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Abstract

In this paper, we apply kernel PCA for speech enhancement and derive pre-image iterations for speech enhancement.
Both methods make use of a Gaussian kernel. The kernel variance serves as tuning parameter that has to be adapted
according to the SNR and the desired degree of de-noising. We develop a method to derive a suitable value for the
kernel variance from a noise estimate to adapt pre-image iterations to arbitrary SNRs. In experiments, we compare the
performance of kernel PCA and pre-image iterations in terms of objective speech quality measures and automatic
speech recognition. The speech data is corrupted by white and colored noise at 0, 5, 10, and 15 dB SNR. As a
benchmark, we provide results of the generalized subspace method, of spectral subtraction, and of the minimum
mean-square error log-spectral amplitude estimator. In terms of the scores of the PEASS (Perceptual Evaluation
Methods for Audio Source Separation) toolbox, the proposed methods achieve a similar performance as the reference
methods. The speech recognition experiments show that the utterances processed by pre-image iterations achieve a
consistently better word recognition accuracy than the unprocessed noisy utterances and than the utterances
processed by the generalized subspace method.
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1 Introduction
Speech enhancement is important in the field of speech
communications and speech recognition. Many methods
have been proposed in the literature (Loizou 2007). Spec-
tral subtractive algorithms were among the first and are
probably the simplest (Berouti et al. 1979; Boll 1979). They
are based on the assumption that speech and noise are
additive and thus the noisy speech signal can be enhanced
by subtracting a noise estimate. Usually this is done in
frequency domain using the magnitude of the short-time
Fourier transform (STFT). For inverse transformation the
phase of the noisy signal is considered. Statistical model-
based methods provide a framework to find estimates of,
e.g., the spectrum or magnitude spectrum of clean speech
given the noisy speech spectrum (Ephraim and Malah
1984, 1985; McAulay and Malpass 1980). Subspace meth-
ods are based on the assumption that the clean signal only
covers a subspace of the Euclidean space where the noisy
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speech signal exists (Ephraim and Van Trees 1995; Hu and
Loizou 2003). Enhancement is performed by separating
the noise subspace and the clean speech plus noise sub-
space and setting the components in the noise subspace to
zero. Most speech enhancement algorithms make use of
a noise estimate and their performance therefore heavily
depends on the quality of the noise estimate. Poor noise
estimates may lead to artifacts such as isolated peaks in
the spectrum, which are perceived as tones of varying
pitch and are known asmusical noise (Berouti et al. 1979).
Subspace methods make use of principal component

analysis (PCA) (Ephraim and Van Trees 1995; Hu and
Loizou 2003), which is a linear technique. We therefore
investigate if the quality of speech enhancement can be
increased by applying a non-linear technique. This leads
to the application of kernel methods, which constitute a
simple possibility to make linear methods non-linear. Ker-
nel methods transform data samples by mapping them
from the input space to the so-called feature space. The
non-linear extension of PCA is kernel PCA, which has
already been successfully applied in image de-noising
(Mika et al. 1999). In (Leitner et al. 2011), we pro-
posed the use of kernel PCA for speech enhancement.
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Similar to image processing, we apply kernel PCA on
patches extracted from the time-frequency representation
of speech utterances.
For subspace methods, the number of principal compo-

nents used for projection is a key parameter for the degree
of de-noising. In our framework based on kernel PCA,
we empirically observed (see results in Section 6) that the
number of used components has almost no influence. We
therefore ignore the projection step and only perform the
reconstruction step necessary to determine the sample in
input space corresponding to the de-noised sample in fea-
ture space.We call this pre-image iterations (PI) for speech
enhancement, as the reconstructed sample in input space
is called pre-image.
Besides their relation to subspace methods, PI exhibit

a similarity to non-local neighborhood filtering (NF)
applied for image de-noising (Buades et al. 2005; Singer et
al. 2009). While other de-noising algorithms often com-
pute the value of the de-noised pixel solely based on the
value of its surrounding pixels, non-local neighborhood
filters average over pixels that are located all over the
image but have a similar neighborhood. This approach is
favorable if images contain repetitive patterns such as tex-
tures. Although quite popular for image de-noising, NF
has only recently gained attention in the field of speech
enhancement. In (Talmon et al. 2011), NF is applied to
suppress transient noise bursts. In contrast to our applica-
tion of PI, NF is not directly applied for de-noising but to
gain a noise estimate of the transients that is subsequently
used for noise suppression.
In this paper, we compare the performance of kernel

PCA and PI for speech enhancement. The variance of
the kernel used for the pre-image computation is a tun-
ing parameter that influences the degree of de-noising.
Therefore, it has to be adapted according to the SNR.
We develop a heuristic method to derive the kernel vari-
ance from a noise estimate. This way, PI adapt to differ-
ent SNRs. Furthermore, an approach for colored noise
is developed where the kernel variance is frequency-
dependent. The performance of the proposed methods is
evaluated in terms of objective speech quality measures
and automatic speech recognition results. As objective
measures, we employ the perceptual evaluation of speech
quality (PESQ) measure (ITU-T 2001) and the scores
of the perceptual evaluation of audio source separation
(PEASS) toolbox (Emiya et al. 2011). Furthermore we use
an automatic speech recognition (ASR) system tomeasure
the performance of noise contaminated and subsequently
enhanced data. Note, that the focus here is on evaluat-
ing the effects of the enhancement methods and not on
optimizing the recognition results per se. Therefore, the
speech recognizer is not adapted to the enhanced data.
Experiments are performed on noise corrupted speech

from two databases, the airbone database and the Noizeus

database. The utterances are contaminated by additive
white Gaussian noise (AWGN) and car noise, respec-
tively, at 0, 5, 10, and 15 dB SNR. As reference, perfor-
mance results of the generalized subspace method (Hu
and Loizou 2003), of spectral subtraction (Berouti et al.
1979), and of the minimum mean-square error (MMSE)
log-spectral amplitude estimator (Ephraim and Malah
1985) are provided. In terms of PEASS scores, the pro-
posed methods achieve a similar performance. In terms
of word accuracy (WAcc), the utterances enhanced by PI
show a significantly higher WAcc than the noisy utter-
ances and the utterances processed by the generalized
subspace method.
The paper is organized as follows: In Section 2, we

summarize kernel PCA. In Section 3, we describe the
application of kernel PCA for speech enhancement. In
Section 4, we derive and analyze pre-image iterations and
show commonalities to related methods in image and
speech processing. In Section 5, we provide implemen-
tation details, introduce the used databases, evaluation
measures, and the applied speech recognition system. In
Section 6, the results are discussed. Section 7 concludes
the paper and gives a perspective on future work.

2 Kernel PCA
Kernel methods (Bishop 2006) use the map � to trans-
form data samples x from the input space X to the feature
space F

� : X → F
x �→ �(x), (1)

where the data is processed. The transformation allows for
more flexible algorithms using non-linear mappings. Ker-
nels are defined as inner products between mapped data
samples

k(xi, xj) = �(xi)T · �(xj). (2)

An important property of kernel methods is that the
mapping �(x) is usually not computed explicitly but only
kernels between input samples are evaluated.
Kernel PCA is derived from PCA, which is a widely used

technique for dimensionality reduction, lossy data com-
pression, feature extraction, and data visualization. PCA
is an orthogonal transformation of the coordinate system
of the input data, i.e., the data is projected onto so-called
principal axes. The new coordinates are called principal
components. Often the structure in data can be described
with sufficient accuracy while using only a small num-
ber of principal components. For de-noising, components
with low variance are dropped as they are assumed to orig-
inate from noise (Mika et al. 1999; Schölkopf and Smola
2002; Schölkopf et al. 1996).
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PCA finds the principal axes by diagonalizing the esti-
mated covariance matrix

S = 1
M

M∑
i=1

xixTi (3)

of a set of M data samples xi ∈ R
N , with i = 1, . . . ,M,

assuming zero mean
∑M

i=1 xi = 0. This is done by solving
the eigenvalue equation

λlul = Sul (4)

for eigenvalues λl ≥ 0 and non-zero eigenvectors ul ∈
R
N \ {0}. Substituting (3) into (4) leads to

