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Abstract

The numerical solution of elliptic or hyperbolic boundary value problems via the Bound-
ary Element Method has a long tradition and is well developed nowadays. The two most
popular discretization schemes of the underlying boundary integral equations are the Col-
location method and the Galerkin method. While the first one has been adopted to both
types of boundary value problems the latter one has been mainly applied to elliptic bound-
ary value problems. To close this gap, the present work is concerned with the derivation
of a Symmetric Galerkin Boundary Element Method (SGBEM) for 3-dimensional mixed
initial boundary value problems. Thereby, the deduction of the method is presented in an
unified manner such that, finally, the scalar wave equation, the system of elastodynamics
as well as viscoelastodynamic problems are covered. Contrary to unsymmetric Bound-
ary Element formulations, the SGBEM demands the use of the second boundary integral
equation featuring hyper-singularities. With the help of the Stokes theorem those hyper-
singularities as well as the strong singular integral kernels are transformed into weakly
singular integral kernels. Afterwards, the Boundary Element Method is formulated by
using standard techniques for the spatial discretization and by applying the Convolution
Quadrature Method to the time-convolution integrals. The final numerical tests verify this
method and approve its robustness and its reliability. These two properties are an essential
prerequisite for a successful use of the proposed Boundary Element Method within a wide
range of industrial applications.

Zusammenfassung

Randelementmethoden stellen ein bekanntes Werkzeug zur numerischen Lösung ellipti-
scher sowie hyperbolischer Randwertprobleme dar. Dabei sind die Kollokationsmethode
sowie das Galerkinverfahren als die am häufigsten zum Einsatz kommenden Diskreti-
sierungsverfahren der zugrunde liegenden Randintegralgleichungen zu nennen. In Inge-
nieuranwendungen findet die Kollokationsmethode aufgrund ihres relativ einfachen Auf-
baus heutzutage den meisten Zuspruch. Die Galerkin Formulierung hingegen wird haupt-
sächlich im Rahmen elliptischer Randwertprobleme genutzt und Anwendungen im Zeitbe-
reich finden sich bisher selten. Um diese Lücke zu schließen, ist das Ziel der vorliegenden
Arbeit die Entwicklung einer symmetrischen Galerkin-Randelementmethode zur Lösung
dreidimensionaler Probleme im Zeitbereich. Die Herleitung der Methode wird dabei sehr
allgemein präsentiert, so dass sich mit ihr letztlich Probleme der Akustik, der linearen
Elastodynamik sowie der linearen Viskoelastodynamik behandeln lassen. Die symmetri-
sche Formulierung verlangt jedoch die Verwendung einer hypersingulären Randintegral-
gleichung, deren zuverlässige numerische Auswertung ein erhebliches Problem darstellt.
Daher werden sowohl die hypersingulären als auch die stark singulären Integrale mit Hilfe
des Satzes von Stokes in für die Numerik günstigere, schwach singuläre Integrale trans-
formiert. Anschließend wird die eigentliche Randelementmethode formuliert. Die örtliche
Diskretisierung erfolgt dabei mit Standardtechniken während die Zeitintegrale mit Hilfe
der Faltungsquadraturmethode gelöst werden. In den Beispielen zeigt sich, dass die vorge-
stellte Methode sehr gute Resultate liefert und ein äußerst stabiles Verhalten aufweist.
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Notation

As long as no other meaning is explicitly given to a certain quantity within the text, its
meaning corresponds to the following notation list.

General symbols

' Linearization
[a,b] Closed interval a,b
(a,b) Open interval a,b
(a,b], [a,b) Half open intervals a,b
a,b, . . . ,α,β , . . . Scalar values
a,b, . . . Vectors
A Second order tensor [Ai j]1≤i, j≤3
(4)

C Fourth order tensor [Ci jk`]1≤i, j,k,`≤3
tr(A) Trace of A, tr(A) := ∑

3
i=1 Aii

εi jk Permutation symbol
a ·b,〈a,b〉 Scalar product a ·b = 〈a,b〉 := ∑

3
i=1 aibi

a⊗b Outer product [aib j]1≤i, j≤3
a×b Vector product a×b := ∑

3
i=1 εi jka jbk

A : B Double contraction, double dot product
‖a‖p The p-norm of the vector a
‖A‖p The p-norm of the matrix A
condp(A) The condition number of A, condp(A) := ‖A‖p ‖A‖−1

p
∇ Nabla operator ∇ := [∂/∂xi]

3
i=1

∆ Laplace operator ∆ := ∑
3
i=1

∂ 2

∂x2
i

∇ · f Divergence of f
∇ f Gradient of f , ∇ f = [∂ f /∂xi]3i=1
∇f Component wise gradient [∇ fi]3i=1
∇̃f Symmetric Gradient ∇̃f := 1

2(∇f+(∇f)>)
∇× f Rotation of the vector field f
〈 f ,g〉D Inner product of two functions f and g, 〈 f ,g〉D :=

∫
D f (x)g(x) dx

s Complex Laplace parameter, s ∈ C
ω Frequency, ω ∈ R
(L f )(s) Laplace transform of f (t)
(F f )(ω) Fourier transform of f (t)
f̂ Laplace or Fourier transform, f̂ (s) = (L f )(s), or f̂ (ω) = (F f )(ω)
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H(t) Heaviside step function, H(t) := 0, t < 0 ;H(t) := 1, t > 0
(g◦ f )(x) composition, (g◦ f )(x) := g( f (x))

Special symbols

x Location x = [xi]3i=1
t Time
I,I Second order identity matrix
(4)

I Fourth order identity matrix
%̄,%0,% Total density, equilibrium density, density fluctuation
p̄, p0, p Total pressure, equilibrium pressure, pressure fluctuation
σσσ ,σσσH ,σσσD Cauchy stress tensor, hydrostatic part, deviatoric part
εεε,εεεH ,εεεD Linear strain tensor, hydrostatic part, deviatoric part
ωωω Linear rotation tensor
ϕϕϕ Rotation vector
σ (i) Principal stress in the i-th direction
ε(i) Principal strain in the i-th direction
(4)

C,
(4)

G,
(4)

J Fourth order material tensors
K, K̂(s) Bulk modulus, complex bulk modulus
E, Ê(s) Young’s modulus, complex Young’s modulus
ν , ν̂(s) Poisson’s ratio, complex Poisson’s ratio
λ ,µ; λ̂ (s), µ̂(s) Lamé’s constants, complex Lamé’s constants
c,c1,c2 Wave velocity, compressional wave velocity, shear wave velocity
ĉ(s) Complex wave velocity
u(x, t) Displacement vector
ε Volume dilatation ε := ∇ ·u
L Elliptic partial differential operator of second order
T Generalized normal derivative operator
Tr Boundary trace operator
R Space of rigid body motions
uΓ Trace of the Dirichlet data to the boundary
qΓ Trace of the Neumann data to the boundary
U Fundamental solution for scalar problems
U Fundamental solution for vector problems
N̂0,N̂1 Elliptic Newton potentials
N0,N1 Hyperbolic Newton Potentials
V̂,K̂,K̂′,D̂ Elliptic layer operators
V,K,K′,D Hyperbolic layer operators
Î Elliptic identity operator
I Hyperbolic identity operator
V,K,D Discrete layer operators
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∂/∂S(∂y,n(y)) Surface curl ∂

∂S(∂y,n(y)) := n(y)×∇y

M(∂y,n(y)) Günter derivatives
G Triangulation
τ,τ∞ Boundary element, infinite boundary element
τ̂, τ̂∞ Reference element, infinite reference element
Jτ Jacobi matrix of τ

gτ Gram determinant of τ

hτ Mesh size of τ

hG Global mesh size of the triangulation G
qG Quasi-uniformity of the triangulation G
Sγ

h Test- and trial-space
dist(τx,τy) Distance between two elements τx and τy
d̃ist(τx,τy) Approximate distance between two elements τx and τy

δ̃ (τx,τy) normalized approximate distance δ̃ (τx,τy) := d̃ist(τx,τy)
max(hτx ,hτy)

θ Characteristic polynomial
ωn The n-th quadrature weight within the CQM
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1 INTRODUCTION

In engineering sciences a broad range of mechanical problems can be attributed to the so-
lution of partial differential equations, or systems of it. But there exist only a few very
special cases where those equations feature exact solutions. Hence, in almost any engi-
neering field the approximate solution of the aforementioned differential equations gain
more and more interest. At least, this fact is heavily owed to the enormous progress in
computer technology within the recent decades.

For sure, the most established and probably the most versatile numerical approximation
scheme is the Finite Element Method (FEM) which covers a wide range of applications.
It has been successfully utilized for the solution of static and dynamic problems as well
as for the solution of linear and non-linear problems. Nevertheless, also the FEM has its
limitations such that there exist not (and there likely will not exist) one numerical scheme
which covers every physical problem. In other words, different physical problems can be
subsumed into certain problem classes for which special numerical discretization methods
have to be developed.

This work is concerned with the deduction of a Boundary Element Method (BEM). In con-
trast to Finite Element Methods which, basically, utilize the partial differential equations
for the discretization, Boundary Element Methods represent the discretization technique of
boundary integral equations. These integral equations are boundary only representations
of the considered physical problems, and they are obtained by an analytical transformation
of the partial differential equations onto the boundary of the considered domain. For this
transformation the knowledge of the so-called fundamental solution is essential. These
solutions form the main ingredient of any Boundary Element Method and they are both
a blessing and a curse at the same time. Fundamental solutions solve the underlying par-
tial differential equations exactly everywhere except at the origin where they are singular.
From this point of view they are helpful since the Boundary Element Method gains its
accuracy from their involvement. On the other hand, the occurring singularities make the
numerical scheme considerably more complex. In addition, the fundamental solutions re-
strict the application of the Boundary Element Method mostly to linear partial differential
equations since respective fundamental solutions for non-linear problems are unknown in
most instances.

Boundary Element Methods are definitely not as versatile as FEM but for certain problem
classes they feature superior properties compared to the Finite Element Methods. Since
the discretization is done for the boundary only and since the boundary integral equations
satisfy certain decay or, respective, radiation conditions Boundary Element Methods are
perfectly suitable to deal with the so-called outer or radiation problems. Those problems
arise, e.g., if the sound emissions of some bounded body should be investigated and they

1



2 1 Introduction

are hardly solvable with Finite Element Methods. In addition to that problems there exist
mainly two more cases in which the use of Boundary Element Methods might be required.
The one case is, again, related to the geometry on which the analysis takes place. If the
geometry is very complex it is occasionally difficult to generate a volume discretization
but it is often possible to discretize the geometry’s surface. In such cases Finite Element
Methods even do not come into play. The other case is, that standard Finite Element
Methods perform weakly in situations where a good resolution of high stress concentra-
tions is required. This good performance of Boundary Element Methods in stress calcu-
lations emerges from the mixed formulation approach the method consists of. In contrast
to displacement based Finite Element Methods, the discretization and direct evaluation of
boundary tractions is an elementary part of any Boundary Element Method. With these
advantages, Boundary Element Methods serve as an expedient enhancement to the set of
available numerical methods.

In general, the discretization of boundary integral equations results in fully populated sys-
tem matrices. Of course, these dense matrices form a major problem concerning storage
requirements as well as the computational complexity. But, in recent years several methods
have been developed mostly by mathematicians to overcome this drawback. Those meth-
ods are usually subsumed under the title Fast Boundary Element Methods and they reduce
the method’s complexity considerably. It is known that those methods perform best if the
underlying discretization scheme is based on variational principles. A well-known scheme
is the Galerkin discretization which is usually applied to Finite Element Methods. As a
result of this discretization the properties of the partial differential operators are mostly
preserved on a discrete level. This means that, e.g., the discretization of elliptic boundary
value problems results in positive definite system matrices. This work deals not with fast
techniques but it marks a preliminary work since it utilizes the Galerkin discretization for
the numerical approximation of time-dependent boundary integral equations. Contrary to
the more common collocation based Boundary Element Methods this approach results in
positive definite system matrices which clearly represent the underlying boundary integral
operators’ properties. As will be shown later on the application of the so-called Symmetric
Galerkin Boundary Element Method (SGBEM) to mixed initial boundary value problems
is not only more elegant from a mathematical point of view, it results also in a more robust
and reliable numerical scheme — a fact which is important for the numerical solution of
engineering applications.

1.1 State of the art

This thesis aims at a robust and reliable Boundary Element Method for elliptic and hyper-
bolic boundary value problems. Boundary Element Methods represent the discretization
technique of the underlying boundary integral equations. Those equations are known since
the days of Gauss, Green, and Dirichlet, just to note a few of them. A historical survey
on this topic as well as a comprehensive overview on elliptic boundary integral equations
is given in the recent book of Hsiao & Wendland [63]. The work of Chudinovich [26–28]
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presents a mathematical treatment of initial boundary value problems by using hyperbolic
boundary integral equations. Additionally, the excellent paper of Costabel [29] serves as
comprehensive source to gain more information concerning the theory of time-dependent
boundary integral equations.

An overview on elliptic boundary integral equations is also given in the books of Sauter &
Schwab [107] and Steinbach [120]. But in addition, these books introduce the Boundary
Element Method by means of the Galerkin discretization. From a more engineering point
of view, further information about Galerkin Boundary Element Methods is given in the
review article of Bonnet et al. [20] and in the references cited there. For an overview
concerning the collocation methods the books of Gaul et al. [41], Bonnet [18], Hartmann
[59], and Brebbia et al. [22] should be advised.

In this thesis, the Symmetric Galerkin Boundary Element Method (SGBEM) will be uti-
lized to treat mixed initial boundary value problems. Amongst others this is mainly moti-
vated by the positive results of the Galerkin approaches in elastostatics [115] as well as for
parabolic problems [79] and the Helmholtz equation [78].

The drawback when considering mixed problems by symmetric methods is the evaluation
of the second boundary integral equation which contains a non integrable hypersingularity.
This integral has to be interpreted as a finite part integral in the sense of Hadamard [57].
Those singularities can be either treated numerically [108] or in an analytical way [50].
Here, an analytical transformation of the hypersingular integral operator based on integra-
tion by parts in 3-d elastodynamics will be presented which, finally, will lead to a bilinear
form containing only weak singularities. The used approach is very similar to a regular-
ization in elastostatics given by Han [58] since it takes advantage of the similar structure
between the elastostatic and the elastodynamic fundamental solutions.

When dealing with singularities in dynamics it is a common practice to subtract and to add
the corresponding static fundamental solution from its elastodynamic counterpart. This is
due to the fact that the singular behavior of the static part coincides with the dynamic one
(see, e.g., [19, 67]). Hence, an existing regularization for the static case can be used also
to regularize the equivalent dynamic integral kernel. Unfortunately, the occurring residual
kernel might cause numerical instabilities due to the fact that it involves the difference
between the singular dynamic and the singular static kernel. The method presented here
does not cause those instabilities since the elastodynamic hypersingular integral operator
is treated as a whole.

Regularization approaches of non integrable kernel functions based on integration by parts
have a long tradition and are well known nowadays. This technique was firstly used in 1949
by Maue [82] who applied it to the wave equation in frequency domain. A major enhance-
ment was then given by Nedelec [87] who introduced regularized hypersingular bilinear
forms for the Laplace equation, the Helmholtz equation as well as for the system of lin-
ear elastostatics. Further, regularizations in the field of 3-d time-harmonic elastodynamics
were presented by Nishimura & Kobayashi [88] and Becache et al. [11]. While these both
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approaches rely mainly on the previous work by Nedelec [87], the particular regulariza-
tions are nevertheless slightly different. In the first case, the hypersingular operator is used
within a collocation scheme while in the other case a Galerkin scheme is formulated. Using
the latter discretization scheme is advantageous since it features less restrictions concern-
ing the choice of shape functions for the displacement field. Contrary to the collocation
approach, the only requirement in Galerkin based regularizations is the continuity of the
displacement field. Another regularization of the hypersingular bilinear form in case of
3-d elastostatics was presented by Han [58] who used some basic results from Kupradze
[70]. Unlike Nedelec whose regularization is based on a very general approach and, there-
fore, results in rather complicated formulae, Han restricts his regularization a priori to
the isotropic case and discards the possibility of describing also the anisotropic system.
Hence, the resulting regularized bilinear form is simpler to deal with and motivates the use
of Han’s proof within the present work. As will be shown, the extension of his proof to the
system of 3-d elastodynamics leads to a more convenient formulation with respect to the
numerical implementation than the already established regularizations [11, 88].

The treatment of time-dependent problems by using the Boundary Element Method is
mostly done within the engineering community. See the review articles of Beskos [15, 16]
for an overview on this topic. In principle, for the time discretization of the underlying
boundary integral equations there exist two approaches. Firstly, if time dependent funda-
mental solutions are available, the usage of ansatz functions with respect to time yields a
time stepping procedure after an analytical time integration within each time step. This
technique has been proposed by Mansur [80] and is sometimes denoted as the classi-
cal time domain boundary element formulation. Secondly, the Convolution Quadrature
Method (CQM) developed by Lubich [76, 77] can be used to establish the same time step-
ping procedure as obtained by a direct time integration [111]. Contrary to the approach
from Mansur for this methodology only the Laplace domain fundamental solutions have
to be known and the time integration is performed numerically. Hence, this approach can
easily be extended to the viscoelastic case [112] where the fundamental solutions in closed
form are only available in Laplace or Fourier domain. Moreover, the regularization pro-
cess is more advantageous since the fundamental solutions in Laplace domain are simpler
to deal with which is due to the fact that no retarded potentials occur like in time-dependent
fundamental solutions [53].

A quite popular benchmark for almost any Boundary Element Method is the treatment
of outer problems and half-space problems. Within this work the half-space problem is
difficult to deal with since it exhibits a boundary of infinite extent. Naturally, it is quite
impossible to discretize such a surface, but it has become common practice to model just a
truncated surface patch of the originally infinite boundary. While this works rather unex-
plainable in collocation methods [111] it fails completely in the present case. This failure
is connected to the regularization of the hypersingular operator which demands either a
closed surface or vanishing integral kernels on the surface’s boundary. To overcome this
drawback, infinite elements are introduced which have been mainly developed by Bettes
[17] and are mostly used within Finite Element Methods where they are mostly applied to
sound emission problems (see, e.g., [42, 43]). But, infinite elements have been also applied
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to Boundary Element Methods. In the work of Beer & Meek [12], Beer & Watson [13],
and Moser et al. [85], the infinite elements have been successfully used for the elastostatic
half-space problem.

Although it is not the primary aim of this work, some comments about the so-called Fast
Boundary Element Methods should be given. In the last two decades those methods gain
a tremendous success since they reduce the Boundary Element Method’s complexity con-
siderably. The most popular fast methods are the H-matrices mainly developed by Hack-
bush [56], the Adaptive Cross Approximation [9, 10, 100] as well as the Fast Multipole
Method which has been originally proposed by Greengard [49]. For instance, the Fast
Multipole Method has been successfully applied by Of [89] in conjunction with an Sym-
metric Galerkin Boundary Element Method for 3-dimensional elastostatics. Hence, this
work is not only intended to present a reliable numerical method it also serves as a prereq-
uisite for future research aiming at a Fast Symmetric Galerkin Boundary Element Method
in time-domain.

1.2 Outline

In chapter 2, the governing equations are shortly derived. The problems which are covered
in this work are the acoustic fluid, the system of elastodynamics as well as the system of
linear viscoelastodynamics. If the inertia terms are neglected in the balance laws these
material models pass over to their static counterparts which are also stated. In addition, the
respective boundary value problems are given.

In chapter 3, the underlying boundary integral equations as well as the variational forms
corresponding to the Galerkin scheme are deduced. The Galerkin formulation marks the
basis of the later proposed Boundary Element Method.

Beside weak singularities the Symmetric Galerkin Boundary Element Method features
integral operators which are originally defined in the sense of Cauchy principal values and
Hadamard finite part integrals, respectively. In a numerical scheme those operators are
difficult to treat. Therefore, to overcome these difficulties, in chapter 4 a regularization is
presented which transforms the higher order singularities into weak singularities.

The chapter 5 is devoted to the formulation of the Boundary Element Method itself. There,
classical techniques known form the Finite Element Method are introduced on which the
discretization of the boundary integral equations is based. Further, some comments con-
cerning the numerical evaluation of the regular and singular integral kernels are given.
Additionally, special boundary elements are introduced which are constructed for the use
with physical problems exhibiting not only an infinite domain but also an infinite bound-
ary.

Finally, in chapter 6, the validation of the proposed Symmetric Galerkin Boundary Ele-
ment Method is done by means of some standard numerical experiments featuring mostly
analytical or semi-analytical solutions.
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The main part of this thesis ends with a summary given in chapter 7. Additionally, some
weaknesses of the present work are pointed out and are discussed briefly.

In the end, the appendix gives more detailed information concerning some minor aspects
of this work.



2 WAVE EQUATIONS FOR ACOUSTICS, ELASTODYNAMICS,
AND VISCOELASTODYNAMICS

In this chapter, the governing equations are introduced that build the basis for the later
formulated Boundary Element Method. These are mainly the acoustic wave equation and
the system of elastodynamics. Additionally, as a generalization of the elastodynamic sys-
tem the concept of viscoelastodynamics is presented. If the influence of inertia effects is
neglected in the balance of momentum all three models pass over to their static counter-
parts which can be referred to as the Poisson equation, the system of elastostatics, and the
quasistatic model of viscoelasticity. With numerical solutions for these problems in mind,
boundary and initial boundary value problems are formulated which embed the equations
into a complete mathematical setting.

Under the assumption that the changes of the state variables (the pressure of the fluid or
the displacements of the solid) are relatively small the considered physical models can be
formulated in a linear setting. Therefore, higher order terms in the kinematic and the con-
stitutive laws are neglected such that the description of every physical model finally results
in linear partial differential equations. Moreover, the linear setting suffices to formulate
all phenomena in the reference configuration only [90]. Thereby, a Cartesian coordinate
system is used to describe the position of a vector x ∈ R3. The vector x itself contains the
coordinates xi with i = 1,2,3.

2.1 The acoustic fluid

The derivation of the acoustic wave equation may be done in several ways. For instance
a comprehensive derivation is given in [38] for the one dimensional case or may be found
in [84] for higher dimensions. The procedure presented here summarizes briefly this ap-
proach.

At first, some restrictions have to be made concerning the acoustic media. It is assumed
to be homogeneous, isotropic, perfectly elastic, and at rest in the initial state. Moreover,
the fluid is either a gas or a liquid and gravity effects are negligible. A fluid with these
properties is called an acoustic fluid. A further distinction can be made by the definition of
an inviscid acoustic fluid and a dissipative acoustic fluid [91]. While in the inviscid case
there is no dissipation inside the fluid, the dissipative model comprises such effects. Here,
only the inviscid acoustic fluid is considered.

Now, taking the above mentioned restrictions into account the acoustic fluid is assumed to
have an uniformly distributed total density %̄(x, t) and a uniformly distributed total pressure

7
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p̄(x, t). By introducing small fluctuations %(x, t) and p(x, t) around the equilibrium states
%0 and p0 the density and pressure fields can be written as

%̄(x, t) = %0 +%(x, t), %� %0

p̄(x, t) = p0 + p(x, t), p� p0 .

Let dV denote a differential volume at the position x and time t. In the reference config-
uration the differential volume is denoted by dV0. While the volume dV exhibits the total
density %̄ the volume dV0 posses the density %0 at equilibrium state. Since it is assumed
that no additional mass can be generated the conservation of mass reads as

(%0 +%(x, t))dV (x, t) = %0 dV0(x) . (2.1)

In a linear setting the relative volume change or dilatation ε is small and, therefore, can be
described by the divergence of the displacement field [118]. This yields

ε(x, t) :=
dV (x, t)−dV0(x)

dV0(x)
= ∇ ·u(x, t) . (2.2)

Using the above statement, the dilatation can be connected to the density by inserting (2.2)
into (2.1)

%(x, t) =−%̄(x, t)ε(x, t) .

Then, approximating %̄(x, t) by %0 gives the linearized form

%(x, t)'−%0ε(x, t) (2.3)

which can be regarded as the kinematics of the acoustic fluid.

Since the fluid is inviscid the stress state in the fluid must be of hydrostatic nature. Then,
the Cauchy stress tensor is given by

σσσ(x, t) =−p(x, t)I . (2.4)

Next, the dynamic equilibrium is needed. Starting from the balance of momentum∫
∂V0

t(x, t)dsx +
∫
V0

%0b(x, t)dx =
∫
V0

%0ü(x, t)dx

with the body force b and the surface tractions t, one obtains in conjunction with the
Cauchy lemma t = σσσ ·n∫

∂V0

σσσ(x, t) ·n(x)dsx +
∫
V0

%0b(x, t)dx =
∫
V0

%0ü(x, t)dx . (2.5)

Finally, by means of the divergence theorem
∫

∂Ω
f ·ndsx =

∫
Ω

∇ · fdx (2.5) results in∫
V0

(∇ ·σσσ(x, t)+%0b(x, t))dx =
∫
V0

%0ü(x, t)dx . (2.6)
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Since (2.6) holds for every sub-volume of V0 and arbitrary dV the integral formulation
holds also point-wise for the integrands. In conjunction with (2.4), the dynamic equilib-
rium for the inviscid fluid reads as

−∇p(x, t)+%0b(x, t) = %0ü(x, t) . (2.7)

Taking the divergence of (2.7) and combining the result with the second time derivative of
(2.3) yields

−∆p(x, t)+ %̈(x, t) = %0b(x, t) (2.8)

with the abbreviation b(x, t) :=−∇ ·b(x, t). The left hand-side of (2.8) connects two state
variables, the pressure’s fluctuation p and the fluctuation of density %. In order to relate
these two variables with each other a constitutive equation is needed. Because the fluid is
assumed to be perfectly elastic the pressure p̄ must be a function of the density %̄ such that
p̄ = f (%̄). A Taylor expansion of f about the equilibrium state yields

p̄ = p0 + p = f (%0 +%) = f (%0)+
d f
d%̄

∣∣∣∣
%̄=%0

%+
1
2

d2 f
d%̄2

∣∣∣∣
%̄=%0

%2 +O(%3) .

Truncation after the linear term and the necessary condition f (%0) = p0 result in the con-
stitutive relation

p(x, t)' f ′(%0)%(x, t), f ′(%0) :=
d f
d%̄

∣∣∣∣
%̄=%0

.

In case of a linear constitutive behavior, as assumed here, the proportionality factor of
the above relation is constant and can be identified with the square of the wave velocity,
c2 = f ′(%0). It should be noted that this linearization hypothesis is justified if for the fluid
particles the condition ‖u̇‖� c holds. Alternatively, the pressure fluctuation is directly
proportional to the relative density changes

p(x, t) = K
%(x, t)
%0

=−K ε(x, t) (2.9)

with the bulk modulus K (K > 0) as proportionality factor. Thus, the wave velocity can be
expressed as

c =
√

K
%0

. (2.10)

Expressing (2.8) in terms of the volume dilatation ε , assuming b≡ 0, and considering (2.3)
and (2.9) gives

ε̈ =
K
%0

∆ε . (2.11)

The expression above is useful when in section 2.2 the characteristics of waves in elastic
solids are considered.

Finally, inserting the linearized constitutive law into (2.8) yields the acoustic wave equa-
tion for an inviscid fluid

−∆p(x, t)+
1
c2 p̈(x, t) = %0b(x, t) . (2.12)
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Using operator notation (2.12) can be written as(
L+%0

∂ 2

∂ t2

)
p(x, t) = g(x, t) (2.13)

where L=−K∆ is an elliptic partial differential operator of second order and g = K%0b is
some prescribed source. Moreover, the second order time derivative identifies the acoustic
wave equation as a hyperbolic partial differential equation.

Note that the wave equation above has been derived under the assumptions that the fluid
is compressible, inviscid, homogeneous, and perfectly elastic. In reality not a single of
these assumptions will hold nor will all of these assumptions be fulfilled. Nevertheless, it
has turned out that any occurring non-linear effects are often small enough such that the
application of the linear wave equation is absolutely justified.

In order to dispose the time derivative in (2.13), the application of an appropriate inte-
gral transformation is useful. For instance the Laplace transformation f̂ (s) = (L f )(s) :
=
∫

∞

0 f (t)exp(−st)dt with the complex Laplace parameter s ∈C converts the time deriva-
tives into multiplications. This yields(

L+%0s2) p̂(x,s) = ĝ(x,s) ∀s ∈ C . (2.14)

Note that (2.14) holds only for vanishing initial conditions, which means that p(x,0) = 0
as well as ṗ(x,0) = 0 hold. Restricting the complex parameter s to the imaginary axis and
substituting s = iω one obtains the Helmholtz equation(

L−%0ω
2) p̂(x,ω) = ĝ(x,ω) ∀ω ∈ R ,

which is equal to the Fourier transform p̂ = (F p)(ω) of (2.13). Now, the equations above
are of elliptic type with their corresponding differential operators L+%0s2 and L−%0ω2

being named as Yukawa operator and Helmholtz operator, respectively.

Finally, neglecting the inertia effects (2.12) simplifies to the well-known Poisson equa-
tion

(Lp)(x) = g(x) (2.15)

which itself is nothing else than an inhomogeneous formulation of the Laplace equation

(Lp)(x) = 0 .

The Laplace equation is the prototype of an elliptic partial differential equation. It is im-
portant in many fields of science since it describes the behavior of electric or gravitational
potentials as well as heat conduction and the pressure field in a fluid.
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2.2 Linear elastodynamics

In the following, the basic equations of linear elastodynamics are summarized. The deriva-
tion presented here is mainly based on lecture notes by Sommerfeld [118] and is structured
in the way that, first, the kinematic equations are given, which are followed by the bal-
ance laws and the constitutive relationship, respectively. Of course the resulting governing
equations can be found in any textbook dealing with the theory of elasticity. Nevertheless,
as the focus is on dynamics the books of Achenbach [2], Kupradze [69], and Graff [47],
among many others, should be mentioned.

As in the preceding section the considered medium is assumed to be of homogeneous,
linear elastic, and isotropic behavior and is at rest in the initial state.

Sommerfeld enters his deduction of the kinematics with a quotation of the fundamen-
tal statement given by Helmholtz [60], namely, that every small change of location of a
deformable body within a sufficiently small volume is formed by the addition of a trans-
lation, a rotation, and a deformation with respect to three orthogonal directions. Thereby,
the small change of location is nothing else than the displacement u of a point x at the
time t. To investigate this statement, a point x is considered which features a displacement
u(x, t). Then let o be a neighboring point within the same volume exhibiting an initial
displacement vector u0(t). Without loss of generality this point o may define the origin of
the considered volume, i.e., o = [0,0,0]>. Expanding u in a Taylor series about the point
o and truncate after the linear term yields

u(x, t)' u0(t)+(∇u)(o, t) ·x . (2.16)

Since the aim is the derivation of the kinematics the time t can be thought of being fixed for
the moment. Therefore, it is justified to skip it in the following. Moreover, the argument
(o, t) of ∇u will be skipped for sake of simplicity. It is advantageous to split ∇u into an
antisymmetric and a symmetric part such that (2.16) becomes

u(x) = u0 +
1
2

(
∇u− (∇u)>

)
·x+

1
2

(
∇u+(∇u)>

)
·x

=: uT +ωωω ·x+ εεε ·x
=: uT +uR(x)+uD(x) .

(2.17)

Obviously uT is just a translation which is common to any point x in the considered vol-
ume. The second summand, uR, represents the rotational part. Since ωωω is antisymmetric,
i.e., ωi j =−ω ji, it consists of three distinct components only. Therefore, the multiplication
ωωω ·x can be expressed via a series of cross products [45] such that

uR(x) = ωωω ·x =
1
2
(∇×u)×x (2.18)

where ∇× denotes the curl operator. Thus, uR is the cross product between the curl of the
displacements u and the location vector x. Contrary to the typical polar vectors uR repre-
sents a so-called pseudo- or axial-vector. These kind of vectors feature not the complete
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set of transformations polar vectors fulfill. Refer to Goldstein [45] for a more detailed
discussion about axial vectors. Now, to verify that there is no contraction or prolongation
associated with uR the rotational displacement is added to the point x. With the rotational
vector

ϕϕϕ = 1
2∇×u (2.19)

and under the assumption that |uR| � |x| holds, one gets

|x+uR|2 = |x|2 +2〈x,ϕϕϕ×x〉+ |uR|2

= |x|2 +2〈ϕϕϕ,x×x〉+ |uR|2

= |x|2 + |uR|2

' |x|2 .

With uT and uR, the translational and rotational parts of the displacement field u are known.
The remaining part uD must denote the deformational behavior. It is represented via the
symmetric strain tensor of second order

εεε :=
1
2

(
∇u+(∇u)>

)
. (2.20)

With the strain tensor (2.20) the derivation of the kinematic equations for a deformable
solid body is completed. Finally, it is important to note that the stretched body must
feature a continuous displacement field and that it has to be free of gaps. These constraints
are subsumed in the so-called compatibility condition

∇× εεε(x)×∇ = 0 . (2.21)

Until now, only the deformations of a continuous body are described but not the causes
being responsible for them. The description of those causes is the subject of kinetics
resulting in appropriate balance laws. Since the dynamic equilibrium is already given
in (2.6) it is sufficient to repeat its differential representation here

−∇ ·σσσ(x, t)+%0ü(x, t) = b(x, t) (2.22)

where, now, b denotes a force per unit volume. Note that additionally to the balance of
momentum resulting in the dynamic equilibrium above, the balance of angular momentum
provides the symmetry of the Cauchy stress tensor (see, e.g. [70]).

At last, a material law is essential to connect the stress tensor σσσ with the strain tensor εεε .
In its most general form the material law for a linear elastic body is

σσσ(x, t) =
(4)

C(x, t) : εεε(x, t) (2.23)

with the fourth-order material tensor
(4)

C. Under the assumption that the considered body
is homogeneous and without any internal energy loss the material tensor is independent
of the location x and of the time t, i.e., Ci jk` = const. Additionally, if the mechanical
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responses are independent of the direction of stressing a material is called isotropic. This
condition is the last assumption made here. Now, to obtain a material law for such a
body it is advantageous to think of a volume element being orientated within its principal
axes. Such a volume suffers only loads due to the principal stresses σ (i), i = 1,2,3. Then,
per definition shear stresses do not occur and the volume undergoes only a dilatation.
Therefore, the state of strain can be completely expressed using the principal strains ε(i),
i = 1,2,3. Let a,b,c be a set of real valued constants. By the assumed material law’s
linearity the stress-strain relation for the first principal stress can be expressed as

σ
(1) = aε

(1) +bε
(2) + cε

(3) . (2.24)

With respect to the material’s isotropy (2.24) can be generalized to

σ
(i) = aε

(i) +bε
(i+1) + cε

(i+2) (2.25)

for every direction i = 1,2,31. Another consequence of the assumed isotropy is the equality
of b and c since the material must feature the same characteristics for both directions i+1
and i+2. Hence, adding and subtracting the term bε(i) to (2.25) and using b≡ c one gets

σ
(i) = (a−b)ε

(i) +b
(

ε
(i) + ε

(i+1) + ε
(i+2)

)
.

Replacing the constants a,b by introducing new constants 2µ := a− b and λ := b the
principal stresses are given by

σ
(i) = 2µε

(i) +λ

(
ε

(1) + ε
(2) + ε

(3)
)

. (2.26)

The expression (2.26) quantifies the principal stresses. Then, with σi j = 0 for i 6= j and by
using the identity tensor I as well as the trace operator tr(εεε) = ∑

3
i=1 ε(i) the Cauchy stress

tensor reads as
σσσ = 2µεεε +λ tr(εεε)I (2.27)

which coincides with (2.26). The above statement is not only valid for stresses and
strains represented in a principal axes system but also for arbitrary coordinate systems.
This conclusion becomes immediately apparent if the properties of σσσ and εεε are taken
into account. Both quantities are tensors and, therefore, they must be invariant against
a change of the coordinate system. Moreover, the tensor’s trace is an invariant so that
tr(εεε) = ∑

3
i=1 ε(i) = ∑

3
i=1 εii holds for any choice of the coordinate system. Of course, the

introduced constants λ and µ are the Lamé constants and (2.27) is known as generalized

Hooke’s law. Introducing the identity tensor of fourth order
(4)

I , the material tensor
(4)

C from
(2.23) reads as

(4)

C = λ I⊗ I+2µ
(4)

I . (2.28)

Instead of using the more formally than physically introduced Lamé constants it is also
possible to work with the more common Young’s modulus E and the Poisson’s ratio ν .

1The indices in (2.25) have to be understood as modulo 3
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The relation between these material constants and the Lamé constants is also worked out
nicely in [118] and given below

λ =
Eν

(1+ν)(1−2ν)
µ =

E
2(1+ν)

E = µ
3λ +2µ

λ + µ
ν =

λ

2(λ + µ)
.

Finally, the elastodynamic wave equation is obtained by inserting the divergence of the
material law (2.27) into the dynamic equilibrium (2.22). Further, bearing in mind the
kinematic relation (2.20) gives

−(λ + µ)∇(∇ ·u(x, t))−µ∆u(x, t)+%0ü(x, t) = b(x, t) . (2.29)

To identify the different types of waves in an elastodynamic solid the body force is skipped
for a moment and the divergence of the displacement field is replaced by the volume di-
latation ε = ∇ ·u. Then, (2.29) can be written in the form

%0ü(x, t) = (λ + µ)∇ε(x, t)+ µ∆u(x, t) . (2.30)

Taking the divergence of (2.30) and under consideration of the identity ∇ ·∆u = ∆(∇ ·u)
one obtains the scalar equation

ε̈(x, t) =
λ +2µ

%0
∆ε(x, t) . (2.31)

Similarly, evaluating the curl of (2.30) one obtains by means of the identities ∇×∇f = 0
and ∇×∆f = ∆(∇× f)

%0∇× ü(x, t) = µ∆(∇×u(x, t)) .

Finally, using the rotation vector from (2.19) the above statement becomes

ϕ̈ϕϕ(x, t) =
µ

%0
∆ϕϕϕ(x, t) . (2.32)

Thus, (2.31) and (2.32) express clearly the dilatation and rotation waves within the solid
body. Moreover, comparing these expressions with (2.11) one can identify the two corre-
sponding wave velocities

c1 =

√
λ +2µ

%0
and c2 =

√
µ

%0
(2.33)

which describe the speeds of the compression and shear wave, respectively. Note that the
compression wave is always faster than the rotation wave since

c2
1

c2
2

=
λ

µ
+2 =

2−2ν

1−2ν
> 1 ∀ν ∈ [−1,

1
2
)
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holds. One comment must be given concerning the interval [−1, 1
2) of the Poisson’s ratio.

Until now, no negative Poisson’s ratios have been observed in natural materials but from a
mechanical point of view there is no reason to restrict the Poisson’s ratio only to positive
values. In fact, man-made materials featuring negative Poisson’s ratios are an actual field
of research [3].

Analogous to (2.13) an operator notation can be introduced for the elastodynamic wave
equation. With the Lamé-Navier operator

L=−(λ + µ)∇∇ ·−∆ (2.34)

the equation (2.29) reads as[(
L+%0

∂ 2

∂ t2

)
u
]
(x, t) = b(x, t) . (2.35)

Under the assumption of vanishing initial conditions u(x,0+) = 0 and u̇(x,0+) = 0 the
wave equation (2.35) can be also represented in Laplace domain by[(

L+%0s2) û
]
(x,s) = b̂(x,s) ∀s ∈ C . (2.36)

Finally, the system of elastostatics is obtained by neglecting the inertia terms in (2.35) such
that

(Lu)(x) = b(x) (2.37)

holds.

2.3 Linear viscoelasticity

In the preceding sections, linear constitutive laws were used under the assumption that the
material behaves homogeneous in space as well as constant in time. Thus, a perfect elastic
body stores all of the energy it gains due to a loading and dispense it completely when
being unloaded, i.e., any deformations vanish and the body turns over to its initial state.
For instance steel which is loaded within its stress limit can be modeled sufficiently by
such a material law.

Contrary, there exist a wide range of materials which dispense their gained energy only
partially. Examples for materials featuring those properties are, e.g., elastomers and ce-
ramics at high temperature. They are denoted as viscoelastic materials and the elaboration
of an appropriate constitutive law is the aim of this section. Thereby, the viscoelastic solid
is assumed to be properly described within the isothermal linear theory of homogeneous
and isotropic media.

