filter law (3.64), and mass
exchange formulation (3.67).

Entry tear
nN = 0.4
q = 0.1m/s

0.02 m

Exit tear
p = 0.00.01 m

0.018 m

0.22 m

Figure 5.7: Illustration of type B AD (left), boundary conditions and discretization of false
lumen (right).

We discretize the geometry using CUBIT and implement the equations in PANDAS. A
quadratic approximation is used for the solid displacements uS and linear approximation
for the pressure p, solid volume fraction nS, and nutrient volume fraction nN . We assume
zero Poisson’s ratio (λ S = 0) for the solid skeleton. The simulations are performed using
the material parameters given in Table 5.2 [57, 58, 95–97] with a time step size of 100
seconds.
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Parameter Symbol Value Unit

Lamé constant µS 1×105 N/m2

Lamé constant λ S 0.0 N/m2

Dynamic fluid viscosity µFR 1×10−3 Ns/m2

Initial darcy permeability fluid kF
OS 1×10−6 m/s

Maximum mass exchange C 5×10−2 kg/sm3

Realistic density solid ρSR 2×103 kg/m3

Realistic density fluid ρFR 1×103 kg/m3

Realistic density nutrients ρNR 2×103 kg/m3

Initial solid volume fraction nS
OS 0.2 -

Initial nutrient volume fraction nN
OS 0.4 -

Material paramaeter n 3.0 −
Material paramaeter m 3.0 −

Table 5.2: Parameters for thrombus growth.

Now, we want to analyse the quality of spatial discretisation. Therefore, we discretise the
geometry with (a) 111, (b) 285, (c) 560, and (d) 1035 elements, cf. Figure 5.8. Firstly,
we plot the average value of solid volume fraction nS in the whole domain and compare
the results. We can observe that the average solid volume fraction converges to the values
between 0.71 and 0.72 in Figure 5.9 (left). In the zoomed-in version of the plot, we can see
that the values for meshes (a) and (b) are further away compared to meshes (c) and (d).

(a) 111 elements (b) 285 elements (c) 560 elements (d) 1035 elements

Figure 5.8: Discretisation of geometry with different mesh sizes.
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Figure 5.9: Convergence study of the average solid volume fraction over the whole domain
with complete (left) and zoomed-in (right) plots.

P•

Figure 5.10: Convergence study of the solid volume fraction at point P (left) with zoomed-
in plot (right).
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Furthermore, we analyse the point P at the top right corner of the domain. It is one of the
most critical points with the highest volume fraction, cf. Figure 5.10 (left). We can observe
from the plot, cf. Figure 5.10 (right), that the values of the solid volume fraction at point P
converge for meshes (c) and (d). Therefore, from the analysis of the whole domain and the
point P, we conclude that the solution converges for the meshes (c) and (d) with 560 and
1035 elements, respectively, very well. In order to keep the size of the system reasonable,
we choose the mesh (c) with 560 elements for further simulations. Moreover, the set
of equations is solved in a monolithic manner with an implicit Euler time-integration
scheme. This implicit time integration scheme has been tested from the time step size of
10 seconds up to 100,000 seconds, which gives us a stable and robust simulation tool [103].

Now, we need to study the influence of material parameters β1 and β2 in the growth de-
pendencies ρ̂S

wFS
and ρ̂S

nN (3.67) and the Neumann boundary condition q in order to choose
the appropriate values of these parameters.

5.2.1 Influence of Material Parameters in Mass Exchange

We can vary the material parameters β1 and β2 in ρ̂S(wFS,nN) (3.67) to change the
dependence of mass exchange rate ρ̂S on the seepage velocity and the nutrient volume
fraction. At first, we vary the values of β1 as shown in Figure 5.11. By varying the
values of β1, we change the range of the seepage velocity for which the growth happens.
Now, we use the material parameters mentioned in Table 5.2, β2 = 5.0, and the boundary
condition q = 0.1 m/s to perform the simulation for thrombosis in the false lumen. Due to
the fluid volume efflux, the fluid enters from the entry tear and is allowed to leave from the
exit tear. This results in high velocities in the middle regions and low velocities at the top
and the bottom sections, cf. Figure 5.16. Because of this, we can see in Figure 5.12 that
the middle sections are the most difficult to form the thrombus. Therefore, as we increase
the value of β1, forming a thrombus is easier due to growth happening for the wider range
of seepage velocities. This presents the influence of changing the dependence of seepage
velocity wFS on growth.