λlul = 1
M

M∑
i=1

(
xTi ul

)
xi. (5)

The product
(
xTi ul

)
xi denotes a projection of the eigen-

vectors ul with λl �= 0 onto the samples xi. Therefore,
following from Equation (5) all eigenvectors lie in the span
of xi, . . . , xM, i.e., all ul are linear combinations of xi and
can be written as expansions of xi (Schölkopf and Smola
2002). As PCA is linear, its ability to retrieve the structure
within a given data set is limited. If the principal com-
ponents of variables are non-linearly related to the input
variables, a non-linear feature extractor is more suitable.
This is realized by kernel PCA (Mika et al. 1999; Schölkopf
and Smola 2002).
To derive kernel PCA from standard PCA, let us assume

a mapping �(x) from the input space X to the feature
spaceF as given in (1). As before, we assume that the data
is centered in feature space

∑M
i=1 �(xi) = 0. In feature

space, the estimated covariance matrix is

C = 1
M

M∑
i=1

�(xi)�(xi)T . (6)

To diagonalize the covariance matrix we have to solve
the eigenvalue equation

λkvk = Cvk (7)

for eigenvalues λk ≥ 0 and non-zero eigenvectors vk ∈ F \
{0}, vTk vk = 1. Equivalently to (5), all eigenvectors vk that
solve this equation lie in the span of �(x1), . . . ,�(xM).
Therefore, each eigenvector vk can be written as linear
combination of the mappings �(xi) using the coefficients
αk1, . . . ,αkM

vk =
M∑
i=1

αki�(xi). (8)

Substituting (6) and (8) into (7) leads to

λk

M∑
i=1

αki�(xi) = 1
M

M∑
j=1

�(xj)�(xj)T
M∑
i=1

αki�(xi)

(9)

for all k = 1, . . . ,M. To enable an expression in terms of
kernels we multiply both sides by �(xp)T such that

λk

M∑
i=1

αki�(xp)T�(xi) (10)

= 1
M

M∑
j=1

�(xk)T�(xj)
M∑
i=1

αki�(xj)T�(xi)

for all k = 1, . . . ,M. Now, let us define an M × M matrix
K called kernel matrix with the entries

Kij = k(xi, xj). (11)

The multiplication of the mappings �(xi)T�(xj) in (10)
can be replaced by a kernel as given in (2) and the equation
can be reformulated as

MλkKαk = K2αk , (12)

where αk is the kth eigenvector with the entries
αk1, . . . ,αkM. The eigenvectors of this system equivalently
solve the eigenvalue problem

Mλkαk = Kαk . (13)

To find the eigenvectors αk the matrix K has to be
diagonalized. Let us denote the eigenvalues of K in the
following by λ1, . . . , λM (which are equivalent to the eigen-
values Mλk solving (13)). By requiring a normalization of
the eigenvectors in feature space, i.e., vTk vk = 1, the nor-
malization condition for the eigenvectors αk is derived as
(Schölkopf and Smola 2002)

1 = λkα
T
k αk . (14)

The projection of a test sample x onto the eigenvectors
vk in F can then be determined as

βk = (vk)T�(x) =
M∑
i=1

αki�(xi)T�(x) =
M∑
i=1

αkik(xi, x).

(15)

In summary, to project x onto the eigenvectors vk in F
the following steps are required: (i) compute the kernel
matrix K, (ii) compute its eigenvectors αk and normalize
them using (13) and (14), (iii) project the data sample x
using (15).

2.1 Centering
Until so far, we have assumed that the data in feature space
is centered. This can easily be ensured in input space X ,
but is harder to achieve in feature space F , as we usually
do not explicitly compute the mapped data and therefore
the quantity

∑M
i=1 �(xi) cannot be assessed. However, as

shown in (Schölkopf and Smola 2002; Schölkopf et al.
1996), centering can be done by modifying the kernel
matrix K such that the centered kernel matrix K̃ is

K̃ = K − 1MK − K1M + 1MK1M, (16)
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where 1M is an M × M matrix with all entries equal
to 1/M. The eigenvectors αk can then be computed by
diagonalizing K̃ instead of K.

2.2 Kernel PCA for de-noising
To de-noise data, we assume that the directions of eigen-
vectors corresponding to small eigenvalues only contain
information about noise. In contrast, eigenvectors corre-
sponding to large eigenvalues are assumed to contain rele-
vant information, e.g., speech. Therefore, the data sample
�(x) is projected onto the eigenvectors vk corresponding
to the n largest eigenvalues while the directions of small
eigenvalues are dropped to remove the noise (Mika et al.
1999). To reconstruct the mapping �(x) after projection
we define a projection operator Pn that is given as

Pn�(x) =
n∑

k=1
βkvk , (17)

where the eigenvectors are assumed to be ordered by
decreasing eigenvalue size. Consequently, Pn�(x) is a lin-
ear combination of the first n eigenvectors vk using the
projections βk of (15) as weights. In case of using all vk ,
the data sample after projection equals the original data
sample Pn�(x) = �(x).
The drawback of de-noising in feature space is that in

common applications the de-noised data is required in
input space. The samples in input space that map to the
projected samples in feature space, i.e., the pre-images, are
determined by solving the pre-image problem.
In the case of applying kernel PCA with a Gaussian

kernel

k(xi, xj) = exp
(

−‖xi − xj‖2
c

)
, (18)

where c is the kernel variance, one solution for the pre-
image problem is to approximate the pre-image z by mini-
mizing the Euclidean distance ρ(z) between �(z) and the
projection in feature space Pn�(x)

ρ(z) = ‖�(z) − Pn�(x)‖2. (19)

Mika et al. 1999 showed that for kernels that satisfy
k(x, x) = 1 for all x ∈ X (such as the Gaussian kernel)
the minimization of ρ(z) can be performed by fixed point
iterations. For the Gaussian kernel this results in

zt+1 =
∑M

i=1 γik(zt , xi)xi∑M
i=1 γik(zt , xi)

, (20)

where z is the pre-image, xi are the original (noisy) sam-
ples in input space, k(·, ·) is the kernel, t denotes the

iteration index,M is the number of samples, and γi is given
by

γi =
n∑

k=1
βkαki (21)

with βk from (15) and αki ∈ αk in (13). Note that the
resulting pre-image z is always a linear combination of the
input data xi weighted by the similarity between the pre-
image z and the data samples xi and the coefficients γi.
This algorithm is sensitive to initialization which, how-
ever, can be tackled by reinitializing with different values.
Several variations of this iterative pre-image solution

were proposed. A good overview is provided in (Honeine
and Richard 2011). Kwok and Tsang 2004 suggested to use
normalized weighting coefficients in (20) to account for
centering when using the centered kernel matrix K̃, i.e.,

γ̃i = γi + 1/M
(
1 −

M∑
m=1

γm

)
. (22)

Abrahamsen and Hansen 2009 further extended the
method by a regularization term

zt+1
j =

2
c
∑M

i=1 γ̃ik
(
ztj , xi

)
xi + ηxj

2
c
∑M

i=1 γ̃ik
(
ztj , xi

)
+ η

, (23)

where η is a non-negative regularization parameter and xj
is the noisy sample corresponding to the de-noised sam-
ple zj. They show that the method is more stable than the
method in (Mika et al. 1999).

3 Kernel PCA for speech enhancement
The application of kernel PCA for speech enhancement is
illustrated in the block diagram in Figure 1. To extract fea-
ture vectors, i.e., the data samples xi for kernel PCA, the
sequence of STFTs of an utterance is split into so-called
frequency bands (see Section 5.1 for details). The fre-
quency bands are decomposed into overlapping patches
and the elements in each patch are stacked into xi. One
kernel matrix is built from the feature vectors of each fre-
quency band. Each kernel matrix is centered according to
(16), then the eigenvalue decomposition (13), normaliza-
tion of the eigenvectors αk (14) and the projection of the
data onto the eigenvectors vk (15) are performed. A Gaus-
sian kernel is used. The pre-images, i.e., the enhanced
feature vectors are computed iteratively using normalized
iterative pre-imaging (cf. (20) and (22)),

zt+1
j =

∑M
i=1 γ̃ik

(
ztj , xi

)
xi∑M

i=1 γ̃ik
(
ztj , xi

) , (24)

where zt+1
j is the jth enhanced sample within a frequency

band at iteration t + 1, xi are the noisy samples with i =
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Figure 1 Kernel PCA for speech enhancement.