As will be shown in the forthcoming chapters the benefit of the Boundary Element for-
mulation presented within this work is the fact that the described viscoelastic material
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behavior can be simply embedded in the numerical scheme by making use of the so-called
elastic-viscoelastic correspondence principle. Thus, the derivation of this principle com-
prises a major part within this section. For a deeper insight in the theory of viscoelasticity
the books of Christensen [25] and Flügge [39] provide more detailed information. More-
over, the book of Lakes [72] covers the more experimental methods according to this topic.
Finally, a well-founded mathematical theory of linear viscoelasticity is given by Gurtin &
Sternberg [52].

The energy dissipation of a material can be interpreted as a damping mechanism which is
caused by inner friction. This inner friction may be explained on a molecular level which
is not investigated here any further since such effects are beyond the scope of this thesis.
On a macroscopic level this inner friction results mainly in two observable phenomena
being characteristic for a viscoelastic material, namely creeping and relaxation [72]. To
understand these phenomena more clearly a tension bar under load is considered being
subjected to a two-stage standard test. In the first stage, a constant stress σ(t) = σ0H(t)
is applied and the strain ε(t) is asked for. In the second stage, beginning at t = t ′, the
strain is fixed and the stress is unknown. In the first stage, the strain increases under
constant stress. This phenomenon is denoted as creeping. Afterwards, under constant
strain, the stress decreases and the material is in its relaxation phase. Figure 2.1 depicts
the relaxation and creeping processes. Both observations give raise to the conclusion that
the current stress state depends not only on the current strain but on the complete history
of deformation. The same holds, of course, for the strain being a function of the whole
loading history. Thus, the stresses and strains can be described via convolution integrals
resulting in integral representations of the constitutive laws [52].

t

t

t ′

t ′

ε

σ

ε0

σ0

creep phase

relaxation phase

Figure 2.1: The two-stage standard test: Relaxation and creep phase

Rheological models. To keep things as simple as possible, it is advantageous to start with
some one dimensional introductory examples. This rather heuristic approach allows the
use of simple rheological elements like springs and dashpots whose combination enables
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the creation of viscoelastic models for solids. The spring element represent a perfectly
elastic body with the stress-strain relation based on Hooke’s law

σ = Eε .

In contrast a dashpot acts as a Newtonian fluid where the stress is proportional to the
strain’s (time) rate of change. With the viscosity B one obtains

σ = Bε̇ .

By combining these basic elements several models can be derived in order to model vis-
coelastic material behavior. Figure 2.2 depicts three such systems denoted as Maxwell
model (Fig. 2.2a), Kelvin model (Fig. 2.2b), and Poynting model2 (Fig. 2.2c), respec-
tively [66]. The first two models consist of one spring and one damping element and differ
in the connection only. The Maxwell model is of serial type and the Kelvin model is a par-
allel connection. The third model, the Poynting model, contains two spring elements and
one damping element and reflects a serial connection of a spring and a Kelvin model3.

E1 B2

(a) Maxwell model

E1

B2

(b) Kelvin model

E1 E2

B3

(c) Poynting model

Figure 2.2: One dimensional viscoelasticity: Rheological models

Now, formulating equilibrium and taking the kinematics of the rheological models into
account yields the ordinary differential equations

σ + p1σ̇ = q2ε̇, p1 = B2
E1

, q2 = B2 (Maxwell)

σ = q1 (ε +q2ε̇) , q1 = E1, q2 = B2
E1

(Kelvin)

σ + p1σ̇ = q1 (ε +q2ε̇) , p1 = B3
E1+E2

, q1 = E1E2
E1+E2

, q2 = B3
E2

(Poynting)

(2.38)

for each of the considered models. Regarding to the standard test, first, the stress is thought
to be fixed. Thus, the solution of (2.38) in terms of the creep compliance takes the general
form

ε`(t) = J`(t)σ0 (2.39)

where the subscripts ` = M,K,P are chosen in accordance to the three different rheological
models. The function J(t) is called creep function and is determined by the material. The

2Synonymous, this model is referred to as 3-parameter-model.
3The Poynting model can be constructed also by a parallel connection of a spring and a Maxwell body.
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creep functions J` are given as [39]

JM(t) =
1
q2

(p1 + t)H(t)

JK(t) =
1
q1

(1− exp(−t/q2))H(t)

JP(t) =
1
q1

(
1+
(

p1

q2
−1
)

exp(−t/q2)
)

H(t) .

(2.40)

Note that (2.39) emphasizes the linearity of the constitutive model since ε is proportional
to the initial stress state σ0.

Now, bearing in mind the second stage of the standard test the stress is given in terms of
the strains

σ`(t) = G`(t)ε0

using the relaxation function G`. Again, the explicit form of G` is material dependent and
reads as [39]

GM(t) =
q2

p1
exp(−(t− t ′)/p1)H(t− t ′)

GK(t) = q1
(
H(t− t ′)+q2δ (t− t ′)

)
GP(t) = q1

(
1+
(

q2

p1
−1
)

exp(−(t− t ′)/p1)
)

H(t− t ′) .

Note that without loss of generality J`(t)≡ 0 for all t ∈ (−∞,0) as well as G`(t)≡ 0 for
all t ∈ (−∞, t ′) is assumed. Moreover, throughout this section any initial values like, e.g.,
ε(0) = ε0 have to be understood in the limiting sense, i.e., ε0 := ε(0+) = limτ→0 ε(τ) with
τ > 0.

At next, the three models need to be examined more closely. Starting with the Maxwell
model one observes that the creep function increases linear. Thus, the strain is growing
beyond all bounds which is totally unphysical. Moreover, the relaxation function indicates
that the stress tends rapidly to zero for larger times which obviously holds not for solids.
The Kelvin model exhibit also a weakness, since the creep function is zero in the initial
state and, therefore, this model is not capable to represent any initial strain according
to a stress jump. The only model of the three which does not feature such defects is the
Poynting model. Hence, it is the simplest one which suffices to model viscoelastic material
behavior properly.

Hereditary integrals. Until now, all viscoelastic effects are described by using rheolog-
ical models which itself are mathematically described via ordinary differential equations.
As mentioned previously, viscoelasticity is a property of materials with memory. Thus
the strain or stress state depends on the complete history of loading. Mathematically such
effects are formulated using hereditary integrals which will be worked out briefly below.
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Thereby, all relations are formulated in terms of the creep compliance but, in fact, they can
be expressed by relaxation functions analogously. Recalling (2.39)

ε(t) = J(t)σ0

one can state that if a stress σ(t) = σ0H(t) is applied suddenly and is kept constant af-
terwards the above relation describes the strain for the entire future. But what happens if
arbitrary stresses σ(t) are applied?

ttk

∆σk

σ0

σ(t)

(a) Stress increment

ttk

ε(t)

J(t)σ0

∆σkJ(t− tk)

(b) Strain increment

Figure 2.3: Linear superposition of step inputs

Since the material is assumed to be linear, the rule of linear superposition can be used to
determine the strain caused by several loads. Therefore, it is assumed that there is some
more stress σ(t) = σ0H(t)+∆σkH(t− tk) added at the time t = tk (Fig. 2.3). Then, for
t > tk additional strain will be produced which must be proportional to the stress jump
∆σk = ∆σ(tk). Moreover, the strain must depend on the same creep compliance J. Thus,
for several additional stresses, the overall strain is

ε(t) = σ0J(t)+∑
k

∆σ(tk)J(t− tk) .

Finally, taking the limit of infinitesimal step functions dσ(τ) one ends up with the heredi-
tary integral representation for arbitrary loads σ(t)

ε(t) = σ0J(t)+
t∫

0+

J(t− τ)dσ(τ) . (2.41)

The integral above can be subjected to some formal changes. First, since there is no dσ(τ)
for τ < 0 the lower bound of the integral can be set to −∞, and the initial state is also
absorbed into the integral. Further, even the upper bound can be changed into +∞ due to
the fact that for negative arguments the creep function J(t− τ) is defined as zero. Hence,
(2.41) becomes

ε(t) =
∞∫
−∞

J(t− τ)dσ(τ)
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which is known as Stieltjes integral [52] and reads in abbreviated form as

ε(t) = J(t)∗dσ(t) (2.42)

where the asterisk ∗ denotes the convolution in time. Following the calculus for Stieltjes
integrals [52, 55] one obtains for continuous differentiable functions σ(t)

ε(t) =
∞∫
−∞

J(t− τ)
dσ

dτ
dτ = σ0J(t)+

t∫
0+

J(t− τ)
dσ

dτ
dτ .

Now, it is left to illustrate that both representations, the hereditary integral formulation as
well as the differential formulation, are two sides of the same medal. A rigorous mathe-
matical proof for this is, again, given by Gurtin & Sternberg [52]. Here, the equivalence
is presented only for the special case of the Poynting model. First, applying a Laplace
transform to the integral (2.41) yields

ε̂(s) = σ0Ĵ(s)+ Ĵ(s)(sσ̂(s)−σ0) .

Thus, for the Poynting model one gets

ε̂P(s) = ĴP(s)sσ̂(s) (2.43)

with the the Laplace transform of the creep function JP from (2.40)

ĴP(s) =
1
q1

1+ p1s
(1+q2s)s

.

Transforming the associated differential equation (2.38) to the Laplace domain also yields

ε̂P(s) =
1
q1

1+ p1s
(1+q2s)s

sσ̂(s)+
q2

1+q2s

(
ε0−

p1

q1q2
σ0

)
. (2.44)

Under consideration of (2.39) which, in the limit t→ 0, must also hold for arbitrary stress
functions σ(t) the initial strain ε0 is

ε0 = J(0)σ0 =
p1

q1q2
σ0 . (2.45)

Therefore, the bracket term in (2.44) vanishes and one ends up with the same expression
as already stated in (2.43).

Three dimensional constitutive law. Bearing in mind the one dimensional case it would
be preferable to carry the rheological model forward to an elementary constitutive law
in higher dimensions. Since the material is assumed to be isotropic and isothermal this
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transfer is possible [66] and rather straightforward. According to (2.42) the constitutive
law reads as

εεε(t) =
(4)

J(t)∗dσσσ(t)

or, equivalent,

σσσ(t) =
(4)

G(t)∗dεεε(t) (2.46)

where
(4)

J and
(4)

G are fourth order material tensors. Further, the time convolution between
two tensors A and B of order n≥ 2 is defined as

A(t)∗B(t) :=
∞∫
−∞

A(τ) : B(t− τ) dτ .

Now, to obtain a constitutive law it is preferable to use the bulk modulus K = λ +2µ/3
instead of the Lamé parameter λ as an elastic material parameter. Then, according to (2.28)
the most general representation of a fourth order isotropic viscoelastic material tensor is
given by

(4)

G(t) =
(

K− 2
3

µ

)
F1(t)I⊗ I+2µF2(t)

(4)

I . (2.47)

Thereby, F1 and F2 are two independent dimensionless relaxation functions. Splitting both
the stress tensor and the strain tensor into their hydrostatic and deviatoric parts

σσσH =
1
3

tr(σσσ)I, σσσD = σσσ −σσσH

εεεH =
1
3

tr(εεε)I, εεεD = εεε− εεεH

(2.48)

and inserting (2.48) along with (2.47) into (2.46) yields

σσσH(t) = 3K(t)∗dεεεH(t)
σσσD(t) = 2µ(t)∗dεεεD(t)

(2.49)

with the time-dependent bulk modulus K(t) and shear modulus µ(t)

K(t) := K F1(t)+
2
3

µ (F2(t)−F1(t))

µ(t) := µ F2(t) .
(2.50)

The relaxation functions’ (2.50) labeling as time-dependent moduli already induces the
existence of a correspondence between them and their elastic counterparts. Transforming
(2.49) to the Laplace domain gives

σ̂σσH(s) = 3K̂(s)sε̂εεH(s)
σ̂σσD(s) = 2µ̂(s)sε̂εεD(s) .
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Considering the time-independent material behavior (2.28), Hooke’s law in Laplace do-
main reads as

σ̂σσH(s) = 3K ε̂εεH(s)
σ̂σσD(s) = 2µ ε̂εεD(s)

which yields the elastic-viscoelastic correspondence principle

K⇐⇒ K̂(s)s
µ ⇐⇒ µ̂(s)s .

(2.51)

The correspondence principle states that if a Laplace transformed elastodynamic solution
is known, the Laplace transformed solution of the corresponding viscoelastic problem can
be found by replacing the elastic constants according to (2.51). As it will be shown in
chapter 5 the correspondence principle is of great benefit within a boundary element for-
mulation.

There exist materials which exhibit different characteristics with respect to a hydrostatic
strain state, and a deviatoric strain state. For instance, polymers react almost elastic for
compression strain while they behave viscoelastic for shear strain. In contrast, no distinc-
tion between hydrostatic and deviatoric behavior can be made for some other materials
like, e.g., concrete. Thus, the two relaxation functions K(t) and µ(t) are not just essential
from a theoretical point of view but are required also for practical needs.

As mentioned previously the integral representation has a differential representation equiv-
alence which is more favorable in this context. To obtain a differential representation in
accordance to (2.49), first, two time differential operators are defined

PK
i :=

K

∑
k=0

p(i)
k

dk

dtk , QK
i :=

K

∑
k=0

q(i)
k

dk

dtk . (2.52)

In (2.52), p(i)
k and q(i)

k denote some real valued material parameters whereby the superscript
i indicates whether the hydrostatic or deviatoric part is under consideration. Thus, the
differential stress-strain relation reads as

(PN
H σσσH)(t) = (QM

H εεεH)(t)

(PN
D σσσD)(t) = (QM

D εεεD)(t)
(2.53)

with the numbers of material parameters N,M ∈ N. This differential form of the material
model may be imagined as a generalization of the Poynting model given in (2.38) but,
of course, has probably no rheological representation. Applying a Laplace transform to
(2.53) leads to

P̂N
H (s) σ̂σσH(s) = Q̂M

H (s) ε̂εεH(s)

P̂N
D (s) σ̂σσD(s) = Q̂M

D (s) ε̂εεD(s)
(2.54)

with the polynomials

P̂K
i (s) =

K

∑
k=0

p(i)
k sk , Q̂K

i (s) =
K

∑
k=0

q(i)
k sk (2.55)
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representing the Laplace transformed operators P andQ. Note that in (2.54), it is assumed
that the initial conditions of stresses and strains fulfill the relations

M

∑
k=1

k

∑
i=1

p(H)
k si−1 dk−i

dtk−i σσσH(0) =
M

∑
k=1

k

∑
i=1

q(H)
k si−1 dk−i

dtk−i εεεH(0)

N

∑
k=1

k

∑
i=1

p(D)
k si−1 dk−i

dtk−i σσσD(0) =
N

∑
k=1

k

∑
i=1

q(D)
k si−1 dk−i

dtk−i εεεD(0)

which, again, are just a more general form of (2.45). With the assumption above the two
representations of the viscoelastic constitutive equations (2.49) and (2.53) are equivalent
and consequently

3sK̂(s) =
Q̂M

H (s)
P̂M

H (s)
, 2sµ̂(s) =

Q̂N
D(s)

P̂N
D (s)

. (2.56)

Generalization of the constitutive equations. To achieve a good agreement of the con-
stitutive law (2.49) with the behavior of existing materials, usually, a large number of ma-
terial parameters for the relaxation functions (2.56) is needed. Those parameters must be
determined by curve fitting of measured data which, obviously, limits the practical applica-
tion of the stated constitutive law considerably. By introducing fractional time derivatives
the number of required material parameters can be reduced significantly. The idea of dif-
ferentiation and integration of non-integer order has a quite long tradition and goes back
to the days of Leibnitz and L’Hospital. A survey of the history of the so-called Fractional
Calculus is, e.g., given by Ross [102, 103]. A profound application of fractional derivatives
to viscoelasticity was given by Bagley & Torvik [6]. Further, the same authors developed
constraints on the parameters that preserve the consistency with thermodynamic principles
[7]. More recently, the work of Rossikhin & Shitikova [104] serves as a comprehensive
review on this topic. For a general overview of the applications of Fractional Calculus to
various scientific areas the book of Oldham & Spanier [92] is recommended. Finally, a
rigorous mathematical treatise is given by Podlubny [96].

For later purpose it is sufficient to formulate the constitutive equations in Laplace domain
which, fortunately, simplifies the use of fractional derivatives considerably. Opposite to the
complicated time domain definitions of fractional derivatives [96], the Laplace transform
reveals the useful result(

L
dγ f
dtγ

)
(s) = sγ (L f )(s) = sγ f̂ (s) , γ ∈ C . (2.57)

For sake of simplicity, any initial conditions are assumed to vanish in the expression above.
Using (2.57) yields a more general expression of the polynomials (2.55)

P̂K
i,γ(s) =

K

∑
k=0

p(i)
k sγi(k) , Q̂K

i,γ(s) =
K

∑
k=0

q(i)
k sγi(k) .
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Hence, the relaxation functions (2.56) become in their most general form

3sK̂(s) =
Q̂M

H,β (s)

P̂M
H,α(s)

, 2sµ̂(s) =
Q̂N

D,β (s)

P̂N
D,α(s)

(2.58)

whereas the non-integer differentiation orders αi(k), and βi(k) are restricted to the interval
[0,2). Basically, expression (2.58) marks the end of the elaboration of general linear vis-
coelastic constitutive laws. But, since (2.58) is derived only formally, it is left to investigate
the constraints of the material parameters in general and the constraints of the differential
orders αi(k) and βi(k) in particular. For special cases those constraints are given in [7]
while for the general case it is suggested that αi(k) = βi(k) yields the best results [96].

The model which is used within this thesis forms a generalization of the already mentioned
Poynting model and reads as

σ̂σσH(s) = 3K
1+q(H)sβH(

1+ p(H)sαH
)

s
sε̂εεH

σ̂σσD(s) = 2µ
1+q(D)sβD(

1+ p(D)sαD
)

s
sε̂εεD .

Aiming at a viscoelastic constitutive law for a solid it follows that the initial moduli K(0)
and µ(0) have to be positive and finite, i.e., K(0),µ(0) ∈ (0,∞). Therefore, αH = βH and
αD = βD must hold. This could be easily proven by using the initial value theorem [33].
For instance, the initial bulk modulus is

K(0) = lim
s→∞

sK̂(s) = K lim
s→∞

s−αH +q(H)sβH−αH

s−αH + p(H) =


0 αH > βH

K q(H)

p(H) αH = βH

∞ αH < βH

.

Doing so analogously for the initial shear modulus µ(0) the relation αD = βD is obtained.
Thus, the correspondence principle for the generalized Poynting model reads as

3K⇐⇒ 3K
1+q(H)sαH

1+ p(H)sαH
, 2µ ⇐⇒ 2µ

1+q(D)sαD

1+ p(D)sαD
. (2.59)

According to (2.33) and using (2.59), the initial compressional and shear wave velocities
for a viscoelastic material are

c1v =

√√√√K q(H)

p(H) + 4
3 µ

q(D)

p(D)

%0
and c2v =

√√√√µ
q(D)

p(D)

%0
. (2.60)
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Governing equations. Closing this section, finally, an abstract operator notation4 for
the system of viscoelastodynamics is introduced. Since the time-dependent relaxation
functions can be interpreted as time-dependent moduli a generalized Lamé-Navier operator
(2.34) is formulated

L=−(λ (t)+ µ(t))∇∇ ·−µ(t)∆ (2.61)

exhibiting the relaxation functions λ (t) and µ(t), respectively. Therefore, the governing
equation reads as

(L∗du)(x, t)+%0
∂ 2

∂ t2 u(x, t) = b(x, t) (2.62)

with the asterisk ∗, again, denoting the convolution integral in time. The expression above
is obviously not a pure differential equation. In fact, it is an integro-differential equation
due to the convolution integral in time. Thus, the time-dependent representation (2.62) is
not suitable to be treated via a Boundary Element formulation. The situation changes if the
Laplace transform of (2.62) is considered. Since the convolution becomes a multiplication
one ends up with the simple expression((

sL̂+%0s2) û
)
(x,s) = b̂(x,s) (2.63)

where the Laplace transformed Lamé-Navier operator is given by

L̂=−
(

λ̂ (s)+ µ̂(s)
)

∇∇ ·−µ̂(s)∆ .

Again, (2.63) depicts clearly the existence of the correspondence principle since it ex-
hibits the same form as the Laplace transformed system of elastodynamics (2.36). There-
fore, (2.63) is fitting perfectly into a Boundary Element formulation being proposed in the
forthcoming chapters. Finally, it is left to note that the Lamé parameter λ̂ (s) is consistently
given by

λ̂ (s) = K̂(s)− 2
3

µ̂(s) .

Quasi-static viscoelasticity. Beside the modeling of wave propagation phenomena the
description of creep processes is of great importance within many engineering applica-
tions. Those processes are modeled using a time-dependent material law but a static bal-
ance law. Using the static equilibrium, i.e., neglecting the inertia terms in (2.22), yields a
quasi-static viscoelastic model. In accordance to (2.62) the governing equation then reads
as

(L∗du)(x, t) = b(x, t) .

4The time-domain formulation is not given in a pure operator form since there is not one operator applied
to the displacement field but two operators, the integro-differential operator and the time-derivative op-
erator, respectively. An appropriate and complete time-domain operator definition is a difficult task and
omitted herein since the formulation (2.62) is not considered any further.
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Again, it is advantageous to use the Laplace transform of the above expression(
sL̂û

)
(x,s) = b̂(x,s)

which reveals clearly the similarity to the system of elastostatics (2.37).

2.4 Boundary value problems

The mathematical models for the considered physical problems described by the equations
given in sections 2.1, 2.2, and 2.3 are stated as boundary value problems. Since the un-
derlying partial differential equations are usually termed as being of elliptic, parabolic, or
hyperbolic type the according boundary value problem is either an elliptic, a parabolic, or
a hyperbolic boundary value problem. Elliptic boundary value problems occur mainly for
stationary problems. Within this context the Poisson equation, the system of elastostatics
as well as any Laplace- or Fourier-transformed system are formulated as an elliptic bound-
ary value problem. Contrary to that, all time-dependent problems described within this
work refer to hyperbolic boundary value problems. The last type, the parabolic boundary
value problem, is not considered within this thesis and, therefore, omitted in the following.
For a distinction of different types of partial differential equations the book of Sommerfeld
[117] should be mentioned. A detailed treatment of boundary value problems can be found
in the book of Reddy [98].

2.4.1 Elliptic boundary value problems

As already stated, all physical problems considered in this thesis are described within
the three dimensional Euclidean space R3. The domain for which an underlying partial
differential is defined is denoted by Ω being a subset of the three dimensional space, i.e.,
Ω⊂ R3. Unless mentioned otherwise, the domain Ω is assumed to be bounded. This
means that it can be embedded into a full sphere BR(y) := {x ∈ R3 : |y−x|< R} of radius
R > 0 such that Ω⊂ BR(0) holds. The domain’s boundary is denoted as Γ. It forms a two
dimensional closed surface and contains the outward unit normal vector n. In addition, the
union of the domain Ω with its boundary Γ is called closure and is symbolized by Ω.

For the unique solvability of static or frequency dependent problems the underlying partial
differential equations have to meet certain prescribed boundary values. The governing
equations given in the previous sections describe the physical problem either in terms of
the acoustic pressure p or in terms of the displacement field u. In order to use an unified
notation both quantities are abstracted by the variable u in the following. Moreover, u shall
also represent any Laplace (or Fourier) transform whereas the parameter s (or ω) is skipped
throughout this section as long as it is not mandatory for the formulation of the following
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boundary value problems. In this abstract setting, the partial differential equation reads
as

(Lu)(x̃) = f (x̃) , ∀ x̃ ∈Ω (2.64)

where L represents an elliptic partial differential operator with constant coefficients of
second order and f is a given inhomogeneity. Again, the operator L may contain also
some frequency ω . Note that if u0 is a solution of the homogeneous problem Lu0 = 0
then the superposition uC = u+Cu0 with C ∈ R is also a solution of the partial differential
equation (2.64).

Now, to ensure the uniqueness of a solution it is necessary to demand that the partial dif-
ferential equation meet certain data on the boundary Γ. In case of an acoustic fluid these
boundary data can be either the acoustic pressure, the flux or some sound impedances,
respectively. For an elastic/viscoelastic solid, usually, the displacements or surface trac-
tions are prescribed. In the following, the first kind of boundary data (sound pressure and
displacement field) are subsumed under the more general term Dirichlet data while the re-
maining data are labeled as Neumann data [120]. Hence, if the prescribed boundary values
depend only on the values the function u takes on the boundary a Dirichlet boundary value
problem can be formulated

(Lu)(x̃) = f (x̃) ∀ x̃ ∈Ω

uΓ(y) = gD(y) ∀y ∈ Γ
(2.65)

with a given function gD. In (2.65) and in the following, uΓ explicitly denotes only the
boundary values of u and represents the trace of u. This trace is defined as the limit

uΓ(x) = Tru(x̃) := lim
Ω3x̃→x∈Γ

u(x̃) . (2.66)

Here, the distinction between u inside the domain and uΓ on the boundary is mainly made
for clarity. Moreover, uΓ and u differ from a mathematical point of view since they feature
not the same regularity requirements [120].

Contrary to the Dirichlet boundary value problem, a Neumann boundary value problem
arises if the boundary data are prescribed only in terms of the Neumann data. These
Neumann data have to be defined first. In case of the acoustic fluid the flux is given by the
normal derivative of the pressure on the boundary

q(y) = lim
Ω3x̃→y∈Γ

[∇p(x̃) ·n(y)] . (2.67)

Equivalent, the surface tractions of an elastic solid are

t(y) = lim
Ω3x̃→y∈Γ

[σσσ(x̃) ·n(y)] . (2.68)

Since the Cauchy stress tensor depends on the displacement field the two expressions
(2.67) and (2.68) can be considered as mappings from the pressure onto the surface fluxes
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and, from the displacements onto the surface tractions. Thus, the Neumann data qΓ read in
its abstract form as

qΓ(y) = (T u)(y) ∀y ∈ Γ (2.69)

where the operator T represents either the normal derivative in case of an acoustic fluid
or the stress-strain relation based on Hooke’s law in elasticity. Again, the boundary data
qΓ differ in its regularity requirements from the data q within the domain and, therefore,
are clearly distinguished by that. It is worth to mention that the mapping (2.69) is not
necessarily unique. For instance, on edges and/or corners of the boundary surface no
normal vector can be defined and, therefore, the Neumann data qΓ cannot be measured.
Within this thesis it is assumed that the boundary is at least piecewise smooth such that the
operation (2.69) is well-defined almost everywhere.

Using the definition of the Neumann data qΓ the pure Neumann boundary value problem
reads as

(Lu)(x̃) = f (x̃) ∀ x̃ ∈Ω

qΓ(y) = gN(y) ∀y ∈ Γ
(2.70)

for some given function gN .

Additionally, if L corresponds to a static problem the solvability condition [120]∫
Ω

f (x̃)uR dx̃+
∫
Γ

gN(y)uRΓ
dsy = 0

has to be fulfilled by the functions f and gN . In the expression above, uR is from the
space of rigid body motions R and represents a non-trivial solution of the homogeneous
Neumann boundary value problem

LuR = 0 ∧ T uR = 0 . (2.71)

Hence, also uC = u +CuR is a solution of (2.70) indicating that the Neumann boundary
value problem is unique up to the rigid body motions only.

The spaces of rigid body motions are given by

R= span{1} (2.72)

for the Poisson equation, and by

R= span


1

0
0

 ,

0
1
0

 ,

0
0
1

 ,

−x2

x1

0

 ,

 0
−x3

x2

 ,

 x3

0
−x1

 (2.73)

for elasticity problems. Functions from the space of constant functions (2.72) obviously
fulfill (2.71) and induces zero pressure and zero fluxes. In elasticity functions from the
space (2.73) induces zero strains εεε(uR) = 0 and, therefore, zero tractions. The space of



2.4 Boundary value problems 29

rigid body motions (2.73) contains three rigid body translations as well as as three infinites-
imal rigid body rotations. Note that one has to restrict the rotations to be infinitesimal small
since finite rotations induce no zero strains in a linear setting.

The last considered boundary value problem is a mixture of the previous ones and, thus,
denoted as mixed boundary value problem

(Lu)(x̃) = f (x̃) ∀ x̃ ∈Ω

uΓ(y) = gD(y) ∀y ∈ ΓD

qΓ(y) = gN(y) ∀y ∈ ΓN .

(2.74)

Thereby, the boundary Γ = ΓD∪ΓN is decomposed into two non-overlapping subsets ΓD
and ΓN on which the Dirichlet data gD and the Neumann data gN are prescribed, respec-
tively. Since ΓD∩ΓN = /0 no data of Dirichlet and Neumann type can be prescribed at the
same location, at least for scalar problems. In elasticity, the situation slightly changes.
There, it might happen that at certain locations a Dirichlet datum for the i-th direction
is prescribed while a Neumann datum is given in the j-th direction. Thus, in elasticity
the subsets ΓD,i and ΓN, j contain an additional index denoting the direction of the respec-
tive given data. Nevertheless, it is obvious that for every direction Γ = ΓD,i ∪ΓN,i and
ΓD,i∩ΓN,i = /0 must hold. As well as the Neumann boundary value problem (2.70) the
mixed boundary value problem (2.74) is not necessarily uniquely solvable. If no Dirich-
let data are prescribed in a certain direction the system exhibit the according rigid body
motions since ΓD,i = /0 and Γ = ΓN,i holds.

2.4.2 Hyperbolic boundary value problems

Contrary to the elliptic boundary value problem as discussed previously the hyperbolic
systems exhibit a time-dependency in addition to the spatial dimensions. As before the
unknown state variable will be abstracted by u and becomes now a function of space and
time

u = u(x̃, t), ∀ x̃ ∈Ω, t ∈ [0,∞) .

Again, Ω denotes the bounded domain Ω ⊂ R3 together with its closed boundary surface
Γ. As already mentioned, all presented physical models are formulated within a linearized
setting. Hence, a distinction between a reference configuration and the current configura-
tion is dispensable because in the linear case both configurations coincide. It is common
to combine the spatial and time variable into the pair (x̃, t) which determines an event in
the half-infinite space-time cylinder Ω× [0,∞) uniquely.

In contrast to the elliptic boundary value problem, the hyperbolic boundary value problem
is well-posed since in addition to spatial boundary conditions the solution has also to meet
the initial boundary conditions. Now, to continue with the abstract formulation of the
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hyperbolic boundary value problem the hyperbolic differential equation shall be written
as [(

L+%0
∂ 2

∂ t2

)
u
]
(x̃, t) = f (x̃, t) ∀(x̃, t) ∈Ω× [0,∞) (2.75)

where, again, L denotes an elliptic partial differential operator of second order and f rep-
resents either a source term or an internal body force. Further, it is assumed that L ex-
hibit no time-dependency. At this point, a notational inconsistency must be mentioned:
Unfortunately, the viscoelastodynamic system (2.62) does not fit into the set of appropri-
ate partial differential equations since it is in fact no partial differential equation but an
integro-differential equation. This is due to the properties of the material tensor (2.47)
which, finally, result in an integro-differential operator. An integro-differential equation
marks somehow a generalization of a partial differential equation so that an introduction
of an abstract integro-differential operatorH would be more accurate. Then, the governing
equations would take the more general form (H∗du)(x̃, t) = f (t). This equation reveals
the same hyperbolic characteristics as the partial differential equation (2.75). Therefore,
an equivalent hyperbolic boundary value problem could be established for this equation.
Nevertheless, as an operatorH is not explicit defined within this work and as this operator
does not affect the proper formulation of the boundary value problem the more special case
of an hyperbolic partial differential equation is treated herein.

Equivalent to the elliptic boundary value problem the prescribed data can be either of pure
Dirichlet or pure Neumann type. For brevity, here only the mixed boundary value problem
is considered [(

L+%0
∂ 2

∂ t2

)
u
]
(x̃, t) = f (x̃, t) ∀(x̃, t) ∈Ω× (0,∞)

uΓ(y, t) = gD(y, t) ∀(y, t) ∈ ΓD× (0,∞)
qΓ(y, t) = gN(y, t) ∀(y, t) ∈ ΓN× (0,∞)

(2.76)

where, again, uΓ and qΓ denote the inner fields’ traces to the boundary Γ, and gD and
gN are the prescribed boundary data, respectively. While the prescribed data exhibit a
time-dependency their respective boundaries do not, i.e., ΓD and ΓN are considered to be
constant in time and do not change their types with evolving time.

The above set of constraints is not sufficient since it lacks the initial conditions which are
usually formulated in terms of the state variable u and its velocity u̇ at the initial time t = 0.
The boundary value problem (2.76) is not defined for times t < 0. Hence, the first time
derivative of u is not properly defined for t = 0 which motivates the use of traces

u(x̃,0+) := lim
τ→0
τ>0

u(x̃,τ) , u̇(x̃,0+) := lim
τ→0
τ>0

u̇(x̃,τ) .

The necessary initial conditions are then formulated as

u(x̃,0+) = u0(x̃) ∀ x̃ ∈Ω

u̇(x̃,0+) = u1(x̃) ∀ x̃ ∈Ω .
(2.77)
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Eqns. (2.76) and (2.77) together form the complete set of equations any solution has to
meet.
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3 BOUNDARY INTEGRAL EQUATIONS

The previous chapter was devoted to the development of partial differential equations (and
one integro-differential equation) as well as to the formulation of adequate boundary value
problems. In this chapter, those problem statements are transformed to equivalent bound-
ary integral equations. Again, the derivation of boundary integral equations is done mostly
in an abstract setting and it is split into several parts. At first, appropriate representation for-
mulae are deduced which build the basis for the integral operators introduced afterwards.
Finally, the obtained boundary integral equations are formulated via weighted residuals
resulting in the so-called symmetric Galerkin formulation.

Nevertheless, the derivation of the boundary integral formulation given herein is not based
on rigorous mathematical proofs but depicts rather a simplified engineering approach. A
well-founded mathematical treatment in case of elliptic problems is given in the textbooks
of Steinbach [120], Sauter & Schwab [107], and, probably most recent, of Hsiao & Wend-
land [63], respectively. A treatment of time-dependent problems may be found in the
works of Ha-Duong [53] for scalar problems and of Chudinovich [26–28] for elastody-
namic problems. For an introduction from an engineering point of view the books of
Hartmann [59], Gaul et al. [41], and Bonnet [18] are recommended. Finally, integral for-
mulations for hyperbolic problems may be found, e.g., in the books of Achenbach [2] and
Domínguez [34].

3.1 Representation formulae

A representation formula is an integral statement of the underlying partial differential equa-
tion. Thereby, the sought-after solution is represented by its boundary data, source terms
and, in case of hyperbolic problems, by some initial values only. An almost indispensable
tool for the derivation of representation formulae are identities being commonly denoted
as Green’s identities or reciprocity theorems. While the first labeling is more common for
mathematicians the second one is the term engineers mostly prefer, especially within the
treatment of elasticity problems. Here, both termini are used equally. Further, closely con-
nected to the concept of representation formulae is the term fundamental solution which is
introduced and defined in this section as well.

Elliptic representation formulae. Probably the simplest case to deal with is the Poisson
equation

Lu(x) = f (x) ∀x ∈Ω⊂ R3 (3.1)

33
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with L = −∆ by what Green’s second identity will be deduced exemplary. This equation
exhibits with the Laplacian the most simple second order differential operator such that it
serves as an adequate introductory example. Afterwards this approach is augmented to the
more general case of self-adjoint linear partial differential operators of second order.

As a starting point serves the divergence theorem∫
Ω

∇ ·g(x) dx =
∫
Γ

g(y) ·n(y) dsy, ∀x ∈Ω, y ∈ Γ (3.2)

for an arbitrary but sufficiently differentiable vector function g and a sufficiently regular
boundary Γ. The subscript y in the surface integral on the right hand side denotes that all
integrations over the surface s have to be performed with respect to the variable y. Now,
the vector function g may be thought as a composition of a scalar function’s gradient with
another scalar function such that g := ∇uv. Then, following the product rule the divergence
of g becomes

∇ ·g(x) = ∆u(x)v(x)+∇u(x) ·∇v(x) (3.3)

for sufficiently differentiable functions u and v. Inserting (3.3) into (3.2) yields Green’s
first identity ∫

Ω

∆u(x)v(x) dx =
∫
Γ

∂u
∂n(y)

v(y) dsy−
∫
Ω

∇u(x) ·∇v(x) dx (3.4)

where ∂u/∂n(y) := ∇u ·n(y) denotes the normal derivative of u. For another vector func-
tion h := u∇v one obtains vice versa∫

Ω

u(x)∆v(x) dx =
∫
Γ

u(y)
∂v

∂n(y)
dsy−

∫
Ω

∇u(x) ·∇v(x) dx . (3.5)

Finally, subtracting (3.5) from (3.4) results in Green’s second identity∫
Ω

[∆u(x)v(x)−u(x)∆v(x)] dx =
∫
Γ

[
∂u

∂n(y)
v(y)−u(y)

∂v
∂n(y)

]
dsy

which, at the moment, holds for the Laplacian only. Nevertheless, it can be enhanced to
more general operators as well. For that purpose the Laplacian is substituted by a self-
adjoint linear partial differential operator of second order −L, and the normal derivatives
are replaced by the generalized normal derivatives T , respectively. Finally, using appro-
priate traces the generalized Green’s second identity [69] reads as∫

Ω

[(Lv)u− v(Lu)] dx =
∫
Γ

[(T u) Trv−Tru(T v)] dsy (3.6)

whereas the functions’ arguments have been skipped for sake of simplicity. Note that if the
operator L was not self-adjoint the term Lv would have to be replaced by L∗v where L∗
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denotes the adjoint operator according to L. Here, all occurring operators are self-adjoint
and, therefore, this distinction is needless. For instance, the book of Stakgold [119] can be
referred to for more details on adjoint operators.

If, according to (3.1), the expression Lu is replaced by f and Lv by f ′, i.e., the function v
solves a similar problem with given body forces f ′, Betti’s reciprocity theorem is obtained
[75].

Now, a function v(x) := U(x, x̃) featuring the property∫
Ω

(LxU)(x, x̃)u(x) dx = u(x̃) ∀ x̃ ∈Ω (3.7)

is introduced [120] which will turned out as being the fundamental solution of the un-
derlying partial differential equation. Inserting this into (3.6) and using the abbreviations
uΓ = Tru and qΓ = T u yields the representation formula

u(x̃) =
∫
Γ

[qΓ(y)(TryU)(y, x̃)−uΓ(y)(TyU)(y, x̃)] dsy +
∫
Ω

f (x)U(x, x̃) dx . (3.8)

In (3.7) and (3.8), the operators’ subscripts denote that the operators have to be applied with
regard to their respective index onto the according quantities, e.g., in (3.7) all derivatives
within the operator L are meant to be taken with respect to the variable x.

With the screening property of the Dirac delta distribution δ [101]∫
R3

u(x)δ (x− x̃) dx = u(x̃) ∀ x̃ ∈ R3 , (3.9)

the range of integration in (3.7) can be extended to the three dimensional space since Ω is
a subset of R3, and – without loss of generality – it can be assumed that u vanishes outside
the domain Ω, i.e., u(x̃) ≡ 0 for any x̃ /∈ Ω. Hence, equating (3.9) with (3.7) induces that
the fundamental solution U solves the partial differential equation

(LxU)(x, x̃) = δ (x− x̃) ∀x, x̃ ∈ R3

in a distributional sense. The fundamental solutions used within this work feature a high
degree of symmetry. This is caused by the fact that, firstly, the fundamental solution is
valid for the complete space R3 and, additionally, all considered problems are isotropic.
Therefore, the fundamental solutions depend only on the distance between the two points
x and x̃. To emphasize this property the notation U(x− x̃) = U(x, x̃) is preferred from now
on, and it becomes immediately obvious that all integrations in (3.8) are nothing but spatial
convolutions. Finally, the fundamental solution is of scalar type in case of the Poisson
equation and exhibit tensorial properties in elasticity problems. There, the fundamental
solutions U are (3×3)-tensors with components Ui j, i, j = 1,2,3.
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Hyperbolic representation formulae. Similar to the derivation of elliptic representa-
tion formulae where Green’s second identity (or Betti’s reciprocity theorem) serves as
the starting point, for dynamic problems one uses the dynamic reciprocity theorem. This
theorem is available for the scalar wave equation [5] as well as for elasticity problems.
For elastodynamics it was given by Graffi [48] for closed domains. Later, his proof was
generalized and extended to open domains by Wheeler & Sternberg [126]. For viscoelas-
tic problems Gurtin & Sternberg [52] formulated the theorem in the case of quasi-statics
and de Hoop [62] deduced it for viscoelastodynamics. Exemplary, a very brief derivation
of this theorem is given for elastodynamics as well as for viscoelastodynamics. There-
fore, one postulates that there exist two different states of stresses [σσσ(u), σσσ(v)] and of
strains [εεε(u), εεε(v)] caused by two independent displacement fields u(x, t) and v(x, t) with
x ∈Ω⊂ R3 and t ∈ (0,∞) for which∫

Ω

σσσ(u)∗ εεε(v) dx =
∫
Ω

σσσ(v)∗ εεε(u) dx (3.10)

holds. Again, the operator ∗ denotes the convolution with respect to time

(σσσ ∗ εεε)(t) :=
t∫

0

σσσ(τ) : εεε(t− τ) dτ .