Furthermore, we can vary the material parameter β2 and change the dependence of
the mass exchange rate on the nutrient volume fraction as shown in Figure 5.13. We
perform the simulation using the material parameters given in the table 5.2, β1 = 0.05, and
the Neumann boundary condition q = 0.1 m/s. As we change the value of β2, we allow
the thrombus growth for a more extensive range of nutrient volume fraction nN . This leads
to faster growth of the thrombus, cf. Figure 5.14. However, due to low velocities at the
top and bottom, the growth remains higher in these sections. This presents the influence
of changing the dependence of nutrient volume fraction on growth.
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Figure 5.11: Variation in mass exchange rate dependence ρ̂S
wFS

on the seepage velocity
wFS.

nS

(a) β1 = 0.01 (b) β1 = 0.05 (c) β1 = 0.1

Figure 5.12: Change in solid volume fractions nS for different values of β1 at 168 hours.
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Figure 5.13: Variation in mass exchange rate dependence ρ̂S
nN on the nutrient volume

fraction nN .

nS

(a) β2 = 1.0 (b) β2 = 5.0 (c) β2 = 10

Figure 5.14: Change in solid volume fractions nS for different values of β2 at 120 hours.
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5.2.2 Effect of Neumann Boundary Condition

Moreover, we can see the effects due to variation in the fluid volume efflux q = nFwFS ·n
on the Neumann boundary Γq. The simulation is performed using the parameters given in
Table 5.2, β1 = 0.05, and β2 = 5.0. An increase in the fluid volume efflux q at the entry tear
results in higher seepage velocity in a wider region. Therefore, it is challenging to form a
thrombus in the false lumen because of the mass exchange rate dependence on the seepage
velocity wFS, cf. Figure 5.15. A low value of q results in lower velocities leading to the
easier formation of a thrombus. This also fits well with the physiological understanding
of thrombosis and the Virchow triad, where it is challenging to form blood clots when the
blood velocity is high [14].

nS

(a) q = 0.05 m/s (b) q = 0.1 m/s (c) q = 0.5 m/s

Figure 5.15: Change in solid volume fractions nS for different values of q at 168 hours.

The above studies show that different results can be achieved by varying the parameters.
The values of the parameters can be changed depending on the specific case. However,
we choose the intermediate values of the parameters for performing further simulations to
avoid extreme cases.

Numerical Example with chosen Parameters

All the foundations for the triphasic thrombus growth model are laid in Section 5.2. We
use the same problem description (cf. Figure 5.7) and governing equations for the 2-d
numerical example. We use the material parameters given in Table 5.2, β1 = 0.05, β2 = 5.0,
and Neumann boundary condition q = 0.1 m/s to perform the simulation using PANDAS
with a time step size of 100 seconds.
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∥wFS∥[m/s]

(a) t = 0 hours (b) t = 84 hours (c) t = 168 hours

Figure 5.16: Norm of the seepage velocity at different stages in time.

nS

(a) t = 0 hours (b) t = 84 hours (c) t = 168 hours

Figure 5.17: Change in solid volume fractions nS at different stages in time.

Because the fluid enters through the entry tear and exits through the exit tear, there are high
seepage velocity regions in the middle and low velocity regions at the top and bottom,
cf. Figure 5.16. This leads to an increase in solid volume fraction because of different
velocity profiles and the availability of nutrients, cf. Figure 5.17. Moreover, we can see
how the effective permeability changes as the thrombus grow. The effective permeability
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KS
E = (nF/nF

0S)
mKS

0S accounts for the permeability due to change in volume fractions (cf.
Section 3.2.5). This means that with the increase in solid volume fraction nF = 1− nS,
i.e., thrombus growth, there is more solid, and the ability of the fluid to move through the
porous media decreases, cf. Figure 5.18.