1, · · · ,M, γ̃i is given by (22) andM is the number of sam-
ples in the frequency band. We initialize z0j with the noisy
sample xj and iterate (24) until convergence. Finally, the
sample vectors are rearranged to patches and the audio
signal is synthesized as described in Section 5.1.

4 Pre-image iterations for speech enhancement
When subspace methods are applied for speech enhance-
ment, the number of components used for the projec-
tion step of PCA is a key parameter. In our framework,
we empirically observed that the number of components
used for projection has only a minor effect on the out-
come of the de-noising process. The de-noising qual-
ity is rather the same whether projection is performed
on one or more components. De-noising is primarily
influenced by the kernel weights and by the value of
the kernel variance. Therefore, we completely neglect
the projection coefficients γ̃i in (24) by setting them
to one.
The pre-image iteration method is illustrated in the

block diagram in Figure 2. The enhanced feature vector

zj is determined as linear combination of the noisy input
samples, i.e.,

zt+1
j =

∑M
i=1 k

(
ztj , xi

)
xi∑M

i=1 k
(
ztj , xi

) . (25)

The weights of the linear combination are determined
by the kernel k(·, ·), which serves as similarity measure
between two samples. The kernel variance c is used as
parameter to scale the degree to which samples are treated
as similar.
We further extended (25) with additional regularization

similar as in (Abrahamsen and Hansen 2009) (cf. (23)),
such that

zt+1
j =

2
c
∑M

i=1 k
(
ztj , xi

)
xi + ηxj

2
c
∑M

i=1 k
(
ztj , xi

)
+ η

, (26)

where xj is the noisy sample, for which the pre-image
should be found and η ≥ 0 is the regularization parameter
that determines the influence of the noisy sample xj in PI.

Figure 2 Pre-image iterations for speech enhancement.
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4.1 Analysis of pre-image iterations
Pre-image iterations effect de-noising by a linear combi-
nation – or weighted average – of noisy feature vectors,
where the weights are determined by the kernel. To ana-
lyze the de-noising, we define the vector of kernel values

kj =[ k(xj, x1), k(xj, x2), . . . , k(xj, xM)]T (27)

computed between a feature vector xj and all vectors xi
with i = 1, . . . ,M from one frequency band. This ker-
nel vector always contains one large element equal to one
because of self-similarity. The values of the other elements
depend on the signal content.
If feature vectors with in-phase speech components are

compared then the kernel vector contains other elements
with larger magnitude. Therefore these feature vectors are
combined during PI and noise within these feature vec-
tors is averaged out because it is randomly distributed.
In practice and with the described configuration of the
feature extraction, there are usually no in-phase feature
vectors within a frequency band. Therefore, a feature vec-
tor containing speech components is only similar to itself
and the noise reduction for this feature vector is limited.
This is illustrated in Figure 3. The first and second column
represent the noisy magnitude and the enhanced mag-
nitude in a segment where speech is present. The third
column shows a frequency band with speech components
over several iterations. The marked patch (equivalent to
a feature vector) and the corresponding kernel vector in
the fourth column do not change during the iterations
and no noise reduction is achieved for this patch. This
also explains why there is often noise left around speech
components and in short speech pauses. To achieve de-
noising, smaller patch sizes are necessary. Empirically, we

observed, however, that too small patches cause musical
noise-like artifacts.
Feature vectors containing mostly noise exhibit some

similarity between all of them. So, in contrast to feature
vectors containing speech as shown in Figure 3, there are
other kernel values larger than zero besides the kernel
value equal to one, as illustrated in Figure 4 in the top right
graph. Consequently, in the first iteration several noisy
feature vectors are averaged. In the next iteration, the ker-
nel vector is computed between the resulting averaged –
or enhanced – feature vector and the original noisy fea-
ture vectors. It turns out that the enhanced feature vector
is more similar to the noisy feature vectors in terms of
similarty measured by the kernel than the original noisy
feature vector. Therefore, the kernel vector of the second
iteration contains larger elements than the kernel vector of
the fist iteration. This can be seen in the graph in the sec-
ond row and last column in Figure 4. As the kernel values
serve as weights for averaging in Equation (25), stronger
averaging of feature vectors is performed in the second
iteration and the noise is averaged out. This is repeated
until the weights are stable and convergence is reached.
Note that the feature vectors are complex-valued and that
the phase is randomly distributed. Therefore, the feature
vectors add up destructively and the noise is canceled.

4.2 Relation to non-local neighborhood filtering and to
the non-local means algorithm

Performing de-noising on the time-frequency represen-
tation of speech incorporates some similarities to meth-
ods popular for image de-noising, namely, non-local
neighborhood filtering and related methods. In many
approaches for image and signal de-noising the de-noised
value of the signal is based on neighboring signal values.

Figure 3 PI in a speech segment shown on the magnitude of the spectral data of the utterance in Figure 8. The columns show from left to right: (i)
Noisy segment with one frequency band and a patch marked. The noise level is 10 dB SNR. (ii) Enhanced segment. (iii) The marked frequency band
before de-noising and after one to three iterations. (iv) Kernel values between the marked patch and all other noisy patches in the band before
de-noising and after one to three iterations. The kernel vector contains only one value significantly larger than zero and no averaging is performed
for this patch. Note that the patches are extracted row-wise from left to right and from top to bottom.
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Figure 4 PI in a noisy segment. The columns show from left to right: (i) Noisy segment with one frequency band and a patch marked. (ii) Enhanced
segment. (iii) The marked frequency band before de-noising and after one to three iterations. (iv) Kernel values between the marked patch and all
other noisy patches in the band before de-noising and after one to three iterations. Note that in contrast to Figure 3, other kernel vector entries
besides the entry equal to one are larger than zero and therefore contribute to the averaging in PI.

Gaussian or Gabor filters and anisotropic diffusion are
examples for such de-noising approaches.
Most of these methods, however, do not take into

consideration one property of many signals and images,
namely their repetitive behavior, whichmeans that inmost
signals, patterns of the original noise-free signal occur
at different time instances or spatial locations (Singer
et al. 2009). For time-domain signals this is the case for
every periodic or nearly periodic signal, for instance neu-
ronal spikes or heart beats. In images, there may as well
be patches that occur at different spatial locations, e.g.,
in textures. For de-noising, it is preferable to exploit the
occurrence of similar patterns in distant regions of the
signal. Instead of using the values in the neighborhood,
de-noising is performed over pixels belonging to similar
patterns found anywhere in the image. This is realized by
NF and bilateral filtering (Barash 2002; Singer et al. 2009).
NF is often executed iteratively, as a simple iteration is
not sufficient to achieve de-noising. They have a similar
iteration scheme as PI (Singer et al. 2009).
The non-local means (NL) algorithm proposed by

Buades 2005 is derived fromNF. TheNL algorithm formu-
lated in vector notation is equivalent to the first iteration
of the pre-image iteration equation (25), if the neighbor-
hoods of one pixel are chosen equivalently to patches.
A substantial difference, however, is that in the case of
speech enhancement the frequency bins – which corre-
spond to the pixels – are complex-valued.
Besides image de-noising, NF has recently been applied

in speech enhancement. In (Talmon 2011; Talmon et al.
2011), NF is employed to suppress transient noise. Tran-
sient noise consists of short bursts that most speech
enhancement algorithms fail to suppress as they are
restricted to stationary noise. The repetitive structure of
transient noise that causes other enhancement algorithms

to be unsuitable for suppression can be exploited by appli-
cation of non-local filtering. Talmon et al. 2011 noted
that the non-local neighborhood filter is equivalent to
non-local diffusion filters (NLDF). Although NLDF and
pre-image iterations are related, their purpose is consid-
erably different. NLDF make use of a kernel to get reliable
estimates of noise transients by constructive averaging.
These noise estimates are subsequently used in a speech
enhancement algorithm. PI on the other hand use the ker-
nel directly as weight in a linear combination to attenuate
noise by destructive averaging of complex-valued feature
vectors.