Using the associativity and the commutativity of the double contraction and the time con-
volution, respectively, the validity of (3.10) can be verified since

σσσ(u)∗ εεε(v) =
(4)

C : εεε(u)∗ εεε(v) =
(4)

C : εεε(v)∗ εεε(u) = σσσ(v)∗ εεε(u)

holds in the elastodynamic case. Analogously, one obtains for the viscoelastic continuum
by, additionally, exploiting the properties of the Stieltjes convolution

σσσ(u)∗ εεε(v) =
(4)

C∗dεεε(u)∗ εεε(v) = d
(4)

C∗ εεε(v)∗ εεε(u) = σσσ(v)∗ εεε(u) .

Substituting εεε(v) by its linear strain-displacement relation (2.20) one obtains the equality
σσσ(u)∗εεε(v) = σσσ(u)∗∇v. Further, calculating the divergence of the product σσσ ∗v yields

∇ · [σσσ(u)∗v] = ∇ ·σσσ(u)∗v+σσσ(u)∗∇v .

Inserting this into the left hand-side of (3.10) leads to∫
Ω

σσσ(u)∗ εεε(v) dx =
∫
Γ

T u∗Trv dsx +
∫
Ω

f(u)∗v dx−
∫
Ω

%0ü∗v dx . (3.11)

Note that the first term on the right hand-side in (3.11) emerges from an application of the
divergence theorem while the remaining terms appear due to a substitution of the stresses’
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divergence by the equation of motion (2.22). Recalling the second time derivative of the
convolution integral

∂ 2

∂ t2 {(h∗g)(t)}= ḧ∗g+h(0)ġ(t)+ ḣ(0)g(t) ,

the expression (3.11) is augmented by the initial terms u0 = u(x,0+) and u1 = u̇(x,0+)
and, finally, reads as∫

Ω

σσσ(u)∗ εεε(v) dx =
∫
Γ

T u∗Trv dsy +
∫
Ω

f(u)∗v dx+
∫
Ω

%0 [u0v̇+u1v] dx

−
∫
Ω

%0
∂ 2

∂ t2 (u∗v) dx .

(3.12)

The expression above can be seen as the elastodynamic equivalence of the first Green’s
identity given in (3.4). Thus, applying the same steps to the right hand-side of (3.10) and
equating the result with (3.12) yields the dynamic reciprocal theorem. Exchanging the
source terms by the according hyperbolic differential operators and switching over to the
more abstract operator notation the theorem

∫
Γ

T u∗Trv dsy +
∫
Ω

[(
L+%0

∂ 2

∂ t2

)
u
]
∗ v dx+

∫
Ω

%0 [u0v̇(t)+u1v(t)] dx =

∫
Γ

Tru∗T v dsy +
∫
Ω

[(
L+%0

∂ 2

∂ t2

)
v
]
∗u dx+

∫
Ω

%0 [v0u̇(t)+ v1u(t)] dx (3.13)

is obtained, whereas the function v has to meet the initial conditions v0 = v(x,0+) and
v1 = v(x,0+). In accordance to the previous section the test function is chosen to be
v(x, t) = U(x− x̃, t) such that

t∫
0

∫
Ω

[(
Lx +%0

∂ 2

∂ t2

)
U
]
(x− x̃, t− τ)u(x,τ) dxdτ = u(x̃, t), ∀(x̃, t) ∈Ω× (0,∞)

holds. Again the function U turns out to be a fundamental solution of the underlying
partial differential equation and, again, this function behaves in its time variable anal-
ogous to its behavior for the spatial variables. Therefore, it is not depending on the
absolute time t but only on the time difference t − τ which is notationally marked as
U(x− x̃, t) = U(x− x̃, t− τ) from now on. Thus, since u(x̃, t) can be written in terms
of the Dirac distribution

u(x̃, t) =
∞∫

0

∫
R3

u(x,τ)δ (x− x̃, t− τ) dxdτ
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a hyperbolic fundamental solution is the distributional solution of[(
Lx +

∂ 2

∂ t2

)
U
]
(x− x̃, t− τ) = δ (x− x̃, t− τ) .

Physically, the fundamental solution can be interpreted as a single force acting on a certain
point at a specific moment in the three dimensional space. Before that specific moment
the continuum can be assumed to exhibit a quiescent past and, therefore, the fundamental
solution satisfies the initial conditions U(x− x̃,0) = 0 and U̇(x− x̃,0) = 0. Hence, inserting
U into (3.13) yields the hyperbolic representation formula

u(x̃, t) =
∫
Γ

[qΓ(y, t)∗U(y− x̃, t)−uΓ(y, t)∗ (TyU)(y− x̃, t)] dsy

+
∫
Ω

f (x, t)∗U(x− x̃, t) dx

+
∫
Ω

%0
[
u0U̇(x− x̃, t)+u1U(x− x̃, t)

]
dx ∀(x̃, t) ∈Ω× (0,∞) .

(3.14)

Fundamental solutions are the main ingredients of any boundary integral formulation since
they are essential for the derivation of the representation formula. Moreover, a fundamental
solution is characteristic for the underlying partial differential equation and, hence, has
to be deduced for every distinct partial differential operator anew. This gives raise to the
assumption that a general fundamental solution for viscoelastic problems does not exist in a
closed form. This is due to the material law’s time-dependency. Since there exist basically
infinitely many material laws (cf. Eqn. (2.46)), there exist also infinitely many integro-
differential operators associated with these material models. Thus, fundamental solutions
in closed form are known for some special material models only and are mostly derived
for the quasi-static case. On the other hand the situation changes in Laplace- or Frequency
domain. There, a fundamental solution can easily be adopted from the respective elastic
fundamental solution just by making use of the correspondence principle (2.51).

3.2 Boundary integral operators

The introduced type of elliptic representation formulae state that u is determined uniquely
for an internal point x̃ just by its boundary data uΓ, qΓ, and the sources f . In dynamics, all
quantities become time-dependent. Due to the time convolution integrals the state variable
u depends on its Cauchy data time history up to the actual time t as well as on the time-
dependent sources f , and the initial values u0 and u1. Since both the solution u in the
domain and the complete Cauchy data are unknown the integral formulae presented so far
are obviously unsuitable for a solution procedure. To overcome this drawback the interior
point x̃ is shifted to the boundary so that the resulting formulae contain unknown quantities
on the boundary only. Referring to the stated boundary value problems given in section
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2.4 there exist two possibilities to perform this shifting process. On one hand, the trace
operator (2.66) can be applied to a representation formula or, otherwise, an application
of the traction operator can be used to obtain a boundary integral representation. Since
the aim is to establish a symmetric formulation both the trace operator and the traction
operator have to be applied onto the representation formulae which, finally, results in two
boundary integral equations. Again, the deduction of those integral equations is done for
the elliptic system and the hyperbolic system separately.

Elliptic boundary integral equations. The following is mainly adopted from the text-
books of Steinbach [120] and Sauter & Schwab [107]. Applying the boundary trace to the
the representation formula (3.8) yields the first integral equation

uΓ(x) =Trx̃

∫
Γ

qΓ(y)U(y− x̃) dsy−Trx̃

∫
Γ

uΓ(y)(TyU)>(y− x̃) dsy

+Trx̃

∫
Ω

f (x̄)U(x̄− x̃) dx̄ ∀x ∈ Γ .
(3.15)

Note that the transposed (TyU)> does not occur in (3.8). For sake of simplicity it has
been omitted in the representation formula’s deduction. In the following, the transposed
is consequently denoted since it is evident for vector problems. More details on it can be
found in the work of Kupradze [69, 70].

Next, an application of the stress operator to (3.8) gives the second integral equation

qΓ(x) =Tx̃

∫
Γ

qΓ(y)U(y− x̃) dsy−Tx̃

∫
Γ

uΓ(y)(TyU)>(y− x̃) dsy

+Tx̃

∫
Ω

f (x̄)U(x̄− x̃) dx̄ ∀x ∈ Γ .
(3.16)

Note that the integration variables within the domain integrals in (3.15) and (3.16) were
exchanged by x̄ since the point x denotes a point on the boundary now. At this point one
has to advert to the fundamental solution’s behavior when the point x approaches the point
y. The fundamental solution gets singular. This singularity prohibits a naive commutation
of the limiting processes and the integrations since the integral kernels may diverge. The
term integral kernel is commonly used in conjunction with integral transformations [97].
In fact, the boundary integral equations above represent nothing else but integral transfor-
mations so that the fundamental solutions and their derivatives can be conveniently termed
as integral kernels. The singularities considered here are common to all fundamental solu-
tions used within this work and have to be taken into account carefully. Therefore, every
integral in (3.15) and (3.16) will be investigated separately and will be associated with a
distinctive boundary integral operator.

At first, the domain integrals are treated. There the integral kernel is made up of the
fundamental solution itself and since the integral exists the trace operators and integrations
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may be interchanged such that the Newton operator of the first kind is obtained

(N̂0 f )Ω(x) := Trx̃

∫
Ω

f (x̄)U(x̄− x̃) dx̄ =
∫
Ω

f (x̄)U(x̄−x) dx̄ .

Consequently, the Newton operator of the second kind is

(N̂1 f )Ω(x) := Tx̃

∫
Ω

f (x̄)U(x̄− x̃) dx̄ =
∫
Ω

f (x̄)(TxU)(x̄−x) dx̄ .

The first boundary integral of the first boundary integral equation (3.15) exhibit the same
singularity as the Newton potentials. Therefore the trace operation can be commuted with
the integration. This yields the single layer operator

(V̂q)Γ(x) := Trx̃

∫
Γ

qΓ(y)U(y− x̃) dsy =
∫
Γ

qΓ(y)U(y−x) dsy .

Up to this point the treatment of singularities is quite simple. But the remaining integrals
involve differentiations with respect to their kernel functions which increase the order of
singularity. This is where the problems start since one has to be much more attentive in
treating those integral kernels properly. The following two integral operators will be de-
noted as double layer operator and adjoint double layer operator, respectively. Within the
limiting process one obtains additional expressions, the so-called integral-free terms. Al-
though those integral terms collapse to very simple expressions at the end, the derivation of
them is rather demanding and not as obvious as it appears to be. A rigorous mathematical
derivation of those terms is, again, given in the textbooks of Sauter & Schwab [107] and
Steinbach [120]. While in the book of Sauter & Schwab the derivation of these terms is
done quite abstract in the latter one those terms are deduced in detail for Poisson’s equa-
tion. According to this deduction an appropriate definition of the double layer operators is
given in the following.

The strategy of treating singularities follows often the same technique. At first, the singu-
larity is excluded from the region of integration, and afterwards, a limiting process towards
the singular point is applied. For a given ε > 0 the boundary Γ is split into two disjunct
sets. For two points (x,y) ∈ Γ the first set contains all points such that |y− x| ≥ ε holds
while the remaining set contains the singularity, i.e., |y− x| < ε holds. Note that in the
limiting process ε → 0 one tends uniformly towards the singular point. Here, this kind of
limiting process is advantageous but it is not mandatory at all [125].

With the definition of the double layer operator

(K̂u)Γ(x) := lim
ε→0

∫
y∈Γ:|y−x|≥ε

uΓ(y)(TyU)>(y−x) dsy (3.17)

one obtains for the remaining boundary integral in the first boundary integral equation
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Figure 3.1: Augmented boundary Γ

(3.15)

Trx̃

∫
Γ

uΓ(y)(TyU)>(y− x̃) dsy− (K̂u)Γ(x) = lim
ε→0

∫
y∈Γ:|y−x|<ε

uΓ(y)(TyU)>(y− x̃) dsy .

(3.18)
The integral on the right-hand side can be modified such that

lim
ε→0

∫
y∈Γ:|y−x|<ε

uΓ(y)(TyU)>(y− x̃) dsy = uΓ(x) lim
ε→0

∫
y∈Γ:|y−x|<ε

(TyU)>(y− x̃)dsy

+ lim
ε→0

∫
y∈Γ:|y−x|<ε

[uΓ(y)−uΓ(x)] (TyU)>(y− x̃) dsy .

The last term of the above expression contains the difference uΓ(y)−uΓ(x). This differ-
ence vanishes in the limit. Thus, it can be shown that the whole term tends to zero for
ε → 0 [120], [70]. The integration path of the remaining integral can be expressed as the
difference of a contour integral and an integral over a part of a sphere (see Fig. 3.1). With
the domain

Bε(x) := {y ∈Ω : |y−x|< ε}

and its surface ∂Bε(x) this integral reads as

uΓ(x) lim
ε→0

∫
y∈Γ:|y−x|<ε

(TyU)>(y− x̃) dsy =

uΓ(x) lim
ε→0

 ∫
∂Bε (x)

(TyU)>(y− x̃) dsy−
∫

y∈Ω:|y−x|=ε

(TyU)>(y− x̃) dsy

 .

Using the representation formula (3.8) for uΓ(y)≡ 1 and with x̃ ∈ Bε(x) due to |x− x̃|< ε

the contour integral becomes ∫
∂Bε (x)

(TyU)>(y− x̃) dsy =−I .
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The remaining integral is defined as

C(x) :=− lim
ε→0

∫
y∈Ω:|y−x|=ε

(TyU)>(y− x̃) dsy (3.19)

such that, at the end, the trace in (3.18) becomes

Trx̃

∫
Γ

uΓ(y)(TyU)>(y− x̃) dsy =−[I−C(x)]uΓ(x)+(K̂u)(x) . (3.20)

The terms I and C(x) are scalars in case of the Poisson equation and (3×3)-matrices for
elasticity models. Thereby, I represents the identity and the expression C(x) is determined
by the boundary shape at the point x, i.e., the integral-free term depends on the solid angle
at this point. Moreover, in elasticity problems it depends also on some material data. Ex-
plicit expressions for the integral-free term can be found in [41] and [81]. If the boundary
Γ is at least differentiable at the point x, C(x) collapses to the simple expression

C(x) =
1
2

I .

Applying the trace to the first boundary integral in the second boundary integral equation
(3.16) yields

Tx̃

∫
Γ

qΓ(y)U(y− x̃) = C(x)qΓ(x)+(K̂′q)Γ(x) (3.21)

with the adjoint double layer potential

(K̂′q)Γ(x) := lim
ε→0

∫
y∈Γ:|y−x|≥ε

qΓ(y)(TxU)(y−x) dsy (3.22)

and the integral-free term as it is defined in (3.19). The proof of the identity (3.21) is similar
to the deduction of (3.20). It is omitted herein for sake of brevity but its outline should be
sketched briefly. In principle the derivation of (3.21) is more demanding than that of (3.20)
since the regularity properties of qΓ differ significantly from uΓ which is embodied in the
double layer potential (3.17). To overcome this limitation the proof is embedded into the
application of Green’s first identity. With its help a smoother integral kernel is obtained
which can be treated rather similar to the double layer potential. Detailed derivations of
(3.21) can be found in [120] and [107] for the Poisson equation and the more general
case of an arbitrary scalar elliptic differential operator. In [70] the identity is deduced for
elasticity problems.

The double layer potential (3.17) as well as the adjoint double layer potential (3.22) have
to be considered in the sense of a Cauchy principal value. Nevertheless, the integral kernel
in case of scalar problems depends distinctively on the normal derivative of the distance
between x and y. This normal derivative tends to zero when x approaches y. Therefore,
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the double layer potentials in scalar problems exhibit no singularities. Unfortunately, the
situation changes in elasticity problems. There, the Cauchy principal value has to be used.
In chapter 4, a regularization will be presented which transforms the strong singularity to
a weak one.

Now, it is left to present a definition for the leftover integral in (3.16). This operator
involves two differentiations of the kernel function and is denoted as hypersingular integral
operator. Its definition is

(D̂u)Γ(x) :=−Tx̃

∫
Γ

uΓ(y)(TyU)>(y− x̃) dsy . (3.23)

As the name already induces, this integral operator features a hypersingularity when x
tends to y and, therefore, the integral has to be understood as a finite part in the sense
of Hadamard [54, 57]. Hence, it is obvious that the numerical treatment of this integral
kernel is probably the most challenging part in the upcoming boundary element method.
Fortunately, there exist regularizations of this type of singularity which will be a major
topic in chapter 4.

Now, since every boundary integral in (3.15) and (3.16) is associated with an appropriate
boundary integral operator the system of boundary integral equations can be written more
compact(

uΓ

qΓ

)
=

(
(I−C)Î − K̂ V̂

D̂ CÎ+ K̂′

)(
uΓ

qΓ

)
+

(
N̂0 f
N̂1 f

)
∀x,y ∈ Γ . (3.24)

The operator Î above denotes the identity operator

(Îw)(x) :=
∫
Γ

δ (y−x)w(y) dsy . (3.25)

Moreover, the operator matrix in (3.24) is commonly denoted as Calderón projector C.
Since this matrix is a projector it features the identity C = C2 by what very useful relation-
ships between the particular integral operators are gained. More details about them and the
Calderón projector are given in [120].

Hyperbolic boundary integral equations. In case of time-dependent problems the pro-
cedure to obtain a system of boundary integral equations is exactly the same as before.
Again, the trace operators Trx̃ and Tx̃ have to be applied. But now with respect to the rep-
resentation formula (3.14). Since the limiting processes are independent on the time the
integral operators are defined in accordance to the elliptic case.

Thus, the single layer operator reads as

(V ∗q)Γ(x, t) :=
t∫

0

∫
Γ

qΓ(y,τ)U(y−x, t− τ) dsy dτ .
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Moreover, the double layer operator is

(K∗u)Γ(x, t) :=
t∫

0

lim
ε→0

∫
y∈Γ:|y−x|≥ε

uΓ(y,τ)(TyU)>(y−x, t− τ) dsy dτ

and the adjoint double layer operator is

(K′ ∗q)Γ(x, t) :=
t∫

0

lim
ε→0

∫
y∈Γ:|y−x|≥ε

qΓ(y,τ)(TxU)(y−x, t− τ) dsy dτ .

Again, both the double and the adjoint double layer potential are defined as Cauchy prin-
cipal value integrals. In the same manner the hypersingular operator is the finite part of

(D∗u)Γ(x, t) :=−
t∫

0

Tx̃

∫
Γ

uΓ(y,τ)(TyU)>(y− x̃, t− τ) dsy dτ .

Finally, together with the Newton potentials

(N0 ∗ f )Ω(x, t) :=
t∫

0

∫
Ω

f (x̄,τ)U(x̄−x, t− τ) dx̄dτ

+
∫
Ω

%0
[
u0U̇(x̄−x, t)+u1U(x̄−x, t)

]
dx̄

and

(N1 ∗ f )Ω(x, t) :=
t∫

0

∫
Ω

f (x̄,τ)(Tx̄U)(x̄−x, t− τ) dx̄dτ

+
∫
Ω

%0
[
u0(Tx̄U̇)(x̄−x, t)+u1(Tx̄U)(x̄−x, t)

]
dx̄

the system of boundary integral equations becomes(
uΓ

qΓ

)
=
(

(I−C)I −K V
D CI+K′

)
∗
(

uΓ

qΓ

)
+
(
N0 ∗ f
N1 ∗ f

)
∀x,y∈Γ∧t ∈ (0,∞) . (3.26)

Note that the integral free terms in (3.26) are computed in accordance to equation (3.19)
just by inserting the time-dependent fundamental solutions

C(x, t) :=−
t∫

0

lim
ε→0

∫
y∈Ω:|y−x|=ε

(TyU)>(y−x, t− τ) dsy dτ .
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The identity operator in (3.26) is given by

(I ∗w)(x, t) :=
t∫

0

∫
Γ

δ (y−x, t− τ)w(y,τ) dsy dτ (3.27)

which is an analogous definition to the elliptic case (3.25).

For all material models except the viscoelastic case it turns out that C exhibit no time-
dependency. There, the integral free term consists of a time-dependency if it is evaluated
for a point x lying at a corner or an edge. More information about the time-dependency of
the integral-free term can be found in [110]. In all other cases C is constant in time and,
additionally, equals

C(x, t) =
1
2

I

if the boundary is sufficiently smooth at the point x.

3.3 Symmetric Galerkin formulation

Until now the derived systems of boundary integral equations are just another representa-
tion of the underlying partial differential equations being defined in some bounded region.
But they still lack of any boundary conditions which, of course, are essential in view of
a numerical solution procedure. Since the aim is a symmetric formulation, the boundary
conditions are incorporated by making use of the whole system of boundary integral equa-
tions. Thereby, the embedding of boundary conditions is done exemplary for the mixed
hyperbolic boundary value problem (2.76). Afterwards, the resulting system of integral
equations serves as an initial system from which integral formulations for all other bound-
ary value problems can be derived.

The main strategy to formulate a system which exhibits prescribed boundary data may
probably be described as a technique which is somehow similar to the separation of vari-
ables. Therefore, both integral equations are evaluated not on the complete boundary Γ

but partially on the two sets ΓD and ΓN only. This gives

CgD(x, t) = (V ∗q)Γ(x, t)− (K∗u)Γ(x, t)+(N0 ∗ f )Ω(x, t) ∀(x, t) ∈ ΓD× (0,∞)
[I−C]gN(x, t) = (K′ ∗q)Γ(x, t)+(D∗u)Γ(x, t)+(N1 ∗ f )Ω(x, t) ∀(x, t) ∈ ΓN× (0,∞)

(3.28)
whereas uΓ and qΓ on the left hand-side have been already substituted by the prescribed
Cauchy data gD and gN . Since the boundary integral operators in (3.28) are still applied on
the whole boundary Γ they operate on prescribed data as well as on unknown Cauchy data.
To make the integral operators acting on known and unknown Cauchy data separately the
decompositions

uΓ(y, t) = ũΓ(y, t)+ g̃D(y, t)
qΓ(y, t) = q̃Γ(y, t)+ g̃N(y, t)

(3.29)



46 3 Boundary integral equations

are introduced in which the unknown Cauchy data are denoted as ũΓ and q̃Γ, respectively.
The quantities g̃D and g̃N are arbitrary but fixed extensions of the given Dirichlet and
Neumann data such that

g̃D(y, t) = gD(y, t) ∀(y, t) ∈ ΓD× (0,∞)
g̃N(y, t) = gN(y, t) ∀(y, t) ∈ ΓN× (0,∞)

holds. Obviously, it is preferable to chose the extensions such that g̃D and g̃N vanish on the
complementary boundary sets ΓN and ΓD, respectively. One has just to keep in mind that
the extension g̃D of the Dirichlet data has to be continuous due to regularity requirements
[120].

Now, inserting the decompositions (3.29) into (3.28) yields

(V ∗ q̃)ΓD(x, t)− (K∗ ũ)ΓN (x, t) = fD(x, t) ∀(x, t) ∈ ΓD× (0,∞)
(K′ ∗ q̃)ΓD(x, t)+(D∗ ũ)ΓN (x, t) = fN(x, t) ∀(x, t) ∈ ΓN× (0,∞)

(3.30)

with the load vectors

fD(x, t) = ((CI+K)∗ g̃D)ΓD(x, t)− (V ∗ g̃N)ΓN (x, t)− (N0 ∗ f )Ω(x, t)
fN(x, t) = (([I−C]I −K′)∗ g̃N)ΓN (x, t)− (D∗ g̃D)ΓD(x, t)− (N1 ∗ f )Ω(x, t) .

(3.31)

Transfering the system (3.30) into a residual form and testing it with appropriate test-
functions w(x) and v(x) gives, finally, the symmetric Galerkin formulation. This consti-
tutes a weak formulation of the system of boundary integral equations (3.30) to find the
unknown Cauchy data ũ and q̃ such that

〈V ∗ q̃,w〉ΓD−〈K∗ ũ,w〉ΓD = 〈 fD,w〉ΓD

〈K′ ∗ q̃,v〉ΓN + 〈D ∗ ũ,v〉ΓN = 〈 fN ,v〉ΓN .
(3.32)

holds for all test-functions w(x),v(x). In (3.32), terms of the form 〈 f ,g〉Γ :=
∫

Γ
f (x)g(x)dx

denote the inner product of two functions f and g. Moreover, since the boundary integral
equations are formulated in an integral sense, the integral-free terms in fD and fN can
be set to C = 1

2 I uniformly. Finally, as the Galerkin scheme is used only with respect to
the spatial variables the test-functions w(x) and v(x) exhibit no time-dependency and the
weak formulation used here is equivalent to the variational formulations commonly used
in Finite Element analysis (cf. [21, 121]).

As already mentioned, weak formulations for the remaining boundary value problems are
obtained just by simplifying (3.32). In case of a pure Dirichlet initial boundary problem
the boundary ΓD coincides with Γ and it is the Neumann data only which is sought-after.
Thus, (3.32) simplifies to

〈V ∗ q̃,w〉Γ = 〈(1
2I+K)∗gD−N0 ∗ f ,w〉Γ
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and for a pure Neumann initial boundary value problem one obtains vice versa

〈D ∗ ũ,v〉Γ = 〈(1
2I −K

′)∗gN−N1 ∗ f ,v〉Γ .

In case of elliptic boundary value problems the according weak formulations read as

〈V̂ q̃,w〉ΓD−〈K̂ũ,w〉ΓD = 〈(1
2 Î+ K̂)g̃D−V̂ g̃N−N̂0 f ,w〉ΓD

〈K̂′q̃,v〉ΓN + 〈D̂ũ,v〉ΓN = 〈(1
2 Î − K̂

′)g̃N−D̂g̃D−N̂1 f ,v〉ΓN

(3.33)

for the mixed boundary value problem (2.74) and

〈V̂ q̃,w〉Γ = 〈(1
2 Î+ K̂)gD−N̂0 f ,w〉Γ

for the Dirichlet boundary value problem (2.65). An exceptional position receives the weak
formulation according to the Neumann boundary value problem (2.70). Formally this is

〈D̂ũ,v〉Γ = 〈(1
2 Î − K̂

′)gN−N̂1 f ,v〉Γ ,

but one has to be cautious using this formulation without modifications within a numerical
scheme since it is not uniquely solvable. In a certain sense, this corresponds to the underly-
ing boundary value problem which is in general also not uniquely determined. Techniques
to overcome this drawback are presented in [120]. Moreover, a detailed analysis concern-
ing uniqueness and solvability of the weak formulations and the respective bilinear forms
may be found in the books [120] and [107] for the elliptic case. Unfortunately, the litera-
ture on the weak formulations in case of hyperbolic system is somewhat rare. Nevertheless,
there exist some references. For instance, a very good survey on this topic is given in [29].
Further, the special cases of the scalar wave equation and the system of elastodynamics are
treated extensively in [53] and [26–28], respectively.

3.4 Unbounded domains

Until now, only problems for bounded regions of interest have been considered. But addi-
tionally, there exist a lot of physical problems which are formulated on unbounded regions.
In such cases either the domain Ω tends to infinity while the boundary Γ remains finite or
both the domain Ω as well as its boundary Γ become infinitely large.

An example for the former situation is the sound emission of some bounded body which
occupies the domain Ωint and which exhibit the boundary Γint = ∂Ωint . Then, it is the
complement region Ωext = R3 \Ωint with the boundary Γ = ∂Ωext in which the acoustic
pressure is searched for. Note that Γint and Γ are equivalent since they occupy the same
space. But it is important to mention that they differ in their particular orientation. As a
consequence, the normal vector n always point out of the domain Ω (see Fig. 3.2a).
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In Fig. 3.2b an infinitely large surface is sketched. It appears if, e.g., an elastic half-
space Ω := {x̃ ∈ R3 : x̃3 < 0} is stressed on its surface Γ = {y ∈ R3 : y3 = 0} by some
given Neumann data gN . This problem is of major interest in many engineering appli-
cations. While its formulation is rather simple its discretization is challenging within the
forthcoming Boundary Element Method. Section 5.5 is dedicated to this particular prob-
lem.

Ωext R

∂BR

n
x0Ωint

Γ

(a) Unbounded Ωext , bounded Γ

n

Ω

Γ

R→ ∞

(b) Unbounded Ω, unbounded Γ

Figure 3.2: Types of unbounded domains

To guarantee the unique solvability of a boundary value problem stated for an unbounded
domain the solution u(x̃) has to match certain additional far field conditions in the limit
|x̃| → ∞. Those conditions differ whether a static, a time-harmonic, or a time-dependent
problem is under consideration. In the following, the far field conditions are stated and
their impact on the representation formulae is investigated briefly. At first, the unbounded
domain with bounded surface is considered.

Static case. For the static case the far field condition may be found, e.g., in the book of
Kupradze [70] where its derivation is done by making use of energy principles. At the end,
the far field condition is given by

lim
|x̃|→∞

|x̃|u(x̃) = C ∧ lim
|x̃|→∞

|x̃| |∇u(x̃)|= 0 ∀ x̃ ∈Ωext (3.34)

with some given real number C ∈ R. Throughout this work, homogeneous far field condi-
tions are assumed, i.e., C ≡ 0.

An important comment has to be given on the pure Neumann problem. If such a problem
is formulated on an unbounded domain it yields a unique solution. Due to the far field
conditions there exist no rigid body motions which could alter the solution.

Time-harmonic case. Probably the most established far field condition has been posed
by Sommerfeld and is usually denoted as Sommerfeld’s radiation condition. It has been
published primarily in [116] and has been recalled in [117]. In the time-harmonic case, it is
not sufficient that the solution matches just a certain decay as it is stated in (3.34). In fact,
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it has to be assured that there are no incoming waves from infinity. Therefore, the solution
u(x̃) is subjected to more restrictions than in the static case. The radiation condition for
the Helmholtz equation is

lim
|x̃|→∞

|x̃|
(
〈 x̃
|x̃|

,∇u〉− iku
)

= 0 ∀ x̃ ∈Ωext . (3.35)

Above, the term 〈 x̃
|x̃| ,∇u〉 denotes the derivative of u in direction of the radius vector x̃, and

k ∈ R is the wave number defined as the quotient of the Frequency ω ∈ R and the wave
velocity c ∈ R, i.e., k := ω/c. By substituting k with −k one obtains the complement of
the radiation condition. In that case the solution is subjected to incoming waves. Hence,
it is obviously not sufficient to formulate a condition in form of (3.34) since both far field
conditions describe the same decay behavior of the solution u while they differ essentially
in their physical model. For a profound theoretical background on this topic the book of
Sommerfeld [117] is recommended.

In elasticity the radiation condition is formulated equivalently. But since there exists two
waves the displacement field u = up +us is split into its compressional and rotational parts.
Then the radiation condition (3.35) is formulated for up and us and their respective wave
numbers separately [70].

Time-dependent case. Contrary to the both previously considered problems in the time
domain the situation somehow turns around. While an elliptic problem must include a
far field condition in order to be well posed, no such conditions have to be prescribed
for the hyperbolic problem [44]. Nevertheless, if the initial conditions vanish at infinity
(this corresponds to the exclusion of incoming waves) the solution u fulfills a Sommerfeld
radiation condition which is the analogue of (3.35). For the acoustic fluid it reads as

lim
|x̃|→∞

|x̃|+ct=const

|x̃|
(
〈 x̃
|x̃|

,∇u〉− 1
c

∂u
∂ t

)
= 0 ∀ x̃ ∈Ωext . (3.36)

Representation formulae on unbounded domains. Now, the question arises whether
the representation formulae also hold for unbounded domains. This will be investigated by
means of the elliptic case.

First, an auxiliary domain ΩR = Ωext ∩BR(x0) is defined as the intersection of the exterior
domain Ωext and a sphere BR(x0) of radius R centered at the point x0 which circumscribes
the interior domain Ωint (cf. Fig. 3.2a). Now, using the representation formula (3.8) for
x̃ ∈ΩR this gives

u(x̃) =
∫
Γ

qΓ(y)U(y− x̃) dsy−
∫
Γ

uΓ(y)(TyU)(y− x̃) dsy

+
∫

∂BR(x0)

(Tyu)(y)U(y− x̃) dsy−
∫

∂BR(x0)

(Try u)(y)(TyU)(y− x̃) dsy .
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If the integrals over the sphere’s boundary ∂BR(x0) vanish in the limit R→ ∞ the repre-
sentation formula passes over to its formulation for bounded domains. Indeed, this advan-
tageous behavior occurs [30] if the radiation conditions are taken into account. Since the
considered elliptic fundamental solutions fulfill either the far field condition (3.34) or the
condition (3.35) and under the assumption that the solution u vanishes in the limit R→ ∞

the sphere’s boundary integrals drop out and the representation formula becomes exactly
the same as for bounded domains

u(x̃) =
∫
Γ

qΓ(y)U(y− x̃) dsy−
∫
Γ

uΓ(y)(TyU)(y− x̃) dsy ∀ x̃ ∈Ωext . (3.37)

In the hyperbolic case, the deduction of the representation formula for unbounded domains
follows the same rules as for the elliptic case and is sketched only briefly herein. Again,
an outer boundary ΩR = Ωext ∩BR(x0) is introduced on which, now, the time-dependent
representation formula holds. Then, under the assumption that there are homogeneous
initial conditions prescribed the solution fulfills the radiation condition (3.36), and so do
the time-dependent fundamental solutions. Next, taking this radiation condition into ac-
count the limiting process R→ ∞ yields that the surface integrals on the sphere’s boundary
vanish and the representation formula

u(x̃, t) =
∫
Γ

qΓ(y, t)∗U(y− x̃, t) dsy

−
∫
Γ

uΓ(y, t)∗ (TyU)(y− x̃, t) dsy ∀(x̃, t) ∈Ωext× (0,∞) (3.38)

is obtained. Additional information concerning some minor specific requirements on
stresses and velocities are given in [126].

Notes on the representation formulae for Half-space problems. Until now, only un-
bounded domains with bounded surfaces have been considered. But, as mentioned earlier,
there are some circumstances in which both the domain as well as its boundary surface are
unbounded. Probably most notable is the elastic half-space which has been already men-
tioned as an introductory example. For this type of geometry uniqueness theorems in the
case of elastostatics have been proposed in [65] but there is still a lack of extending these
theorems to hyperbolic problems. Here, it is assumed that the representation formulae
(3.37) and (3.38) hold also for geometries with unbounded surfaces.

Variational formulations for unbounded domains. Finally, an important note must be
given concerning the associated boundary integral operators and the resulting variational
forms. Although the exterior boundary value problems are uniquely solvable and although
the representation formulae are left unchanged for unbounded domains the respective vari-
ational forms are not necessarily uniquely solvable. For instance, in the static case the hy-
persingular integral operator corresponds to the inner Neumann boundary value problem
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as well as to the exterior Neumann boundary value problem. And since it is not invert-
ible for the inner problem it also is not invertible for the outer problem. Thus, without
modifications of the according variational formulation the outer problem is not uniquely
solvable. A similar problem occurs for the time-harmonic case. There, the variational
form usually yields a result due to the absence of rigid body motions. However, for the
inner problem the operator is not invertible if the wave number corresponds to an eigen-
frequency [120]. The exterior domain is free of eigenfrequencies such that the variational
form should be solvable for every wave number. But again, since the underlying opera-
tor is the same for both the interior domain as well as the exterior domain the solution
will exhibit so-called fictitious frequencies which are related to the eigenfrequencies of the
interior domain. To eliminate those frequencies several methods have been established.
Probably the best known methods for acoustic problems are the CHIEF method [14, 113]
and the Burton-Miller formulation [23]. The time-dependent case is free of rigid body mo-
tions and resonances. Thus, from this point of view there is neither a restriction concerning
the interior domain nor for the unbounded domain.

3.5 Representation formula for internal stresses

If the complete Cauch ydata [uΓ ,qΓ] are known the Dirichlet data u(x) (or u(x, t)) are de-
termined completely by the representation formula (3.8) (or (3.14)) for every x ∈Ω (or
(x, t) ∈Ω× (0, t)). But in real world applications it is often more important to make a
prediction of the internal stress distribution. To achieve this the representation formulae
have to be inserted into the respective material law. Exemplary, this representation for-
mula will be deduced by means of an elastic solid. The deduction for scalar problems is
straightforward.

Under the assumption of homogeneous initial conditions and vanishing body forces the
hyperbolic representation formula (3.14) is recalled

u(x̃, t) = (V ∗ tΓ)(x̃, t)− (K∗uΓ)(x̃, t) ∀(x̃, t) ∈Ω× (0, t) . (3.39)

With the symmetric gradient’s definition

∇̃x :=
1
2

(
∇x +∇

>
x

)
the strain tensor (2.20) becomes εεε(x, t) = ∇̃x̃u(x̃, t) and the stress tensor is

σσσ(x̃, t) =
(4)

C : εεε(x̃, t) =
(4)

C : ∇̃x̃u(x, t) . (3.40)

Finally, inserting the representation formula (3.39) into (3.40) yields the representation
formula for the internal stresses

σσσ(x̃, t) = (S1 ∗ tΓ)(x̃, t)− (S2 ∗uΓ)(x̃, t) . (3.41)
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Above, the newly introduced operators S1 and S2 are obtained by the application of the

operations
(4)

C : ∇̃x̃ onto the single layer operator V and onto the double layer operator K

(S1 ∗ tΓ)(x̃, t) :=
∫
Γ

(
(4)

C : ∇̃x̃U
)

(y− x̃, t)∗ tΓ(y, t) dsy

(S2 ∗uΓ)(x̃, t) :=
∫
Γ

[
Ty

(
(4)

C : ∇̃x̃U
)]

(y− x̃, t)∗uΓ(y, t) dsy ∀y ∈ Γ .

(3.42)

Note that these expressions are obtained by interchanging the differentiations with the
integrations. Since Γ 3 y 6= x̃ ∈Ω holds no singularities occur and the commutation of
these processes is allowed. In case of a static analysis the above operators are defined
analogously by skipping the time convolution integrals and by the use of the corresponding
elastostatic fundamental solutions. The explicit forms of the integral kernels in (3.42) are
given in the appendix A.1.



4 REGULARIZATION OF STRONG- AND HYPER-SINGULAR
INTEGRAL KERNELS

Bearing a numerical solution procedure in mind it becomes immediately clear that the eval-
uation of almost any bilinear form presented in the previous section implies the evaluation
of singular integrals. The proper computation of those integrals is for sure the most de-
manding task within any Boundary Element formulation. While the first integral equation
comprises weakly singular kernels as well as Cauchy principal values, the second bound-
ary integral equation demands in addition the evaluation of hypersingular kernel functions.
Within a symmetric Galerkin scheme this means that, except for the Dirichlet boundary
value problem, one has to deal with three different kind of singularities. Weak singular-
ities are nothing but improper integrals and, therefore, relatively easy to handle. Cauchy
principal values are defined by a special limiting process and hypersingularities are defined
in the sense of finite part integrals which means that the divergent parts of the integral ker-
nels have to be cut off. Hence, the two latter types of singularities are quite challenging
within a numerical scheme.

In principle, there exist two possibilities to compute singular integrals: Either the singu-
larities are treated analytically [50] or they are transformed such that they are suitable for
the application of some kind of quadrature rule [108]. But this is just a rough classification
since there exist also hybrid approaches which are a mixture of analytical and numerical
techniques. Of course, the analytical treatment of singularities has the one big advantage
of being exact. But this is just half of the truth since the analytical integrations might re-
sult in very complex formulae which are very sensitive concerning a correct, robust, and
stable implementation. Those complex formulae arise mostly in 3-d problems where the
integrations are performed over some surface patches. Beside this rather subjective dis-
qualification there exist one substantial drawback of this approach: Analytical integrations
cannot be performed in general, i.e., every analytical integration is done for a special phys-
ical problem and for certain assumptions concerning the geometry (mostly assumed linear)
and the trial functions (either constant or linear).

The purely numerical treatment of singular integrals can itself be subclassified into two
different approaches. One approach leaves the singularity untouched and uses special
quadrature rules, and the other one removes the singularity by special coordinate transfor-
mations. The first approach is restricted to weak singularities which are known to exist in
an improper sense so that quadrature rules can be developed taking the singular behavior
of the kernel functions into account [68]. Besides the restriction to weak singularities the
drawback of this approach is mainly that it demands not only a special singularity but also
a special integral kernel. This means that, for instance, despite that in statics and dynamics

53
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the kernel functions exhibit the same type of singularity the kernel functions itself are dif-
ferent and, consequently, the formulae do not apply. Thus, the quadrature rule works for
one kernel function and is, without modifying the kernel, inapplicable for the other.