KS
E [m

2]

(a) t = 0 hours (b) t = 84 hours (c) t = 168 hours

Figure 5.18: Effective permeability at the time (a) 0 hours, (b) 84 hours, and (c) 168 hours

5.2.3 Realistic Geometry

After choosing the parameters for the triphasic model, we want to use a 2-d cross-section
of a realistic geometry to model thrombosis. To obtain the cross-section, we use a 3-d
model of an aorta consisting of a true and false lumen [104], cf. Figure 5.19 (left). We cut
this model in the x-y plane represented as the cutting plane in Figure 5.19 (top right). This
gives us the 2-d geometry in the x-y plane, cf. Figure 5.19 (bottom right).

However, because we are modelling thrombosis in the false lumen, the geometry of
the false lumen is of interest to us. Therefore, we create and discretise the false lumen’s
geometry using CUBIT, consisting of 1063 elements, cf. Figure 5.20. The geometry
consists of a solid matrix saturated with fluid, consisting of liquid and nutrient phases.
Furthermore, we arbitrarily chose the entry and exit tears position. The boundary
conditions at the entry tear include nS = 0.4 and q = 0.1 m/s. The bottom exit tear (dotted
line) is the drained surface with p = 0.0 N/m2. The rest of the boundaries are undrained
surfaces, cf. Figure 5.20. Also, the right side of the false lumen is fixed in both the x and y
directions. There are no other displacement or traction boundary conditions. Furthermore,
we use the balance equations (4.11) - (4.14), Cauchy stress (3.79), Darcy’s filter law
(3.64), and mass exchange formulation (3.67), discussed for the triphasic model. A
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quadratic approximation is used for the solid displacements uS and linear approximation
for the pressure p, solid volume fraction nS, and nutrient volume fraction nN . The
simulation is performed using the parameters given in Table 5.2 along with β1 = 0.05 and
β2 = 5.0 and with a time step size of 100 seconds.

False Lumen

Cutting Plane

z

y

O
True Lumen

3-d Geometry

x

y

z

O

2-d cross-section

x

y

O

False Lumen

True Lumen

Figure 5.19: 3-d model of the aorta with a true and false lumen (left) [104]. Cutting plane
and the resulting 2-d cross-section of the lumens (right).
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Entry tear
nN = 0.4
q = 0.1m/s

Exit tear
p = 0.0

0.0455 m

0.155 m

Figure 5.20: Discretisation and boundary conditions of the false lumen.

∥wFS∥[m/s]

(a) t = 0 hours (b) t = 41 hours (c) t = 83 hours

Figure 5.21: Norm of the seepage velocity at different stages in time.
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nS

(a) t = 0 hours (b) t = 41 hours (c) t = 83 hours

Figure 5.22: Change in solid volume fractions nS at different stages in time.

We can now discuss the results while drawing an analogy with the process of thrombosis.
At time t = 0 hours, the initial solid volume fraction nS is 0.2 because of the presence of
subendothelial collagen, wall cells and activated platelets on the formation of the false
lumen. As the fluid enters via the entry tear, it creates high and low-velocity regions, cf.
Figure 5.21. Because of different velocity profiles and the availability of nutrients, the
process of thrombus begins, and the solid volume fractions start increasing, cf. Figure
5.22. This can be compared to primary haemostasis, where the platelets accumulate at
the injury site, they form a platelet plug. The solid volume fraction nS increases further
due to the mass exchange rate (3.67) dependence on seepage velocity wFS and nutrient
volume fraction nN , which can be compared to secondary haemostasis. During secondary
haemostasis, the clotting factors interact in a complicated series of chemical reactions
leading to the formation of fibrin fibre. The platelets and the fibrin fibre form a mesh
leading to the development of a stable plug. This process continues further to form a
permanent solid plug called a thrombus. Furthermore, on comparing the results in Figure
5.17 and Figure 5.22, we see that a much fuller growth of thrombus, also along the left
wall, is obtained using the realistic geometry proving the usefulness of the model in real
cases. However, the singularity still exists at the exit tear.