4.3 Determination of the kernel variance in PI
As the performance of PI strongly depends on the kernel
variance c, we adapt c for varying noise conditions and
levels. Two heuristic approaches are used for the determi-
nation of the kernel variance, one for AWGN and one for
colored noise (Leitner and Pernkopf 2013). Both make use
of a mapping function to derive a suitable value for c from
a noise estimate.
To find the mapping function, each utterance of the

development set is corrupted by noise at different SNRs
and PI are applied with different values of c. The enhanced
recordings are evaluated using the measures of the PEASS
toolbox (details about thesemeasures are in Section 5.3.2).
As optimization criterion S a linear combination of the
four scores is used

S = 0.5 · (OPS + 1
3
(TPS + IPS + APS)). (28)

Additionally, the IPS score has to be greater than 10 to
avoid the situation where S is large due to good TPS and
APS scores but no de-noising is achieved. The noise power
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is estimated from the beginning of the recording, assum-
ing stationary noise and no speech within this region. The
values for c that lead to the highest score S for the indi-
vidual utterances and the corresponding noise estimates
are fitted by a polynomial of second order. This function is
used to obtain values of c from noise estimates in the test
signals.
For colored noise, a single value for c for all frequency

bands is insufficient for substantial de-noising as the noise
power is not equally distributed over the frequency range.
For this reason we derive the averaged noise power esti-
mate for each frequency band individually. These esti-
mates are used in the mapping function derived for white
noise to obtain values of c for each frequency band. In
addition, we derive another mapping function by employ-
ing the measured global SNR after enhancement as opti-
mization criterion instead of the score S. A comparison
showed that the mapping function based on the global
SNR results in better de-noising performance.

5 Experimental setup and evaluation
To evaluate the proposed speech enhancement algo-
rithms, we performed four different experiments. For all
experiments, the speech data was corrupted by noise at
0, 5, 10, and 15 dB SNR. In the first two experiments,
we evaluate the results in terms of objective speech qual-
ity measures, namely, the PESQ measure and the scores
of the PEASS toolbox. In the other two experiments, we
compare the performance of a speech recognition system
before and after enhancement by PI.
In experiment 1, we compare kernel PCA with the nor-

malized iterative pre-image method (kPCA) as given in
(24) and two variants of PI. For the variant denoted by
PIcSNR, a suitable value for the kernel variance c is derived
from the performance on a development set for each
SNR. For PI with heuristic determination of the kernel
variance (PID) the kernel variance is derived from a map-
ping function as explained in Section 4.3. Enhancement is
performed on data of the airbone database corrupted by
AWGN.
In experiment 2, we perform enhancement on data of

the Noizeus database corrupted by car noise. We evaluate
two variants of PI with frequency-dependent determi-
nation of the kernel variance (PIDF) for colored noise.
Both variants, PIDFSNR and PIDFSNR-Var, employ the
SNR to derive the mapping function. Furthermore, the
parameter settings of the feature extraction are varied for
PIDFSNR-Var.
Experiments 3 and 4 use a speech recognition system. In

both experiments, data of the airbone database is tested.
To train the automatic speech recognizer, we use data of
the BAS PhonDat 1 database (Schiel and Baumann 2006).
In experiment 3, the data is corrupted by AWGN and
enhanced by PIcSNR and PID. In experiment 4, the speech

data is corrupted by car noise and enhanced by the PIDF
method based on the PEASS scores (PIDFPEASS).

5.1 Feature extraction and synthesis
We use the same feature extraction and synthesis for
enhancement by kernel PCA and PI. First the 256-point
STFT is computed from frames of 16 ms. The frames have
an overlap of 50% and a Hamming window is applied. The
resulting time-frequency representation is split into time
segments of 0.25 ms. Each segment is split on the fre-
quency axis to reduce computational costs which results
in so-called frequency bands. Sample vectors are retrieved
from these frequency bands by first extracting quadratic
patches in an overlapping manner, where the size of each
patch is 12 × 12 with an overlap of 11. This is illus-
trated in Figure 5. On the left hand side, frequency bands
are marked as black rectangles, on the right hand side,
quadratic patches within one frequency band are marked
as red squares. In previous experiments, windowing of
the patches was beneficial, so a 2D Hamming window is
applied. Then, the values in the patches are re-ordered
in column-major order to form the sample vectors xi ∈
C
144. The frequency bands cover a frequency range cor-

responding to 8 patches (i.e., 19 bins) and a time range
corresponding to 20 patches (i.e., 31 bins). Along the fre-
quency axis bands have an overlap of 50% or no overlap
– depending on the experiment – and along the time axis
the overlap is 10 patches. This configuration was cho-
sen due to good empirical results. After processing, the
enhanced audio signal is synthesized by reshaping the
enhanced sample vectors zi to patches. The patches of
all frequency bands belonging to one time segment are
rearranged using the overlap-add method with weighting
as described in (Griffin and Lim 1984), generalized for
the 2D domain. Then, the STFT bins of overlapping time
segments are averaged, the inverse Fourier transform is
applied on the bins of each frame and the audio signal
is synthesized with the weighted overlap-add method in
(Griffin and Lim 1984).

5.2 Databases
5.2.1 Noizeus database
The Noizeus database was proposed to enable the com-
parison of speech enhancement methods (Hu and Loizou
2007). The database contains recordings of 30 IEEE sen-
tences (in English) (IEEE Subcommitee 1969), spoken
by three female and three male speakers (five sentences
each). The sentences were recorded with 25 kHz sampling
frequency and downsampled to 8 kHz. Furthermore, the
speech signals were filtered by the modified Intermedi-
ate Reference System filters used in ITU-T P.862 (ITU-T
2001) to simulate the frequency characteristics of a tele-
phone handset. The recordings are corrupted by eight
types of real-world noise. The SNR computation is based



Leitner and Pernkopf SpringerPlus  (2015) 4:243 Page 9 of 18

Figure 5 Left hand side: Extraction of frequency bands covering a time range of 10 patches and a frequency range of 8 patches (with 50% overlap
along the time axis and no overlap along the frequency axis). Right hand side: Extraction of patches from one frequency band, where the patches
cover 12 × 12 bins with an overlap of 10 bins in time and frequency. (Here shown on the clean signal for better visibility).
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Figure 6 Results of kernel PCA with normalized pre-imaging (kPCA), PI with SNR-dependent setting of the kernel variance (PIcSNR), the generalized
subspace method (Subspace), spectral subtraction (SpecSub), and the MMSE log-spectral amplitude estimator (LogMMSE) in terms of overall
perceptual score (OPS), target perceptual score (TPS), interference perceptual score (IPS), and artifact perceptual score (APS) on the test set of the
airbone database corrupted by AWGN.
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on the active speech level (ASL) (ITU-T 2011). We use
the data corrupted by car noise and additionally contam-
inated clean recordings by AWGN for the derivation of
the mapping functions. The development set contains one
sentence per speaker and SNR condition.

5.2.2 Airbone database
The airbone database consists of 120 utterances read by
six speakers – three male and three female – of the Aus-
trian variety of German (Domes 2009). The utterances
are recorded by the close-talk microphone of a headset
with a sampling frequency of 16 kHz. The headset is fur-
ther supplied with a bone conduction microphone, hence
the name airbone database. The signal of the bone micro-
phone, however, is not used in this work. The data is cor-
rupted by AWGN and by car noise from the NOISEX-92
database (Varga and Steeneken 1993) with consideration
of the ASL. A subset of two utterances per speaker and
SNR condition is used for development, i.e., for setting the
kernel variance or for deriving the mapping function for
estimating the kernel variance.