Finally, special coordinate transformations remove the singularities such that standard
Gaussian quadrature rules can be applied. These techniques offer at least two advantages.
At first, they allow the biggest freedom concerning the geometry modeling as well as
choosing appropriate test- and trial-functions. Secondly, the implementation of this ap-
proach is relatively easy, since the kernels underwent some coordinate transformations
only. Nevertheless, special coordinate transformations suffer also some weaknesses. At
first, the numerical approach works sufficiently only up to Cauchy principal value inte-
grals. Although there exist some approaches to extent these techniques to Hadamard finite
part integrals applicable formulae are quite rare. Moreover, the few existing formulae use
some obscure and unsatisfactory parameters to guarantee a stable numerical scheme. The
second drawback of these methods concerns the efficiency. In certain cases it might happen
that an accurate integration demands a high number of kernel evaluations which increase
the overall computing time considerably.

To summarize the different approaches so far, one definitely could state that there is nei-
ther a general way nor an optimal method to treat the occurring singularities. Moreover,
none of the numerical methods is able to handle hypersingularities as a truly black box
quadrature. To sufficiently deal with those kind of singular integrals the analytical way
is probably the method of choice. But bearing the different physical models in mind (at
least 3-d viscoelasticity) this approach is doomed to failure. As mentioned previously an
analytical integration in this case is simply too demanding and impossible for curved, i.e.,
non-linear, geometries. Thus, one ends up with numerical techniques. Thereby, the use of
coordinate transformations is most promising since they make almost no demands on the
kernel functions.

Now, by using the numerical approach it is left to answer the question concerning the fi-
nite part integrals. Since all numerical schemes fail in this case, and since the analytical
approach is impractical it is the hybrid approach mentioned already at the beginning which
is chosen. Thus, the hypersingular bilinear forms are transformed analytically into bilin-
ear forms featuring a lower degree of singularity. Afterwards, an appropriate numerical
scheme can be applied to evaluate the resulting singular integrals.

The hypersingular operators consist of twice the application of the stress operator with
respect to the fundamental solutions. Within the bilinear form this operator acts on the
Dirichlet data and its result is weighted by a test function afterwards. Both the Dirichlet
data as well as the test function have to be continuous and, therefore, are at least differen-
tiable functions. Thus, it would be preferable to shift the (generalized) normal derivatives
from the fundamental solutions over to the Dirichlet data and the test-function. Of course,
this shifting is done by integration by parts or, to be more precise in this context, by appli-
cations of Stokes theorem. Certainly, this technique has to be done for scalar and elasticity
problems separately since the kernel functions as well as the generalized normal deriva-
tives differ clearly from each other for these two cases.
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Regularization approaches of non integrable kernel functions based on integration by parts
have a long tradition and are well known nowadays. This technique was firstly used in
1949 by Maue [82] who applied it to the wave equation in the frequency domain. A major
enhancement was then given by Nedelec [87] who introduced regularized hypersingular bi-
linear forms for the Laplace equation, the Helmholtz equation as well as for the system of
linear elastostatics. Further, regularizations in the field of 3-d time-harmonic elastodynam-
ics were presented by Nishimura & Kobayashi [88] and Becache et al. [11]. While these
both approaches rely mainly on the previous work by Nedelec [87], the particular regular-
izations are nevertheless slightly different. In the first case the hypersingular operator is
used within a collocation scheme while in the other case a Galerkin scheme is formulated.
Another regularization of the hypersingular bilinear form in case of 3-d elastostatics was
presented by Han [58] who used some basic results from Kupradze [70]. Unlike Nedelec
whose regularization is based on a very general approach and, therefore, results in rather
complicated formulae, Han restricts his regularization a priori to the isotropic case and
discards the possibility of describing also the anisotropic system.

Within this work Han’s proof is extended to the Laplace transformed system of elastody-
namics. As will be shown later the regularized form of the elastodynamic hypersingular
bilinear form in Laplace domain completes the set of regularizations which are needed to
model all the considered physical problems herein. Finally, the deduction of the regular-
ized bilinear form using Han’s proof is advantageous since it leads to a more convenient
formulation with respect to the numerical implementation than the already established reg-
ularizations [11, 88].

Nevertheless, the whole regularization process requires some special derivative operators
which, probably, are unfamiliar to engineers. Thus, in the following those kind of operators
and their properties are defined briefly. Afterwards, the regularization for scalar models is
given as an introductory example, which is, at the end, followed by the regularization of
the elastodynamic kernel.

4.1 Tangential surface derivatives

As previously mentioned, the whole regularization process presented herein is mainly
based on applications of Stokes theorem and its generalizations. To begin with, the clas-
sical Stokes theorem should be recalled briefly. Let Γ be a surface with the outward unit
vector n(y) and let ∂Γ denote the surface’s boundary with the unit tangent vector ννν(y).
Then, the classical Stokes theorem for some differentiable vector field g(y) reads as∫

Γ

(∇y×g(y)) ·n(y) dsy =
∫

∂Γ

g(y) ·ννν(y) dσy . (4.1)
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Throughout this section the nabla operator’s subscript denotes that the derivatives have to
be taken with respect to y. By introducing the surface curl

∂

∂S(∂y,n(y))
:= n(y)×∇y (4.2)

and by assuming that the boundary Γ is closed, i.e., ∂Γ = /0, Stokes theorem (4.1) reads
as ∫

Γ

∂

∂S(∂y,n(y))
·g(y) dsy = 0 . (4.3)

The introduced surface curl (4.2) is a so-called tangential surface derivative operator. If
this derivative is applied to a vector field normal to the boundary this gives

∂

∂S(∂y,n(y))
·αn(y) = α [n(y)×n(y)] ·∇y = 0 ∀α ∈ C .

Due to the orthogonality of ∂

∂S and n(y) the operator lies in the same plane as the tan-
gent vector ννν(y) by what the labeling as tangential surface derivative comes from. Next,
considering a differentiable vector field g(y) := v(y)u(y) one obtains its rotation by an
application of the product rule

∇y×g(y) = ∇yv(y)×u(y)+ v(y)(∇y×u(y)) .

In conjunction with Stokes theorem (4.1) this gives under the assumption of a closed
boundary ∫

Γ

[∇yv(y)×u(y)] ·n(y) dsy =−
∫
Γ

v(y) [∇y×u(y)] ·n(y) dsy .

Rearranging the terms above and using the operator notation, (4.3) yields the identity∫
Γ

∂v(y)
∂S(∂y,n(y))

·u(y) dsy =−
∫
Γ

v(y)
∂

∂S(∂y,n(y))
·u(y) dsy . (4.4)

Note that from now on until the end of this section it is assumed that the boundary Γ is
closed. A special case is obtained if the vector field u is replaced by the Cartesian basis
vector ei. Then the right hand-side in (4.4) vanishes and the expression simplifies to∫

Γ

∂v(y)
∂Si(∂y,n(y))

dsy = 0 (4.5)

where ∂

∂Si
denotes the i-th component of the surface curl (4.2).

The identities considered so far are very useful in conjunction with the upcoming regular-
ization for scalar problems. For the later proposed regularization of elasticity problems the
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identities above need some enhancements. The previous expression (4.5) is very important
to establish the vector identity∫

Γ

∂

∂S(∂y,n(y))
×u(y) dsy = 0 (4.6)

which can be easily proven by performing the vector product. By skipping the functions’
and derivatives’ arguments this gives

∫
Γ

∂

∂S(∂y,n(y))
×u(y) dsy =

∫
Γ


∂u3
∂S2
− ∂u2

∂S3
∂u1
∂S3
− ∂u3

∂S1
∂u2
∂S1
− ∂u1

∂S2

 dsy .

According to (4.5) the integral with respect to every component of the right hand-side
above vanishes. From this the identity (4.6) follows. Since the cross product between two
vectors can be expressed by a multiplication of an antisymmetric matrix with a vector the
expression (4.6) is alternatively written as∫

Γ

∂

∂S(∂y,n(y))
×u(y) dsy =

∫
Γ

M(∂y,n(y)) ·u(y) dsy = 0 . (4.7)

Above, the newly introduced operator matrixM is usually denoted as Günter derivatives
[51]. Its definition is

M(∂y,n(y)) :=


0 − ∂

∂S3(∂y,n(y))
∂

∂S2(∂y,n(y))
∂

∂S3(∂y,n(y)) 0 − ∂

∂S1(∂y,n(y))

− ∂

∂S2(∂y,n(y))
∂

∂S1(∂y,n(y)) 0

 (4.8)

and a simple computation yields the useful representation

M(∂y,n(y)) =

 0 n2
∂

∂y1
−n1

∂

∂y2
n3

∂

∂y1
−n1

∂

∂y3

n1
∂

∂y2
−n2

∂

∂y1
0 n3

∂

∂y2
−n2

∂

∂y3

n1
∂

∂y3
−n3

∂

∂y1
n2

∂

∂y3
−n3

∂

∂y2
0

 (4.9)

which itself can be written more compact by help of the tensor product ⊗ as

M(∂y,n(y)) = ∇y⊗n(y)−n(y)⊗∇y . (4.10)

Finally, a last representation of the Günter derivatives is obtained if one introduces the
operator

U(∂y,n(y)) := ∇y⊗n(y) (4.11)

such that the operatorM becomes

M(∂y,n(y)) = U(∂y,n(y))−U>(∂y,n(y)) . (4.12)
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The Günter derivatives are exceptional useful during the regularization process of hyper-
singular bilinear forms in elasticity. Due to their definition via the surface curl they exhibit
similar properties which are derived in the following. According to (4.5) it becomes im-
mediately clear that ∫

Γ

M(∂y,n(y))v(y) dsy = 0 (4.13)

holds for an arbitrary scalar function v. Moreover, assuming that the scalar function v is
the product of two scalar functions u and w one obtains∫

Γ

[M(∂y,n(y))u(y)]w(y) dsy =−
∫
Γ

u(y) [M(∂y,n(y))w(y)] dsy (4.14)

just by using the product rule. Further the product rule can be used ifM is applied to a
vector field v(y)u(y). This leads in conjunction with (4.7) to∫

Γ

M(∂y,n(y)) · [v(y)u(y)] dsy =

∫
Γ

M(∂y,n(y))v(y) ·u(y) dsy +
∫
Γ

v(y)M(∂y,n(y)) ·u(y) dsy = 0 . (4.15)

If the vector function u is replaced by a matrix U(y) := (ui(y))1≤i≤N being made of N
vector functions ui the identity (4.15) can be generalized to∫

Γ

M(∂y,n(y))v(y) ·U(y) dsy +
∫
Γ

v(y)M(∂y,n(y)) ·U(y) dsy = 0 . (4.16)

For two vector functions u(y) and v(y) one obtains by help of (4.13) the identity

3

∑
i, j=1

∫
Γ

Mi j(∂y,n(y))
[
ui(y)v j(y)

]
dsy = 0 .

Hence, by using the product rule the expression above gives a formula for integration by
parts ∫

Γ

u(y) · [M(∂y,n(y)) ·v(y)] dsy =
∫
Γ

[M(∂y,n(y)) ·u(y)] ·v(y) dsy . (4.17)

Again, considering a matrix U(y) as already defined in (4.16) the identity (4.17) can be
extended such that∫

Γ

U>(y) · [M(∂y,n(y)) ·v(y)] dsy =
∫
Γ

[M(∂y,n(y)) ·U(y)]> ·v(y) dsy (4.18)

holds.
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Finally, a last identity can be obtained by using (4.7) as a starting point. Assuming that the
vector field u is the result of a matrix-vector multiplication u(y) := A(y) ·v(y) between a
(3×3)-matrix A(y) and another vector field v(y) the identity∫

Γ

M(∂y,n(y)) · [A(y) ·v(y)] dsy = 0

holds. Using the product rule one obtains

∫
Γ

3

∑
j,`=1
Mi j

(
A j`v`

)
dsy =

∫
Γ

3

∑
j,`=1

(
Mi jA j`

)
v` dsy +

∫
Γ

3

∑
j,`=1

A j`
(
Mi jv`

)
dsy .

Thus, one ends up with the rather cumbersome identity

∫
Γ

[M(∂y,n(y)) ·A(y)] ·v(y) dsy =−

 3

∑
j,`=1

∫
Γ

A j`
(
Mi j(∂y,n(y))v`(y)

)
dsy


1≤i≤3

.

(4.19)

4.2 Scalar problems

The very first regularizations of hypersingular bilinear forms for scalar physical models
were given by Nedelec [87] who introduced regularizations in case of the Laplace (Pois-
son) equation as well as for the Helmholtz equation. Nevertheless, in this section the
regularization of hypersingular bilinear forms corresponding to those scalar models will
be derived briefly. Thereby, this deduction serves mostly as a preliminary example since
the regularization process in elasticity, though more cumbersome, follows almost the same
rules as presented here. Moreover, this regularization is done largely as it is presented in
[120] for the hypersingular bilinear form according to the Laplace equation. An extremely
general regularization which holds for arbitrary scalar elliptic partial differential operators
is given in [107].

As mentioned in section 3.1, the fundamental solutions are the distributional solutions of
the partial differential equations for an unbounded domain containing the Dirac distribu-
tion as inhomogeneity. Those fundamental solutions are the basis for the definition of the
boundary integral operators presented in section 3.2. Further, in section 3.3 bilinear forms
were introduced which serve as starting point for the later proposed numerical methods.
Since the hypersingular bilinear forms are inadequate for an ad hoc use within a numeri-
cal scheme they must be treated analytically in advance. Here, integration by parts based
upon the previously introduced mathematical tools is used to transform the hypersingular
bilinear forms to weakly singular bilinear forms.

To begin with, the scalar fundamental solutions U associated to the partial differential
equations stated in section 2.1 will be introduced. According to (2.15) and (2.14), the
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fundamental solutions have to fulfill

∆yUL(y−x) =−δ (y−x) ∀y ∈ R3 (4.20)

for the Laplace (Poisson) equation and(
(∆y− k2)UW

k
)
(y−x) =−δ (y−x) ∀y ∈ R3 (4.21)

for the Laplace transformed wave equation, respectively. In (4.21), the parameter k ∈ C is
the complex wave number. In the Laplace domain, it is defined as k := s/c where s ∈ C
is the Laplace parameter and c ∈ R is the wave velocity. The fundamental solutions U of
(4.20) and (4.21) can be elaborated by switching from Cartesian to spherical coordinates.
Then, by taking their symmetry into account one ends up with an ordinary differential
equation. This procedure is well-known and detailed documented in a lot of references,
e.g., in [41] and [93]. Here, it is sufficient to recall the final fundamental solutions. The
results are taken from [94] and are

UL(y−x) =
1

4π

1
|y−x|

(4.22)

for the Laplace equation and

UW
k (y−x) =

1
4π

exp(−k|y−x|)
|y−x|

for the Laplace transformed wave equation. Since the exponential function occurring in
UW

k is bounded everywhere the two fundamental solutions UL and UW
k exhibit the same

singular behavior when the point y approaches the point x. Moreover, to obtain the associ-
ated integral operators the trace operations (2.66) and (2.67) which have to be carried out
are identical in case of scalar problems. Due to these properties both physical models are
treated simultaneously, i.e., there is no distinction made between UL and UW

k in the fol-
lowing. Unless no special physical model is considered the fundamental solution will be
denoted by U only. Moreover, during the regularization one has to be extremely cautious
with quantities belonging to the domain Ω and those which are defined on the boundary
Γ only. To make this distinction clearer the points x,y ∈ Γ are assumed to be exclusively
defined on the boundary while x̃∈Ω lies in the considered domain. Analogously, the func-
tion U denotes strictly the function U(y−x) while Ũ represents the function U(y− x̃).

In this general setting, the double layer potential according to (3.17) reads as

(K̂u)(x̃) =
∫
Γ

u(y)
∂Ũ

∂n(y)
dsy ∀y ∈ Γ, x̃ ∈Ω .

Note that for sake of brevity the trace uΓ(y) is just denoted as u(y) throughout this section.
Next, applying the conormal derivative to the expression above yields

∇x̃(K̂u)(x̃) ·n(x) =
∫
Γ

u(y)
[

∇x̃
∂Ũ

∂n(y)
·n(x)

]
dsy ∀x,y ∈ Γ, x̃ ∈Ω . (4.23)
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Applying a limiting process Ω 3 x̃→ x ∈ Γ to (4.23) would result into the hypersingular
operator as it is defined in (3.23). To avoid this, the expression in square brackets contain-
ing the singularity needs to be transformed. This is done by using an additional identity
which connects this term to the surface derivatives stated in 4.1.

The application of the surface curl (4.2) to a vector field g(y) := u(y)×v(y) being defined
as the rotation of two vector fields u(y) and v(y) gives

∂

∂S(∂y,n(y))
·g(y) = [∇y× (u(y)×v(y))] ·n(y) .

Using simple vector calculus the expression in square brackets is equivalent to

∇y× (u×v) = (∇yu) ·v− (∇yv) ·u− (∇y ·u)v+(∇y ·v)u . (4.24)

Now, bearing the derivative of the double layer operator (4.23) in mind it is advantageous
to exchange u by the normal vector n(x) and v by the gradient of the fundamental solution
∇x̃Ũ . The normal vector n(x) is constant with respect to the point y and, hence, by using
(4.24) one obtains the identity

∂

∂S(∂y,n(y))
·
(
n(x)×∇x̃Ũ

)
=−

[
∇x̃

∂Ũ
∂n(y)

·n(x)
]
−∆yŨ n(x) ·n(y) . (4.25)

Obviously, the term in parenthesis on the left hand-side of (4.25) equals ∂Ũ/∂S(∂x̃,n(x))
such that inserting the identity (4.25) into (4.23) yields

∇x̃(K̂u)(x̃) ·n(x) =

−
∫
Γ

u(y)
(

∂

∂S(∂y,n(y))
· ∂Ũ

∂S(∂x̃,n(x))

)
dsy−

∫
Γ

u(y)∆yŨ n(x) ·n(y) dsy .

Using identity (4.4) the hypersingular integral operator reads as

(D̂u)(x) =− lim
Ω3x̃→x∈Γ

∇x̃(K̂u)(x̃) ·n(x)

=− lim
ε→0

∫
y∈Γ:|y−x|≥ε

∂u(y)
∂S(∂y,n(y))

· ∂U
∂S(∂x,n(x))

dsy

+ lim
ε→0

∫
y∈Γ:|y−x|≥ε

u(y)∆yU n(x) ·n(y) dsy .

For the bilinear form of the hypersingular operator one therefore obtains

〈D̂u,v〉Γ =−
∫
Γ

lim
ε→0

∫
y∈Γ:|y−x|≥ε

[
v(x)

∂u(y)
∂S(∂y,n(y))

]
· ∂U

∂S(∂x,n(x))
dsy dsx

+
∫
Γ

v(x) lim
ε→0

∫
y∈Γ:|y−x|≥ε

u(y)∆yU n(x) ·n(y) dsy dsx .
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Using the identity (4.4) a last time the hypersingular bilinear form reads as

〈D̂u,v〉Γ =
∫
Γ

lim
ε→0

∫
y∈Γ:|y−x|≥ε

∂

∂S(∂x,n(x))
·
[

v(x)
∂u(y)

∂S(∂y,n(y))

]
U dsy dsx

+
∫
Γ

v(x) lim
ε→0

∫
y∈Γ:|y−x|≥ε

u(y)∆yU n(x) ·n(y) dsy dsx .

The application of the surface curl to the term in square brackets can be simplified since it
is easy to verify that

∂

∂S(∂x,n(x))
· [v(x)g(y)] =

∂v(x)
∂S(∂x,n(x))

·g(y)

holds for any vector function g(y). With this, the final hypersingular bilinear form is
obtained

〈D̂u,v〉Γ =
∫
Γ

lim
ε→0

∫
y∈Γ:|y−x|≥ε

∂v(x)
∂S(∂x,n(x))

· ∂u(y)
∂S(∂y,n(y))

U(y−x) dsy dsx

+
∫
Γ

lim
ε→0

∫
y∈Γ:|y−x|≥ε

v(x)u(y)∆yU(y−x)n(x) ·n(y) dsy dsx . (4.26)

The first term on the right hand-side contains no more derivatives of the fundamental so-
lution, i.e., the integral is of improper type and converges. The second term embodies the
Laplacian of the fundamental solution which is somehow indetermined at the moment. To
assign a reasonable meaning to this term one has to specialize the underlying partial dif-
ferential equation, i.e., the fundamental solution U must be chosen either to UL or to UW

k .
According to the differential equation (4.20) the fundamental solution UL fulfills

∆yUL = 0

since y 6= x because |y−x| ≥ ε holds. Thus, the last term vanishes and the regularized
bilinear form for the Laplace equation is simply

〈D̂Lu,v〉Γ =
∫
Γ

∫
Γ

∂v(x)
∂S(∂x,n(x))

· ∂u(y)
∂S(∂y,n(y))

UL(y−x) dsy dsx . (4.27)

In case of the Laplace transformed wave equation the fundamental solution UW
k fulfills in

accordance to (4.21)
∆yUW

k = k2UW
k . (4.28)

This is again due to the condition y 6= x. The right hand-side of (4.28) is clearly a weak
singularity and, therefore, inserting this relation into the second term in (4.26) yields a
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weakly singular integral. Finally, the complete regularized bilinear form in case of the
Laplace transformed wave equation reads as

〈D̂W
k u,v〉Γ =

∫
Γ

∫
Γ

∂v(x)
∂S(∂x,n(x))

· ∂u(y)
∂S(∂y,n(y))

UW
k (y−x) dsy dsx

+ k2
∫
Γ

∫
Γ

v(x)u(y)UW
k (y−x)n(x) ·n(y) dsy dsx .

4.3 Elasticity problems

The previous section dealt with the regularization of hypersingular bilinear forms as they
occur in scalar physical models. Here, this concept is picked up to regularize also the hy-
persingular forms corresponding to elasticity problems. Of course, the growth of dimen-
sionality in the state variables involves more complex transformations and leads to more
extensive formulae. But nevertheless, the main principle of using integration by parts is
left unchanged.

The first regularization for the hypersingular bilinear form was deduced by Nedelec [87]
who uses a very general approach. Further enhancements to time-harmonic elasticity based
on that work were given by Nishimura & Kobayashi [88] and by Becache et al. [11]. While
those formulations are not restricted to isotropic elasticity a priori they result in rather
complicated formulae which are quite complicated to handle. Another, somehow more
simple, regularization for the case of elastostatics was given by Han [58] who used some
basic results already stated in the book of Kupradze [70]. Here, a regularization for the
Laplace transformed system of elastodynamics is given which is based on Han’s proof.
While this regularization may also be found in [64] the deduction presented here is more
detailed.

As in the scalar case the regularization demands some knowledge of the fundamental so-
lutions which are involved. And since the present work extents Han’s proof to the elasto-
dynamic case the according fundamental solution must be known. As a preliminary work
both the elastostatic as well as the elastodynamic fundamental solutions will be deduced
in the following and their similarities will be pointed out.

Hörmander’s method. Analogously to section 4.2 were the fundamental solutions for
the Laplace equation and the Laplace transformed wave equation were merged for a simul-
taneous treatment, here, the same is done for the fundamental solution of the elastostatic
and the Laplace transformed elastodynamic system. Of course, the necessary fundamen-
tal solutions are known for a long time. The elastostatic fundamental solution was firstly
derived by Lord Kelvin in 1848 and, thus, is often denoted as Kelvin’s solution. In the
transient case the fundamental solution’s derivation goes back to the work of G. Stokes in
1849. For instance, Kelvin’s solution may be found in [75] while the transient fundamental
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solution is given in [32, 99]. Normally, the representation of those two fundamental solu-
tions differ highly from each other which is inadequate for the regularization process since
it demands the same structure of the involved kernel functions. To elaborate the similar
structure of the elastostatic and Laplace transformed elastodynamic fundamental solution
both will be deduced briefly.

The derivation of fundamental solutions is done by making use of what is commonly de-
noted as Hörmander’s method. Applications of this method are widely known and may be
found, e.g., in [111] and [70]. Hörmander’s method provides a simple scheme to obtain
the solution of coupled elliptic partial differential equations. Thereby, the central idea is
the reduction of the original system of partial differential equations to just one partial dif-
ferential equation a characteristic scalar function has to fulfill. Afterwards the complete
solution can be constructed with respect to this scalar function. As will be shown, the
fundamental solutions deduced here differ mainly in this characteristic scalar function.

Like in the previous section as a starting point serve the underlying partial differential
equations the fundamental solutions have to meet. The according partial differential equa-
tions are stated in section 2.2 and reads as

(λ + µ)∇y (∇y ·U(y−x))+ µ∆yU(y−x) =−δ (y−x)I ∀y ∈ R3 (4.29)

for the system of elastostatics, and

(λ + µ)∇y (∇y ·U(y−x))+ µ∆yU(y−x)−%0s2U(y−x) =−δ (y−x)I ∀y ∈ R3

(4.30)
for the Laplace transformed system of elastodynamics, respectively. Contrary to the scalar
problems the fundamental solution in elasticity is a (3×3)-matrix which can be thought
as the composition of three solution vectors Ui such that U = (U1 U2 U3 ). Then, every
solution vector fulfills the equation LUi = δei or

(
L+%s2)Ui = δei, respectively. As

before, ei denotes a Cartesian basis vector and L is the Lamé-Navier operator as stated in
(2.34).

The equations (4.29) and (4.30) can be abstracted by an operator matrix B such that

B(∂y) ·U(y−x) =−δ (y−x)I (4.31)

holds. Thereby, the matrix B features two parameters A and B with

B =

A+B∂11 B∂12 B∂13

B∂12 A+B∂22 B∂23

B∂13 B∂23 A+B∂33

 . (4.32)

In (4.32) and for the rest of this section, the notation ∂i j abbreviates the derivative ∂ 2

∂yi∂y j
.

Above, the coefficient B is defined as

B = λ + µ (4.33)
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being independent of the equation which is under consideration. Contrary, the parameter
A is problem dependent and it is easy to verify that

A = AES = µ∆ (4.34)

for the static case while it becomes

A = AED = µ∆−%0s2 (4.35)

in elastodynamics. Note that all differential operators are applied with respect to the point
y.

Contrary to the more common expressions (4.29) and (4.30) the advantage of representing
the system of partial differential equations via the operator matrix (4.31) is the implica-
tion of the upcoming solution procedure. Besides the coefficient B which is actually an
algebraic constant the expression A involves with the Laplacian a differential operator and,
therefore, is itself a differential operator. Nevertheless, by the assumption that A and every
matrix entry B[i, j] can be treated as ordinary algebraic quantities the solution U can be
thought as result of a multiplication of (4.31) with its inverse operator matrix B−1. This is
the central idea of Hörmander’s method.

Recalling known rules from vector calculus the inverse of a matrix A ∈ Cn×n can be rep-
resented by help of its adjugate matrix A∗ ∈ Cn×n. Sometimes the adjugate matrix is also
denoted as adjoint matrix or classical adjoint matrix. But these terms are somehow mis-
leading since they could be confused with the adjoint operator. Thus, the term adjugate
matrix is the preferred one within this thesis. The adjugate matrix is usually computed by
using the matrix of cofactors which are itself nothing but signed minors (see, e.g. [74]).
The entries of the matrix C ∈ Cn×n of cofactors are given by

C[i, j] = (−1)i+ j det(Mi j(A)) . (4.36)

In (4.36), the matrix Mi j(A) ∈ C(n−1)×(n−1) represents the sub-matrix of A where the i-th
row and the j-th column of A have been deleted. The determinant of this sub-matrix is
usually denoted as minor of A. Finally, the adjugate matrix A∗ reads as

A∗ = C>

with the property
AA∗ = AC> = det(A)I . (4.37)

Note that if A is symmetric (but not Hermitian!) then the adjugate matrix and the matrix
of cofactors are identical, i.e., A∗ ≡ C.

Transferring those principles to the operator matrix B one notice that B = B> holds such
that the matrix of cofactors and the adjugate matrix are identical. Moreover, it is assumed
that the fundamental solution U is the composition of the adjugate matrix B∗(∂y) and some
scalar function ϕ

U(y−x) = B∗ϕ(y−x) . (4.38)
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Inserting this into (4.31) one obtains

BB∗ϕ(y−x) =−δ (y−x)I .

Now, making use of identity (4.37) one ends up with

[det(B)ϕ(y−x)+δ (y−x)]I = 0 =⇒ det(B)ϕ(y−x) =−δ (y−x) . (4.39)

Thus, the solution scheme is complete: From the scalar equation (4.39) one obtains the
function ϕ which is, afterwards, inserted into (4.38) to obtain the fundamental solution
U. Moreover, the solution of the scalar equation requires the determinant det(B), and the
adjugate matrix B∗ is needed to build up the fundamental solution U. The determinant of
B is given by

det(B) = A2(A+B∆) (4.40)

and the adjugate matrix follows to

B∗ =

A(A+B∆)−AB∂11 −AB∂12 −AB∂13

−AB∂12 A(A+B∆)−AB∂22 −AB∂23

−AB∂13 −AB∂23 A(A+B∆)−AB∂33

 .

Using the Kronecker delta

δi j :=

{
1 i = j
0 i 6= j

(4.41)

the entries of B∗ are written as

B∗i j = A(A+B∆)δi j−AB∂i j .

Elastostatic fundamental solution. Inserting the parameters AES from (4.34) and B
from (4.33) into (4.40) yields the scalar differential equation corresponding to the elas-
tostatic system

∆y∆y

[
µ

2 (λ +2µ)∆yϕ
ES(y−x)

]
=−δ (y−x) . (4.42)

It is advantageous to substitute the term in square brackets by another scalar function χES

such that
χ

ES(y−x) := µ
2(λ +2µ)∆yϕ

ES(y−x) . (4.43)

Hence, (4.42) becomes the Bi-Laplace equation

∆y∆yχ
ES(y−x) =−δ (y−x) . (4.44)

For instance, the solution of this equation

χ
ES(y−x) =

1
8π
|y−x| (4.45)
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can be found in [94]. Finally, inserting these results into (4.38) and employing the defini-
tion (4.43) the components of the elastostatic fundamental solution are obtained

UES
i j = B∗i jϕ

ES =
1
µ

∆yχ
ES

δi j−
1
µ

λ + µ

λ +2µ
∂i jχ

ES .

Thus, Kelvin’s solution is in operator notation

UES(χ
ES) =

1
µ

[
∆yχ

ESI− λ + µ

λ +2µ
∇y∇yχ

ES
]

. (4.46)

For later purpose it is advantageous to leave the fundamental solution in its differential
form. But, taking out the derivatives within the function χES would, of course, lead to the
classical representation of the elastostatic fundamental solution as already stated in [75].

Elastodynamic fundamental solution. Though more extensive the derivation of the
elastodynamic fundamental solution follows the same steps as before. Starting with the
determinant of the operator matrix B one gets by using AED from (4.35)

det(BED) =
(
µ∆y−%0s2)2 [

(λ +2µ)∆y−%0s2] .

Thus, by exploiting the identities (2.33) and, analogous to the scalar case, by defining the
wave numbers ki := s/ci with i = 1,2 the characteristic scalar equation becomes

µ
2 (λ +2µ)

(
∆y− k2

2
)2 (

∆y− k2
1
)

ϕ
ED(y−x) =−δ (y−x) . (4.47)

As for the elastostatic case it is advantageous to use the substitution

χ
ED(y−x) := µ

2 (λ +2µ)
(
∆y− k2

2
)

ϕ
ED(y−x)

whereby the characteristic equation (4.47) becomes a Helmholtz equation of higher or-
der (

∆y− k2
1
)(

∆y− k2
2
)

χ
ED(y−x) =−δ (y−x) . (4.48)

Again, the solution of the above equation is taken from [94] and is given by

χ
ED(y−x) =

1
4π

1
k2

1− k2
2

exp(−k1|y−x|)− exp(−k2|y−x|)
|y−x|

. (4.49)

Thus, the fundamental solution UED is obtained by inserting the above relations into
(4.38)

UED
i j = B∗i jϕ

ED =
1
µ

(
∆y− k2

1
)

χ
ED

δi j−
1
µ

λ + µ

λ +2µ
∂i jχ

ED .

By using operator notation the fundamental solution can, finally, be written as

UED(χ
ED) =

1
µ

[
∆yχ

EDI− λ + µ

λ +2µ
∇y∇yχ

ED
]
− 1

µ
k2

1χ
EDI . (4.50)
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Note that the term k2
1/µχEDI has been separated and the fundamental solution exhibits

the same differential operators as before. Thus, the similar structure between the elas-
todynamic and elastostatic fundamental solution becomes obvious. At the end, it is this
similarity which enables an equivalent treatment during the regularization process of the
elastostatic and elastodynamic fundamental solution. A deeper insight to this is given in
the following.

Regularization of the hypersingular bilinear form. To start with the regularization the
similar properties of the two deduced elastic fundamental solutions have to be worked out
more clearly. First of all, one could state that both scalar functions χES and χED given in
(4.45) and (4.49), respectively, exhibit no singularities in the limit y→ x. Moreover, by
introducing the distance function r

r(y,x) := y−x , r(y,x) := |r(y,x)| (4.51)

a series expansion of χED yields the expression

χ
ED(r) =− 1

4π

1
k1 + k2

+
r

8π
+O(r2) .

Obviously, the two scalar functions χES and χED are at least both of the orderO(r). There-
fore, they exhibit the same properties within their respective fundamental solutions, i.e.,
both functions become weakly singular when differentiating them twice. Concerning the
last term in the elastodynamic fundamental solution (4.50) and bearing the hypersingu-
lar operator (3.23) in mind this term will become weakly singular at the end since it is
achieved by twice the application of the stress operator T . Hence, no special attention has
to be given to those terms during the regularization and one can concentrate on the terms
in brackets within the fundamental solutions (4.46) and (4.50), respectively. Those terms
can be interpreted as being the result of the same operator applied on two different scalar
functions χES and χED. Hence, in the following a kernel function U(χ) of the general
form

U(χ) =
1
µ

[
∆yχI− λ + µ

λ +2µ
∇y∇yχ

]
(4.52)

is thought depending on some arbitrary but differentiable scalar function χ(y−x). As
in the scalar case it is important to distinct points on the boundary from points within
the domain. Thus, the variables y,x ∈ Γ belong to the boundary while x̃ ∈Ω is strictly
defined in the domain. Moreover, to keep the notation clear the functions’ arguments
are skipped whenever possible. Therefore, the function χ̃ abbreviates χ(y− x̃) while the
function χ denotes χ(y−x). The same holds also for the fundamental solution itself, i.e.,
the abbreviations Ũ = U(χ̃) and U = U(χ) are used.

As the regularization’s main idea is based on integration by parts it is the traction operator
which, roughly spoken, has to be shifted from the fundamental solution to the test- and
trial-functions. But until now, only a very general definition of this operator is given which
is, naturally, inadequate for the regularization. Thus, a much more detailed definition of
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this operator will be elaborated. Recalling its definition (2.68) the traction operator reads
as

(T u)>(x) = t(x) = σσσ(u(x)) ·n(x) . (4.53)

Note that the right-hand side of (4.53) demands in fact the limiting process x̃→ x as stated
in the original definition (2.68). Here, this limit is omitted for the sake of simplicity. Now,
inserting the stress-strain relation (2.27) into (4.53) yields

(T u)>(x) = λ (∇ ·u)n+ µ

(
∇u+(∇u)>

)
·n . (4.54)

Although it seems somehow dispensable it is useful to consider the special case when T is
applied to a vector field of the form f (y−x)e` where f (y−x) is some differentiable scalar
function and e` is the `-th Cartesian basis vector. Evaluating (4.54) with this data gives

(T ( f e`))>(y−x) = λ
∂ f
∂y`

n(y)+ µn`(y)∇ f + µ
∂ f

n(y)
e` . (4.55)

Furthermore, by the application of the traction operator to every Cartesian basis vector the
expression (4.55) can be enhanced to

(T ( f I))>(y−x) = λ∇ f ⊗n(y)+ µn(y)⊗∇ f + µ
∂ f

∂n(y)
I . (4.56)

Due to adding and subtracting the term µ∇ f ⊗ n(y) and by taking the definition of the
Günter derivatives (4.10) into account the above expression can be transformed into

(T ( f I))>(y−x) = (λ + µ)∇ f ⊗n(y)−µM f + µ
∂ f

∂n(y)
I . (4.57)

Expression (4.57) is useful for later purpose within the regularization process but the un-
derlying traction operator is unsuitable in some sense. Thus, for the treatment within the
regularization the stress relation (4.54) has to underwent some transformations. Of course,
the aim of these transformations is the incorporation of the tangential derivatives presented
in 4.1. Obviously, the expression (4.54) is equal to

(T u)>(x) = λ (∇ ·u)n+ µ

(
∇u− (∇u)>

)
·n+2µ (∇u)> ·n . (4.58)

The central term of this equation is double the skew-symmetric part of the displacement
field’s gradient. In accordance to (2.17) and (2.18) the identity(

∇u− (∇u)>
)
·n =−n× (∇×u) (4.59)

holds. Furthermore, the last term in (4.58) can be replaced by making use of the definition
of the Günter derivatives (4.7). Based on this definition a simple computation gives

M·u = (n×∇)×u = (∇u)> ·n− (∇ ·u)n . (4.60)
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Finally, inserting (4.59) and (4.60) into (4.58) results in a suitable representation of the
stress operator

(T u)> = 2µM·u+(λ +2µ)(∇ ·u)n−µn× (∇×u) . (4.61)

Analogous to the scalar problem treated in the previous section as a starting point serves
the double layer potential (3.17)

(K̂u)(x̃) =
∫
Γ

(
TyŨ

)> ·u(y) dsy . (4.62)

Note that the stress operator’s application on the fundamental solution has to be done
column-wise, i.e., (T U)> = (T U1 T U2 T U3 )>. In its definition above the traction operator
consists of three distinct differential operators, namely the Günter derivatives, a divergence
and a rotational part. While the Günter derivatives left unchanged for the moment the two
remaining operations have to be taken out. Corresponding to the fundamental solution
(4.52) the divergence of its `-th column is simply

∇ · Ũ` =
1

λ +2µ

∂

∂y`
∆χ̃ . (4.63)

The rotational part of the fundamental solution is a bit more cumbersome and reads as

n(y)× (∇× Ũ`) =
1
µ

[
(∇∆χ̃) n`(y)− ∂

∂n(y)
∆χ̃e`

]
. (4.64)

Note that, unless mentioned otherwise, all derivatives are taken with respect to the point
y. Thus, the differential operators exhibit no subscript within the expressions above and in
the following. Again, this is done for sake of brevity. Now, inserting (4.63) together with
(4.64) into the operators definition (4.61) yields

(T Ũ`)> = 2µM· Ũ` +
(

∂

∂y`
∆χ̃n(y)−n`(y)∇∆χ̃

)
+

∂

∂n(y)
∆χ̃e` . (4.65)

Comparing the term in parenthesis with the Günter derivatives from (4.9) it becomes ob-
vious that it is nothing but the `-th column of the operatorM applied to the function ∆χ̃ .
Hence, the double layer operator (4.62) can be formulated as

(K̂u)(x̃) = 2µ

∫
Γ

(
MŨ

)> ·u(y) dsy +
∫
Γ

(M∆χ̃) ·u dsy +
∫
Γ

∂

∂n(y)
∆χ̃ u(y) dsy .