Furthermore, we can see that the triphasic model accommodates the well-known
Virchow triad, which describes three physiological factors that can result in thrombosis.
The first one, endothelial injury, is included in the form of the presence of a false lumen.
On the formation of a false lumen, the endothelium is damaged, which lines the inner
layer of the blood vessels. The endothelial injury stimulates the platelets and coagulation
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process. The second factor is hypercoagulability, which is an increased tendency of
coagulation in the body due to inherited or acquired disorders. The material parameter C
(maximum mass exchange) can be used to adapt the model for such a scenario. Also, the
material parameter β2 can be used to include this increased tendency of coagulation. The
third factor, the stasis of blood, is present in the form of mass exchange dependency on the
seepage velocity. Here, the material parameter β1 can be used to adapt the model for the
specific case. Section 5.2.1 shows the influence of the parameters β1 and β2 in the model.
Finally, the fluid mass efflux q boundary condition can be used to incorporate the factor of
high blood pressure, which is known to be the major cause of Aortic Dissection.



6 SUMMARY AND OUTLOOK

6.1 Summary

The goal of this monograph was to develop a model capable of describing the growth of
the thrombus and its non-linear behaviour. A brief overview of thrombosis is presented in
Section 1.1 to understand the process from the biological point of view. The subendothe-
lial collagen, activated platelets, fibrin, blood, deactivated platelets and the clotting factors
play a significant role in thrombosis. Virchow’s triad describes the physiological factors
that can result in thrombosis.

It was necessary to consider the multiphasic nature of the thrombus to model its
growth because of the complex microscopic composition. However, a highly complicated
microscopic model would prevent us from establishing a usable computational model.
Therefore, we used a macroscopic continuum-mechanical approach of the Theory of
Porous Media (TPM) to develop a thermodynamically consistent model. TPM provides an
excellent framework to describe the aggregate as a combination of solid and fluid phases.
The fluid phase further consists of liquid and nutrient phases, which gives us a triphasic
aggregate.

We presented the general approach of TPM, including the kinematic relations and
the balance principles for the multi-phase materials based on Truesdell’s metaphysical
principles. Furthermore, we needed constitutive relations to characterise the behaviour
of the thrombus growth. Consequently, we introduced the necessary assumptions and
adapted the balance equations accordingly. To characterise the material behaviour, we
introduced the missing constitutive relations by evaluating the entropy inequality and
obtaining the required restrictions. In this regard, the solid part was modelled using a
modified Neo-Hookean model. Darcy’s law describes the flow of fluids. Furthermore,
we obtained the restrictions for the total mass production term and formulated the mass
exchange rate.

We reformulated the governing equations to their weak forms for the numerical
treatment of the coupled system of partial differential equations using the Finite Element
Method (FEM). Moreover, we carried out spatial discretisation using the Taylor-Hood
elements, where different orders of approximations can be chosen for different primary
variables. The implicit Euler integration scheme was used for the time discretisation,
which finally gave the discretised system of non-linear equations. This was further
implemented in the FE code PANDAS.

In the last part of the thesis, we presented numerical examples to demonstrate the
capabilities of the given model for thrombosis in type B Aortic Dissection (AD). Fur-

77
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thermore, chemical, mechanical, and metabolic factors drive the growth process of the
thrombus. Due to the need for more detailed knowledge and parameters to quantify the
influence of different factors, the model description is even more challenging. However,
the effects of the blood velocity and the nutrients on the growth of thrombus are well-
researched. Therefore, we present a velocity- and nutrient-concentration-induced growth
model.

At first, we introduced the less expensive biphasic model with only solid and fluid
phases. Here, velocity-induced growth is introduced, where the mass exchange takes
place between the solid and fluid phases. Furthermore, a triphasic model is presented with
solid, liquid and nutrient phases, where the mass exchange occurs between the solid and
nutrient phases. The growth in the triphasic model depends on the velocity and nutrient
concentration. Therefore, we study the influence of the parameters and effects of different
Neumann boundary conditions on growth. Finally, we modelled thrombosis using a
realistic 2-d cross-section of the false lumen and drew an analogy between the results and
the process of thrombosis.

6.2 Outlook

The proposed model provides a reasonable approach for the numerical simulation of
thrombosis. The biphasic model is cheaper and considers the effect of velocity on growth
in agreement with Virchow triad. Furthermore, it can include high blood pressure, which
is known to be the major cause of Aortic Dissection. However, the triphasic model is
more detailed. The nutrients play a significant role in thrombosis following the complex
chain reactions of the coagulation cascade (clotting factors). Therefore, it is necessary to
include nutrients in the modelling approach to obtain a realistic model.