5.2.3 BAS PhonDat 1 database
The BAS PhonDat 1 (BAS PD1) database belongs to
the Bavarian Archive for Speech Signals Corpora (Schiel
and Baumann 2006). The BAS PD1 corpus contains read
speech uttered by 201 different speakers of German. In
total, 21587 utterances were recorded with a sampling

frequency of 48 kHz. The data was downsampled to 16
kHz.
We use 4999 clean utterances of the BAS database to

train the speech recognizer. These utterances correspond
to 50 different speakers resulting in around 100 utterances
per speaker and 1504 different words in total. The main
reason to use the data of the BAS database is that the air-
bone database initially used for speech enhancement does
not provide a sufficient amount of data for training. How-
ever, this way the effect of presenting unseen data to a
speech recognizer can optimally be studied.

5.3 Objective quality measures
For objective evaluation we use two measures:

5.3.1 PESQ
The PESQ measure is recommended by the ITU-T for
quality assessment of narrow-band telephone speech and
narrow-band speech codecs (ITU-T 2001; Rix et al. 2001).
The PESQ measure returns a mean opinion score (MOS)
between 0.5 and 4.5. In (Hu and Loizou 2008), PESQ was
reported to show high correlation with the outcome of
subjective listening tests on speech enhancement algo-
rithms.

5.3.2 PEASS
The objective measures of the PEASS toolbox are devel-
oped for audio source separation (Emiya et al. 2011). The

Figure 7 Results of kernel PCA with normalized pre-imaging (kPCA), PI with SNR-dependent setting of the kernel variance (PIcSNR), the generalized
subspace method (Subspace), spectral subtraction (SpecSub), and the MMSE log-spectral amplitude estimator (LogMMSE) in terms of the PESQ
measure on the test set of the airbone database corrupted by AWGN.
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Figure 8 The utterance “Britta schenkt fünf grüne Ringe.” produced by a female speaker of the airbone database. Note that the beginning is free of
speech but contains a lip smack and breath noise. Spectrogram of the (a) signal corrupted by additive white Gaussian noise at 10 dB SNR, (b) clean
signal, (c) signal enhanced by the kernel PCA method, and (d) enhanced by kernel PCA and plotted with higher frequency resolution. (e) phase of
the noisy signal, (f) phase after kernel PCA. The pattern visible in the phase plot (f) causes the harmonic artifacts in (d).
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design of these measures is based on the outcome of sub-
jective listening tests and themeasures strongly agree with
subjective scores. With the PEASS toolbox four aspects
of the signal can be tested: the global quality (OPS -
overall perceptual score), the preservation of the target
signal (TPS - target perceptual score), the suppression of
other signal (IPS - interference perceptual score), and the
absence of additional artificial noise (APS - artifact per-
ceptual score). The scores range from 0 to 100, larger
values denote better performance.

5.4 Automatic speech recognition
The automatic speech recognizer is based on the Hidden
Markov Toolkit (HTK) (Young et al. 2006). The front-
end (FE) and the back-end (BE) are both derived from
the standard recognizer of the Aurora-4 database (Hirsch
2002). The FE computes Mel frequency cepstral coeffi-
cients (MFCCs) by using a sampling frequency of 16 kHz,
a frame shift of 10 ms, a window length of 32 ms, 1024 fre-
quency bins, 26Mel channels, and 13 cepstral coefficients.
Cepstral mean normalization is employed on the MFCCs.
Furthermore, delta and delta-delta features are computed

with a window length of 5 (half length 2). This finally leads
to a feature vector of 39 components.
For training, the BE uses a dictionary based on

34 SAMPA-monophones. For each triphone, a hidden
Markov model (HMM) is trained, which consists of 6
states and Gaussian mixture models of 8 components per
state. To reduce the complexity and to overcome the lack
of training data for some triphones, a tree-based clus-
tering based on monophone-classification is applied. The
grammar used for training is probabilistically modeled. In
contrast to that, a rule-based grammar is applied for test-
ing as the utterances of the airbone database obey very
strict grammar rules.
The ASR experiments are evaluated in terms of word

accuracy, which is defined as

WAcc = N − S − D − I
N

× 100%, (29)

whereN is the number of words, S is the number of substi-
tutions, D is the number of deletions and I is the number
of insertions.

(a) (b)

(c) (d)

Figure 9 Spectrograms after enhancement by pre-image iterations (a) without regularization plotted with low frequency resolution, (b) without
regularization plotted with high frequency resolution, (c) with regularization plotted with low frequency resolution and (d) with regularization
plotted with high frequency resolution. Note that there is still a harmonic artifact in (b), however, its magnitude is lower than in the case of kernel
PCA and hence it cannot be perceived. With regularization there is more remaining noise than without but this can as well not be perceived.
Furthermore the harmonic artifact is masked by this residual noise, as can be seen in (d).
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In addition to the WAcc, we evaluated if the perfor-
mance difference between the pre-image iteration meth-
ods and the reference methods is statistically significant.
We use a matched pairs test as recommended in (Gillick
and Cox 1989). The matched pairs test is based on the
pair-wise comparison of the recognition rates on the same
utterance processed by two different algorithms. This test
is suitable to test the significance of ASR results on speech
segments that are statistically independent, i.e., an error
in one segment is not influenced by an error in a preced-
ing segment. This is the case for the experiments on the
airbone database, as we test utterances independent from
each other. For all evaluations, we employ a significance
level of 0.01.

6 Results and discussion
In this section, we present the evaluation results of the
experiments described in Section 5. As a benchmark,
results of the generalized subspace method (Hu and
Loizou 2003), spectral subtraction (Berouti et al. 1979),
theMMSE log-spectral amplitude estimator (Ephraim and
Malah 1985), and of the noisy baseline are given.

6.1 Experiment 1: Kernel PCA, PI with SNR-dependent
kernel variance, and PI with heuristic determination
of the kernel variance

Figure 6 and Figure 7 show the results of kernel PCA with
normalized iterative pre-image computation (kPCA) as
given in Equation (24), of PI with SNR-dependent setting
of the kernel variance (PIcSNR), and of PI with heuristic
determination of the kernel variance (PID). For kPCA and
PIcSNR, the choice of a suitable value for the kernel vari-
ance and the regularization parameter η is based on the
performance in terms of the PEASS scores on the devel-
opment set. For both methods, the values for c are 6, 3.5,
0.75, and 0.2 for 0, 5, 10, and 15 dB, respectively. For
kPCA, no regularization is applied. For PIcSNR, the regu-
larization parameter η is set to 0.5 for all SNR conditions
and for PID to 0.25 for 0 dB SNR and 0.75 for the other
SNRs.
All methods gain an improvement of overall quality

(OPS) in comparison to the noisy speech data. The perfor-
mance of PIcSNR and PID is superior to the performance
of kPCA and the generalized subspace method. For low
SNRs, the OPS of PIcSNR is similar to spectral subtraction
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Figure 10 Results of PI with frequency-dependent determination of the kernel variance based on the SNR (PIDFSNR), with additional variation of the
feature extraction parameters (PIDFSNR-Var), of the generalized subspace method (Subspace), spectral subtraction (SpecSub), and the MMSE
log-spectral amplitude estimator (logMMSE) in terms of PEASS scores on the test set of the Noizeus database corrupted by car noise.
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and theMMSE log-spectral amplitude estimator, while for
high SNRs the other methods are superior. The perfor-
mance of PID is better than the reference methods in low
SNRs. It is worth noting that the APS for the PIcSNR and
PID is better than for the other methods in most SNR
conditions, indicating that there are few artifacts such as,
for instance, musical noise in the case of the generalized
subspace method and spectral subtraction.
Figure 7 shows the PESQ. All methods improve the

score in comparison to the noisy speech data, except of
PID at 15 dB SNR. This indicates that the used mapping
function is not optimally chosen at high SNRs. Similar as
for the OPS, the performance of PID is better than the per-
formance of kPCA and PIcSNR. In low SNRs, the score of
PID is similar to the reference methods, while it is lower
in high SNRs. This also suggests that the mapping func-
tion for high SNRs is not optimal. The presence of musical
noise in the recordings enhanced by spectral subtraction
and the generalized subspace method is not reflected by
the PESQ measure.
Listening to the signals enhanced by the proposedmeth-

ods reveals that noise is removed and no musical noise
occursa. However, there is some background noise left
around speech components, which is also reflected by the
rather low IPS of the pre-image iteration methods. In the
case of kPCA, a buzz-like artifact can be perceived. Note
that this is well reflected by the low APS.