According to section 4.1, this formulation of the double layer operator is suitable to be
integrated by parts. With the fundamental solution’s symmetry property Ũ> = Ũ and by
using the identities (4.18) and (4.15)

(K̂u)(x̃) = 2µ

∫
Γ

Ũ ·(M·u(y)) dsy−
∫
Γ

∆χ̃ (M·u(y)) dsy +
∫
Γ

∂

∂n(y)
∆χ̃u(y) dsy (4.66)
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is obtained, which can be used to establish a weakly singular representation of the double
layer operator in elasticity. In the elastostatic case the regularized double layer operator is
achieved by simply exchanging χ̃ by χ̃ES. With UES = U(χES) this gives

(K̂ESu)(x) = 2µ

∫
Γ

UES · (M·u(y)) dsy

−
∫
Γ

∆χ
ES(M·u(y)) dsy +

∫
Γ

∂

∂n(y)
∆χ

ESu(y) dsy ∀x,y ∈ Γ . (4.67)

It is easy to verify that the Laplacian of the function χES (4.45) equals the fundamental
solution of the Laplace equation (4.22). Thus, the regularized double layer operator in
elastostatics can be expressed via the elastostatic single layer operator as well as by the
single and double layer operators according to the Laplace equation [9, 89]. Analogous,
the regularized double layer operator in elastodynamics is achieved by substituting χ̃ by
χ̃ED where the remaining difference term k2

1/µχ̃EDI has to be taken into account (cf.
(4.50)). This gives with help of (4.56)

k2
1

µ
(T χ̃

EDI)> = k2
1

(
λ

µ
∇χ

ED⊗n(y)+n(y)⊗∇χ
ED +

∂ χED

∂n(y)
I
)

. (4.68)

Under consideration of (2.33) the term λ/µ equals k2
2/k2

1−2. Inserting this into (4.68)
and adding and subtracting the term k2

1n(y)⊗∇χED yields

k2
1

µ
(T χ

EDI)> =−2k2
1Mχ

ED + k2
2Uχ

ED− k2
1U>χ

ED + k2
1

∂ χED

∂n(y)
I . (4.69)

Thus, using integration by parts for the first term of (4.69) the complete elastodynamic
double layer operator reads as

(K̂EDu)(x) = 2µ

∫
Γ

UED · (M·u(y)) dsy

−
∫
Γ

∆χ
ED (M·u(y)) dsy +

∫
Γ

∂∆χED

∂n(y)
u(y) dsy

+
∫
Γ

[
k2

1U>χ
ED− k2

2Uχ
ED− k2

1
∂ χED

∂n(y)
I
]
·u(y) dsy . (4.70)

The formulation (4.70) is a weakly singular representation of the elastodynamic double
layer operator. This kind of singularity is obvious, since the first three terms exhibit the
same properties as their elastostatic counterparts in (4.67). Furthermore, the last term is
regular due to the regularity of the gradient of χED. Bearing the distance function r in
mind this gradient can be expressed by help of the chain rule as

∇χ
ED(r) =

dχED

dr
∇r .
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Finally, a series expansion of dχED/dr about r = 0 yields

dχED

dr
=

1
8π
−

k2
1 + k1k2 + k2

2
12(k1 + k2)π

r +O(r2)

which proves the regularity.

Now, to go ahead with the treatment of the hypersingular kernel, the next step is the ap-
plication of the operator Tx̃ := T (∂x̃,n(x)) to the double layer operator from (4.66). This
results in(
Tx̃(K̂u)

)
(x̃) =

∫
Γ

(
Tx̃

∂∆yχ̃

∂n(y)
I
)
·u(y) dsy +

∫
Γ

(
2µTx̃Ũ−Tx̃∆yχ̃I

)
· (My ·u(y)) dsy .

(4.71)
Due to the second application of the stress operator it is mandatory to clarify the variables
the differential operators work on. As before, this is done by subscribing the differential
operator either with y or with x̃. To simplify the expression above the abbreviations ψψψ(i)

are introduced

ψψψ
(1) :=

∫
Γ

(
Tx̃

∂∆yχ̃

∂n(y)
I
)
·u(y) dsy (4.72a)

ψψψ
(2) :=

∫
Γ

(
2µTx̃Ũ−Tx̃∆yχ̃I

)
· (My ·u(y)) dsy (4.72b)

corresponding to the first and second term of (4.71). Now, using the transposed identity
(4.57) the term ψψψ(1) (4.72a) reads as

ψψψ
(1) = (λ + µ)

∫
Γ

[
n(x)⊗∇x̃

∂∆yχ̃

∂n(y)

]
·u(y) dsy

+ µ

∫
Γ

(
Mx̃

∂∆yχ̃

∂n(y)

)
·u(y) dsy + µ

∫
Γ

∂ 2∆yχ̃

∂N(x̃)∂n(y)
u(y) dsy .

Above, the operator ∂/∂N(x̃) is introduced for simplicity and will be used in the following.
Its definition is

∂ϕ(x̃)
∂N(x̃)

:= ∇x̃ϕ(x̃) ·n(x)

for some differentiable scalar function ϕ(x̃). Next, considering the second term ψψψ(2) the
traction operator Tx has to be applied onto the function Ũ as well as onto the function
∆yχ̃I. By means of (4.65) the first term of ψψψ(2) evaluates to

2µTx̃Ũ = 4µ
2Mx̃Ũ−2µMx̃∆yχ̃ +2µ

∂∆yχ̃

∂N(x̃)
(4.73)

while the second term yields in accordance to (4.57)

Tx̃∆yχ̃I = (λ + µ)n(x)⊗∇x̃∆yχ̃ + µMx̃∆yχ̃ + µ
∂∆yχ̃

∂N(x̃)
. (4.74)
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Inserting (4.73) together with (4.74) into (4.72b) results in

ψψψ
(2) =

∫
Γ

[
4µ

2Mx̃Ũ−3µMx̃∆yχ̃I
]
· (My ·u(y)) dsy

− (λ + µ)
∫
Γ

[n(x)⊗∇x̃∆yχ̃] · (My ·u(y)) dsy + µ

∫
Γ

∂∆yχ̃

∂N(x̃)
My ·u(y) dsy .

Hence, by addition of ψψψ(1) and ψψψ(2) the operator Tx̃(K̂u) from (4.71) becomes

(
Tx̃(K̂u)

)
(x̃) = µ

∫
Γ

∂ 2∆yχ̃

∂N(x̃)∂n(y)
u(y) dsy

+
∫
Γ

[
Mx̃ ·

(
4µ

2Ũ−3µ∆yχ̃I
)]
· (My ·u(y)) dsy +ψψψ

(3) +ψψψ
(4) (4.75)

with the two additional abbreviations

ψψψ
(3) := (λ + µ)n(x)

∫
Γ

[
∇x̃

∂∆yχ̃

∂n(y)
·u(y)−∇x̃∆yχ̃ · (My ·u(y))

]
dsy (4.76a)

ψψψ
(4) := µ

∫
Γ

[(
Mx̃

∂∆yχ̃

∂n(y)

)
·u(y)+

∂∆yχ̃

∂N(x̃)
(My ·u(y))

]
dsy . (4.76b)

Note that the identity
(a⊗b) · c = a(b · c) (4.77)

was employed to obtain ψψψ(3). The expressions ψψψ(3) and ψψψ(4) are somehow a strange
mixture of terms since they consist of differential operators which are applied with respect
to the variable x̃ (or y) and whose results are, afterwards, connected to quantities depending
on the complementary variable y (or x̃). To cut this knot and to simplify those expressions
two additional identities are needed which should be deduced in the following. To begin
with, a differentiable scalar function of the form f = f (y− x̃) is introduced. An application
of the Günter derivatives to the gradient of this function gives

My ·∇x̃ f = (∇y⊗n(y)) ·∇x̃ f − (n(y)⊗∇y) ·∇x̃ f .

The use of the identity (4.77) results in

My ·∇x̃ f = ∇y (n(y) ·∇x̃ f )−n(y)(∇y ·∇x̃ f ) .

Since the function f is assumed to depend only on the distance y− x̃ the gradient with
respect to y can be transformed into a gradient with respect to x̃ and vice versa

∇y =−∇x̃ . (4.78)
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Hence, by using this relation one obtains the final form

My ·∇x̃ f = ∇x̃
∂ f

∂n(y)
+n(y)∆y f . (4.79)

Now, incorporating (4.79) into (4.76a) yields

ψψψ
(3) = (λ + µ)n(x)

∫
Γ

{
[My · (∇x̃∆yχ̃)] ·u(y)−∆

2
yχ̃ n(y) ·u(y)

}
dsy

− (λ + µ)n(x)
∫
Γ

∇x̃∆yχ̃ · (My ·u(y)) dsy

which simplifies by an integration by parts (4.17) to

ψψψ
(3) =−(λ + µ)n(x)

∫
Γ

∆
2
yχ̃ n(y) ·u(y) dsy .

The term ψψψ(4) in (4.76b) exhibit some kind of antisymmetry concerning the application
of the Günter derivatives. The first term consist of an application of Mx̃ to the normal
derivative of ∆χ̃ with respect to the normal vector n(y) while the second term is the normal
derivative of ∆χ̃ with respect to n(x) multiplied with the Günter derivativesMy applied
to the displacement field u(y). To tidy up this mess an operatorW is defined such that

W(∂y,n(y),∂x̃,n(x)) :=M(∂y,n(y)) ·M(∂x̃,n(x))−M(∂x̃,n(x)) ·M(∂y,n(y)) (4.80)

holds. Now, the multiplications in (4.80) are taken out by using the representation (4.12).
With the abbreviations

Uy := U(∂y,n(y))
Ux̃ := U(∂x̃,n(x))

one, finally, obtains
W =W1−W2−W3 +W4

with

W1 := Uy · Ux̃−
(
Uy · Ux̃

)>
W2 := Uy · U>x̃ −

(
Uy · U>x̃

)>
W3 := U>y · Ux̃−

(
U>y · Ux̃

)>
W4 := U>y · U>x̃ −

(
U>y · U>x̃

)>
.

The first term ofW1 reads by the definition (4.11) of the operator U as

Uy · Ux̃ = [∇y⊗n(y)] · [∇x̃⊗n(x)] . (4.81)
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With the knowledge of using the Günter derivatives just in conjunction with functions
depending on the distance r = y− x̃ the differential operators above may be exchanged
using (4.78). Furthermore, considering the vector identity

(a⊗b) · (c⊗d) = (a⊗d)(b · c)

the expression (4.81) becomes

Uy · Ux̃ = [∇x̃⊗n(y)] · [∇y⊗n(x)] = [∇x̃⊗n(x)] (n(y) ·∇y) = Ux̃
∂

∂n(y)

and the operatorW1 follows to

W1 =M(∂x̃,n(x))
∂

∂n(y)
.

Analogously, one obtains for the remaining operators

W2 = 0
W3 =−(n(y)⊗n(x)−n(x)⊗n(y))∆y

W4 =−M(∂y,n(y))
∂

∂N(x̃)
.

Hence, the operatorW is simply

W(∂y,n(y),∂x̃,n(x)) =M(∂x̃,n(x))
∂

∂n(y)
−M(∂y,n(y))

∂

∂N(x̃)
+(n(y)⊗n(x)−n(x)⊗n(y))∆y . (4.82)

Returning to the expression ψψψ(4) from (4.76b) one obtains by help of (4.15)

ψψψ
(4) = µ

∫
Γ

[(
Mx̃

∂

∂n(y)
−My

∂

∂N(x̃)

)
∆yχ̃

]
·u(y) dsy .

Next, using the identity (4.82) the expression above is transformed into

ψψψ
(4) = µ

∫
Γ

(W∆yχ̃) ·u(y) dsy−µ

∫
Γ

[
(n(y)⊗n(x)−n(x)⊗n(y))∆

2
yχ̃
]
·u(y) dsy .

(4.83)
For a further treatment the first integral from above has to be expanded by inserting the
operators definition (4.80). Furthermore, for two symmetric or antisymmetric matrices A
and B the identity

A ·B = (B ·A)>

holds such that the first integral of (4.83) becomes∫
Γ

(W∆yχ̃) ·u(y) dsy =
∫
Γ

[Mx̃ · (My∆yχ̃)]> ·u(y) dsy−
∫
Γ

[My · (Mx̃∆yχ̃)]> ·u(y) dsy
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whereas the associativity (Mx̃ ·My)∆yχ̃ =Mx̃ · (My∆yχ̃) has already been taken into
account. Applying the identity (4.18) to the last integral and inserting the result into (4.83)
the expression ψψψ(4) is

ψψψ
(4) = µ

∫
Γ

(Mx̃∆yχ̃) · (My ·u(y)) dsy + µ

∫
Γ

[Mx̃ · (My∆yχ̃)]> ·u(y) dsy

−µ

∫
Γ

∆
2
yχ̃n(y)n(x) ·u(y)+ µn(x)

∫
Γ

∆
2
yχ̃ n(y) ·u(y) dsy .

Now it is time to reconstruct the operator (4.75). Inserting the terms ψψψ(3) and ψψψ(4) into
that equation yields

(
Tx̃(K̂u)

)
(x̃) =µ

∫
Γ

∂ 2∆yχ̃

∂N(x̃)∂n(y)
u(y) dsy

+
∫
Γ

[
Mx̃ ·

(
4µ

2Ũ−2µ∆yχ̃I
)]
· (My ·u(y)) dsy

+ µ

∫
Γ

[Mx̃ · (My∆yχ̃)]> ·u(y) dsy

−
∫
Γ

[λn(x)n(y) ·u(y)+ µn(y)n(x) ·u(y)]∆2
yχ̃ dsy .

(4.84)

According to the identity (4.25) the first term of the expression above can be exchanged to
get

µ

∫
Γ

∂ 2∆yχ̃

∂N(x̃)∂n(y)
u(y) dsy =

−µ

∫
Γ

∂

∂S(∂y,n(y))
·

∂∆yχ̃

∂S(∂x̃,n(x))
u(y) dsy−µ

∫
Γ

∆
2
yχ̃ n(x) ·n(y)u(y) dsy . (4.85)

This expression suffices for an application of the identity (4.4). But, since (4.4) holds only
for a combination of a vector field with a scalar function one has to apply it with respect
to every component ui of the first integral of (4.85). Thus,

µ

∫
Γ

∂ 2∆yχ̃

∂N(x̃)∂n(y)
u(y) dsy =

µ

∫
Γ

[
∂

∂S(∂y,n(y))
⊗u(y)

]>
·

∂∆yχ̃

∂S(∂x̃,n(x))
dsy−µ

∫
Γ

∆
2
yχ̃ n(x) ·n(y)u(y) dsy
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is achieved. Inserting this expression into (4.84) the hypersingular operator reads as

(D̂u)(x) =− lim
Ω3x̃→x∈Γ

(
Tx̃(K̂u)

)
(x̃)

=−µ lim
ε→0

∫
y∈Γ:|y−x|>ε

[
∂

∂S(∂y,n(y))
⊗u(y)

]>
·

∂∆yχ

∂S(∂x,n(x))
dsy

−µ lim
ε→0

∫
y∈Γ:|y−x|>ε

[Mx · (My∆yχ)]> ·u(y) dsy

− lim
ε→0

∫
y∈Γ:|y−x|>ε

[
Mx ·

(
4µ

2U−2µ∆yχI
)]
· (My ·u(y)) dsy

+ lim
ε→0

∫
y∈Γ:|y−x|>ε

[λn(x)n(y) ·u(y)+ µn(y)n(x) ·u(y)

+ µn(x) ·n(y)u(y)]∆2
yχ dsy .

(4.86)

For simplicity the hypersingular bilinear form is split into parts

〈D̂u,v〉Γ =
4

∑
i=1
〈D̂iu,v〉Γ , (4.87)

which correspond to every single integral in (4.86). Their definitions are given below

〈D̂1u,v〉Γ :=−µ

∫
Γ

v(x) · lim
ε→0

∫
y∈Γ:|y−x|>ε

[
∂

∂S(∂y,n(y))
⊗u(y)

]>
·

∂∆yχ

∂S(∂x,n(x))
dsy dsx

〈D̂2u,v〉Γ :=−µ

∫
Γ

v(x) · lim
ε→0

∫
y∈Γ:|y−x|>ε

[Mx · (My∆yχ)]> ·u(y) dsy dsx

〈D̂3u,v〉Γ :=−µ

∫
Γ

v(x) · lim
ε→0

∫
y∈Γ:|y−x|>ε

[Mx · (4µU−2∆yχI)] · (My ·u(y)) dsy dsx

〈D̂4u,v〉Γ :=µ

∫
Γ

v(x) · lim
ε→0

∫
y∈Γ:|y−x|>ε

[
λ

µ
n(x)n(y) ·u(y)+n(y)n(x) ·u(y)

+n(x) ·n(y)u(y)]∆2
yχ dsy dsx .

(4.88)
Of course, those bilinear forms depict not the final regularization step since they exhibit
still derivatives with respect to the fundamental solution U or ∆χ , respectively. Hence,
the goal is the further regularization of the bilinear forms above. By use of the auxiliary
matrix

A(u) :=
∂

∂S(∂y,n(y))
⊗u(y)
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and the auxiliary vector
ααα(u,v) := A(u) ·v(x)

the first bilinear form is simply

〈D̂1u,v〉Γ =−µ lim
ε→0

∫
y∈Γ:|y−x|>ε

∫
Γ

∂∆yχ

∂S(∂x,n(x))
·ααα(u,v) dsx dsy .

Then, integration by parts via the identity (4.4) yields

〈D̂1u,v〉Γ = µ lim
ε→0

∫
y∈Γ:|y−x|>ε

∫
Γ

∆yχ
∂

∂S(∂x,n(x))
·ααα(u,v) dsx dsy . (4.89)

The application of the surface curl to the vector ααα can be carried out component-wise

∂

∂S(∂x,n(x))
·ααα(u,v) =

3

∑
k=1

∂αk

∂Sk(∂x,n(x))
=

3

∑
k,i=1

Aki(u)
∂vi(x)

∂Sk(∂x,n(x))
.

Finally, with Aki = ∂ui
∂Sk(∂y,n(y)) one obtains

∂

∂S(∂x,n(x))
·ααα(u,v) =

3

∑
k,i=1

∂ui(y)
∂Sk(∂y,n(y))

∂vi(x)
∂Sk(∂x,n(x))

.

Inserting this expression into (4.89) gives

〈D̂1u,v〉Γ = µ

∫
Γ

lim
ε→0

∫
y∈Γ:|y−x|>ε

∆yχ

3

∑
k,i=1

∂ui(y)
∂Sk(∂y,n(y))

∂vi(x)
∂Sk(∂x,n(x))

dsy dsx. (4.90)

The integral above contains no more derivatives with respect to the function ∆χ . No matter
whether the elastostatic or the elastodynamic problem is under consideration in both cases
the function χ is of order O(r) (cf. (4.45) and (4.49)). Therefore, ∆χ is of order O(r−1)
and the bilinear form (4.90) exhibits a weak singularity only.

Now, for the transformation of 〈D̂2u,v〉Γ the integration order is exchanged. This yields

〈D̂2u,v〉Γ =−µ lim
ε→0

∫
y∈Γ:|y−x|>ε

u(y)
∫
Γ

[Mx · (My∆yχ)] ·v(x) dsx dsy

Then, by an application of (4.19) the bilinear form becomes

〈D̂2u,v〉Γ = µ

3

∑
i, j,`=1

lim
ε→0

∫
y∈Γ:|y−x|>ε

u`(y)

∫
Γ

[
Mi j(∂y,n(y))∆yχ

][
M`i(∂x,n(x))v j(x)

]
dsx dsy .
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Again, reversing the integration order and using the identity (4.14) gives

〈D̂2u,v〉Γ =−µ

3

∑
i, j,`=1

∫
Γ

[
M`i(∂x,n(x))v j(x)

]
lim
ε→0

∫
y∈Γ:|y−x|>ε

∆yχ
[
Mi j(∂y,n(y))u`(y)

]
dsy dsx . (4.91)

Like before, this bilinear form exhibit no more derivatives with respect to ∆yχ and, there-
fore, consists of a weakly singular integral kernel only. Although this bilinear form is
sufficient for a numerical treatment it can be subjected to a further simplification. Ac-
cording to to the definition of the Günter derivatives (4.8) a single entry of them is given
by

Mi j(∂y,n(y)) =
3

∑
k=1

ε jik
∂

∂Sk(∂y,n(y))
(4.92)

where ε denotes the Levi-Cività or Permutation symbol. Its definition is

εi jk... :=


+1 if (i, j,k, . . .) is an even permutation
−1 if (i, j,k, . . .) is an odd permutation
0 otherwise, i.e., at least one index occurs twice

.

The Levi-Cività symbol reveals the useful identity

3

∑
i=1

εi`kεim j = δ`mδk j−δ` jδkm (4.93)

where δ denotes the Kronecker delta (4.41). Hence, inserting (4.92) into (4.91) yields

〈D̂2u,v〉Γ =−µ

3

∑
i,`,k, j,m=1

∫
Γ

∫
Γ

[
εi`k

∂v j(x)
∂Sk(∂x,n(x))

] [
ε jim

∂u`(y)
∂Sm(∂y,n(y))

]
∆yχ dsy dsx .

Since ε jim ≡ εim j holds the identity (4.93) can be employed such that

〈D̂2u,v〉Γ = µ

3

∑
k,`=1

∫
Γ

∫
Γ

[
∂v`(x)

∂Sk(∂x,n(x))
∂u`(y)

∂Sk(∂y,n(y))

− ∂vk(x)
∂Sk(∂x,n(x))

∂u`(y)
∂S`(∂y,n(y))

]
∆yχ dsy dsx

is finally achieved.

Considerably more simple is the transformation of the bilinear form 〈D̂3u,v〉Γ from (4.88).
As before, the integration order is exchanged such that the bilinear form reads as

〈D̂3u,v〉Γ =−µ lim
ε→0

∫
y∈Γ:|y−x|>ε

(My ·u(y)) ·
∫
Γ

[Mx · (4µU−2∆yχI)]> ·v(x) dsx dsy
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This expression is immediately adequate to be integrated by parts. According to (4.18) it
is

〈D̂3u,v〉Γ =−µ

∫
Γ

(Mxv(x)) · lim
ε→0

∫
y∈Γ:|y−x|>ε

(4µU−2∆yχI) · (My ·u(y)) dsy dsx .

(4.94)
As before, there are no more derivatives associated with the singular kernel functions U
and ∆yχ . Thus, (4.94) is also of weakly singular type.

Finally, the complete hypersingular bilinear form corresponding to (4.87) is

〈D̂u,v〉Γ =2µ

∫
Γ

∫
Γ

∆yχ

3

∑
k,i=1

∂ui(y)
∂Sk(∂y,n(y))

∂vi(x)
∂Sk(∂x,n(x))

dsy dsx

−µ

∫
Γ

∫
Γ

∆yχ
∂

∂S(∂y,n(y))
·u(y)

∂

∂S(∂x,n(x))
·v(x) dsy dsx

−µ

∫
Γ

∫
Γ

(Mx ·v(x)) · (4µU−2∆yχI) · (My ·u(y)) dsy dsx

+ 〈D̂4u,v〉Γ .

(4.95)

With the formulation above the regularization of the elastic hypersingular bilinear forms is
almost completed. There are just two additional steps to perform. Firstly, the last bilinear
form 〈D̂4u,v〉Γ has to be determined clearly. Since it contains the Biharmonic operator of
the characteristic function χ the elastostatic or elastodynamic case has to be specified. In
case of the elastostatic system the function χ = χES fulfills equation (4.44), i.e., ∆2χES = 0
holds due to x 6= y. Hence, the last bilinear form vanishes and the complete elastostatic
hypersingular bilinear form reads as

〈D̂ESu,v〉Γ =2µ

∫
Γ

∫
Γ

∆yχ
ES

3

∑
k,i=1

∂ui(y)
∂Sk(∂y,n(y))

∂vi(x)
∂Sk(∂x,n(x))

dsy dsx

−µ

∫
Γ

∫
Γ

∆yχ
ES ∂

∂S(∂y,n(y))
·u(y)

∂

∂S(∂x,n(x))
·v(x) dsy dsx

−µ

∫
Γ

∫
Γ

(Mx ·v(x)) ·
(

4µUES−2∆yχ
ESI
)
· (My ·u(y)) dsy dsx .

(4.96)

Apart from a slightly modified representation, this expression matches exactly the regular-
ization which has been already deduced by Han [58]. Contrary to elastostatics, in elasto-
dynamics the function χ = χED fulfills equation (4.48) and, thus, for x 6= y the Biharmonic
operator becomes

∆
2
yχ

ED =
(
k2

1 + k2
2
)

∆yχ
ED− k2

1k2
2χ

ED .
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This expression reveals the weak singularity of ∆2χED since it is composed of the regular
function χED and the Laplacian ∆χED. Hence, 〈D̂4u,v〉Γ = 〈D̂ED

4 u,v〉Γ from (4.88) reads
as

〈D̂ED
4 u,v〉Γ = µ

∫
Γ

∫
Γ

[(
k2

2
k2

1
−2
)
〈v(x),n(x)〉〈u(y),n(y)〉

+ 〈v(x),n(y)〉〈u(y),n(x)〉+ 〈u(y),v(x)〉〈n(y),n(x)〉
]

∆
2
yχ

ED dsy dsx .

Now, the final step is the incorporation of the fundamental solution’s UED additional term
from (4.50) which results in the evaluation of

〈D̂5u,v〉Γ :=−

−∫
Γ

v(x) ·
∫
Γ

k2
1

µ
Tx
(
Tyχ

EDI
)> ·u(y) dsy dsx

 . (4.97)

Recalling the application of the stress operator according to (4.68)

(Tyχ
EDI)> = µ

(
λ

µ
My +

(
λ

µ
+1
)
U>y +

∂

∂n(y)
I
)

χ
ED

and introducing the abbreviation

θ :=
λ

µ
=

k2
2

k2
1
−2

one obtains

Tx
(
Tyχ

EDI
)>

= µ
2
(
−θMx +(θ +1)Ux +

∂

∂n(x)
I
)
·(

θMy +(θ +1)U>y +
∂

∂n(y)
I
)

χ
ED .

Thus, the bilinear form (4.97) becomes

〈D̂5u,v〉Γ = k2
1µ

∫
Γ

∫
Γ

v(x) ·
[
−θ

2
∆yχ

EDn(x)⊗n(y)+2θ

(
U>x

∂ χED

∂n(y)
+Uy

∂ χED

∂n(x)

)

− (∇y∇yχ
ED)n(y) ·n(x)+Ux

∂ χED

∂n(y)
+U>y

∂ χED

∂n(x)
+

∂ 2χED

∂n(y)∂n(x)
I
]
·u(y) dsy dsx .

(4.98)

Note that the expression above is achieved just by an insertion of the differential operators’
definitions from section 4.1. In principle, the work is done since the complete bilinear
form is obtained simply by adding (4.98) to the expression (4.95) with the substitutions
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U = U(χED) and χ = χED. Nevertheless, to be consistent with the previous regulariza-
tions it would be preferable to exchange the function U(χED) with the elastodynamic fun-
damental solution UED from (4.50). Therefore, in the bilinear form (4.95) the term U is
replaced by

U(χ
ED) = UED +

k2
1

µ
χ

EDI .

and the according term becomes

−4µ
2
∫
Γ

∫
Γ

(Mx ·v(x)) ·
[

UED +
k2

1
µ

χ
EDI
]
· (My ·u(y)) dsy dsx =

−4µ
2
∫
Γ

∫
Γ

(Mx ·v(x)) ·UED · (My ·u(y)) dsy dsx

+4k2
1µ

∫
Γ

∫
Γ

v(x) ·
(
Mx · (Myχ

ED)
)
·u(y) dsy . (4.99)

Thereby, the differential operators Mx and My have been shifted back to the function
χED. Now, in conjunction with the identities

Mx · (Myχ
ED) = Uy

∂ χED

∂n(x)
+U>x

∂ χED

∂n(y)
+
(
∇y∇yχ

ED)n(y) ·n(x)+∆yχ
ED (n(x)⊗n(y))

and [
Mx · (Myχ

ED)
]>

=My · (Mxχ
ED)

the bilinear form (4.98) reads without variants of the operator U as

〈D̂5u,v〉Γ = µ

∫
Γ

∫
Γ

v(x) ·
[
− k2

2

(
k2

2
k2

1
−2
)

∆yχ
EDn(x)⊗n(y)− k2

1∆yχ
EDn(y)⊗n(x)

+2(k2
1− k2

2)
(
∇y∇yχ

ED)n(y) ·n(x)+ k2
1

∂ 2χED

∂n(y)∂n(x)
I

+2(k2
2−2k2

1)Mx · (Myχ
ED)+ k2

1My · (Mxχ
ED)
]
·u(y) dsy dsx

Finally, combining the last term of (4.99) with the expression above and adding the result
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to (4.95) yields the complete regularized elastodynamic bilinear form

〈D̂EDu,v〉Γ =2µ

∫
Γ

∫
Γ

∆yχ
ED

3

∑
k,i=1

∂ui(y)
∂Sk(∂y,n(y))

∂vi(x)
∂Sk(∂x,n(x))

dsy dsx

−µ

∫
Γ

∫
Γ

∆yχ
ED ∂

∂S(∂y,n(y))
·u(y)

∂

∂S(∂x,n(x))
·v(x) dsy dsx

−µ

∫
Γ

∫
Γ

(Mx ·v(x)) ·
(
4µUED−2∆yχ

EDI
)
· (My ·u(y)) dsy dsx

+ µ

∫
Γ

∫
Γ

v(x) ·
[
(k2

2−2k2
1)
(
∆yχ

ED− k2
2χ

ED)n(x)⊗n(y)
]
·u(y) dsy dsx

+ µ

∫
Γ

∫
Γ

v(x) ·
[
k2

2
(
∆yχ

ED− k2
1χ

ED)n(y)⊗n(x)
]
·u(y) dsy dsx

+ µ

∫
Γ

∫
Γ

v(x) ·
[(

2(k2
1− k2

2)∇y∇yχ
ED +∆

2
yχ

EDI
)

n(y) ·n(x)
]
·u(y) dsy dsx

+ µ

∫
Γ

∫
Γ

v(x) ·
[
2k2

2Mx ·
(
Myχ

ED)+ k2
1My ·

(
Mxχ

ED)] ·u(y) dsy dsx

+ µ

∫
Γ

∫
Γ

k2
1

∂ 2χED

∂n(y)∂n(x)
v(x) ·u(y) dsy dsx .

(4.100)
With view to the later proposed Boundary Element formulation one remark must be given.
The presented fundamental solutions as well as the stated operators with their correspond-
ing bilinear forms are the backbone of the numerical scheme which will be described
in section 5. There, for time-dependent problems the so-called Convolution Quadrature
Method (see. section 5.4) will be presented which utilizes the Laplace transforms of the
herein deduced quantities to generate solutions in the time-domain. For instance an elas-
todynamic problem is solved with the help of the respective elastodynamic expressions
formulated in the Laplace domain. Equivalently, a viscoelastodynamic problem is solved,
but with the difference of incorporating the elastic-viscoelastic correspondence principle
(2.51) into the respective operators.
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5 BOUNDARY ELEMENT FORMULATION

The boundary integral equations stated in chapter 3.2 admit analytical solutions for very
few and exclusive problems only. In general, they do not feature analytical solutions such
that approximate solutions become evident. This chapter is devoted to the formulation
of an numerical solution scheme which is based on an appropriate discretization of those
boundary integral equations.

For arbitrary geometries the numerical solution is based on a parametrization of the bound-
ary Γ and on the use of finite elements defined in the parameter domain. The term finite
element is somehow misleading since it is commonly preserved for the use within the Fi-
nite Element Method. Therefore, these elements are usually denoted as boundary elements
which, additionally, emphasizes their location on the boundary Γ.

The remainder of this chapter is organized as follows. At first, the spatial approximations
are given which form the basis of the afterwards proposed Boundary Element Method for
elliptic problems. The subsequent section is devoted to the numerical treatment of the
occuring singular integrals. Then, the Convolution Quadrature Method is utilized in order
to establish the time-domain Boundary Element Method. Finally, this chapter closes with
an approach of dealing also with semi-infinite domains.

5.1 Boundary approximation

Boundary elements τ are commonly based on a triangulation G of the boundary Γ. A syn-
onymous labeling is the term mesh which is used equivalent in the following. In general,
this triangulation is not an exact representation of the boundary Γ but just an approxima-
tion Γh. With τ ⊂ Γh the boundary’s approximation is given by the union of J disjoint
boundary elements τ j such that

Γ≈ Γh =
J⋃

j=1

τ j

holds. Thereby, the overline state that G is a cover of Γh, i.e., the union of all subsets τ ∈G
is the whole approximate boundary Γh. With this approximation any boundary integral for
a kernel function k(x) can be given by

∫
Γ

k(x̄) dsx̄ ≈
∫
Γh

k(x) dsx =
J

∑
j=1

∫
τ j

k(x) dsx ∀ x̄ ∈ Γ, x ∈ Γh . (5.1)
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For the integration over the boundary elements τ j a parametrization is introduced such that
every boundary element τ is the image of an reference element τ̂ under the mapping

χτ : τ̂ → τ . (5.2)

Every boundary element τ is a two-dimensional surface patch which is embedded into the
three-dimensional space. Thus, the mapping χτ : R2→ R3 maps from the two- into the
three-dimensional Euclidean space. The boundary elements τ consist either of triangles or
quadrilaterals. Therefore, the reference elements according to these surfaces are chosen to
be either the unit triangle τ̂4 or the unit square τ̂� (cf. Fig. 5.1) being defined as

τ̂4 := {(x̂1, x̂2) ∈ R2 : 0≤ x̂2 < x̂1 ≤ 1}
τ̂� := {(x̂1, x̂2) ∈ R2 : 0≤ (x̂1, x̂2)≤ 1} .

(5.3)

Depending on the unique shape of a boundary element τ the reference element τ̂ features
of a set of local points p̂i with i = 1, . . . ,N. The total number N of those points matches
the number of points a boundary element consists of. The geometry of every boundary
element τ is uniquely defined by the set

EN :=
N⋃

i=1

pi

of several points pi ∈ R3. The more common notion for those points is the term nodes
or, more precisely, boundary nodes. The most simple geometry is a straight-lined triangle
which consists of the set of the three nodes E3 = {p1,p2,p3}. Similarly, a straight-lined
quadrilateral is made up of four nodes E4 = {p1, . . . ,p4}. These two types of elements
are usually denoted as flat elements. Contrary, also curved elements exist which consists
at least of six nodes E6 = {p1, . . . ,p6} for triangles and of nine nodes E9 = {p1, . . . ,p9}
in the case of regular quadrilaterals. Contrary to the regular quadrilaterals there exist also
irregular and so-called serependity elements which feature less nodes than are actually
needed from a mathematical point of view. These elements are not used within this thesis
and the reader is referred to standard textbooks [127] for more details on that topic.

The mapping χτ relates the reference, or local, coordinates x̂ ∈ τ̂ to a point x ∈ τ . By
choosing a polynomial ansatz with N polynomial functions ϕα

i (x̂) ∈ R this yields

x(x̂) = χτ(x̂) =
N

∑
i=1

ϕ
α
i (x̂)pi , α ∈ N\{0} . (5.4)

The parameter α denotes the polynomial degree, e.g., α = 1 represents linear polynomials.
Now, every node p j is related to a distinct local point p̂ j such that

p j = χτ(p̂ j)

holds. Inserting this constraint into (5.4) yields the polynomials’ fundamental property

ϕ
α
i (p̂ j) = δi j . (5.5)
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x̂1

x̂2

1

1
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(a) Unit triangle
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1
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p̂8 p̂9

(b) Unit square

Figure 5.1: Reference elements with local points p̂i

The polynomials which are related to the boundary elements obey some characteristics.
All triangular elements are based on polynomials of the form

ϕ
α

i,4(x̂) := ∑
k+`≤α

k,`≥0

Ck`,i x̂k
1x̂`

2 , (5.6)

whereas the polynomials according to the quadrilaterals are given by

ϕ
α
i,�(x̂) := ∑

0≤k,`≤α

Ck`,i x̂k
1x̂`

2 . (5.7)

The polynomials which build the basis for the triangular elements are denoted as com-
plete polynomials [121] while the quadrilaterals are constructed by using functions from
the family of polynomials with tensor products [21]. In the definitions (5.6) and (5.7),
the constants Ck`,i can be obtained with the help of the property (5.5). Collecting all
polynomials being specific for an N-node element into the vector ϕϕϕα

N := [ϕα
1 , . . . ,ϕα

N ]
and interpreting the sums in (5.6) and (5.7) as multiplications of a vector of monomials
ψψψ(x̂) := [1, x̂1, x̂2, . . . ] with coefficient vectors Ci one gets

ϕϕϕ
α
N(x̂) = ψψψ(x̂) · [C1, . . . ,CN ]︸ ︷︷ ︸

=:C

with the coefficient matrix C ∈ RN×N . Next, taking the property (5.5) into account gives
the condition ϕϕϕα

N(p̂i) = e>i with ei being the i-th unit vector. By use of the matrix X :=
[ψψψ(p̂1), . . . ,ψψψ(p̂N)]> which contains the monomials evaluated at the distinct coordinates
p̂i one obtains

X ·C = I =⇒ C = X−1 .

Thus, the set of functions ϕα
i is given by

ϕϕϕ
α
N = ψψψ(x̂) ·X−1 .
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To illustrate this procedure the flat triangle is considered. This element requires polynomi-
als of order α = 1. Therefore, the vector of monomials reads as ψψψ(x̂) = [1 x̂1 x̂2] and the
matrix X and its inverse are

X =

ψψψ(
[

0
0

]
)

ψψψ(
[

1
0
]
)

ψψψ(
[

1
1

]
)

=

1 0 0
1 1 0
1 1 1

 =⇒ X−1 =

 1 0 0
−1 1 0
0 −1 1

 .

Finally, the set of functions ϕ1
i reads as

ϕϕϕ
1
3(x̂) =

[
1 x̂1 x̂2

]
·

 1 0 0
−1 1 0
0 −1 1

=
[
1− x̂1 x̂1− x̂2 x̂2

]
and the mapping χτ is simply

x = χτ(x̂) = (1− x̂1)p1 +(x̂1− x̂2)p2 + x̂2p3 . (5.8)

Since the construction of more complex elements follows the same procedure their detailed
derivation is omitted herein. Nevertheless, the functions for quadrilaterals and higher order
elements are listed in appendix A.2.

For the transformation of the integral (5.1) to local coordinates it remains to express
the differential surface element dsx in local coordinates. Therefore, the Jacobian matrix
Jτ ∈ R3×2 is introduced

Jτ(x̂) :=
[

∂x
∂ x̂1

∂x
∂ x̂2

]
, (5.9)

which represents a linear approximation of the vector field x in a neighborhood of x̂. Then
the deformation of the infinitesimal surface element dsx is given by

dsx =
√

det(J>τ (x̂) ·Jτ(x̂)) dx̂ .

Above, the expression within the square root is the Gram determinant

gτ(x̂) := det(J>τ (x̂) ·Jτ(x̂))

by what means the surface integral (5.1) finally reads as∫
Γ

k(x̄) dsx̄ ≈
∫
Γh

k(x) dsx =
J

∑
j=1

∫
τ̂

k(χτ j(x̂))
√

gτ j(x̂) dx̂ . (5.10)

Although in general dependent on x̂ the Jacobi matrix as well as the Gram determinant boil
down to constant quantities for some special but very popular element types. For instance,
the Jacobi matrix according to the mapping (5.8) which represents a flat 3-node triangle
(cf. Fig. 5.2) is just given by

Jτ =
[
p2−p1 p3−p2

]
.
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Introducing the abbreviations a := p2−p1 and b := p3−p2 as well as a = |a| and b = |b|
the Gram determinant becomes

gτ = det
[
〈a>,a〉 〈a>,b〉
〈b>,a〉 〈b>,b〉

]
= a2b2−a2b2 cos2

θ = a2b2 sin2
θ .

With sinθ = ha
b the determinant is gτ = a2h2

a and, thus, the integration over the reference
element becomes simply∫

τ̂

k(χτ(x̂))
√

gτ(x̂) dx̂ = 2A4
∫
τ̂

k(χτ(x̂)) dx̂

with A4 being the triangle’s area. If the element τ is a parallelogram the Gram determinant
is also constant and equals the parallelogram’s area. For all other element types, gτ exhibits
the dependency on the local coordinate vector x̂.

p1

p2

p3

ha

a

b

θ

Figure 5.2: Flat 3-node triangle

With (5.10) the approximation of the surface integral by a finite number of boundary ele-
ments is done. More information about this approximation as well as on some geometrical
requirements concerning the boundary elements is given in [107, 120].

There are two more quantities which demand a representation in reference coordinates.
Both the normal vector and the surface curl contain geometry information. Thus, they are
also subjected to the mapping (5.2). The normal vector reads in local coordinates as

n(x̂) :=
1√

gτ(x̂)

(
∂x
∂ x̂1
× ∂x

∂ x̂2

)
. (5.11)

Now, recalling the surface curl’s definition from (4.2)

∂

∂S(∂x,n(x))
= n(x)×∇x

and inserting (5.11) gives

n(x)×∇x =−∇x×n(x) =− 1√
gτ(x̂)

∇x×
(

∂x
∂ x̂1
× ∂x

∂ x̂2

)
.
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Next, using the vector identity a× (b× c) = b(a · c)− c(a ·b) that expression is equivalent
to

− 1√
gτ(x̂)

∇x×
(

∂x
∂ x̂1
× ∂x

∂ x̂2

)
=− 1√

gτ(x̂)

[
∂x
∂ x̂1

(
∇x ·

∂x
∂ x̂2

)
− ∂x

∂ x̂2

(
∇x ·

∂x
∂ x̂1

)]
.