The growth depends on the velocity and nutrient concentration in the triphasic model.
We first modelled thrombosis using the triphasic model for an idealised 2-d rectangular
geometry and, after that, for a realistic 2-d geometry of the false lumen. Here, we see
that the material parameters play an important role in incorporating the physiological
factors that can result in thrombosis, according to the Virchow triad. We have an
additional parameter to incorporate the factor of inherited or acquired disorders leading to
hypercoagulability. The stasis of blood and endothelial injury, along with hypertension,
are also incorporated into the model. Moreover, the triphasic model gives the advantage
of including the mass exchange between the nutrient and solid phases without altering the
amount of liquid which fits well with the physiological understanding of thrombosis. The
model also proves its usefulness in actual cases.

However, biological modelling is challenging. Therefore, although extensive theo-
retical approaches have been used in this monograph, various possible improvements and
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extensions are possible to describe thrombosis more accurately. Firstly, the 2-d model
can be extended to a 3-d model. Also, blood is considered to be a Newtonian fluid in the
presented monograph. However, it is known to be a Non-Newtonian fluid, and this should
be included in the model. Additionally, there is a need for medical and experimental
data. With enough medical data (CT/MRI scans) taken at different stages of thrombosis,
it would be possible to validate the model. Furthermore, there is a need to quantify the
different factors responsible for thrombus growth and determine the material parameters
from additional experiments. This would also give us more accurate boundary conditions
and possibilities to guide the growth process in a much more accurate way. This would
also lead to the potential splitting of the mass production formulation into two approaches:
primary and secondary hemostasis. These two processes consist of the major part of
thrombus formation.

Moreover, the model can be extended to different cases of AD, such as type A AD
or false lumen with multiple tears. A larger set of medical and experimental data can
aid in developing, validating, and training such models and performing patient-focused
simulations. Additionally, because the short-term and long-term diagnosis of AD,
especially type B AD, is unclear, all the models for different AD cases can be combined
to develop a numerical laboratory and help in decision-making. Furthermore, the model
of thrombosis could be extended to conditions where the formation of the blood clot is
critical, such as deep venous thrombosis, hypercoagulability disorders and disseminated
intravascular coagulation (DIC). Understanding the mechanics of growth in such chronic
conditions can open new directions in medical device design, personalised medicine,
prognosis, and controlling disease progression.





A APPENDIX

A.1 Derivations of Constituent Balance Relations

In this section, we introduce the constituent balance relations. Following Truesdell’s sec-
ond metaphysical principle, the balance relations can be formulated by considering the
interaction effects of the constituents ϕα . Therefore, we introduce the production terms
(·̂) to allow such interactions.

A.1.1 Balance of Mass

The balance of mass requires the rate of mass Mα of each constituent ϕα to be equal to
the mass supplied. Therefore, the following should hold

(Mα)′α =
∫
B

ρ̂
α dv, (A.1)

where ρ̂α is the mass supply term. We can evaluate the left side of (A.1) using (2.18)2
as

(Mα)′α =
dα

d t

∫
B

ρ
α dv =

∫
B

(ραJα)
′
α dVα =

∫
B

(ρα)′αJα dVα +ρ
α divx′αJα dVα

=
∫
B

[
(ρα)′α +ρ

α divx′α
]

dv,
(A.2)

where (Jα)
′
α = J divx′α . Using (A.1) and (A.2), we get the balance of mass∫

B

[
(ρα)′α +ρ

α divx′α
]

dv =
∫
B

ρ̂
α dv. (A.3)

On applying the localisation theorem, we obtain the local form of the balance of mass

(ρα)′α +ρ
α divx′α = ρ̂

α . (A.4)

According to Truesdell’s first metaphysical principle, all properties of the mixture must be
mathematical consequences of the properties of the constituents. Therefore, we sum the
balance of mass of all the constituents ϕα and use Truesdell’s third metaphysical principle
to get the following constraint

∑
α

(ρα)′α +ρ
α divx′α = ∑

α

ρ̂
α !
= 0. (A.5)