Figure 8 shows the spectrograms of an utterance of the
airbone database. The utterance is spoken by a female
speaker and has been corrupted by AWGN at 10 dB SNR.
Figure 8(a) and (b) show the spectrograms of the corre-
sponding noisy and clean signal, respectively. Figure 8(c)
shows the spectrogram after enhancement by kernel PCA.
Looking at the spectrogram with a higher frequency res-
olution in Figure 8(d) shows that the artifacts correspond
to harmonics that smoothly change over time. The fre-
quency of the artifact is related to the number of Fourier
coefficients used for the STFT. Figure 8(e) and (f ) show
a plot of the phase before and after enhancement. After
enhancement, a regular structure structure is visible. This
originates from samples that converge to the same solu-
tion within one frequency band and causes the buzz-like
artifact in Figure 8(d).
The spectrogram of PI with regularization in Figure 9

(a) shows that there are fewer artifacts in comparison to
kernel PCA in Figure 8 (c). Figure 9 (b) shows the spec-
trogram of PI without regularization at a higher frequency
resolution. It can be seen that there is still a harmonic arti-
fact, however, its magnitude is considerably lower than in
the case of kernel PCA. With regularization this artifact is
additionally masked. Listening to the utterance confirms
that the artifact cannot be perceived. With regularization
in (26), the audio signal sounds similar as without regu-
larization but with slightly more background noise that
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Figure 11 Results of PI with frequency-dependent determination of the kernel variance based on the SNR (PIDFSNR), with additional variation of the
feature extraction parameters (PIDFSNR-Var), of the generalized subspace method (Subspace), spectral subtraction (SpecSub), and the MMSE
log-spectral amplitude estimator (logMMSE) in terms of the PESQ measure on the test set of the Noizeus database corrupted by car noise.
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changes with the value of η. The different levels of back-
ground noise are caused by the weighting of the noisy
samples by η in the regularization term.

6.2 Experiment 2: PI with frequency-dependent
determination of the kernel variance for colored noise

Figure 10 and 11 show the results of the PIDF meth-
ods based on the global SNR as optimization criterion
(PIDFSNR and PIDFSNR-Var). For the PIDFSNR-Var method,
the size of frequency bands in the feature extraction step
was modified to a length of 0.4 seconds and a height of
3 patches as this improved the results in comparison to
the standard parametrization of 0.25 seconds length and 8
patches height.
The overall quality of PIDFSNR and PIDFSNR-Var is better

than the overall quality of the noisy signal and the gen-
eralized subspace method, however, lower than the over-
all quality of the other reference methods. PIDFSNR-Var
achieve consistently higher scores than PIDFSNR. In terms
of PESQ, the reference methods show superior perfor-
mance, but the difference is rather small.
Listening to the signals enhanced by the PIDF methods

reveals that there is noise left around speech components.
For PIDFSNR-Var the noise components are smoother than
for PIDFSNR, however, a hum can be perceived in the
background. This is similar to the buzz-like artifact and
caused by the smaller number of feature vectors in one
frequency band due to the changed configuration. In the
signals processed by the MMSE log-spectral amplitude
estimator there is some background noise left and minor
musical noise-like artifacts can be perceived, while the sig-
nals enhanced by spectral subtraction and the generalized
subspace method are strongly affected by musical noise.

6.3 Experiment 3: ASR of data corrupted by white noise
and enhanced by PID

Table 1 shows the WAcc for PIcSNR and for PID tested
on the airbone database. Table 2 shows the results of the
statistical significance test between PID and the reference
methods. We used the matched pairs test which is based
on the pair-wise comparison of the recognition rates on
the same utterance processed by two algorithms. The dif-
ference of errors is computed for each pair and the mean
of differences is tested with respect to equality to zero.
A mean different from zero indicates a statistical differ-
ence of the WAcc of two algorithms. For all evaluations,
we employ a significance level of 0.01.
The WAcc for the noisy data clearly states that the rec-

ognizer performance suffers from the noise contamina-
tion. The enhancement based on PI successfully increases
the WAcc in comparison to the noisy data. The WAcc
of the PID is always superior to the WAcc of the gen-
eralized subspace method, similar to the WAcc of spec-
tral subtraction and lower than the WAcc of the MMSE

Table 1 WAcc on data corrupted by AWGN before and
after enhancement

Condition 0 dB 5 dB 10 dB 15 dB Average

Noisy 0.00 15.56 38.89 65.56 30.00

PIcSNR 27.22 53.89 68.33 72.59 57.15

PID 35.93 58.70 72.22 77.59 61.11

Subspace 2.59 4.63 16.30 42.96 16.62

SubspaceMNS 22.96 36.48 46.85 68.89 43.80

SpecSub 25.74 53.15 73.89 85.56 59.59

LogMMSE 37.78 58.15 74.63 89.07 64.91

Clean 97.78

log-spectral amplitude estimator. The superior perfor-
mance of PID is significant for the generalized subspace
method, for spectral subtraction at 0 dB SNR and the noisy
data. The relatively high WAcc of the pre-image iteration
methods shows a different trend compared to the PESQ
results, where the scores of the reference methods are
better than for the pre-image iterationmethods. The com-
parison of PIcSNR to PID reveals that PID always achieve
higher word accuracies. This confirms that the heuris-
tic determination of the kernel variance is preferable over
using a fixed value for one noise condition.
Listening to the utterances processed by the general-

ized subspace method and by spectral subtraction reveals
that musical noise is very prominent. The utterances
enhanced by the pre-image iteration methods and the
MMSE log-spectral amplitude estimator are less affected
by such artifacts. This explains the better performance of
pre-image iteration methods and the MMSE log-spectral
amplitude estimator, especially in low SNR conditions.
The MMSE log-spectral amplitude estimator is outper-
forming the pre-image iteration methods. One reason
is that the PI methods attenuate speech components in
low energy speech regions. Another reason is that PID
leave more residual noise near speech components than
the MMSE log-spectral amplitude estimator. Figure 12
illustrates both effects for the example speech utterance
corrupted by AWGN at 15 dB SNR, for which the differ-
ence inWAcc is the largest. The performance of PID could

Table 2 Results of the statistical significance test between
PID and the referencemethods for theWAcc in Table 1

PID 0 dB 5 dB 10 dB 15 dB

Noisy * * * *

Subspace * * * *

SpecSub * -

LogMMSE - - -

The asterisk indicates a significantly better performance of PID with a
significance level of 0.01, while the minus sign indicates a lower performance.
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(a) (b)

Figure 12 Comparison of the spectrograms after application of (a) PID and (b) the MMSE log-spectral amplitude estimator on the example
utterance corrupted by AWGN at 15 dB SNR. The MMSE log-spectral amplitude estimator removes noise near speech components more efficiently
and performs less attenuation on low energy speech components.

be improved by tuning the kernel variance of different
frequency bands such that high frequency bands are less
attenuated than low frequency bands. This would be more
natural as the energy of speech decreases with increasing
frequency.
To test the hypothesis that musical noise is problematic

for the speech recognizer we further evaluated the WAcc
on data corrupted by AWGN, enhanced by the generalized
subspace method and subsequently post-processed by the
musical noise suppression (MNS) method proposed in
(Leitner and Pernkopf 2012). The results are included in
Table 1 and denoted as SubspaceMNS. The WAcc is better
after the MNS and the performance difference is signifi-
cant. Hence, the musical noise is indeed a problem for the
recognizer and speech enhancementmethods introducing
too many artifacts may be counterproductive, as shown
for the generalized subspace method, where the WAcc is
even lower than the WAcc for the noisy data.