Above the terms in parenthesis can be identified with local derivatives since

∇x ·
∂x
∂ x̂i

=
3

∑
k=1

∂

∂xk

∂xk

∂ x̂i
=

∂

∂ x̂i

holds due to the chain rule. Thus, the surface curl reads in local coordinates as

∂

∂S(∂x̂,n(x̂))
=− 1√

gτ(x̂)

[
∂x
∂ x̂1

∂

∂ x̂2
− ∂x

∂ x̂2

∂

∂ x̂1

]
.

Finally, with the definition of the Jacobi matrix (5.9) and the operator

∇
⊥
x̂ :=

[
∂

∂ x̂2

− ∂

∂ x̂1

]
the surface curl can be written more compact as

∂

∂S(∂x̂,n(x̂))
=− 1√

gτ(x̂)
Jτ(x̂) ·∇⊥x̂ . (5.12)

For later purpose, it is useful to define some characteristics related to the triangulation G.
At first, the element size hτ of the boundary element τ is defined as

hτ := sup
y,x∈τ

|y−x| .

Then, the triangulation’s mesh size is given by

hG := max{hτ : τ ∈ G} .

Finally, the constant qG denotes the mesh’s quasiuniformity defined as the ratio between
the maximal and minimal mesh sizes

qG :=
hG

min{hτ : τ ∈ G}
.

5.2 Galerkin discretization

In general, the discrete Galerkin scheme is nothing but a spatial discretization of the vari-
ational forms stated in section 3.3. Here, it should be deduced by means of the variational
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form (3.33) which corresponds to the elliptic mixed boundary value problem given in sec-
tion 2.4. While the Galerkin discretization is introduced for an elliptic problem it equiva-
lently can be applied to the time-dependent case resulting in a semi-discrete system which
still obeys the convolution integrals in time. The discretization of theses integrals is treated
in section 5.4.

Recalling the variational form concerning the elliptic mixed boundary value problem reads
as:

Find (q̃, ũ) such that

〈V̂ q̃,w〉ΓD−〈K̂ũ,w〉ΓD = 〈(1
2 Î+ K̂)g̃D−V̂ g̃N−N̂0 f ,w〉ΓD

〈K̂′q̃,v〉ΓN + 〈D̂ũ,v〉ΓN = 〈(1
2 Î − K̂

′)g̃N−D̂g̃D−N̂1 f ,v〉ΓN

(5.13)

is fulfilled for all test functions (w,v).

Now, the Boundary Element Method defines an approximation of the unknown boundary
data (q̃, ũ). Thereby, the unknown data have to be approximated by a finite number of
parameters. The realization of such an approximation is usually done by the choice of
polynomial basis functions. To define those functions, first, appropriate finite-dimensional
subspaces

Sγ

h(ΓD,h) := span{ϕγ

k }
N
k=1 γ ∈ N

Sβ

h (ΓN,h) := span{ψβ

` }
M
`=1 β ∈ N\{0}

(5.14)

are introduced with the basis functions ϕ
γ

k and ψ
β

` . These subspaces have to be constructed
in such a manner that appropriate linear combinations of their basis functions reflect the
correct solution behavior of (q̃, ũ). Their dimensions N and M correspond to the number of
unknown parameters on the boundary Γh = ΓD,h∪ΓN,h. According to the stated boundary
value problems in section 2.4, on the Dirichlet boundary ΓD,h the Neumann datum q̃ is
unknown while on the Neumann boundary it is the Dirichlet datum ũ which is sought
after. Since the Neumann data are related to the normal vector as it is stated in Eqns.
(2.67) & (2.68) its distribution is not necessarily continuous. Thus, it is sufficient that the
space Sγ

h(ΓD,h) consists of N piecewise continuous functions ϕ
γ

k of order γ . Contrary, the
Dirichlet data have to be continuous and, therefore, the subspace Sβ

h (ΓN,h) comprises the
set of M continuous functions ψ

β

` of order β . More mathematical details concerning the
choice of the appropriate subspaces may be found in the textbooks of Hackbusch [54],
Sauter & Schwab [107], Steinbach [120], and Hsiao & Wendland [63].

Next, approximating the unknown Dirichlet and Neumann data by linear combinations of
ϕ

γ

k and ψ
β

` yields

q̃≈ qγ

h(x) :=
N

∑
k=1

qkϕ
γ

k (x) ∈ Sγ

h(ΓD,h)

ũ≈ uβ

h (x) :=
M

∑
`=1

u`ψ
β

` (x) ∈ Sβ

h (ΓN,h) .

(5.15)
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Inserting these approximations into the variational formulation (5.13) results in two equa-
tions with N unknown parameters qk for the first one and M unknown parameters u` for
the second one, respectively. To determine those N +M unknowns qk and u` an equivalent
number of constraints is essential. For this purpose, the variational formulation (5.13) is
passed through the respective subspace’s basis (5.14). This yields the discretized varia-
tional Galerkin formulation which now reads as:

Find (qγ

h,u
β

h ) such that

〈V̂qγ

h,w
γ

h〉ΓD,h−〈K̂uβ

h ,wγ

h〉ΓD,h = 〈(1
2 Î+ K̂)gβ

D,h−V̂gγ

N,h−N̂0 fh,w
γ

h〉ΓD,h

〈K̂′qγ

h,v
β

h 〉ΓN,h + 〈D̂uβ

h ,vβ

h 〉ΓN,h = 〈(1
2 Î − K̂

′)gγ

N,h−D̂gβ

D,h−N̂1 fh,v
β

h 〉ΓN,h

is satisfied for all wγ

h ∈ Sγ

h(ΓD,h) and vβ

h ∈ Sβ

h (ΓN,h).

Note that also the given data has to be approximated by making use of Sγ

h(ΓD,h) and
Sβ

h (ΓN,h), respectively.

The discretized variational form is equivalent to the linear system of equations[
V̂h −K̂h

K̂>h D̂h

]
·
[
qh

uh

]
=

[̂
fD
f̂N

]
(5.16)

where V̂ denotes the discrete single layer matrix, K̂h and K̂>h are the discrete double and
adjoint double layer matrices, and D̂h reflects the discrete hypersingular operator matrix,
respectively. Moreover, the given data are collected into the vectors f̂D and f̂N , and the
unknown Cauchy data are represented by the vector of unknowns [qh uh]>. In detail, the
entries of the system matrices are given by

V̂h[i,k] = 〈V̂ϕ
γ

k ,ϕ
γ

i 〉ΓD,h =
∫

supp(ϕγ

i )

ϕ
γ

i (x)
∫

supp(ϕγ

k )

U(y−x)ϕγ

k (y) dsy dsx

K̂h[i, `] = 〈K̂ψ
β

` ,ϕ
γ

i 〉ΓD,h =
∫

supp(ϕγ

i )

ϕ
γ

i (x)
∫

supp(ψβ

` )

(TyU)>(y−x)ψβ

` (y) dsy dsx

D̂h[ j, `] = 〈D̂ψ
β

` ,ψ
β

j 〉ΓN,h =−
∫

supp(ψβ

j )

ψ
β

j (x)Tx

∫
supp(ψβ

` )

(TyU)>(y−x)ψβ

` (y) dsy dsx

(5.17)
where supp(φ) denotes the support of the function φ . The support of a function is the
domain on which the function φ is evaluated to non-zero values. Analogously, the entries
of the right hand side are

f̂D[i] = 〈(1
2 Î+ K̂)gβ

D,h−V̂gγ

N,h−N̂0 fh,ϕ
γ

i 〉ΓD,h

f̂N [ j] = 〈(1
2 Î − K̂

′)gγ

N,h−D̂gβ

D,h−N̂1 fh,ψ
β

j 〉ΓN,h .
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Thereby, the entries according to the identity operator are computed by

I[m,n] =
∫

supp(ψβ
m)

ψ
β
m(x)ϕγ

n (x) dsx

which is nothing but the classical mass matrix. Due to the Galerkin discretization the
matrices V̂h and D̂h are symmetric (see (5.17)). Thus, the system (5.16) is block skew-
symmetric. Additionally, the discretization of static problems results in a positive definite
V̂h whereas in the time harmonic case the situation slightly changes. There, the funda-
mental solution is of the form U = U(y−x,ω) and the system (5.16) is positive definite
only under the constraint that the frequency ω is not an eigenfrequency of the problem.
Moreover, the linear system (5.16) consists of real entries in the static case and of complex
entries for time harmonic problems.

To develop an appropriate solution algorithm for the system (5.16), first, a closer look
should be given on the physics behind it. In almost all engineering applications the Dirich-
let boundary is small compared to the Neumann part, i.e., there are usually much more
Neumann data than Dirichlet data prescribed. Hence, the number N of unknown Neumann
data is considerably smaller than the number M of unknown Dirichlet data. With the as-
sumption N�M and the knowledge that V̂h is positive definite the first equation of (5.16)
could be solved for the first unknown

qh = V̂−1
h K̂huh + V̂−1

h f̂D .

Inserting this into the second equation of (5.16) gives the Schur complement system

Ŝhuh = f̂N− K̂>h V̂−1
h f̂D (5.18)

with the symmetric and positive definite Schur complement matrix [120]

Ŝh := D̂h + K̂>h V̂−1
h K̂h . (5.19)

In principle, there exist two approaches to obtain an explicit solution of (5.18). One is
based on iterative solution methods and the other one uses classical direct solver algo-
rithms. Within this thesis direct solvers are used as they are, for instance, described in the
standard textbook of Golub & van Loan [46] concerning linear algebra. The use of a direct
solver scheme restricts this formulation to rather small or medium sized problems since
those solvers obey the complexity O(M3) contrary to the complexity O(M2) for iterative
methods. Nevertheless, as the emphasis of this thesis is the solution of time-dependent
problems this restriction becomes less evident, since in that case the storage of the system
matrices for every time step is required. The forthcoming section will clarify this issue.

Now, to sketch the solution of (5.18) briefly one has to distinct between the static and
the time-harmonic case. In statics the situation is simple. The matrix V̂h can be inverted
using the Cholesky factorization [46], i.e., the discrete single layer potential matrix is
decomposed into V̂h = LL> where L ∈ RN×N is an upper or lower triangular matrix. Anal-
ogously, the Schur complement matrix can be decomposed via the Cholesky factorization.
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In frequency-dependent problems the matrices are complex valued, symmetric, but not
Hermitian. Thus, the classical Cholesky algorithm fails and one has to be content with a
slightly modified factorization. The so-called LDL>-factorization [46] decomposes V̂h into
a lower triangular matrix L ∈ CN×N and a diagonal matrix D ∈ CN×N , i.e., V̂h = LDL>. Fi-
nally, also the decomposition of the Schur complement matrix is done by making use of
the LDL>-factorization.

5.3 Numerical integration

Probably the most challenging part within any Boundary Element formulation is the accu-
rate evaluation of the matrix entries according to (5.16). As mentioned at the beginning
of chapter 4 the analytical integration of the integral kernels is impossible in general and
numerical integration schemes have to be used instead. An insufficient numerical integra-
tion scheme is sometimes categorized as variational crime, a term which has been coined
by Strang & Fix [121]. To exclude such an issue as far as possible some investigations
concerning the computation of the matrix entries (5.17) must be given.

During this section the integral kernel is just denoted as K(y− x) whereas K represent
any of the stated fundamental solutions. Applying a numerical scheme onto this kernel
function means that the integral I[K] is replaced by a quadrature Qnm[K]. For two points
x ∈ τx and y ∈ τy being defined on two elements τx and τy, respectively, the general form
of a boundary integral’s kernel in local coordinates x̂ and ŷ reads as

K̂(ŷ, x̂) := φ(x̂)K(χτy(ŷ)−χτx(x̂))ψ(ŷ)
√

gτx(x̂)
√

gτy(ŷ) . (5.20)

Thereby, the functions φ and ψ denote the respective test- and trial-functions according to
the Galerkin scheme. The quadrature of the four-dimensional integral is given by

I[K] =
∫
τ̂x

∫
τ̂y

K̂(ŷ, x̂) dŷdx̂≈
n

∑
i=1

m

∑
j=1

ωiω j K̂(ξξξ i,ηηη j) = Qnm[K] . (5.21)

Note that the quadrature rule has to be chosen according to the two different element types
defined in (5.3). In this work, all regular numerical integrations concerning the reference
triangle are done by using quadrature rules developed by Dunavant [36] while in case of
quadrilaterals the regular integrations are performed by using the tensor product of the
classical Gauss-Legendre quadrature. At least, this fundamental numerical integration
scheme can be found in almost every textbook on Finite Elements, e.g., in the textbook of
Bathe [8].

The quadrature (5.21) shows already one important drawback of the proposed Boundary
Element Method. Contrary to the classical Finite Element Methods, here, the integral
kernel is not a polynomial of fixed degree but rather a rational function of the form

K̂(x̂, ŷ) =
f (x̂, ŷ)

χτy(ŷ)−χτx(x̂)
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with some sufficient smooth function f (x̂, ŷ). Therefore, it is not possible to determine the
number of Gauss points n and m such that the quadrature is exact. It is even challenging
to answer the question on the number of Gauss points which is necessary to go below a
certain error bound ε . In other words, the control of the absolute integration error

Enm[K] := |(I−Qnm)[K]| (5.22)

such that Enm[K] < ε is a large problem within every Boundary Element Method which
relies on numerical integration schemes. Unfortunately, this method is still lacking of
appropriate error estimates such that one has to be content with a rather heuristic choice
concerning the number of appropriate Gauss points. The fact that the kernel functions
depend basically on the reciprocal distance 1/|y−x| motivates the use of the distance
between two elements τx and τy as a main criterion to fix the number of Gauss points.
Qualitative this criterion is formulated as: The larger the distance between two elements
become the fewer Gauss points need to be chosen. The distance’s definition between two
elements is taken from [107]

dist(τx,τy) := inf
x∈τx
y∈τy

|y−x| .

Obviously, this distance is difficult to measure so that the following approximation serves
as a sufficiently good enough estimate

dist(τx,τy)≈ d̃ist(τx,τy) := |sy− sx|−
1
2

(hy +hx) .

Above, the points sx and sy denote the centers of the respective boundary elements and hx
as well as hy are their mesh sizes. As mentioned before, the choice of the Gauss points’
number depends on an heuristic approach and has no rigorous mathematical background.
The number of Gauss points which are used for the numerical examples in chapter 6 is
given in Tab. 5.1. There, the dimensionless distance δ̃ (τx,τy) := d̃ist(τx,τy)/hG is intro-
duced. Further, the number of Gauss points per element is given by n4 for triangles and
by n� for quadrilaterals, respectively.

δ̃ (τx,τy) n4 n�

0 - 52

0 . . .1 6 52

1 . . .5 4 32

> 5 3 22

Table 5.1: Quadrature rule dependent on δ̃

A real error estimate from a mathematical point of view is given by Sauter & Schwab
in [107, p. 266]. Contrary to the presented approach that estimate’s aim is to guarantee
the convergence of the Galerkin scheme, i.e., it controls the discretization error instead
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of the integration error. Although being much more powerful at the end it is not used
for the numerical examples which will be presented in chapter 6. Those examples are
primary intended to confirm the herein presented Boundary Element Method. Therefore,
the numerical tests will be done by means of simple geometries with coarser meshes which
demand accurate integration schemes in order to give reasonable results.

The numerical integration scheme discussed so far is in some sense only the prelude of the
probably most challenging numerical task. If the distance between two elements becomes
zero, i.e., if the point x reaches the point y the integral kernel gets singular. Fortunately,
due to the former stated regularization of the strong- and hypersingular integral kernels
this singularity is always of a weak type such that the integral exists in an improper sense.
Nevertheless, the application of Gaussian quadrature is inadequate since the kernel is not
regular enough. One approach to handle weak singularities is the transformation by special
coordinate transformations which remove the singularity by help of the transformation’s
Gram determinant. Although those coordinate transformations go back to the work of
Lachat & Watson [71] they are commonly better known as Duffy transformations [35].
The method is illustrated on the basis of a two-dimensional function f being defined as

f (x̂) :=
x̂1 (1− x̂2)√

x̂2
1 + x̂2

2

, 0≤ (x̂1, x̂2)≤ 1 .

The function f has a singularity at the point (x̂1, x̂2) = (0,0) but the integral exists as an
improper integral with

I[ f ] = lim
ε→0
ε>0

1∫
ε

1∫
ε

f (x̂) dx̂2 dx̂1 =
1
6

(
1−
√

2+3log(1+
√

2)
)

. (5.23)

Although an application of the Gauss-Legendre quadrature to that integral yields not a
completely wrong result, the quadrature’s convergence rate is by far too slow. For an accel-
eration of the convergence a regularization is mandatory in order to remove the singularity
at the origin. In Fig. 5.3, the main steps of this regularization process are depicted.

x̂1

x̂2

T1

T2
Tiw

w1

w2

T ′

[w1
w2 ] =

[
ξ1

ξ1ξ2

]

ξ1

ξ2

Figure 5.3: Regularization via coordinate transformations

At first, the domain of integration is split into two triangles both exhibiting the singularity
at the origin. With the lower triangle T1 := {(x̂1, x̂2) ∈ R2 : 0 < x̂2 < x̂1 < 1} and the upper
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triangle T2 := {(x̂1, x̂2) ∈ R2 : 0 < x̂1 < x̂2 < 1}, respectively, the integration becomes

I[ f ] =
1∫

0

x̂1∫
0

f (x̂) dx̂2 dx̂1 +
1∫

0

1∫
x̂1

f (x̂) dx̂2 dx̂1 . (5.24)

Next, two linear mappings χTi : T ′→ Ti with i = 1,2 are introduced which map the refer-
ence triangle T ′ to the images T1 and T2, respectively. The mapping χT1 is, obviously, just
the identity

χT1 :
[

x̂1

x̂2

]
=
[

1 0
0 1

]
·
[

w1

w2

]
=: T1w . (5.25)

To obtain χT2 : T ′→ T2 one simply use (5.8) with p1 = [0, 0]>, p2 = [1, 1]>, and with
p3 = [0, 1]>, respectively. This yields

χT2 :
[

x̂1

x̂2

]
=
[

1 −1
1 0

]
·
[

w1

w2

]
=: T2w . (5.26)

Due to det(Ti) = 1 with i = 1,2 the integral (5.24) is given in (w1,w2)-coordinates by

I[ f ] =
2

∑
i=1

1∫
0

w1∫
0

f (Tiw) dw2 dw1 .

Note that until now, no regularization has taken place and that the original singularity is still
existent. But in contrast to (5.23), the expression above is appropriate for a regularization
via the Duffy transformation. With the simplex coordinates[

w1

w2

]
=
[

ξ1

ξ1ξ2

]
and together with the Gram determinant g = ξ1 the integral is, finally, given by

I[ f ] =
2

∑
i=1

1∫
0

1∫
0

f (Ti

[
ξ1

ξ1ξ2

]
)ξ1 dξ2 dξ1 . (5.27)

This expression is appropriate for the use within the standard Gauss-Legendre quadrature
since the singularity has been removed. The kernel’s regularity can either be proofed by
the limiting process which yields

lim
ξ1→0
ξ1>0

(
f (Ti

[
ξ1

ξ1ξ2

]
)ξ1

)
= 0 , i = 1,2

or simply by calculating the kernel’s explicit form which gives

2

∑
i=1

f (Ti

[
ξ1

ξ1ξ2

]
)ξ1 =

ξ1 (1−ξ1ξ2)√
1+ξ 2

2

+
ξ1 (1−ξ1)(1−ξ2)√

1+(1−ξ2)
2

.
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This kind of regularization is advantageous due to the fact that it relies only on appropriate
coordinate transformations. Hence, there are only few requirements concerning the inte-
gral kernel. Beside the knowledge of the singularity’s type the only necessary information
is the singularity’s location which is always known. Further, it is extremely simple from an
implementation point of view since the integral kernel itself is left unchanged. According
to (5.27) only the transformed coordinates have to be plugged into the kernel function. To
verify this integration scheme, in Tab. 5.2 and in Fig. 5.4 the integration errors for an
increasing number of Gauss points are depicted. The integration error’s definition is based
on (5.22). The values Estd

n refer to an application of the Gauss-Legendre quadrature to the
unmodified kernel whereas the last column represents the integration error Ereg

n based on
an evaluation of the regularized kernel (5.27).

√
n Estd

n [ f ] Ereg
n [ f ]

1 3.7e-01 3.7e-01
2 1.8e-02 7.6e-02
3 9.2e-03 4.1e-04
4 2.8e-03 2.4e-05
5 1.1e-03 6.6e-07
...

...
...

30 6.5e-07 6.7e-16

Table 5.2: Non-regularized and
regularized Quadrature

0 5 10 15 20 25 30
No. of Gauss points

1e-15

1e-12

1e-09

1e-06

0.001

1

E
rr

or
 E

n
std
reg

Figure 5.4: Error plot

As assumed the absolute integration error decreases considerably faster for the regular-
ized kernel than for the unmodified one. For the regularized approach an accuracy of
En[ f ]≈ 10−7 is achieved for 52 Gauss points. In contrast, about 302 Gauss points are nec-
essary to achieve a similar accuracy in case of the non-regularized quadrature. Thus, it is
obviously more efficient to apply certain coordinate transformations resulting in a removal
of the kernel’s singularity.

Until now, the presented regularization is only stated by means of a two-dimensional ex-
ample. Obviously, this regularization is not suitable for use within the numerical treatment
of (5.21), since there the occurring integrals are defined on a four-dimensional reference
domain. To handle this case, quadrature rules as they are stated in the works of Sauter
[37, 106, 107] are used within this work. Their detailed derivation is very laborious and is
omitted herein. Nevertheless, with view to section 5.5 it is important to sketch at least
the outline of their deduction in the following. In principle, the regularization of the
four-dimensional integral kernels given by Sauter follows the same rules as in the two-
dimensional case except one essential difference. Contrary to the stated example the sin-
gularity in Galerkin methods is not necessarily concentrated at a single point. Depending
on the location of two boundary elements τx and τy one has to distinguish four different
cases:
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• Boundary elements with positive distance: dist(τx,τy) > 0

• Identical boundary elements τx = τy

• The elements τx and τy share a common edge

• The elements τx and τy share a common point

Fig. 5.5 illustrates these four cases more strikingly. The regular integrations are not consid-
ered at this point so that it remains to investigate the remaining three cases. Obviously, only
if two elements share one common point there exist a point singularity. Let χτx : τ̂ → τx be
the mapping onto the element τx, and let χτy : τ̂ → τy be the mapping according to the ele-
ment τy. Then, it is assumed that both mappings are given such that in the vertex-adjacent
case

χτx(
[

0
0

]
) = χτy(

[
0
0

]
)

holds. In the edge-adjacent case the mappings are chosen such that the singularity can be
expressed by the line

χτx([
s
0 ]) = χτy([

s
0 ]) ∀s ∈ [0,1] .

Finally, in the coincident case the singularity is a plane within the four-dimensional refer-
ence domain

χτx([
s
t ]) = χτy([

s
t ]) ∀(s, t) ∈ [0,1]2 . (5.28)

In the end, the regularization relies on an application of a Duffy transformation which de-
mand a point singularity at the origin. Hence, as a preliminary work the singularities above
have to be fixed at the origin. To achieve this goal relative coordinates are introduced. Af-
ter this is done, the region of integration can be divided into several sub-regions such that
the already described procedure of regularization can be applied (cf. Fig. 5.3).

x

y

(a) Regular case

x
y

(b) Coincident case

x

y

(c) Edge adjacent case

x
y

(d) Vertex adjacent case

Figure 5.5: Possible element correlations

To illustrate the use of relative coordinates very briefly, the coincident case is considered
exemplary. Let τx and τy be two coincident quadrilateral elements. Then, the integral
kernel reads as

I[K] =
1∫

0

1∫
0

1∫
0

1∫
0

K̂(x̂, ŷ) dŷdx̂
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with a kernel function K̂ of the form (5.20). Next, due to the singularity (5.28) relative
coordinates ẑ are introduced such that the new coordinates (x̂, ẑ) = (x̂, ŷ− x̂) fix the singu-
larity at ẑ = 0. This yields the modified integral

I[K] =
1∫

0

1∫
0

1−x̂1∫
−x̂1

1−x̂2∫
−x̂2

K̂(x̂, ẑ+ x̂) dẑdx̂ .

Afterwards, a splitting of the integration domain into eight subdomains leads to analogous
integration domains as they are given for the two-dimensional case in (5.24). With the
four-dimensional unit simplex

T ′4 := {(w1,w2,w3,w4) ∈ R4 : 0≤ w4 ≤ w3 ≤ w2 ≤ w1 ≤ 1}

mappings are introduced such that those domains are images of the reference simplex T ′4.
Finally, simplex coordinates wi = ∏

i
k=1 ξk with i = 1 . . .4 are used to remove the singular-

ity at the origin and to end up with an analytical kernel function. All of these steps are given
in detail in [107] and, therefore, are omitted herein. Nevertheless, one closing remark must
be given concerning the derivation stated here and the one stated in [107]. There, the aim is
the regularization of kernel functions which feature not only a weak singularity but which
may exhibit also a strong singularity. To regularize the latter type of singularity one has
to perform two additional steps. First, the order of integration is reversed and, secondly,
some antisymmetric properties of the fundamental solutions derivatives are used by what
the strong singularities are eliminated.

To close this section the main results may be summarized. At first, a numerical scheme is
applied for all integrations. The regular, i.e., non-singular, integrations over the reference
triangle are done by use of a special triangular quadrature. All quadrilaterals and singular
integrals are computed by the standard Gauss-Legendre quadrature. Additionally, in the
singular case the quadrature is preceded by a regularization of the integral kernel. This
regularization is mainly based on the use of relative coordinates and an application of the
Duffy transformation to remove the singularity.

5.4 Convolution Quadrature Method

As mentioned at the outset of section 5.2, the Galerkin discretization can be applied also
to hyperbolic problems and their variational formulations as they are given in section 3.3.
Exemplary, the variational formulation according to a mixed hyperbolic boundary value
problem reads as:

Find (q̃, ũ) such that

〈V ∗ q̃,w〉ΓD−〈K∗ ũ,w〉ΓD = 〈 fD,w〉ΓD

〈K′ ∗ q̃,v〉ΓN + 〈D ∗ ũ,v〉ΓN = 〈 fN ,v〉ΓN .
(5.29)
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is fulfilled for all test-functions (w,v).

In the statement above, the right hand-sides are abbreviated. Their explicit form is given
in Eqn. (3.31).

In contrast to the elliptic cases the unknown data exhibit a time-dependency such that
q̃ = q̃(y, t) and ũ = ũ(y, t), respectively, holds. For this data, an approximation can be
given by decoupling the time dependency from the spatial dependency. In accordance to
the elliptic approximation (5.15) this yields

q̃≈ qγ

h(x, t) :=
N

∑
k=1

qk(t)ϕ
γ

k (x) ∈ Sγ

h(ΓD,h)

ũ≈ uβ

h (x, t) :=
M

∑
`=1

u`(t)ψ
β

` (x) ∈ Sβ

h (ΓN,h) .

(5.30)

Note that the functional spaces above coincide with those for the elliptic case (cf. Eqn.
(5.14)). Inserting (5.30) into (5.29) yields the semi-discrete variational problem

〈V ∗qγ

h,w
γ

h〉ΓD,h−〈K∗uβ

h ,wγ

h〉ΓD,h = 〈 fD,h,w
γ

h〉ΓD,h

〈K′ ∗qγ

h,v
β

h 〉ΓN,h + 〈D ∗uβ

h ,vβ

h 〉ΓN,h = 〈 fN,h,v
β

h 〉ΓN,h

(5.31)

for all test-functions wγ

h(x) ∈ Sγ

h(ΓD,h) and vβ

h (x) ∈ Sβ

h (ΓN,h). The test-functions wh and vh
exhibit no time-dependency by what the Galerkin discretization is a discretization scheme
for the spatial dimensionality only. Therefore, in order to arrive at a purely algebraic set
of equations, the remaining goal within this section is the numerical treatment of the time
convolution integrals of type

( f ∗g)(t) :=
t∫

0

f (t− τ)g(τ) dτ ∀ t > 0 . (5.32)

Costabel [29] gives a comprehensive overview concerning time stepping procedures within
Boundary Element Methods where, in principle, three possibilities of treating the time-
dependency in boundary integral equation methods are distinguished. The so-called class
of time-stepping methods avoid the time convolution integrals (5.32) completely since
there are no space-time boundary integral equations involved at all. These methods in-
corporate the time-discretization already in the earliest possible stage, namely at the level
of the associated initial boundary value problem. Applying a time-stepping scheme onto
the initial boundary value problem yields a sequence of elliptic boundary value problems
parametrized by the time-variable. Then, this sequence of boundary value problems is
treated by the use of boundary integral equations as they are stated for elliptic problems.
An application of this idea may be found, e.g., in [24]. The drawback of this method
consist mainly in inhomogeneities resulting from the time-discretization. Those inhomo-
geneities are rather cumbersome to deal with since they result in domain integrals within
the boundary integral equations.
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Contrary to that, the space-time integral equations methods can be regarded as the oppo-
nents to the former method since here, the time-discretization is invoked very lately. This
method has been mainly established by Mansur [80] for the acoustic fluid and for elastody-
namics in two space dimensions. For elasticity problems, an extension to three dimensions
has been proposed by Antes [5]. The method’s main idea is the discretization of the time-
dependent coefficients qk(t) and u`(t) in (5.30) via appropriate polynomial trial-functions.
Afterwards, these functions are inserted into the time convolution integrals of type (5.32)
and the integrations are performed analytically. Obviously, this analytical treatment de-
mands the knowledge of the time-domain fundamental solution which is not known for
every physical problem. Actually, the time-domain fundamental solution for viscoelastic
continua is unknown in closed form and, thus, the method is not applicable in this case.
Another drawback of this method is the fact that the stability properties are occasionally
problematic. Due to these weaknesses this approach is not followed any longer. For more
details the works of Mansur [80] and of Ha-Duong [53] are recommended.

The method presented here can be generally classified into the group of Laplace trans-
form methods [29]. As the name already induces those time-stepping schemes utilize the
Laplace transformation to approximate the time convolution integral (5.32). In particular,
the time-stepping scheme presented here is commonly denoted as convolution, or opera-
tional quadrature method. In the following, the method’s name is abbreviated by CQM.
Its use is advantageous since the CQM is capable to treat problems where the fundamen-
tal solution is known in the Laplace-domain only. This method has been developed by
Lubich [76–78] and has been succesfully applied to parabolic problems [79] as well as
to viscoelastic [112] and poroelastic [111] Boundary Element Formulations being based
on a collocation scheme in space. Nowadays, the method is well-known and should be
sketched out only briefly in the following. Its detailed derivation can either be found in the
original work of Lubich [76, 77] or in the book of Schanz [111]. Here, Schanz’s deduction
is followed and whenever details are omitted the reader is referred to [111].

As a starting point serves the inverse Laplace transformation [33]

f (t) = lim
Y→∞

1
2πi

c+iY∫
c−iY

f̂ (s) exp(ts) ds , t > 0 (5.33)

which defines the original time-domain solution f (t) by its Laplace-transform f̂ (s). In
(5.33) the path integral is performed along a line which runs parallel to the imaginary axis
and crosses the abscissa c ∈ R. In order to be well posed, c must be chosen to be larger
than the largest real part of all poles of the Laplace transform f̂ (s). Inserting (5.33) into
the convolution integral (5.32) yields

( f ∗g)(t) =
1

2πi
lim

Y→∞

c+iY∫
c−iY

f̂ (s)
t∫

0

g(τ)exp(s(t− τ)) dτ

︸ ︷︷ ︸
:=h(t,s)

ds . (5.34)
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Note, above the integrations have been exchanged which enables the definition of a func-
tion h(t,s). For a further treatment of (5.34) it would be advantageous to separate the
complex variable s from the time-variable t such that h(t,s) can be decomposed into two
functions depending either on s or on t. Then, such a decomposition can be used to perform
the complex integration analytical. Of course, this cannot be done completely analytical
but semi-analytical. At first, it turns out that h(t,s) is the solution of the ordinary differen-
tial equation of first order (

d
dt
− s
)

h(t,s) = g(t) (5.35)

with the homogeneous initial condition

h(0,s) = 0 .

The representation (5.35) gives a hint to the solution scheme. An inversion of the differ-
ential operator d/dt− s yields the solution for h(t,s). Now, having a numerical scheme in
mind this inversion is not performed analytically (which would lead to the integral defi-
nition in (5.34)) but by using a classical multistep method [122]. For this, the continuous
function h(t,s) is evaluated at distinct times tn = n∆t with n ∈ N and a constant time step
size ∆t. In the following, as an abbreviation all time dependent quantities f (tn, ·) will be
noted as fn. The incorporation of the multistep method is rather cumbersome and is omit-
ted in this work. It is sufficient to note that within the multistep method it is not possible
to isolate hn such that hn = F(gn) holds for some known function F . Nevertheless, at the
end the power series

∞

∑
n=0

hnzn =
1

θ(z)
∆t − s

∞

∑
n=0

gnzn (5.36)

is obtained for some complex number z ∈ C. The above expression is deduced under the
restriction that the k-step method uses k zero starting values, i.e., the function hn features
k homogeneous initial conditions h0 = h1 = . . . = hk−1 = 0. The function

θ(z) :=
ρ(z)
σ(z)

is defined as the quotient of two polynomials ρ(z) and σ(z) characterizing the underly-
ing multistep method [73]. Therefore, the quotient θ(z) will be denoted as characteristic
function throughout the rest of this section. A comparison of (5.36) with the differential
equation (5.35) reveals the similarity of both expressions. The factor on the right-hand side
of (5.36) may be interpreted as a discrete version of the inverse of the differential operator
d/dt− s. Moreover, in (5.36) the time-variable tn is separated from the Laplace parameter
s such that this expression is suitable to be re-inserted into (5.34). For this, (5.34) has to
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be multiplied with zn and summed up over all n. This gives

∞

∑
n=0

( f ∗g)n zn =
1

2πi
lim

Y→∞

c+iY∫
c−iY

f̂ (s)
∞

∑
n=0

hnzn ds

=
1

2πi
lim

Y→∞

c+iY∫
c−iY

f̂ (s)
1

θ(z)
∆t − s

ds
∞

∑
n=0

gnzn .

(5.37)

Now, the complex integration can be performed by using the residue theorem [114]. The
Laplace transform has by definition no more poles for Re(s)≥ c. Hence, the integral has
a single pole at s = θ(z)/∆t which gives

1
2πi

lim
Y→∞

∫
SY (c)

f̂ (s)
1

θ(z)
∆t − s

ds = f̂
(

θ(z)
∆t

)
. (5.38)

Note that the application of the residue theorem demands a closed contour path. Here,
SY (c) := {s ∈ C : (Re(s) = c∧|s| ≤ Y )∨ (Re(s) > c∧|s− c|= Y )} denotes the union of
the line parallel to the imaginary axis with a half circle in the complex plane of radius
Y centered at c. Since the integral above must equal that integral in (5.37) the Laplace
transform f̂ has to fulfill the additional constraint lim|s|→∞ | f̂ (s)|= 0. Next, inserting the
result (5.38) into (5.37) yields

∞

∑
n=0

( f ∗g)nzn = f̂
(

θ(z)
∆t

)
∞

∑
n=0

gnzn . (5.39)

Of course, the aim is not to find an expression for the sum ∑
∞
n=0( f ∗g)n zn but for the

convolution integral ( f ∗g)n itself. For this purpose, the function f̂ (θ(z)/∆t) is developed
in a power series

f̂
(

θ(z)
∆t

)
=

∞

∑
n=0

ωn( f̂ )zn .

Inserting this into (5.39) yields a double sum which can be simplified using the Cauchy
product of two power series [55]

f̂
(

θ(z)
∆t

)
∞

∑
n=0

gnzn =
∞

∑
n=0

ωn( f̂ )zn
∞

∑
n=0

gnzn =
∞

∑
n=0

n

∑
k=0

ωn−k( f̂ )gk zn . (5.40)

Finally, by inserting (5.40) into (5.39) and by comparing the coefficients a quadrature rule
for the convolution integral (5.32) is obtained

( f ∗g)n ≈
n

∑
k=0

ωn−k( f̂ ,∆t,θ)gk , ∀n ∈ N . (5.41)

The terms in parenthesis should emphasize on the weights’ main dependencies which are
the Laplace transform f̂ , the time step size ∆t, and the characteristic function θ , respec-
tively. Now, it remains to give a detailed representation of those. If the series expansion of
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the Laplace transform f̂ is explicitly known the weights can be determined analytical. But
since this is in general not the case the calculation of the weights ωn is based on Cauchy’s
integral formula [114]

ωn( f̂ ,∆t,θ) =
1

2πi

∫
∂BR

f̂
(

θ(z)
∆t

)
z−n−1 dz . (5.42)

The contour ∂BR := {z ∈ C : |z|= R} denotes the circle in the domain of analyticity of
the function f̂ (θ(z)/∆t). A numerical treatment of (5.42) can be achieved by using the
trapezoidal rule. Again, a detailed derivation is omitted and just the final form is recalled

ωn( f̂ ,∆t,θ)≈ 1
L

L−1

∑
`=0

f̂
(

θ(ζ`)
∆t

)
ζ
−n
` , ζ` := Rexp(i`2π

L ) . (5.43)

With the expression above at least two approximations have been introduced during the
deduction of the CQM. Beside the approximation above a linear multistep method is used
which demands some requirements that have not been mentioned yet. The multistep
method has to meet certain stability criteria which limit the class of sufficient methods
[76]. Within this thesis a BDF of order 2 (BDF2) is used which is known to suffice the
stability criteria. The method’s underlying characteristic polynomial is given by

θ(z) =
3
2
−2z+

1
2

z2 .

Finally, the parameters L and R from (5.43) need to be specified. While the parameter
R simply denotes the radius of the circle ∂BR the parameter L represents the number of
intervals the circle ∂BR is split into within the numerical approximation of the integral
(5.42). Now, let N be the number of total time steps for which the convolution (5.41)
has to be approximated and let ε be a prescribed error bound for the computation of f̂ in
(5.43), then the choice of RN =

√
ε and L = N yields an error in the weight ωn of order

O(
√

ε) [77, 111]. The choice of L = N is mainly motivated by efficiency reasons since
it allows the computation of the weights ωn by a technique similar to the Fast Fourier
Transformation (FFT). Numerical studies concerning the choice of parameters can be also
found in the work of Schanz [111].

Now, it remains to adopt the CQM for the use within the present Boundary Element
Method. Therefore, the time-convolution integrals of the semi-discrete variational for-
mulation (5.31) are simply plugged into (5.41). As a preliminary, a time grid is introduced
in order to divide the time period of interest [0,T ] with T > 0 in N intervals of constant
size ∆t, i.e., the variational form (5.31) will be approximated at distinct sampling points
tn = n∆t with n = 0,1, . . . ,N. Then, for a time tn an application of the single layer operator
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in (5.31) gives

〈(V ∗qγ

h)(tn),w
γ

h〉ΓD =
∫

ΓD

wγ

h(x)
∫

ΓD

tn∫
0

U(y−x, tn− τ)qγ

h(y,τ) dτ dsy dsx

≈
∫

ΓD

wγ

h(x)
∫

ΓD

n

∑
m=0

ωn−m
(
Û ,∆t,θ

)
qγ

h(y, tm) dsy dsx .

(5.44)

Above, Û denotes the Laplace transformed fundamental solution. Thus, it becomes once
more obvious that the approximation of the time convolution integral is done by using the
Laplace transformed fundamental solution only. This fact makes the knowledge of any
time-dependent fundamental solution obsolete by what means the method fits perfectly for
applications to problems where fundamental solutions in the time-domain are unknown.

Now, inserting the definitions for qγ

h and wh from (5.30) into the expression (5.44) the
convolution becomes

(V ∗q)(tn) =
n

∑
m=0

ωn−m(V̂,∆t,θ)q(tm) .