Here, ρ̂α represents the total mass production term, allowing for mass exchange or phase
transition among the constituents.
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A.1.2 Balance of Momentum

The balance of momentum states that the temporal change of the momentum should be
equal to the sum of the forces acting in the vicinity and from a distance, which gives

(Iα)′α =
∫
B

ρ
αbα dv+

∫
S

tα da+
∫
B

ŝα dv, (A.6)

where Iα is the momentum of ϕα and p̂ is the total momentum production. Firstly, we eval-
uate the left side of (A.6) using equations (2.18)2, (A.4), and relation (Jα)

′
α = J divx′α

(Iα)′α =
dα

d t

∫
B

ρ
αx′α dv =

∫
B

(ραx′αJα)
′
α dVα

=
∫
B

[
(ρα)′αx′αJα +ρ

αx′′αJα +ρ
αx′α(Jα)

′
α

]
dVα

=
∫
B

(ραx′′+ ρ̂
αx′α)dv.

(A.7)

Furthermore, using (2.57) and converting surface integral into the volume integral, we
obtain ∫

S

tα da =
∫
S

Tα da =
∫
B

divTα dv. (A.8)

Substituting the equations (A.7) and (A.8) in (A.6), we get the momentum balance∫
B

(ραx′′α + ρ̂
αx′α)dv =

∫
B

(divTα +ρ
αbα)dv+

∫
B

ŝα dv, (A.9)

which, in the local form, gives

ρ
αx′′α = divTα +ρ

αbα − ρ̂
αx′α + ŝα . (A.10)

The summation of the local form of the balance of momentum results in

∑
α

ρ
αx′′α = ∑

α

[
divTα +ρ

αbα −ρ̂
αx′α + ŝα︸ ︷︷ ︸

p̂α

]
. (A.11)

Here, ρ̂αx′α represents the momentum production due to the mass exchange and p̂α results
from the interaction force between the constituents and represents the direct momentum
production. ŝα represents the total momentum production. The local conservation law for
one component body leads to the constraint

∑
α

ŝα !
= 0. (A.12)

For the slow growth and remodelling processes in biological tissues, ρ̂αx′α can be ne-
glected leading to the constraint

∑
α

p̂α !
= 0. (A.13)
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A.1.3 Balance of Moment of Momentum

The balance of the moment of momentum states that the temporal change of the moment
of momentum should be equal to the sum of moments of all forces acting on the body with
respect to the same arbitrary point. For non-polar constituents, it can be written as

(hα)′α =
∫
B

x×ρ
αbα dv+

∫
S

x×Tα da+
∫
B

x× p̂α dv, (A.14)

where hα is the angular momentum. Firstly, we calculate the material time derivative of
hα using (A.4)

(hα)′α =
dα

d t

∫
B

x×ρ
αx′α dv =

∫
B

x× (ραx′′α + ρ̂
αx′α)dv. (A.15)

Combining the equations (A.14) and (A.15), we obtain∫
B

x× (ραx′′α + ρ̂
αx′α) =

∫
B

[
x× (divTα +ρ

αbα)+ I×Tα
]

dv+
∫
B

x× p̂α dv, (A.16)

which, in the local form, would give

x×
[
divTα +ρ

αbα −ρ
αx′′α − ρ̂

αx′α + p̂α
]
+ I×Tα = 0. (A.17)

Substituting the balance of momentum (A.10) in the above equation, we obtain

I×Tα = 0, (A.18)

which is fulfilled if the partial Cauchy stress tensor is symmetric

Tα = (Tα)T . (A.19)

A.1.4 Balance of Energy

The balance of energy states that the sum of the temporal changes of the internal and
kinetic energy should be equal to the sum of the external mechanical and non-mechanical
power (First law of thermodynamics), which can be written as

(W α)′α +(Qα)′α =
∫
B

x′α ·ραbα dv+
∫
S

x′α ·Tα da

+
∫
B

ρ
αrα dv+

∫
S

qα ·da+
∫
B

êα dv,
(A.20)
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where rα is the mass-specific external heat supply, qα is the heat influx, and êα is the total
energy production of ϕα . Now, we evaluate the left side of the equation (A.20) and using
the mass balance (A.4)