6.4 Experiment 4: ASR of data corrupted by colored noise
and enhanced by PIDF

Table 3 shows the WAcc after enhancement by the PIDF
method for colored noise. In the presented experiments
car noise was used. The mapping function is based on
the PEASS scores, hence the results are denoted by

Table 3 Wacc on data corrupted by car noise before and
after enhancement

Condition 0 dB 5 dB 10 dB 15 dB Average

Noisy 1.30 25.93 62.78 85.19 43.80

PIDFPEASS 34.95 62.04 81.48 89.26 66.93

Subspace 8.52 27.04 66.85 81.48 45.97

SpecSub 29.26 61.11 79.26 90.74 65.23

LogMMSE 52.78 75.74 86.11 94.07 77.17

Clean 97.78

PIDFPEASS. Table 4 shows the results of the statistical
significance test between PIDFPEASS and the reference
methods.
The results for the experiments with car noise show that

this type of noise is less harmful to the performance of
the recognizer than white noise. This can be explained
by the fact that the noise energy is concentrated below
1kHz, where the speech components are relatively strong
and the distortion by the noise therefore is limited. Sim-
ilar to the experiments with white noise, the WAcc of
PIDFPEASS is higher than theWAcc of the generalized sub-
space method, similar to theWAcc of spectral subtraction
and lower than the performance of theMMSE log-spectral
amplitude estimator. The performance is significantly bet-
ter in comparison to the noisy data except for 15 dB, better
than the generalized subspace method and than spectral
subtraction for 0 dB.
The difference between PIDF and the MMSE log-

spectral amplitude estimator is illustrated in Figure 13 for
5 dB SNR. The superior performance of the MMSE log-
spectral amplitude estimator can be explained by the bet-
ter de-noising in low frequency regions. For PIDF there is
more residual noise left. To overcome this, the derivation
of the kernel variance should be refined: either by applying
a finer resolution of the frequency bands (as explained in

Table 4 Results of the statistical significance test between
PIDF and the referencemethods for theWAcc in Table 3

PIDFPEASS 0 dB 5 dB 10 dB 15 dB

Noisy * * *

Subspace * * * *

SpecSub *

LogMMSE - - - -

The asterisk indicates a significantly better performance of PIDF with a
significance level of 0.01, while the minus sign indicates a lower performance.



Leitner and Pernkopf SpringerPlus  (2015) 4:243 Page 17 of 18

(a) (b)

Figure 13 Comparison of the spectrograms after application of (a) PIDF and (b) the MMSE log-spectral amplitude estimator on the example
utterance corrupted by car noise at 5 dB SNR. The MMSE log-spectral amplitude estimator removes noise more efficiently in low frequency regions.

Section 5.1) or by a tuning factor that adapts the frequency
bins within one band. This enables to apply higher atten-
uations on bins in low frequency regions, where speech
components have more energy, and lower attenuation in
high frequency regions, where speech components are
weaker. This is investigated in future work.

7 Conclusion
In this paper, we used kernel PCA for speech enhance-
ment. We apply kernel PCA on complex-valued feature
vectors extracted from the time-frequency representation
of noisy utterances and make use of an iterative pre-image
method to synthesize the de-noised audio signal.
Experimental results show that for the iterative pre-

image methods the weighting factor derived from the pro-
jection of kernel PCA only contributes little to de-noising.
The de-noising mainly results from the linear combi-
nation of complex-valued feature vectors, which leads
to cancellation of random-phase noise components. We
therefore simplify the pre-image computation by setting
the weighting coefficients to one and call this pre-image
iterations for speech enhancement. Both kernel PCA and
PI depend on the kernel variance as tuning parameter,
which influences the degree of de-noising. We therefore
extended PI by heuristic determination of the kernel vari-
ance for white noise and by frequency-dependent deter-
mination of the kernel variance for colored noise. This
way, PI adapt to arbitrary noise conditions.
The evaluation in terms of PESQ and PEASS shows

that the performance of kernel PCA and PI for speech
enhancement is comparable to the performance of the ref-
erence methods in low SNRs, while in high SNRs spectral
subtraction and the MMSE log-spectral amplitude esti-
mator achieve better scores. We further evaluated the
effect of speech enhancement on automatic speech recog-
nition. The word accuracies on speech enhanced by PI are
superior to the word accuracies achieved on noisy speech

and by the generalized subspace method. In contrast to
PI, the generalized subspace method is prone to musi-
cal noise, which deteriorates the recognition performance.
The recognition performance for the MMSE log-spectral
amplitude estimator is better than the performance of PI,
while the performance for spectral subtraction is similar.
In future, we would like to extend the pre-image itera-

tion method by a noise tracker to generalize the method
from stationary noise to other noise types such as babble
noise. Furthermore, we plan to build a recognizer for data
of the Noizeus database for speech enhancement.

Endnote
aAudio samples are provided on http://www2.spsc.

tugraz.at/people/chrisl/audio/springer2015.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
We introduce kernel principal component analysis (PCA) for speech
enhancement. Additionally, we derive pre-image iterations from kernel PCA.
Experimental results for AWGN and car noise are provided. Evaluation of
methods using PESQ, PEASS measures and speech recognition accuracy. All
authors read and approved the final manuscript.

Acknowledgements
This research has been carried out in the context of the national project
NFN-SISE and the European project DIRHA. We gratefully acknowledge
funding by the Austrian Science Fund (FWF) under the project number
S10604-N13 and the European Commission under the project number
FP7-ICT-2011-7-288121. The authors gratefully acknowledge Juan A.
Morales-Cordovilla for providing the speech recognition system.

Author details
1JOANNEUM RESEARCH Forschungsgesellschaft mbH, DIGITAL – Institute for
Information and Communication Technologies, Steyrergasse 17, 8010 Graz,
Austria. 2Graz University of Technology, Institute of Signal Processing and
Speech Communication, Inffeldgasse 16c, 8010 Graz, Austria.

Received: 2 December 2014 Accepted: 17 April 2015

http://www2.spsc.tugraz.at/people/chrisl/audio/springer2015
http://www2.spsc.tugraz.at/people/chrisl/audio/springer2015


Leitner and Pernkopf SpringerPlus  (2015) 4:243 Page 18 of 18

References
Abrahamsen TJ, Hansen LK (2009) Input space regularization stabilizes

pre-images for kernel PCA de-noising. In: IEEE International Workshop on
Machine Learning for Signal Processing (MLSP)

Barash D (2002) A fundamental relationship between bilateral filtering,
adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans
Pattern Anal Mach Intell 24(6):844–847. http://dx.doi.org/10.1109/TPAMI.
2002.1008390 doi:10.1109/TPAMI.2002.1008390

Berouti M, Schwartz M, Makhoul J (1979) Enhancement of speech corrupted
by acoustic noise. In: International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp 208–211

Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, New
York

Boll SF (1979) Suppression of acoustic noise in speech using spectral
subtraction. IEEE Trans Acoustics, Speech Signal Process 27(2):113–120.
http://dx.doi.org/10.1109/TASSP.1979.1163209
doi:10.1109/TASSP.1979.1163209

Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms,
with a new one. Multiscale Model Simul 4(2):480–530

Domes C (2009) Kombiniertes Luft- und Knochenleitungsmikrofon-Headset
zur robusten Sprachsignalerfassung, Master’s thesis. Graz University of
Technology, Graz

Emiya V, Vincent E, Harlander N, Hohmann V (2011) Subjective and objective
quality assessment of audio source separation. IEEE Trans Audio, Speech.
Lang Process 19(7):2046–2057. http://dx.doi.org/10.1109/TASL.2011.
2109381 doi:10.1109/TASL.2011.2109381

Ephraim Y, Malah D (1984) Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator. IEEE Trans
Acoustics, Speech Signal Process. 32(6):1109–1121. http://dx.doi.org/10.
1109/TASSP.1985.1164550 doi:10.1109/TASSP.1985.1164550