Of course, the discretizations of the remaining operators K, K′, and D as well as the
discretization of the right hand-side are subjected to the same numerical scheme. With the
definitions

Vn := ωn(V̂,∆t,θ) qn := q(tn)

Kn := ωn(K̂,∆t,θ) un := u(tn)

K′n := ωn(K̂′,∆t,θ) fD,n := fD(tn)

Dn := ωn(D̂,∆t,θ) fN,n := fN(tn)

a sequence of linear systems of equations for every time step n = 0, . . . ,N is obtained

[
V0 −K0

K>0 D0

]
·
[
qn

un

]
=
[
fD,n

fN,n

]
−

n−1

∑
m=0

[
Vn−m ·qm−Kn−m ·um

K>n−m ·qm +Dn−m ·um

]
︸ ︷︷ ︸

=:
[
f̃D,n

f̃N,n

]
. (5.45)

Above, the given right hand-side reveals the usual structure of a typical Boundary Ele-
ment Method’s time stepping technique since it consists of two parts. While all prescribed
boundary data up to the actual time tn are stored in the vector [fD,n fN,n]> the last term com-
prises the complete time-history according to the already computed Cauchy data [qn un]>

for the times t0, . . . , tn−1. Corresponding to the variational form’s load vectors (3.31) the
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prescribed data [fD,n fN,n]> reads in discretized form as

[
fD,n

fN,n

]
=
[
K̄0 ·gD,n−V0 ·gN,n−N0,0 · fΩ,n

K̄′0 ·gN,n−D0 ·gD,n−N1,0 · fΩ,n

]
+

n−1

∑
m=0

[
Kn−m ·gD,m−Vn−m ·gN,m−N0,n−m · fΩ,m

K′n−m ·gN,m−Dn−m ·gD,m−N1,n−m · fΩ,m

]
(5.46)

where Ni,· denotes the discretized i-th Newton potential and fΩ,· are the discretized volume
forces. The matrices K̄0 := 1

2 I+K0 and K̄′0 := 1
2 I−K′0 correspond to the discrete double

layer and adjoint double layer matrices for the first time step. Their definitions are due
to the fact that the identity operator (3.27) contributes only to the first time step. This
can be simply shown since the weights In := ωn(Î,∆t,θ) can be computed analytically.
The identity operator contains the Delta distribution δ whose Laplace transform L {δ}(s)
is known to be 1. Therefore, the integration weights ωn can directly be computed by
substituting z = Rexp(iϕ) in Cauchy’s formula (5.42). This gives

ωn(Î,∆t,θ) =
1

2πi

∫
∂BR

z−n−1 dz =
R−n

2π

2π∫
0

exp(−inϕ) dϕ =

{
1 for n = 0
0 for n 6= 0

.

From (5.45), it is obvious that the solution requires only the inversion of the matrix corre-
sponding to the first time step. Thus, the solution scheme is very similar to the elliptic case.
Again, a direct solver strategy is applied and the matrix V0, which is symmetric as a result
of the Galerkin discretization, is decomposed via a Cholesky-factorization. Afterwards,
the Schur-Complement-System is computed by

S0 = K>0 V−1
0 K0 +D0 . (5.47)

Due to the symmetry of V0 and D0 the Schur-Complement S0 is also symmetric and can
be decomposed itself by a Cholesky-factorization. Note that the Cholesky-factorization
demands a positive definite matrix [46]. While the positive definiteness is proven for el-
liptic systems it still remains to be proven also for hyperbolic systems. However, since the
numerical examples in the following chapter are done by using this solution scheme the ac-
cording system matrices must be positive definite. Otherwise, the Cholesky-factorization
would fail.

Next, the Dirichlet data un and the Neumann data qn can be found by solving

S0un = f̃N,n−K>0 V−1
0 f̃D,n (5.48)

and
qn = V−1

0
(
f̃D,n +K0un

)
(5.49)

for every time step n = 0, . . . ,N. In (5.48) and (5.49), the abbreviations f̃D,· and f̃N,· denote
the complete right hand-side as it is defined in (5.45).
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With the solver scheme above, the formulation of the symmetric Galerkin Boundary Ele-
ment Method for time-dependent problems is completed. Nevertheless, the efficiency of
the time-discretization algorithm can be improved in case of non-dissipative systems. Con-
trary to dissipative material models a non-dissipative material has no memory, i.e., there
exists only a limited time-frame for which the information needs to be stored. In fact, the
linear equations in (5.45) are obtained by resorting a system of lower triangular Toeplitz
block matrices. For both material models the structure of these block matrix systems is
depicted schematically in the Fig. 5.6. Due to causality the physical state at a distinct time
can be influenced by preceding times only and is not affected by future times, i.e., until the
compression wave has not arrived at a certain location all operators must be zero. Within
the system matrices, this physical principle is reflected by the zero matrix blocks in their
upper half. But in contrast to the dissipative model, the non-dissipative system assimilates
no additional information when the shear wave has passed by, i.e., after a certain time tn̄
the operators must be zero again (cf. Fig. 5.6b). Therefore, the storage requirement of the
original N system matrices can be reduced to an amount of only n̄ matrices.

t0

l

tN
(a) Dissipative material

t0

l

tn̄

(b) Non-dissipative material

Figure 5.6: Structure of the system matrices for different material models

Unfortunately, in contrast to the non-dissipative model, a dissipative material like, e.g., a
viscoelastic material, features not the possibility of introducing an equivalent cutoff such
that the complete range of time steps 0, . . . ,N is required (cf. Fig. 5.6a).

In the aforementioned space-time boundary integral equation methods the cutoff is a con-
sequence of the analytical time-integration [80]. But here, one has to be content with an
estimate for it [111] which is based on the asymptotic behavior of the integration weights

ωn ≈
1
n!

(
rmax

c2∆t

)n

exp(−3
2

rmax
c2∆t ) .

In the above equation, rmax is the maximum distance in the discretized body, i.e., the
largest distance the shear wave associated with the velocity c2 has to travel. Moreover,
for this estimate a BDF 2 as underlying multistep method is assumed. The use of other
multistep methods will, of course, lead to other estimations. Hence, an upper limit n̄ for
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calculating the integration weights can be estimated so that for all n > n̄ the integration
weights can be neglected in relation to the weights n < n̄. The use of a cutoff leads to a
significant optimization due to the fact that it is dispensable to calculate and to store the
system matrices for the time steps tk,k > n̄. So, instead of obtaining a system of lower
triangular Toeplitz block matrices one ends up with a banded system (cf. Fig. 5.6b) just
by replacing the sums in (5.45) and (5.46) by ∑

n−1
m=0(· · ·)→∑

n−1
m=max(0,n−n̄)(· · ·). A detailed

computation scheme for this cutoff is given in the appendix A.3.

5.5 Semi-infinite domains

In section 3.4, the representation formulae’s validity has been extended to unbounded do-
mains and it has been stated that the boundary integral equations leave unchanged if certain
far field conditions are assumed. Fortunately, due to the exact implication of the far field
conditions within the underlying boundary integral equations the discretization scheme
is not affected – at least for unbounded domains with bounded surface. For sure, this is
one of the biggest advantages Boundary Element Methods have. But contrary to domains
with bounded surface, there exist physical problems in which both the domain as well as
the surface remain unbounded. And thus, the question arises how the discretization of an
unbounded surface can be realized.

The problem is illustrated by means of the semi-infinite half-space being defined as

Ω :={x̃ ∈ R3 : x̃3 < 0}
Γ∞ ={y ∈ R3 : y3 = 0}

where the boundary Γ∞ depicts a surface with infinite extension. Typically, this kind of
geometries occur in elasticity problems where the half-space is usually subjected to some
stresses g on its surface. In the elastostatic case the according homogeneous boundary
value problems reads as

(Lu)(x̃) = 0 ∀ x̃ ∈Ω (5.50)
t(y) = g(y) ∀y ∈ Γ∞

lim
|x|→∞

|x|u(x) = 0 ∀x ∈Ω .

Hence, the bilinear form with respect to the Galerkin formulation follows to

〈D̂u,v〉Γ∞
= 〈(1

2 Î − K̂
′)g,v〉Γ∞

. (5.51)

Equivalent, the boundary value problem in elastodynamics is given by[(
L+%0

∂ 2

∂ t2

)
u
]
(x̃, t) = 0 ∀(x̃, t) ∈Ω× (0,∞) (5.52)

t(y, t) = g(y, t) ∀(y, t) ∈ Γ∞× (0,∞)

u(x̃,0+) = 0 ∀ x̃ ∈Ω

u̇(x̃,0+) = 0 ∀ x̃ ∈Ω
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with its corresponding boundary integral representation

〈D ∗u,v〉Γ∞
= 〈(1

2I −K
′)∗g,v〉Γ∞

. (5.53)

Note that in the hyperbolic boundary value problem homogeneous initial conditions are
prescribed such that the solution fulfills a radiation condition of the type (3.36) for every
point x ∈Ω.

When considering the far field conditions above one specific feature attracts the attention.
The far field conditions are not restricted to the domain Ω but also include the boundary
Γ∞. Probably, this fact affects the variational form’s solvability. In contrast, the exterior
problems stated in section 3.4 involve the far field conditions for the domain only.

With view to the discretization of the variational forms (5.51) and (5.53) the properties
of the underlying hypersingular operators have to be recalled. Since a direct evaluation
of the original hypersingularities is rather impossible, in chapter 4 a regularization pro-
cess has been presented which transforms those hypersingular bilinear forms into weakly
singular ones. The transformation of the hypersingularities is based on Stokes theorem
and throughout the whole regularization process it has been assumed that the surface Γ is
closed, i.e., ∂Γ = /0. Here, the surface is obviously not closed but still unbounded. How-
ever, the radiation condition ensures that the kernel functions vanish in the limit |x| → ∞

for all points x ∈Ω. Hence, it can be assumed that the variational forms (5.51) and (5.53)
hold also for the regularized hypersingular bilinear forms.

Unfortunately, the problems arise on the discrete level. There, it is a common practice to
model just a truncated part of the infinite geometry, i.e., the boundary Γ∞ is approximated
by a ‘sufficiently large enough’ surface patch Γh ⊆ Γ∞. While this approximation works
relatively adequate for discretization schemes which do not rely on a regularization based
on Stokes theorem it will fail completely within the current setting. Here, the approxi-
mation Γh with its emerging truncation’s borderline ∂Γh would model a surface which is
neither closed anymore nor can the integral kernels be assumed to vanish on ∂Γh. There-
fore, it has to be ensured that the approximated surface is either closed or of infinite extent.
While the former constraint is impossible to satisfy in case of the half-space, there exist
approaches to overcome the latter constraint. Within the development of the Finite Ele-
ment Method so-called infinite elements have gained some popularity [17] to abolish the
method’s restriction to bounded domains. In a certain sense the situation here is compara-
ble. The present Boundary Element Method is restricted to bounded surfaces and the use
of infinite elements is probably one possibility to get rid of this restriction.

There is another argument suggesting the use of infinite elements. According to the prob-
lem statements (5.50) and (5.52), respectively, the associated variational forms demand a
discretization of the hypersingular operator. Thereby, a necessary condition for its appli-
cation is the use of at least continuous test- and trial-functions. This condition is obviously
violated for a truncated mesh with unknown Dirichlet data on the truncation’s borderline.
In this sense, infinite elements can be thought as a completion of the support for these
data.
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Figure 5.7a illustrates the discretization approach of an unbounded domain. Thereby, the
boundary Γ∞ is represented by the surface Γh which is the union of two sets of different
geometrical elements

Γh =
J⋃

j=1

τ j∪
L⋃

`=1

τ∞`
.

Above, the J elements τ j denote the standard (finite) boundary elements as they have been
presented in section 5.1. But additionally, the boundary’s far field is approximated by L
infinite boundary elements whose configuration is depicted in Fig. 5.7b.

x2

x1

(a) Half-space with infinite elements

p1

p2

z1

z2

x̂1

x̂2

(b) Infinite element

Figure 5.7: Discretized half-space and infinite mapping

The depicted infinite element is defined by two boundary nodes p1 and p2, and by two
corresponding direction vectors z1 and z2, respectively. Analogous to the standard finite
elements there exist a mapping χτ∞

: τ̂∞→ τ∞ from a reference element τ̂∞ to an infinite
element τ∞. In principle, there exist two classes of mappings for infinite elements [17].
One class are the so-called decay function infinite elements while the other class is usually
denoted as mapped infinite elements. The fundamental difference between both types is
the definition of the two-dimensional reference domain. The decay function infinite ele-
ment depicts a very natural approach since there the reference domain is, equivalent to the
image’s τ∞ domain, of infinite extent. Thus, the reference element is given by

τ̂
dec
∞

:= {(x̂1, x̂2) ∈ R2 : (x̂1, x̂2) ∈ [0,1]× [0,∞)} .

Contrary, the mapped infinite element consists of a finite reference domain whose defini-
tion is strongly related to that of an quadrilateral element (cf. (5.3)). For a mapped infinite
element it reads as

τ̂
map
∞

:= {(x̂1, x̂2) ∈ R2 : (x̂1, x̂2) ∈ [0,1]× [0,1)} . (5.54)

Having a numerical integration scheme in mind the term decay function infinite element
becomes clear. Obviously, the quadrature on semi-infinite intervals demand special decay
weighting functions, usually in form of exponential functions. Then, the integrals of type∫

∞

0 f (x)exp(−x) dx can be solved by using a Gauss-Laguerre quadrature [1]. For reasons
that will become clear later this type of mapping is not used any further so that for more
insight on this the reader is referred to the literature [17, 43]. Instead of the decay function
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element the mapped infinite element will be used in the following. Thus, the reference
element τ̂∞ has to be identified with τ̂

map
∞ . The mapped infinite element uses a singular

mapping function. According to the element’s configuration (Fig. 5.7b) this mapping is
given by

x∞ = χτ∞
(x̂) :=

2

∑
i=1

ϕ
1
i (x̂1)pi +

x̂2

1− x̂2
α

2

∑
i=1

ϕ
1
i (x̂1)zi , α > 0 . (5.55)

In (5.55), the points pi are the fixed vertex points of the infinite element as it is depicted
in Fig. 5.7b and the zi are the two corresponding directions. Restricting the nodes pi to
two points implicates a linear mapping in the element’s finite extension. Thus, the infinite
element can be referred to as flat infinite element which is somehow comparable to the
flat elements of section 5.1. In principle, curved infinite elements are also possible but are
omitted herein since the main goal is a sufficient representation of the half-space which is,
finally, a flat geometry. The functions ϕ1

i denote the linear mapping functions which are
simply

ϕϕϕ
1(s) =

[
1− s

s

]
∀s ∈ [0,1] .

n′′in′i

pit′i t′′i

z′i z′′i

zi

e′i e′′i

Figure 5.8: Construction of the direction vector zi

The directions zi are determined by two edges e′i and e′′i which are associated to the cor-
responding node pi (cf. Fig. 5.8). Let t′i and n′i be the tangent vector along the edge e′i as
well as the normal vector which is attached to the boundary element that particular edge e′i
belongs to. Then, a direction z′i is given by

z′i :=
z̄′i
|z̄′i|

z̄′i := n′i× t′i . (5.56)

In the same manner, the vector z′′i connected to the second edge e′′i can be deduced. Finally,
the direction zi is given by

zi :=
z̄i

|z̄i|
z̄i := z′i + z′′i (5.57)

such that final directions zi lie on a bisecting line between the edges e′i and e′′i . Note that the
directions zi are normalized, i.e., 〈zi,zi〉= 1 holds, so that their total lengths are defined
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by the scalar parameter α in (5.55). This parameter is equally chosen for the complete set
of infinite elements.

This definition of the directions zi is not mandatory. It is also common practice to choose
the infinite directions with respect to some fixed point c somewhere (usually the center)
within the discretized surface patch. Then, every direction is simply given by

zi =
z̄i

|z̄i|
z̄i := pi− c . (5.58)

While in the first method the directions are determined by the finite boundary elements at
the truncation’s borderline, in (5.58) the directions are constructed with the help of some
point c which has to be prescribed by the user. Fig. 5.9 depicts the difference in the
construction of zi by these two methods schematically. In the next chapter both methods
are compared numerically.

zi pi

(a) Definition by finite elements

pizi

c

(b) Definition by a point

Figure 5.9: Two methods to define the directions to infinity

Independent of the particular choice of the directions the singular mapping itself is actually
given by the term x̂2/(1− x̂2) which tends to infinity when x̂2 tends to 1. Therefore, in this
limit the mapping (5.55) yields

lim
x̂2→1
x̂2<1

|χτ∞
(x̂)|= ∞ . (5.59)

Now, with the mapping (5.55) a closer lock on the local representations of the integral
kernels is necessary. Up to this point, the regular as well as the singular integrals converge.
And this convergence must hold also for the infinite elements. However, due to the behav-
ior (5.59) this convergence is not ensured. To investigate this more detailed the asymptotics
of the mapping (5.55) must be given. Recalling the Jacobi matrix’s definition

Jτ∞
(x̂) =

[
∂x∞

∂ x̂1

∂x∞

∂ x̂2

]
=:
[
J1 J2

]
one obtains that J1 and J2 behave like

J1 ∈ O(|x̂2−1|−1) and J2 ∈ O(|x̂2−1|−2) .

Hence, the associated Gram determinant’s root becomes√
gτ∞

(x̂) =
√

det(Jτ∞
(x̂)>Jτ∞

(x̂)) =
√
〈J1,J1〉〈J2,J2〉−〈J1,J2〉2 ∈ O(|x̂2−1|−3) .
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Note that equivalent, the distance function (4.51) can be used also to express the asymptotic
behavior. The distance r(y,x∞) is of order O(|x̂2− 1|−1) such that vice versa the inverse
x̂2(r) ∈ O(r−1) holds.

The only possibility of compensating this behavior, i.e., of ensuring the integrations’ con-
vergence, is an appropriate modeling of the trial- and test-functions. For this, the trial-
and test-functions ψ and φ are assumed to behave like O(|x̂2−1|n) with n > 0. Now the
question arises on how the exponent n has to be selected in order to make the integra-
tions bounded. For reasons that will become immediately clear the answer to this question
demands a separate treatment of the static and the dynamic problem.

Just for sake of simplicity the static problem is covered by means of the boundary value
problem according to the Laplace equation. The regularized hypersingular operator is
given in (4.27) and an integral entry D[m, `] reads as

D[m, `] =
∫

supp(φm)

∫
supp(ψ`)

∂φm(x)
∂S(∂x,n(x))

· ∂ψ`(y)
∂S(∂y,n(y))

UL(y−x)dsy dsx . (5.60)

Using the local representation of the surface curl from (5.12) that integral reads in local
coordinates as

D[m, `] = ∑
τi∈supp(φm)

∑
τ j∈supp(ψ`)

∫
τ̂

∫
τ̂

(
Jτi(x̂) ·∇⊥x̂ φim(x̂)

)
·

(
Jτ j(ŷ) ·∇⊥ŷ ψ j`(ŷ)

)
UL(χτ j(ŷ)−χτi(x̂)) dŷdx̂ . (5.61)

Above, the fundamental solution is of order UL =O(r−1) =O(|x̂2−1|1). Now, supposing
that at least one of the involved elements is of infinite type the application of the partial
derivatives ∂/∂ x̂i to a function ϕ(x̂) ∈ O(|x̂2−1|n) yields

∂

∂ x̂1
ϕ(x̂) ∈ O(|x̂2−1|n) and

∂

∂ x̂2
ϕ(x̂) ∈ O(|x̂2−1|n−1) .

Taking the behavior of the Jacobi matrix into account yields the asymptotics of the surface
curl

J∞(x̂) ·∇⊥x̂ ϕ(x̂) ∈ O(|x̂2−1|n−2) . (5.62)

Obviously an order of n≥ 2 needs to be chosen to ensure the integral’s (5.60) convergence.
Clearly, the regularized hypersingular bilinear form according to elastostatics (4.96) ex-
hibit the same characteristics as the hypersingular form concerning the Laplace equation.
Thus, the exponent n can be chosen of the same size, i.e., n≥ 2 holds for every single
static problem.

Now, turning over to the dynamic problems the difference compared to the static problems
becomes obvious. At first, according to (5.61) it can be considered that the surface curls
features the nice property of canceling out the Gram determinant. While in the static case
the integral kernels involve the surface curls only this holds not for dynamic problems.
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As before, exemplary the regularized hypersingular bilinear form corresponding to the
Helmholtz equation is given

Dk[m, `] = ∑
τi∈supp(φm)

∑
τ j∈supp(ψ`)

{
∫
τ̂

∫
τ̂

(
Jτi(x̂) ·∇⊥x̂ φ

(n)
im (x̂)

)
·
(

Jτ j(ŷ) ·∇⊥ŷ ψ
(n)
j` (ŷ)

)
UW

k (χτ j(ŷ)−χτi(x̂)) dŷdx̂

+k2
∫
τ̂

∫
τ̂

φ
(n)
im (x̂)ψ(n)

j` (ŷ)UW
k (χτ j(ŷ)−χτi(x̂))n(x̂) ·n(ŷ)

√
gτy(ŷ)

√
gτx(x̂) dŷdx̂

}
.

Of course, the exponent n equals 1 if the considered boundary element is of finite extent.
The additional term within the regularized hypersingular bilinear form is actually of the
general form (5.20) by what the necessary exponent’s order increases by one. Hence, n≥ 3
has to be demanded in the time-dependent case.

The fact that the exponents n vary for different types of analysis is, of course, a blemish
at this point since it contradicts in a way the far field conditions given in section 3.4.
Additionally, the choice of the exponent n is justified only in a mathematical manner but it
does not coincide with the decay behavior that is predicted by physical principles.

Nevertheless, continuing the deduction of the infinite elements it remains to formulate ex-
plicit expressions for the test- and trial-functions on these elements. Due to the prescribed
homogeneous far field conditions it is sufficient to recall the approximation for the Dirich-
let data from (5.15). For a linear approximation these data were given by

u1
h(x) =

M

∑
`=1

u`ψ
1
` (x) .

As long as the support supp(ψ`) contains finite boundary elements only the functions are
chosen corresponding to those being given in section 5.2. But if it is connected to an
infinite element the functions ψ

(n)
` are given by the composition

ψ
(n)
` (x) = χτ∞ j

◦ψ
(n)
i(`)(x̂) with τ∞ j ∈ supp(ψ`)

and with ψ
(n)
i(`)(x̂) being the appropriate component i(`) of the vector function

ψψψ
(n)(x̂) :=

[
1− x̂1

x̂1

]
(1− x̂2)n . (5.63)

Beside this definition there exist another possible choice for the test- and trial-functions
which, somehow, takes the truncation’s borderline into account. Thereby, the definition is
based on the ratio between the distances r̂ from a point x∞ ∈ τ∞ and the projection from
this point to the truncation’s borderline with its distance r̂0. For both r̂ as well as r̂0 the
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distances are measured with respect to a fixed origin o. Thus, the corresponding test- and
trial-functions are given by

ψψψ
(n)(x̂) :=

[
1− x̂1

x̂1

](
r̂(x̂1, x̂2)
r̂0(x̂1)

)n

=
[

1− x̂1

x̂1

]r(o,χτ∞
(
[

x̂1
x̂2

]
))

r(o,χτ∞
(
[ x̂1

0

]
))

n

. (5.64)

Fig. 5.10 depicts the construction of this type of functions more clearly. In chapter 6,
numerical studies compare the approach (5.63) with the approach (5.64).

o

r̂0

r̂
τ∞

Figure 5.10: Test- and trial-functions of order
(

r̂
r̂0

)n

With the definition of the trial- and test-functions the Boundary Element formulation for
open domains is completed. As mentioned at the beginning of this section the infinite
elements can be interpreted as the support’s completion on the borderline of a finite surface
patch. And probably this is the best way to handle them. Contrary to the infinite elements
being used in the Finite Element Method the infinite boundary elements are something
like the geometrical condensation of the infinite domain, i.e., they serve as geometrical
mapping only. In Finite Element Methods the infinite elements have to incorporate the far
field conditions. Since these conditions differ for static and frequency domain problems
special infinite elements need to be developed for the different types of analysis [17]. Here,
the fulfillment of the far field conditions is left to the respective fundamental solutions
such that there is no need for the development of static infinite boundary elements or time-
harmonic infinite boundary elements. Except the different required order of the trial- and
test-functions the infinite element stated here is used for every physical problem.

However, one important task has been suppressed completely so far. This concerns the
singular integrations which actually demand a comment. In fact, the singular integrations
are the main reason for using the mapped infinite elements instead of the decay function
infinite elements. As mentioned earlier the infinite reference element from (5.54) is similar
to the quadrilateral element’s definition from (5.3). The only difference between both
reference elements consists in the singularity for x̂2→ ∞ in case of the infinite boundary
element. On the other hand this singularity is removable by an appropriate choice of the
trial- and test-functions. This motivates the direct use of the singular quadrature rules
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developed by Sauter [107] also for this element type. Unfortunately, Sauter’s proof of the
singular quadrature rules does not include this type of element since it does not feature the
regularity requirements which are demanded there. Nevertheless, those formulae are also
applied to the infinite elements without changes. This is due to the fact that the geometrical
singularity is removed by an appropriate choice of the trial- and test-functions. Thus, the
remaining kernels feature only a singularity for |y−x| → 0, just as it is the case for the
finite boundary elements.

In the following, the use of the singular quadrature is exemplary illustrated by means of
a function fhx,hy . This kernel function serves as a two-dimensional counterpart to the
three-dimensional case. Of course, the intention is to substantiate the former motivation
of using the special singular quadrature. In Fig. 5.11, two infinite element combinations
are depicted. The first combination is made up of one infinite element in conjunction with
a finite element (cf. Fig. 5.11a) while the latter depicts two infinite elements (cf. Fig.
5.11b).

p0 p1

uyτ∞,y

τx

ϕ ψ

(a) Inf. element connected to fin. element

p0

uxuyτ∞,y τ∞,x

ψϕ

(b) Inf. element connected to inf. element

Figure 5.11: Singular integration on infinite elements: Two-dimensional examples

In both cases the point p0 = [0 0 ]> lies at the origin. The finite element τx contains a second
point p1 = [1 0 ]>. Thus, its mapping is given by χτx(x̂1) = (1− x̂1)p0 + x̂1p1 = [ x̂1 0 ]>

and the according Gram determinant follows to gτx(x̂1) = |∂ χτx(x̂1)/∂ x̂1|= 1. The infinite
element τ∞,y is determined by the direction vector uy = [−1 0 ]>. Thus, the infinite mapping
reads simply as χτ∞,y(x̂2) = x̂2/(1− x̂2)uy = [−x̂2/(1−x̂2) 0 ]>. The Gram determinant of this
mapping is given by gτ∞,y(x̂2) = 1/(1− x̂2)2 such that a trial-function ϕ(x̂2) = (1− x̂2)2

is introduced in order to compensate the geometrical singularity. With this data and an
additional test-function ψ(x̂1) = 1− x̂1 the kernel function can be defined as

f1,∞(x̂1, x̂2) :=
1

|χτ∞,y(x̂2)−χτx(x̂1)|
gτ∞,y(x̂2)gτx(x̂1)ϕ(x̂2)ψ(x̂1)

=
(1− x̂1)(1− x̂2)
x̂1− x̂1x̂2 + x̂2

∀(x̂1, x̂2) ∈ [0,1]2 .

The second kernel f∞,∞ can be constructed equivalent. By using the direction vector
ux = [1 0 ]> the mapping is χτ∞,x(x̂1) = [ x̂1/(1−x̂1) 0 ]>. Again, choosing appropriate func-
tions ϕ and ψ for the compensation of the singularities induced by the Gram determinants
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gτ∞,x and gτ∞,y the kernel f∞,∞ reads as

f∞,∞(x̂1, x̂2) :=
(1− x̂1)(1− x̂2)
x̂1−2x̂1x̂2 + x̂2

∀(x̂1, x̂2) ∈ [0,1]2 .

Both kernel functions exhibit a singularity at the origin but, additionally, the denominator
of f∞,∞ becomes zero for (x̂1, x̂2) = (1,1). On the other hand, the numerator tends also
to zero in this case and the singularity at this point is removable. Now, performing the
integrations yields

I[ f1,∞] =
1∫

0

1∫
0

f1,∞(x̂1, x̂2) dx̂1 dx̂2 =
π2

6
−1

I[ f∞,∞] =
1∫

0

1∫
0

f∞,∞(x̂1, x̂2) dx̂1 dx̂2 =
π2

8
− 1

2
.

Plugging the transformation (5.27) with Ti from (5.25) and (5.26) into the kernels above
yields

f reg
1,∞(ξ1,ξ2) =

(1−ξ1)(1−ξ1ξ2)
1+(1−ξ1)ξ2

+
(1−ξ1)(1−ξ1(1−ξ2))

2−ξ1(1−ξ2)−ξ2
∀(ξ1,ξ2) ∈ [0,1]2

f reg
∞,∞(ξ1,ξ2) =

(1−ξ1)(1−ξ1ξ2)
1+(1−2ξ1)ξ2

+
(1−ξ1)(1−ξ1(1−ξ2))

2−2ξ1(1−ξ2)−ξ2
∀(ξ1,ξ2) ∈ [0,1]2 .

(5.65)
Clearly, the regularization ensures the regularity at the point (ξ1,ξ2) ∈ [0,1]2 and a nu-
merical test for the integration of the first kernel f1,∞ confirms the assumption of using a
regularization also for the infinite elements.

√
n Estd

n [ f1,∞] Ereg
n [ f1,∞]

1 6.4e-01 6.4e-01
2 3.1e-01 4.5e-02
3 1.2e-01 9.1e-04
4 6.4e-02 2.0e-05
5 3.9e-02 4.6e-07
...

...
...

30 9.2e-04 5.6e-16

Table 5.3: Non-regularized and
regularized Quadrature
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Figure 5.12: Error plot for En[ f1,∞]

In Tab. 5.3 and Fig. 5.12, the results for this numerical test are shown and one obtains a
much higher convergence rate for the regularized kernels than for the original ones.
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Unfortunately, the numerical results for the second kernel function f∞,∞ are less com-
pelling. These results are depicted in Tab. 5.4 and Fig. 5.13 and they clearly feature the
quadrature’s weakness when infinite elements are involved.

√
n Estd

n [ f∞,∞] Ereg
n [ f∞,∞]

1 7.3e-01 7.3e-01
2 2.3e-01 1.6e-02
3 1.1e-01 1.5e-03
4 6.0e-02 2.8e-04
5 3.8e-02 7.1e-05
...

...
...

30 9.2e-04 1.1e-09

Table 5.4: Non-regularized and
regularized Quadrature

0 5 10 15 20 25 30
No. of Gauss points

1e-15

1e-12

1e-09

1e-06

0.001

1

E
rr

or
 E

n

std
reg

Figure 5.13: Error plot for En[ f∞,∞]

In fact, the regularization is designed to remove a singularity at a distinct point under the
assumption that the singularity function is well-defined elsewhere. Contrary, the examples
stated here show that although the singularity at the distinct point is removed the conver-
gence rate might decrease. This is due to the removable singularities at the endpoints of
the infinite elements’ local intervals. Those removable singularities occur also in the trans-
formed kernel (cf. (5.65)). Of course, the regularity of such a function is of a lower order
than a finite boundary element’s one.

Nevertheless, since no special quadrature rules are available for infinite elements so far, and
since the results at least for this example are acceptable the rules of Sauter [37, 106, 107]
are applied also to this type of element.
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6 NUMERICAL RESULTS

In this chapter, the previously introduced Symmetric Galerkin Boundary Element Method
is applied to some numerical examples. For verification purposes, this chapter deals with
examples which are comparable to analytical solutions.

Primarily, the necessary implementation details should be given. Unless mentioned oth-
erwise the integrations are performed by using the number of Gauss points as they are
stated in Tab. 5.1. In case of infinite elements, nine Gauss points per direction are used for
every infinite-infinite or infinite-finite boundary element combination, respectively. More-
over, all time-domain computations are done by help of the FFTW routine [40] and the
direct solver routines are implemented using the standard LAPACK library [4]. Also, all
given condition numbers are LAPACK implementations. They are given as estimates in
the L1-norm and their computation is based on the algorithm of Higham [61].

This thesis comprises more than one material model and it features static analysis as well
as time-harmonic and time-dependent analysis. Additionally, the Boundary Element dis-
cretization allows the use of different types of elements with trial and test-functions varying
in their polynomial degrees. Thus, the organization of this demands some preliminary def-
initions and abbreviations. Concerning the discretization, the boundary element mesh for
bounded surfaces is constructed by using triangles or quadrilaterals (or a mixture of them).
Table 6.1 depicts the abbreviations for the used combinations of boundary elements and the
appropriate choice of approximation orders concerning the Dirichlet and Neumann data.

Approximation of Dirichlet/Neumann data

(bi-)linear/constant quadratic/(bi-)linear

Element type
Triangle TLC TQL

Quadrilateral QLC QQL

Table 6.1: Shortcuts for element- and approximation-type combinations

Thereby, the abbreviations are constructed by three letters. The first letter denotes the
underlying element type while the both remaining letters represent the type of approxima-
tion being used for the boundary data. Moreover, the geometry approximation is directly
linked to the discretization of the Dirichlet data. For instance, the abbreviation TQL de-
notes a curved 6-point triangle with a quadratic distribution of the Dirichlet data and a
piecewise linear approximation of the Neumann data.

The material data corresponding to acoustics is given in Tab. 6.2a. The material data for
the considered elastic solids are depicted in Tab. 6.2b. For the verification of the numerical
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results against 1-dimensional solutions the material data of Steel are slightly manipulated.
The respective Lamé constants are given such that they correspond to an artificial Poisson’s
ratio of ν = 0.

Material %0 K c
name [kg/m3] [N/m2] [m/s]

Air 1.2 1.4153 ·105 343.4

(a) Acoustic fluid

Material %0 λ µ c1 c2

name [kg/m3] [N/m2] [N/m2] [m/s] [m/s]

Soil 1884 1.3627 ·108 1.3627 ·108 465.8 268.9
Steel 7850 0 1.055 ·1011 5184.5 3666.0

(b) Elastic solids

Material %0 K µ α q p
name [kg/m3] [N/m2] [N/m2] [−] [1/s] [1/s]

PMMA 1184 1.24 ·109 1.86 ·109 1.0 0.0023 0.002

(c) Viscoelastic solid: The viscoelastic material parameters are equal for the deviatoric and the hydro-
static parts, i.e., α = αD = αH , q = qD = qH , and p = pD = pH

Table 6.2: Material data

The viscoelastic material data are given for a perspex (PMMA) strip and is based on mea-
surements being done at the Technical University Braunschweig, Germany. The data have
been primarily used in the monograph of Schanz [111]1 and are reused here. As for the
elastic material, for the comparison with some semi-analytical solutions it is necessary
to force the Poisson’s ratio to vanish. Thus, the bulk modulus K is artificially given by
K = 2/3µ . Moreover, the viscoelastic material parameters in Tab. 6.2c are obtained by
data fitting techniques. Those parameters are not fixed throughout all numerical experi-
ments. In order to illustrate their influence on the material’s behavior they are modified
in certain examples. However, if the viscoelastic material parameters are not explicitly
mentioned, they always correspond to those from 6.2c.

A typical geometry which will be used several times in this chapter is that of a simple
cuboid. The cuboid has a constant cross-sectional area of A = 1m×1m and an adjustable

1Unfortunately, in that book a typo occurs since the Young’s modulus is given as E = 3.72 ·10−9 N/m2. Of
course, this is wrong. The correct Young’s modulus is E = 3.72 ·109 N/m2.
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length of `m. Its domain and closure are given by

Ω
(`) :=

{
x ∈ R3 : x ∈ (0, `)× (−1

2 , 1
2)2}

Ω
(`) :=

{
x ∈ R3 : x ∈ [0, `]× [−1

2 , 1
2 ]2
}

.
(6.1)

Then, the boundary is Γ(`) = Ω
(`) \Ω(`). Moreover, a mixed boundary value problem is

stated where the Dirichlet boundary and the Neumann boundary are defined by the two
sets

ΓD :=
{

x ∈ R3 : x1 ≡ 0∧ (x2,x3) ∈ [−1
2 , 1

2 ]2
}

Γ
(`)
N = Γ

(`) \ΓD .
(6.2)

Figure 6.1 depicts the geometry of a column of 3m length.
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3 -0.5
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0.5

x1
x2

x3

Figure 6.1: Geometry and coordinate system for ` = 3

6.1 The conditioning of the system matrices in static analysis

At first, the behavior of the system matrices’ condition numbers for different meshes is
investigated. The knowledge of the systems’ conditioning is very important with respect to
the solution process since it represents the impact of round-off errors in the final solution.
The conditioning of a matrix A ∈ RN×N is measured by the condition number

condp(A) := ‖A‖p ‖A−1‖p .

Above, ‖A‖p denotes the p-norm of the matrix A. The p-norm of a matrix A is defined via
the induced vector norm

‖A‖p := sup
x∈RN

x6=0

‖Ax‖p

‖x‖p
.

The p-norm of some real vector y is given by

‖y‖p =

(
N

∑
i=1
|yi|p

)1/p

, p ∈ R , p≥ 1 .
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The mathematical theory of boundary integral equations prescribes that the condition num-
bers according to the Laplace equation behave like

cond2(VL)≤CV
L

1
hG

(6.3)

for the single layer operator and like

cond2(DL)≤CD
L

1
hG

(6.4)

for the hypersingular operator, respectively [107]. In (6.3) and (6.4), CV
L and CD

L denote
two real and positive constants. In the following, these two predictions are verified by a
numerical example. For this, a column of 3m is considered matching the definitions from
(6.1) and (6.2). It is discretized uniformly by using the element combinations stated in
Tab. 6.1. Thereby, the four different combinations TLC, TQL, QLC, and QQL are used in
conjunction with five different mesh sizes. These discretizations with the corresponding
number of degrees of freedom are stated in Tab. 6.3.

Approx. order Mesh sizes
No. of Elems. No. of degrees of freedom

Tria Quad
ND NN

Tria Quad Tria Quad

LC

1.41 28 14 2 1 12 12
0.71 112 56 8 4 49 49
0.35 448 224 32 16 201 201
0.18 1792 896 128 64 817 817
0.07 11200 5600 800 400 5161 5161

QL

1.41 28 14 6 4 49 49
0.71 112 56 24 16 201 201
0.35 448 224 96 64 817 817
0.18 1792 896 384 256 3297 3297
0.07 11200 5600 2400 1600 20721 20721

Table 6.3: Discretizations of the 3m-column for the acoustic fluid: In elasticity the de-
grees of freedom have to be multiplied by the factor three

In Tab. 6.3, the quantities ND and NN denote the number of degrees of freedom on the
Dirichlet boundary ΓD and on the Neumann boundary ΓN , respectively. Moreover, from
Tab. 6.3 the relation between the number of degrees of freedoms and the mesh-sizes be-
come obvious. A bi-sectioning of the mesh size results in a quadruplication of the number
of degrees of freedom N. Thus, the relations (6.3) and (6.4) can equivalently be described
as

cond2(VL)≤CV
L
√

ND and cond2(DL)≤CD
L

√
NN . (6.5)
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Although the predictions for the condition numbers are usually given in the 2-norm it is
more efficient to use the 1-norm within the implementation. Since both norms are equiv-
alent a change of the norm, finally, result in different constants CV

L and CD
L only, but the

asymptotics will be left unchanged. Here, those constants are of minor importance so that
it is absolutely justified to use the 1-norm in the following. Additionally, the considered
mixed boundary value problem demands the matrices’ inversions according to the single
layer operator from (5.16) and of the Schur complement from (5.19). Hence, the figures
6.2 and 6.3 depicts the condition numbers according to these two matrices.
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Figure 6.2: Condition numbers for the Laplace equation

The Figure 6.2 shows the results obtained by using the symmetric Galerkin Boundary
Element Method for the Laplace equation in a double logarithmic scale. The continuous
line without markers represents the asymptotics from (6.5). The lines with filled markers
corresponds to single layer matrices whereas the lines with hollow markers depicts the
condition numbers according to the Schur complements. Moreover, continuous lines with
markers are based on the linear/constant approximation of Dirichlet- and Neumann-data
while the dashed ones depict the quadratic/linear approximations. Finally, the markers’
shapes correspond to the underlying boundary elements, i.e., triangular markers stand for
triangles and quadrilateral markers identify the quadrilateral boundary element mesh.

The numerical tests approve the theoretical predictions completely. While for a lower num-
ber of degrees of freedom the conditioning is slightly better than the estimate for larger
numbers of degrees of freedoms the condition numbers are straight lines parallel to the
prediction line. Moreover, for the same number of degrees of freedom the quadratic/linear
approximations reveal larger condition numbers than their linear/constant counterparts
which induces that such systems with higher-order polynomials are in general more ill-
conditioned than the systems with lower polynomial degrees. Additionally, in case of the
quadratic/linear approximations the single layer operator matrices display higher condition
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numbers than the corresponding Schur complement matrices. This is somehow surprising
since in all other cases the single layer matrices are better conditioned than the respective
Schur complements.
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Figure 6.3: Condition numbers for elastostatics

In Figure 6.3, the observations made for the Boundary Element discretization for the
Laplace equation continue. Again, the condition numbers lie parallel to the prediction
line. But in contrast to the Laplace equation the single layer operator matrices reveal better
condition numbers than their respective Schur complements for every single approxima-
tion type.