(W α)′α =
dα

d t

∫
B

ρ
α

ε
α dv =

∫
B

[
ρ

α(εα)′α + ρ̂
α

ε
α
]

dv,

(Qα)′α =
dα

d t

∫
B

1
2

ρ
αx′α ·x′α dv =

∫
B

(ραx′′α +
1
2

ρ̂
αx′α) ·x′α dv,

(A.21)

where W α is the internal energy and εα is the mass-specific internal energy of ϕα . Qα is
the kinetic energy. Further, by using the relations from Integral theorems, we obtain∫

B

[
ρ

α(εα)′α + ρ̂
α

ε
α
]

dv+
∫
B

(ραx′′α +
1
2

ρ̂
αx′α) ·x′α dv =

=
∫
B

[
(divTα +ρ

αbα) ·x′α +Tα :lllα

]
dv+

∫
B

(ραrα −divqα)dv+
∫
B

êα dv,
(A.22)

On applying the localisation theorem, we get the local form as

ρ
α(εα)′α + ρ̂

α(εα +
1
2

x′α ·x′α) =
[
divTα +ρ

α(bα −x′′α)
]
·x′α+

+Tα : lllα −divqα +ρ
αrα + êα .

(A.23)

Further, we can use the balance of momentum (A.10) to obtain

ρ
α(εα)′α = Tα : lllα −divqα +ρ

αrα + êα − p̂α ·x′α − ρ̂
α(εα − 1

2
x′α ·x′α). (A.24)

On summing the equation over all the constituents,

∑
α

[
ρ

α(εα)′α
]
= ∑

α

[
Tα : lllα −divqα +ρ

αrα + êα − p̂α ·x′α − ρ̂
α(εα − 1

2
x′α ·x′α)︸ ︷︷ ︸

ε̂α

]
,

(A.25)
where ε̂α is the direct energy production. On comparing with the local energy conser-
vation law of one component body, we get the following constraint for the total energy
production

∑
α

êα !
= 0. (A.26)

A.1.5 Entropy Inequality

The entropy balance governs the direction of energy transfer. The entropy principle pro-
vides us with the restriction, which plays an essential role in the constitutive modelling of
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a material. The entropy inequality states that the temporal change of entropy should be
equal to the sum of the external change of entropy and the internal entropy production, and
the entropy production is never negative, which is defined as

(Hα)′α ≥
∫
B

1
Θα

ρ
αrα dv−

∫
S

1
Θα

qα ·da, (A.27)

where Hα is the entropy of ϕα and Θα is the absolute Kelvin’s temperature of ϕα . Firstly,
we calculate the left side of the above equation using the local form of the balance of mass
(A.4)

(Hα)′α =
dα

d t

∫
B

ρ
α

η
α dv =

∫
B

(ρα
η

αJα)
′
α dVα

=
∫
B

(ρα)′αη
α dv+ρ

α(ηα)′α dv+ρ
α

η
α divx′α dv

=
∫
B

[
ρ

α(ηα)′α + ρ̂
α

η
α
]

dv.

(A.28)

We can reformulate (A.27) as∫
B

[
ρ

α(ηα)′α + ρ̂
α

η
α
]

dv ≥
∫
B

[ 1
Θα

ρ
αrα −div(

1
Θα

qα)
]

dv. (A.29)

On applying the localisation theorem, we get the local form of entropy inequality

η̂
α = ρ

α(ηα)′α + ρ̂
α

η
α +div

( 1
Θα

qα

)
− 1

Θα
ρ

αrα ≥ 0, (A.30)

where η̂α is the total entropy production of ϕα . Following this, we use the Legendre trans-
formation between the entropy and its conjugate variable, the temperature and introduce
the Helmholtz free energy density ψα as

ψ
α := ε

α −Θ
α

η
α . (A.31)

Furthermore, the lower balance relations of the constituents along with the equation (2.75)
gives the Clausius-Duhem representation D of the entropy inequality

D = ∑
α

1
Θα

{
Tα : dα −ρ

α
[
(ψα)′α +(Θα)′αη

α
]
− p̂α ·x′α−

− ρ̂
α(ψα +

1
2

x′α ·x′α)−
1

Θα
qα ·gradΘ

α + êα

}
≥ 0.

(A.32)
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