Ephraim, Y, Malah D (1985) Speech enhancement using a minimum
mean-square error log-spectral amplitude estimator. IEEE Trans Acoustics.
Speech Signal Process 33(2):443–445. http://dx.doi.org/10.1109/TASSP.
1985.1164550 doi:10.1109/TASSP.1985.1164550

Ephraim Y, Van Trees HL (1995) A signal subspace approach for speech
enhancement. IEEE Trans Speech Audio Process 3(4):251–266

Griffin DW, Lim JS (1984) Signal estimation from modified short-time Fourier
transform. IEEE Trans Acoustics. Speech Signal Process 32(2):236–243.
http://dx.doi.org/10.1109/TASSP.1984.1164317
doi:10.1109/TASSP.1984.1164317

Gillick L, Cox S (1989) Some statistical issues in the comparison of speech
recognition algorithms. In: International Conference on Acoustics, Speech,
and Signal Processing (ICASSP). pp 532–535. http://dx.doi.org/10.1109/
ICASSP.1989.266481 doi:10.1109/ICASSP.1989.266481

Hirsch HG (2002) Experimental framework for the performance evaluation of
speech recognition front-ends of large vocabulary task, Tech. rep., STQ
AURORA DSR. Working Group

Honeine P, Richard C (2011). IEEE Signal Process Mag 28(2):77–88. http://dx.
doi.org/10.1109/MSP.2010.939747 doi:10.1109/MSP.2010.939747

Hu Y, Loizou PC (2003) A generalized subspace approach for enhancing speech
corrupted by colored noise. IEEE Trans Speech Audio Process 11:334–341

Hu, Y, Loizou PC (2007) Subjective evaluation and comparison of speech
enhancement algorithms. Speech Commun 49:588–601

Hu Y, Loizou PC (2008) Evaluation of objective quality measures for speech
enhancement. IEEE Trans Audio, Speech. Lang Process 16(1):229–238.
http://dx.doi.org/10.1109/TASL.2007.911054
doi:10.1109/TASL.2007.911054

Subcommitee IEEE (1969) IEEE recommended practice for speech quality
measurements. IEEE Trans Audio Electroacoustics 17(3):225–246

ITU-T (2001) Perceptual evaluation of speech quality (PESQ): An objective
method for end-to-end speech quality assessment of narrow-band
telephone networks and speech codecs. ITU-T Recommendation P.862,
Geneva

ITU-T (2011) Objective measurement of active speech level, ITU-T
Recommendation P.56, Geneva

Kwok JT, Tsang IW (2004) The pre-image problem in kernel methods. IEEE
Trans Neural Netw 15:408–415

Leitner C, Pernkopf F (2012) Suppression of musical noise in enhanced speech
using pre-image iterations. In: 20th European Signal Processing
Conference (EUSIPCO). pp 478–481

Leitner, C, Pernkopf F (2013) Generalization of pre-image iterations for speech
enhancement. In: International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp 7010–7014

Leitner C, Pernkopf F, Kubin G (2011) Kernel PCA for speech enhancement. In:
12th Annual Conference of the International Speech Communication
Association (Interspeech). pp 1221–1224

Loizou PC (2007) Speech Enhancement: Theory and Practice. CRC, Boca Raton
McAulay R, Malpass M (1980) Speech enhancement using a soft-decision noise

suppression filter. IEEE Trans Acoustics, Speech Signal Process
28(2):137–145. http://dx.doi.org/10.1109/TASSP.1980.1163394
doi:10.1109/TASSP.1980.1163394

Mika S, Schölkopf B, Smola A, Müller K-R, Scholz M, Rätsch G (1999) Kernel PCA
and de-noising in feature spaces. Adv Neural Inform Process Syst
11:536–542

Rix A, Beerends J, Hollier M, Hekstra A (2001) Perceptual evaluation of speech
quality (PESQ) – a new method for speech quality assessment of
telephone networks and codecs. In: International Conference on
Acoustics, Speech and Signal Processing (ICASSP). pp 749 –752. http://dx.
doi.org/10.1109/ICASSP.2001.941023 doi:10.1109/ICASSP.2001.941023

Schiel F, Baumann A (2006) Phondat 1, corpus version 3.4., München.
http://www.bas.unimuenchen.de/forschung/Bas/BasPD1eng.html

Schölkopf B, Smola AJ (2002) Learning with Kernels. MA, Cambridge
Schölkopf B, Smola A, Müller K-R (1996) Nonlinear component analysis as a

kernel eigenvalue problem. Tech. rep., Max Planck Institute for Biological
Cybernetics, Tübingen

Singer A, Shkolnisky Y, Nadler B (2009) Diffusion interpretation of nonlocal
neighborhood filters for signal denoising. SIAM J Imaging Sci 2(1):118–139.
http://dx.doi.org/10.1137/070712146 doi:10.1137/070712146

Talmon R (2011) Supervised speech processing based on geometric analysis.
Ph.D. Technion – Israel Institute of Technology, Haifa

Talmon R, Cohen I, Gannot S (2011) Transient noise reduction using nonlocal
diffusion filters. IEEE Trans Audio, Speech. Lang Process 19(6):1584–1599

Varga A, Steeneken HJ (1993) Assessment for automatic speech recognition: II.
NOISEX-92: A database and an experiment to study the effect of additive
noise on speech recognition systems. Speech Commun 12(3):247–251.
http://dx.doi.org/10.1016/0167-6393(93)90095-3
doi:10.1016/0167-6393(93)90095-3

Young S, Evermann G, Gales M, Harin T, Kershaw D, Liu XA, Moore G, Odell J,
Ollason D, Povey D, Valtchev V, Woodland P (2006) The HTK Book.
Cambridge University Engineering Department, Cambridge

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/TPAMI.2002.1008390
http://dx.doi.org/10.1109/TPAMI.2002.1008390
http://dx.doi.org/10.1109/TASSP.1979.1163209
http://dx.doi.org/10.1109/TASL.2011.2109381
http://dx.doi.org/10.1109/TASL.2011.2109381
http://dx.doi.org/10.1109/TASSP.1985.1164550
http://dx.doi.org/10.1109/TASSP.1985.1164550
http://dx.doi.org/10.1109/TASSP.1985.1164550
http://dx.doi.org/10.1109/TASSP.1985.1164550
http://dx.doi.org/10.1109/TASSP.1984.1164317
http://dx.doi.org/10.1109/ICASSP.1989.266481
http://dx.doi.org/10.1109/ICASSP.1989.266481
http://dx.doi.org/10.1109/MSP.2010.939747
http://dx.doi.org/10.1109/MSP.2010.939747
http://dx.doi.org/10.1109/TASL.2007.911054
http://dx.doi.org/10.1109/TASSP.1980.1163394
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://dx.doi.org/10.1109/ICASSP.2001.941023
http://www.bas.unimuenchen.de/forschung/Bas/BasPD1eng.html
http://dx.doi.org/10.1137/070712146
http://dx.doi.org/10.1016/0167-6393(93)90095-3

	Abstract
	Keywords

	1 Introduction
	2 Kernel PCA
	2.1 Centering
	2.2 Kernel PCA for de-noising

	3 Kernel PCA for speech enhancement
	4 Pre-image iterations for speech enhancement
	4.1 Analysis of pre-image iterations
	4.2 Relation to non-local neighborhood filtering and to the non-local means algorithm
	4.3 Determination of the kernel variance in PI

	5 Experimental setup and evaluation
	5.1 Feature extraction and synthesis
	5.2 Databases
	5.2.1 Noizeus database
	5.2.2 Airbone database
	5.2.3 BAS PhonDat 1 database

	5.3 Objective quality measures
	5.3.1 PESQ
	5.3.2 PEASS

	5.4 Automatic speech recognition

	6 Results and discussion
	6.1 Experiment 1: Kernel PCA, PI with SNR-dependent kernel variance, and PI with heuristic determination of the kernel varian
	6.2 Experiment 2: PI with frequency-dependent determination of the kernel variance for colored noise
	6.3 Experiment 3: ASR of data corrupted by white noise and enhanced by PID
	6.4 Experiment 4: ASR of data corrupted by colored noise and enhanced by PIDF

	7 Conclusion
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