6.2 Cantilever beam

After the more abstract investigation of the condition numbers a more engineering exam-
ple will be stated. Here, an elastostatic 3-dimensional cantilever beam of 5m length is
modeled. As before, a mixed boundary value problem is considered which means that
the beam is fixed at the location x1 = 0m and that it is loaded with a constant traction of
g = [0, 0,−1]>N/m2 at the opposite location x1 = 5m. The remaining surfaces are traction
free. With the domain and boundary definitions from (6.1) and (6.2) the boundary value
problem reads as

(−(λ + µ)∇∇ ·u−µ∆u)(x̃) = 0 ∀ x̃ ∈Ω
(5)

u(y) = 0 ∀y ∈ ΓD

t(y) = g̃(y) ∀y ∈ Γ
(5)
N .

(6.6)
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Above, the prescribed tractions g̃ are given such that

g̃(y) :=

{
g ∀y ∈ Γ

(5)
N ∧ y1 = 5

0 ∀y ∈ Γ
(5)
N ∧ y1 6= 5

holds. The material parameters λ and µ are that of steel from Tab. 6.2b. Unfortunately,
there exist no analytical solutions to this problem. Hence, one has to be content with some
convergence investigations. If there exist a solution, then for finer grids the numerical
solutions must converge to the real solution. For these convergence analysis four different
uniform triangular meshes as well as four corresponding uniform quadrilateral meshes are
considered. The triangular meshes are depicted in Fig. 6.4 and they consist of 44 boundary
elements with a mesh size of hG =

√
2m, 176 elements with hG = 1/

√
2 m, 704 elements

with hG = 1/
√

8 m, and 4400 elements with hG = 1/5
√

2 m, respectively. The quadrilateral
meshes hold the same mesh sizes but, of course, they feature only half of the number of
elements, i.e., those meshes consist of 22, 88, 352, and 2200 boundary elements.
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Figure 6.4: Triangular discretizations of the cantilever beam

The Figure 6.5 presents the vertical deflection u3([x1 ,1/2 ,0]>) of the cantilever beam
on the line 0m≤ x1 ≤ 5m for the triangular meshes with linear/constant approximations
for the Dirichlet- and Neumann-data. The solution approves clearly the assumption that
the finer discretizations yield better results than the coarser ones. While the result varies
strongly for the coarsest mesh and the next level mesh being made up of 176 elements,
the differences between the 176-element mesh and the 704-element mesh are less distinc-
tive. Finally, the variations in the result between that mesh and the finest mesh are barely
visible which induces that the final state has been almost reached. Hence, at least for this
case the Boundary Element Method converges. Next, doing the same for the remaining el-
ement/approximation combinations TQL, QLC, and QQL equivalent graphs like that one
in Fig. 6.5 would be obtained. But in that cases the results converge much more faster to
the final state and the differences between them become practically invisible.
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Figure 6.5: Deflection u3([x1 ,1/2 ,0]>) of the cantilever beam (TLC combination)

6.2.1 Airy stress functions

However, to display the convergence rate graphically the solutions are compared to a 2-
dimensional solution for the cantilever. Naturally, this analytical solution reflects not the
present, quite complex 3-dimensional state but its use is more convenient than an applica-
tion of 1-dimensional solutions like, e.g., that of Timoshenko’s beam [124]. In Fig. 6.5,
the 2-dimensional solution for the cantilever is already incorporated and the differences
between the result obtained for the finest mesh and that solution are quite dispensable. In
the following, this 2-dimensional solution should be derived briefly. The detailed deriva-
tion of it may be found, e.g., in the textbook of Szabó [123] where a solution is obtained
by making use of the Airy stress functions F = F(x1,x3). The Airy stress functions can
be used only under the assumption of plane strain, i.e., the considered body exhibits no
normal- and no shear-stresses in a certain direction. Here, it is assumed that there are no
shear- and no normal stresses in x2-direction. Now, the Airy stress functions are defined
such that

σ11(x) =
∂ 2F
∂x2

3
, σ33(x) =

∂ 2F
∂x2

1
, σ13(x) = σ31(x) =− ∂ 2F

∂x1∂x3
(6.7)

holds. Since F depends only on x1 and x3 all derivatives with respect to x2 vanish and the
resulting stress tensor σσσ(x) represents the plain strain state. Next, taking the compatibility
condition (2.21) into account and expressing the strains via the stresses one obtains, finally,
the expression

∆(σ11 +σ33) = 0 . (6.8)

Note that the Eqn. (6.8) represents only one component of the resulting fourth order tensor
in (2.21). Moreover, the plain stress state is just an approximation of the real physical state
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since it injures the compatibility condition. However, inserting (6.7) into (6.8) yields the
Bi-Laplace equation

∆
2F = 0 . (6.9)

Thus, the strain stress problem is reduced to the solution of a bipotential equation which,
naturally, has an infinite number of solutions.

To construct an approximate solution for the problem (6.6) the cantilever is loaded by a
single force P = [0 ,0 ,P3]> at the free end x1 = 5m (see Fig. 6.6a). Then, the induced
shear stresses are assumed to be parabolic over the cantilever’s height and constant in its
length direction. Additionally, the normal stresses are assumed to be linear distributed over
the cantilever’s height (see Fig. 6.6b).
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Figure 6.6: Cantilever beam

The ansatz
F(x1,x3) = A(`− x1)x3

3 +Bx1x3 (6.10)

with the two real constants A,B ∈ R suffices those assumptions and, simultaneously, solves
the differential equation (6.9). To determine the two constants A and B one starts with the
constraint that the surfaces feature no shear stresses. This yields

σ13(x1,x3 =±h
2) =− ∂ 2F

∂x1∂x3

∣∣∣∣
x3=±

h
2

=
3
4

Ah2−B = 0 .

A second constraint is obtained at the free end. There, the surface integral over the shear
stresses has to match the force P3. With the cantilever’s thickness b and with A = 4B/3h2

the integral yields the constant B

P3 =

+h/2∫
−h/2

σ13b dx3 =−2
3

Bhb =⇒ B =−3
2

P3

hb
.

Hence, the stresses read as

σ11(x) =−12P3

h3b
(`− x1)x3 , σ33(x) = 0 , σ13(x) =

1
2

12P3

h3b

[(
h
2

)2

− x2
3

]
. (6.11)



130 6 Numerical results

By help of Hooke’s law (2.27) the strain tensor’s components ε11 and ε3 can be deduced

ε11 =
∂u1

∂x1
=

λ + µ

µ (3λ +2µ)
σ11

ε33 =
∂u3

∂x3
=− λ

2µ (3λ +2µ)
σ11 .

From these equations and with the additional equation σ13 = µ

(
∂u1
∂x3

+ ∂u3
∂x1

)
the displace-

ment field can be reconstructed. Using the boundary conditions

ui(x1 = 0,x3 = 0) = 0 , i = 1,3 and
∂u1

∂x3

∣∣∣∣
x1=0,x3=0

= 0 (6.12)

the vertical displacement u3 is finally obtained

u3(x1,x3) =
1
2

P3

h3bµ (3λ +2µ)

[
4(λ + µ)(3`− x1)x2

1+

6λ (`− x1)x2
3 +3(3λ +2µ)h2x1

]
. (6.13)

The displacements above represents the 2-dimensional comparative solution which has
been already used within Fig. 6.5 and which will be used in the following convergence
examinations. It is important to mention that the boundary conditions (6.12) are pre-
scribed point-wise. Therefore, they fail the much more complex boundary conditions
at the fixed end where, in fact, u1(x1 = 0,x3) = u3(x1 = 0,x3) = 0 is demanded for all
−h/2≤ x3 ≤+h/2. These boundary conditions cannot be satisfied with the rather simple
function (6.10).

Note, that the use of the Airy stress functions is exceptional advantageous because of a
second reason which consist in the knowledge of the stresses within the cantilever. Of
course, the term stress function is not chosen arbitrary such that the title already induces
this matter of fact. As mentioned earlier the Boundary Element Method is a well-known
method for the approximation of the interior stress tensor field. Hence, the expressions
(6.11) are useful for convergence analysis concerning the interior stress evaluation. The
subsection 6.2.3 is dedicated to this topic.

6.2.2 Convergence examinations

Returning to the actual cantilever-problem (6.6), for the measurement of the convergence
a residual function χ(x1) is defined

χ
Ξ
hG

(x1) :=

∣∣∣∣∣uΞ
3,hG

(x1)−u3(x1)

u3(x1)

∣∣∣∣∣ . (6.14)
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Above, uΞ
3,hG

denotes the third component of the numerical solution uΞ
hG

(x?) evaluated for
all points x? = [x1 , 1

2 ,0]> while u3 is the 2-dimensional solution (6.13) evaluated at the
points 0≤ x1 ≤ 5 and x3 =−1/2. The superscript Ξ denotes the element/approximation
combination from Tab. 6.1. Note that the function (6.14) is not an error function in the way
that it vanishes in the limit such that limhG→0 χΞ

hG
= 0 holds. From the preceding chapter it

is known that the function (6.13) does not satisfy the boundary conditions at the clamping.
Moreover, shear stresses at the free end feature the parabolic distribution only if the force is
induced in this way. Within the problem statement (6.6) this is not the case. The tractions
are distributed constant at the free end. Hence, one can assume some variations at the
clamping as well as at the free end. Nevertheless, in the limit hG→ 0 the function χΞ

hG
has

to meet a certain function χ which represents a fixed residuum between the 2-dimensional
function and the 3-dimensional state.
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Figure 6.7: Residual function χTLC
hG

The Figures 6.7–6.10 depict the various functions χΞ
hG

for Ξ = TLC,TQL,QLC,QQL and
the different discretizations hG corresponding to Fig. 6.4 in a logarithmic scale. A look
on these plots reveals some commonnesses between all four graphs. At first, they seem to
converge to some characteristic curve χ and, except the coarsest QLC discretization, they
converge to this curve from above. The second observation is important since it confirms
the theoretical convergence behavior of the Galerkin method.

The graph 6.7 is just another representation of the results illustrated in Fig. 6.5. Again,
one can clearly distinguish between the different meshes. While the coarsest mesh of 44
triangular elements obeys a constant variation of about 20% with respect to the compar-
ative solution the three remaining discretizations feature larger variations at the fixed end
and minor differences at the free end compared to the analytical solution (6.13).

In case of the triangular discretizations with quadratic approximations the observations
continue. But in contrast to the constant approximations in Figure 6.7 the residual func-
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Figure 6.8: Residual function χ
TQL
hG

tions χ
TQL
hG

are not as scattered as before. Obviously, the convergence rate is more conve-
nient for higher polynomial degrees than for linear/constant approximations. Of course,
this conclusion is not astonishing since higher order polynomials approximate curved de-
flections better than linear polynomials.
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Figure 6.9: Residual function χ
QLC
hG

Concerning the quadrilateral discretizations the corresponding numerical results obey bet-
ter convergence rates compared to the respective triangular meshes. Except for the rather
crude discretization of 22 quadrilateral boundary elements the numerical results in case of
the bilinear/constant approximation are, again, converging to some characteristic curve χ
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(see Fig. 6.9).
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Figure 6.10: Residual function χ
QQL
hG

Finally, the QQL discretizations of the cantilever feature the lowest variations. Except
for the coarsest mesh differences between the numerical results for the remaining meshes
are hardly measurable. Thus, at the end one can state that, already for relatively coarse
discretizations, the quadrilateral elements with quadratic/linear test- and trial-functions for
the Dirichlet- and Neumann data yield excellent results. In contrast, the TLC discretiza-
tions demand relative fine discretizations to obtain similar results which is due to the fact
that the underlying polynomials do not feature any bilinear or quadratic terms.

6.2.3 Stress evaluation

One of the main benefits of the Boundary Element Method compared to several other
numerical methods like, e.g, displacement based Finite Element Methods is the proper
evaluation of the dual variables. Thus, bearing the cantilever as an elastic solid in mind,
the Boundary Element Method for this case is supposed to evaluate the surface tractions as
well as the interior stresses with an adequate accuracy. Therefore, the numerical results for
the interior stresses should be compared to the analytical 2-dimensional solutions (6.11).
From the preceding subsection it is known that the numerical results and its analytic com-
parative differ at the clamping. Therefore, the interior stress field must be evaluated far
enough from the cantilever’s fixed end. Here, the set ϒ of discrete points is chosen in such
a way that all points lie on a line parallel to the x3-axis which crosses the boundary Γ(5)

at the center of the upper and lower boundary planes at [x1 ,x2 ,−1
2 ] and [x1,x2,

1
2 ], respec-

tively. Then, for the calculation of the stress tensor field the representation formula

σσσ(x̃) = (S̃1tΓ)(x̃)− (S̃2uΓ)(x̃) ∀ x̃ ∈ ϒ⊂Ω
(5) (6.15)
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is evaluated with ϒ being defined as

ϒ := {x̃ ∈ R3 : (x̃1, x̃2) = (5
2 ,0)∧ x̃3 = i

40 −
1
2 ,∀ i ∈ N∧1≤ i≤ 39} .

Note that the formula (6.15) is the static counterpart of (3.41) and that σσσ can only be ob-
tained by a posterior calculation since the knowledge of the complete Cauchy data [uΓ , tΓ]
are required.

Figure 6.11: Interior stresses for the TLC combination

The Figures 6.11– 6.14 depict the normal stresses σ11(x̃) as well as the shear stresses
σ13(x̃) side by side. Thereby, the vertical axes denote the x3 coordinate while the corre-
sponding stresses are plotted horizontally. Again, every single illustration depicts a certain
element/approximation with the same set of discretizations as before.

Clearly, the numerical results show an exceptional agreement with respect to the com-
parative solutions (6.11). Even the TLC-elements, which are known to approximate the
displacements field with an considerable error, behave more or less convincingly (see Fig.
6.11). There, already the relatively coarse discretization of 176 elements yields an ade-
quate result. Nevertheless, it has to be mentioned that there are some mavericks in the
boundary’s neighborhood. Especially the triangular discretizations in Fig. 6.11 and Fig.
6.12 reveal some rather crude results nearby the boundary. Unfortunately, these numeri-
cal errors are partially more obvious for the finer grids than for the coarser discretizations
which, somehow, contradicts the expected convergence behavior of the method. On the
other hand the integrals in (6.15) become almost singular, i.e., quasi-singular, in the vicin-
ity of the boundary. Naturally, the sufficient numerical evaluation of those integrals be-
comes more conspicuous in these cases such that the respective results cannot be assumed
to be overwhelming.
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Figure 6.12: Interior stresses for the TQL combination

Figure 6.13: Interior stresses for the QLC combination
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The numerical errors for the quadrilateral discretizations in Fig. 6.13 and Fig. 6.14 are al-
most not noteworthy. But it is worth to mention that those discretizations exhibit the typical
convergence behavior, i.e., the results’ quality increases with decreasing mesh sizes. Anal-
ogous to the displacement solution, there the QQL elements yield by far the best results.
In Figure 6.14, the stresses are depicted only for the interval 0≤ x3 ≤ 1/2 and, except for
the coarsest mesh, the numerical results are hardly distinguishable from the 2-dimensional
solution.

Figure 6.14: Interior stresses for the QQL combination

Finally, the stress evaluation can be regarded as being of the same quality as the displace-
ment solution. This fact makes the Boundary Element method very competitive in cases
where the numerical solution of the dual data demands a high precision.

6.3 The conditioning of the system matrices in dynamic analysis

Before any time domain solutions are presented, first, the same investigations concern-
ing the conditioning of the system matrices as in section 6.1 are performed. There, the
quintessence was the system matrices’ behavior of order O(h−1), or, equivalent, of order
O(
√

N) if it is expressed via the number of degrees of freedom N. Moreover, the general
behavior was independent of the element/approximation combination, i.e., the choice of
the element type as well as the choice of the approximation order did not influence the
system matrices’ behavior considerably. Therefore, within this section the numerical ex-
amples are restricted to the TLC-elements and the aim is to focus on the influences of the
time discretization. First, for an adequate comparison the dimensionless parameter

β :=
c∆t
h

(6.16)
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is introduced which is commonly referred to as Courant-Friedrichs-Lewy-Number (CFL
number) [31]. This number connects the time-grid size ∆t with the spatial discretization h
via the wave velocity c. According to the underlying material model this wave velocity has
to be either identified with the acoustic fluid’s wave velocity from (2.10) or, respectively,
with the compressional wave speed from (2.33) in case of an elastic solid. For viscoelastic
materials this number is chosen to meet the initial wave velocity of the compressional
wave (2.60). The Convolution Quadrature Method demands an equidistant subdivision
of the time interval into constant time step sizes ∆t. Obviously, this time-uniformity is
not portable to the spatial discretization. In general, a boundary element mesh consists of
different sized elements such that h is chosen to be the mean size of the triangulation G, i.e.,
h = meanτi∈G(hi). Usually the CFL number is chosen such that β < 1 holds. Physically,
this means that the waves pass not one complete element’s length within one time step.
Again, the computations are performed on the geometry of a 3m column corresponding to
(6.1) with the Dirichlet- and Neumann-boundary definitions taken from (6.2). Moreover,
the material data in case of the acoustic fluid as well as in case of the elastodynamic solid
are that of Tab. 6.2.
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Figure 6.15: Condition numbers for the wave equation

The system of linear equations (5.45) demands the decomposition of the system matrices
according to the first time step only. Hence, the Figures 6.15 and 6.16 depict the condi-
tion numbers for various CFL numbers of the single layer operator V0 and of the Schur
complement S0 from (5.47). Analogous to section 6.1 the condition numbers are plotted
against the number of degrees of freedom which correspond to the TLC-elements from
Tab. 6.3.

In case of the acoustic fluid the condition numbers’ behavior as it is shown in Fig. 6.15
has nothing in common with its static counterpart, the Laplace equation (see Fig. 6.2).
Here, the condition numbers are extraordinary small and they seem to keep constant with
an increasing number of degrees of freedoms, i.e., a dependency in form ofO(

√
N) cannot
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be detected. Additionally, the condition numbers are just slightly affected by different CFL
numbers. With an increasing CFL number also the condition numbers for the single layer
operator increase. The situation changes for the Schur complement system. There, the
condition numbers decrease with an increasing CFL number. However, for both types of
matrices the system is extremely well conditioned since all condition numbers are lower
than 10 up to 104 degrees of freedom and within a range of 0.1≤ β ≤ 0.8 for the CFL
number.
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Figure 6.16: Condition numbers for elastodynamics

Next, considering the elastodynamic system in Fig. 6.16 the observations continue. Again,
the condition numbers seem to converge against a constant value for an increasing number
of degrees of freedom. Additionally, the condition numbers according to the single layer
operator increase with an increasing CFL number, and they seem to decrease in the case of
the Schur complement system matrix. Finally, both system matrices reveal quite sufficient
conditioning properties since, just as before, the condition numbers are less than 20.

Note that the investigations made above are not substantiated by any theoretical predic-
tions. Hence, the good conditioning of the system matrices in time domain can only be
assumed and is not proven yet.

6.4 Elastodynamic rod with a longitudinal step load

An almost classical example concerning the verification of the Convolution Quadrature
Method is a rod being stressed by a longitudinal stress load [64, 111]. With the Lamé-
Navier operator L from (2.34) the corresponding initial boundary value problem reads
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as [(
L+%0

∂ 2

∂ t2

)
u
]
(x̃, t) = 0 ∀(x̃, t) ∈Ω

(3)× (0,∞)

u(y, t) = 0 ∀(y, t) ∈ ΓD× (0,∞)

t(y, t) = g̃(y, t) ∀(y, t) ∈ Γ
(3)
N × (0,∞)

u(x̃,0+) = 0 ∀ x̃ ∈Ω

u̇(x̃,0+) = 0 ∀ x̃ ∈Ω

(6.17)

with the prescribed Neumann data

g̃(y, t) :=

{
[1 ,0 ,0]>H(t) ∀y ∈ Γ

(3)
N ∧ y1 = 3

0 ∀y ∈ Γ
(3)
N ∧ y1 6= 3 .

(6.18)

Again, the geometry specifications as well as the classification of Dirichlet- and Neumann
boundary correspond to the definitions (6.1) and (6.2), respectively. In (6.18), the function
H(t) denotes the Heaviside or, respectively, Unit-Step function

H(t) :=

{
1 t > 0
0 t < 0 .

(6.19)

With the artificial value of λ = 0 N/m2 the initial boundary value problem (6.17) results in
a purely uni-axial stress state which is comparable to the 1-dimensional system of a rod
with a constant cross-sectional area A and with the impact force F0 at the free end (see
Fig. A.2). The analytical solution for this 1-dimensional state is derived in the appendix
A.4 and is explicitly given in (A.13). From that analytical solution it is obvious that the
displacements vary linearly while the tractions are constantly distributed with respect to
the spatial coordinate. Therefore, a detailed discussion of the numerical solution by means
of different element/approximation combinations is skipped and only the TLC-elements
will be used in the forthcoming. Nevertheless, the results’ quality is investigated by using
several meshes as well as several time-grids.
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Figure 6.17: Triangular discretizations of the 3m rod

The Figure 6.17 depicts three different discretizations being used in the following. All
meshes consist of regular triangular grids with mesh-sizes of hG =

√
2/2m for the coarsest
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mesh (Fig. 6.17a), hG =
√

2/4m for the 448-element mesh (Fig. 6.17b), and hG =
√

2/5m
for the finest mesh featuring 700 elements (Fig. 6.17c).

The Figures 6.18 and 6.19 depict the numerical solutions obtained for various spatial and
time discretizations. While Fig. 6.18 shows the displacements u1 at the free end up to
the time 0.01s the Fig. 6.19 shows the traction-solutions at the fixed end for the same
time interval. In both figures the continuous lines without markers represent the analytical
solutions (A.13), which posses kinks in case of the displacement field and jumps for the
traction solution. Of course, those exceptional locations are quite challenging to approxi-
mate since kinks or discontinuities are hardly producible by the present numerical scheme.
However, a rough look at the numerical solutions reveals a quite good correlation of the
numerical solutions with the reference solution (A.13).

Comparing different spatial discretizations it becomes clear that the Convolution Quadra-
ture Method has a lower bound concerning the results’ stability. While the coarsest mesh
provides stable results throughout the complete time interval for both the displacement as
well as the traction solution this holds not for the two remaining discretizations. More-
over, a fixed CFL number obviously does not guarantee a proper solution. For instance,
the coarsest mesh of 112 elements features a stable solution within the whole time inter-
val. Contrary, the finest time discretization for the finer meshes produces unstable results.
In case of the 448-element mesh the solution begins to oscillate at the time t∗ ≈ 0.0064s.
With a CFL number of β = 0.1 this is equivalent to nearly 940 time steps. For the 700-
element mesh the solution becomes instable at t∗ ≈ 0.0046s. This corresponds to almost
845 time steps. Thus, the decreasing number of time steps for which stable results exist
induces that a constant CFL number is not a sufficient stability criteria. That the CFL num-
ber cannot satisfy such a criterion becomes immediately clear when the expression (6.16)
is considered. Keeping β constant and downsizing h results in a reduced time step size ∆t.
Naturally, this decreased time step size affects the Convolution Quadrature Method. On
the other hand a larger CFL number yields more sufficient solutions for a finer boundary
element mesh than it does for a coarser one. The reason for this behavior is exactly the
same as before, namely the reduced time step size ∆t which goes ahead with a decreas-
ing mesh size h. Hence, a finer boundary element mesh bears larger CFL numbers for an
adequate time resolution of the solution.

A second argument concerning the stability properties of the CQM consists in the spa-
tial quadrature’s quality. Until now, all computations have been performed by using the
heuristic quadrature rule proposed in Tab. 5.1. While this quadrature rule works sufficient
in case of static problems it features some weaknesses in the dynamic cases. This is due
to the fact that the quadrature is performed with integral kernels of complex valued argu-
ments. Those complex arguments are responsible for a oscillatory behavior of the integral
kernels by what the quadrature becomes more conspicuous. Hence, the quadrature rule
from Tab. 5.1 fails for the finest time discretization in the considered time interval. As
a proof for this proposition serve the numerical solutions in the Figures 6.20 and 6.21,
respectively. For those results the heuristic quadrature rule has been deactivated and all
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Figure 6.18: Displacement solutions at the free end for three different meshes
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Figure 6.19: Traction solutions at the fixed end for three different meshes
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Figure 6.20: Influence of the numerical Quadrature: Improved displacement solution for
the 700-element mesh
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Figure 6.21: Influence of the numerical Quadrature: Improved traction solution for the
700-element mesh
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numerical integrations have been performed with six Gauss points per element. Compar-
ing those results with the respective solutions in Fig. 6.18c and 6.19c the better stability
properties become obvious. Finally, the spatial quadrature’s influence on the Convolution
Quadrature Method’s stability confirms a proof of Lubich [78] who states that the CQM
is unconditionally stable if the underlying spatial integrations are performed exact. This
last statement illustrates the enormous importance of reliable quadrature schemes within
Boundary Element Methods. Unfortunately, at the moment such schemes are either too
slow or they are simply not available for the considered integral kernels. Thus, for a reli-
able numerical scheme more research on this topic is needed in the future.
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Figure 6.22: SGBEM versus collocation: Long time displacement solution for the 112-
element mesh

Finally, this section is closed with a comparison of a collocation based Boundary Ele-
ment Method as it is stated in [111] and the present symmetric method. The Figures 6.22
and 6.23 depict the displacement and traction solutions for the coarsest mesh within a
longer time interval of 0.04s. The CFL number has been chosen to β = 0.14. To ex-
clude the aforementioned quadrature errors as far as possible the solution corresponding
to the present numerical scheme has been obtained by using entirely six Gauss points per
element. On the other hand the collocation solution has been calculated with 48 Gauss
points per triangular element. More details on that formulation are given in the mono-
graph of Schanz [111]. Clearly, the displacement solution in Fig. 6.22 exhibits much more
numerical damping effects in the collocation case than it does for the symmetric Galerkin
method. The collocation result has also a phase shift for large times which is not visible for
the Galerkin formulation. Besides the increasing damping for the displacement solution
the collocation method reveals numerical instabilities with regard to the traction solution
(see Fig. 6.23). This traction solution becomes completely instable and is therefore only
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Figure 6.23: SGBEM versus collocation: Long time traction solution for the 112-
element mesh

depicted up to the time t = 0.034s. In contrast to this instability the Galerkin method is
still stable during the whole observation time, although the numerical solution’s quality
decreases with increasing time.

With the last result, one can state that the Symmetric Galerkin Boundary Element Method
is not only more robust in case of static problems but also for dynamic problems.

6.5 Elastodynamic cavity

The following example serves more or less as benchmark for the regularized elastodynamic
hypersingular bilinear form (4.100). This example consists in a spherical cavity centered
at the origin with radius r = 0.5m (see Fig. 6.24a). Then, the geometry specifications for
the region of interest are

Ω :={x̃ ∈ R3 : |x̃|> r}
Γ ={y ∈ R3 : |y|= r} .
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For this spherical cavity the following initial boundary value problem is stated for the outer
domain Ω[(

L+%0
∂ 2

∂ t2

)
u
]
(x̃, t) = 0 ∀(x̃, t) ∈Ω× (0,∞)

t(y, t) =−p0H(t)n(y) ∀(y, t) ∈ Γ× (0,∞)

u(x̃,0+) = 0 ∀ x̃ ∈Ω

u̇(x̃,0+) = 0 ∀ x̃ ∈Ω .

(6.20)

Above, L is the Lamé-Navier operator from (2.34), H(t) denotes the Unit step function
from (6.19), n(y) is the outward unit normal vector at the point y, and p0 is the prescribed
traction being given as p0 = 1N/m2. The problem (6.20) is perfectly symmetric by what it
possesses an analytical solution. Here, the solution is taken from the book of Achenbach
[2] and it is given in the appendix A.5.
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Figure 6.24: Geometry and spatial discretizations of the elastodynamic cavity

Beside the cavity’s geometry Fig. 6.24 shows two of its discretizations. The first mesh
in Fig. 6.24b is made of 122 TLC-elements while the second discretization in Fig. 6.24c
consists of 488 TLC-elements. Moreover, a CFL number of β = 0.3 has been used for
both discretizations.

No. of elems. hG qG hG

[−] [m] [m] [m]

122 0.298 1.398 0.262
488 0.154 1.433 0.134

Table 6.4: Discretization information of the spherical cavity

In Tab. 6.4, some more information concerning the spherical cavity’s discretizations are
summarized. There, the global Mesh size hG, the quasi-uniformity qG, and the mean mesh
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size hG = meanτi∈G{hi} are listed. The computation of the CFL numbers are based on the
mean mesh size hG.

In terms of boundary integral equations the initial boundary value problem (6.20) is equiv-
alent to the variational form

〈D ∗u,v〉Γ = 〈(1
2I −K

′)∗ t,v〉Γ . (6.21)

Since the boundary Γ is closed and since no rigid body motions take place due to the
dynamic problem the bilinear form (6.21) is supposed to be solvable.

(a) 122 elements

(b) 488 elements

Figure 6.25: Radial displacements of an elastodynamic cavity

The Figure 6.25 shows the radial displacements ur =
√
〈u,u〉 versus the time interval

0≤ t ≤ 0.015s for several distances R away from the origin. Thus, the results for R = r
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represent the Cauchy data on the cavity’s surface while the remaining distances are the
results within the domain Ω. Clearly, for those solutions the representation formula (3.14)
has been exploited with the complete Cauchy data uΓ and tΓ.

(a) 122 elements

(b) 488 elements

Figure 6.26: Radial tractions of an elastodynamic cavity

The Figures 6.25a and 6.25b illustrate the good convergence of the displacements with the
analytical solution. While the displacements at the cavity’s surface are almost congruent
for the coarse mesh the numerical solution for the finer mesh slightly diverges compared
to the analytical solution. Nevertheless, the solutions for the displacement field within the
domain are more accurate for the finer mesh. There, the wave fronts are sharper resolved
than it is the case for the coarser mesh. Of course, this reflects the influence of the time
discretization since, again, the CFL number has been kept constant so that the time step
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size scales down with a decreasing mesh size.

In Figure 6.26, the radial tractions σr are depicted for the distances R = 2r, R = 4r, and
R = 6r, respectively. Thereby, the tractions are obtained by a posterior calculation using
the representation formula (3.41). The traction solutions confirm the previously made ob-
servations. The finer time resolution in the 488 element mesh ensures the sharper wave
fronts within the tractions (see Fig. 6.26b) while for the coarser mesh the solution consid-
erably differs with respect to the analytical reference (see Fig. 6.26b).

Finally, both discretizations are capable of the sufficient approximation with respect to the
initial boundary value problem (6.20). Hence, the present Boundary Element formulation
being based on the variational form (6.21) is obviously appropriate to handle also such
class of problems.

6.6 Viscoelastic examples

In this section, the proposed Boundary Element Method is applied to a viscous solid. Anal-
ogous to section 6.4, the 3m rod with its geometry specifications from (6.1) is considered in
the two subsections 6.6.1 and 6.6.2, respectively. The Dirichlet- and Neumann-boundaries
are chosen in accordance to (6.2). Thus again, this rod is fixed on one side and is attracted
by a longitudinal unit step load on the opposite end. The material data are those of the
PMMA strip from Table 6.2c.

In fact, the numerical solution technique concerning the viscoelastic media is somehow
similar to the deduction of the corresponding 1-dimensional analytical and semi-analytical
solutions which are stated in appendix A.4. There, the system is transformed to the Laplace
domain and then the correspondence principle is inserted. Afterwards the viscoelastic so-
lution is transferred back into the time-domain. Within the proposed Boundary Element
Method the time convolution integrals are performed by using the Convolution Quadrature
method which itself needs the Laplace transformed fundamental solutions. Hence, insert-
ing the correspondence principle into the respective fundamental solutions and applying
the CQM onto the resulting kernel functions yields the viscoelastic solution in the time
domain.

6.6.1 Quasi-static rod with a longitudinal step load

Firstly, the quasi-static case is considered where the balance equations are formulated with-
out taking the inertia terms into account. With the generalized Lamé-Navier operator from
(2.61) the boundary value problem reads as

(L∗du)(x̃, t) = 0 ∀(x̃, t) ∈Ω
(3)× (0,∞)

u(y, t) = 0 ∀(y, t) ∈ ΓD× (0,∞)

t(y, t) = g̃(y, t) ∀(y, t) ∈ Γ
(3)
N × (0,∞) .

(6.22)
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Note that the Laplace transform of the generalized Lamé-Navier operator is nothing but
L̂=−(λ̂ + µ̂)∇∇ ·−µ̂∆ with the complex moduli λ̂ (s) and µ̂(s), respectively. The ac-
cording fundamental solution of this operator is formally the elastostatic fundamental so-
lution from (4.46) but evaluated for the complex moduli according to the correspondence
principle from (2.59).

The following numerical examples have been performed with the rod’s spatial discretiza-
tion from Fig. 6.17a and with a CFL number of β = 0.3. Note that the CFL-number has
almost no influence in case of the quasi-static analysis and even a higher CFL number does
not corrupt the result. This is due to the fact that in quasi-statics there exist no waves which
have to be resolved by the time marching scheme.
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Figure 6.27: Displacements u1 at the free end for the quasi-static 1-dimensional rod with
varying fractional derivative α

Analogous to the elastodynamic results from section 6.4, in Fig. 6.27 the displacements
at the rod’s free end are depicted. There, the continuous line denotes the 1-dimensional
solution stated in (A.17). Comparing this solution with the numerical solution for α = 1
shows, clearly, a good agreement between both solutions.

The two remaining solutions are obtained by decreasing the derivative order α within the
material model (2.59). The results are as expected. Within the material model (2.59)
the Laplace parameter s tends to one as the fractional derivative α tends to zero. Hence,
the time influence in the material decreases such that the creeping phase becomes less
distinctive. This is what the Fig. 6.27 illustrates. As α decreases the displacements tend
earlier to the static solution as it is the case for α = 1.

Due to the good agreement with the analytical solution and due to the plausible results for
varying the derivative orders α , the proposed Boundary Element Method obviously works
very sufficient in conjunction with time-dependent linear material models.
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6.6.2 Viscoelastodynamic rod with a longitudinal step load

Now, the mixed boundary value problem (6.22) is transferred to the viscoelastodynamic
case where, in addition, the inertia terms are taking into account. Hence, the corresponding
initial boundary value problem reads as(

L∗du+%0
∂ 2u
∂ t2

)
(x̃, t) = 0 ∀(x̃, t) ∈Ω

(3)× (0,∞)

u(y, t) = 0 ∀(y, t) ∈ ΓD× (0,∞)

t(y, t) = g̃(y, t) ∀(y, t) ∈ Γ
(3)
N × (0,∞)

u(x̃,0+) = 0 ∀ x̃ ∈Ω

u̇(x̃,0+) = 0 ∀ x̃ ∈Ω .

As before, L denotes the generalized Lamé-Navier operator from (2.61) and both the ge-
ometry definition as well as the Dirichlet- and Neumann-boundary specifications are that
of (6.1) and (6.2), respectively. Equivalent to the quasi-static case, now the Laplace trans-
formed system is equivalent to the Laplace transformed elastodynamic system except that
it features the complex moduli λ̂ (s) and µ̂(s). Hence, the fundamental solution of the
underlying operator L̂(s)+%0s2 is that of the elastodynamic system but evaluated with the
complex moduli according to the viscoelastic material model from (2.59).

The following numerical tests are done by using the rod’s discretization of 448 TLC-
elements from Fig. 6.17b. Moreover, as this problem deals with wave propagation, again,
the influence of the time-discretization is represented by the three CFL numbers β = 0.15,
β = 0.3, and β = 0.6, respectively.
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Figure 6.28: Displacements u1 for the viscoelastodynamic 1-dimensional rod with vary-
ing CFL numbers
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The displacement and traction solutions in the Figs. 6.28 and 6.29, respectively, obey the
same characteristics as the elastodynamic solutions from section 6.4 do. Again, a finer
time grid results in a better resolution of the wave fronts.
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Figure 6.29: Tractions t1 for the viscoelastodynamic 1-dimensional rod with varying
CFL numbers

Concerning the material model the differences between the viscous material and the non-
dissipative elastic solid from section 6.4 are eye-catching. Both the displacement as well
as the traction solution suffer internal energy losses which are embodied by the decreasing
amplitudes in the Figs. 6.28 and 6.29.

Many more studies according the choice of the viscoelastic material parameters can be
found in the monograph of Schanz [111]. Here, it is sufficient to state that the present
formulation is sufficiently capable to deal also with viscous material models. Finally, with
view on the present viscoelastic Boundary Element Method’s implementation it has to
be mentioned that actually just the underlying fundamental solutions are evaluated with
the respective viscous material model. In contrast, in classical collocation methods the
implementation effort is considerably higher since the viscous material model also affects
the computation of the so-called C-matrix. And possibly, this matrix is difficult to compute
in case of a viscous material. More details on this topic can be found in [110, 111].

6.7 Half-space examples

This section is devoted to some examples concerning the half-space problem. This problem
has been addressed several times within this thesis. The more theoretical aspects have
been mentioned in section 3.4 and in section 5.5 the concept of infinite elements has been
introduced to overcome the discretization problem of a semi-infinite domain. Now, it is
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time to present some numerical results according to this classical problem. In section
6.7.1, some static results are given and afterwards in section 6.7.2 an attempt is undertaken
to cover also the dynamic problem. In both cases the geometry of the semi-infinite half-
space is simply

Ω := {x̃ ∈ R3 : x̃3 < 0}
Γ∞ = {y ∈ R3 : y3 = 0} .

Additionally, for the static as well as for the dynamic problem the material data corre-
sponds to soil from Tab. 6.2b and the half-space’s surface suffers the prescribed boundary
traction

g̃(y) :=

{
t0 y ∈ Γ∧‖y‖1 ≤ 1
0 y ∈ Γ∧‖y‖1 > 1

(6.23)

being zero almost everywhere except within a rectangle given by ‖y‖1 ≤ 1. There, the
half-space is stressed by the loading t0 := [0, 0,−1]>N/m2 acting normal to the surface.
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Figure 6.30: Discretizations of the elastic half-space

In Figure 6.30, four different meshes for the half-space are depicted. Naturally, in those
illustrations only the finite boundary elements are drawn and the infinite ones are spared
out. The meshes 1A and 1B show an half-space’s surface area of 20m×20m while the two
remaining meshes 2A and 2B feature only an area of 10m×10m being approximated by
finite boundary elements. The respective discretization characteristics are summarized in
Tab. 6.5. It is somehow difficult to measure the discretizations’ mesh sizes since hτ∞

tends
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to infinity for the infinite boundary elements τ∞. Therefore, the global mesh size hG also
becomes infinitely large. To overcome this drawback, the triangulation G∗ is introduced
which consists of all finite boundary elements τ . Then, the global mesh size h∗G is just
defined as before, i.e., h∗G := maxτi∈G∗{hi}.

#finite elements #infinite elements mesh size h∗G

mesh 1A 800 80 1.41
mesh 1B 3200 160 0.71
mesh 2A 200 40 1.41
mesh 2B 800 80 0.71

Table 6.5: Number of finite/infinite elements and mesh sizes for several half-space dis-
cretizations

Finally, all numerical examples have been performed by using the TLC-elements from Tab.
6.1 for the finite discretization of the boundary.

6.7.1 Static solution

The boundary value problem in case of the elastostatic half-space has been already stated
in (5.50) and is recalled here

(Lu)(x̃) = 0 ∀ x̃ ∈Ω

t(y) = g̃(y) ∀y ∈ Γ∞

lim
|x|→∞

|x|u(x) = 0 ∀x ∈Ω∪Γ∞ .
(6.24)

Note that, contrary to the outer problems, the decay condition above is not restricted to
the domain Ω but also includes the boundary Γ∞. Hence, there exists something like a
Dirichlet boundary condition at infinity and the problem cannot be denoted as a typical
Neumann problem. Nevertheless, the underlying bilinear form

〈D̂u,v〉Γ∞
= 〈(1

2 Î − K̂
′)g̃,v〉Γ∞

demands the discretization of the hypersingular operator D̂ on the complete boundary Γ∞.
For this discretization the infinite elements from section 5.5 are used in order to incor-
porate the complete boundary surface into the discrete hypersingular operator. Thereby,
the numerical examples are performed with the mapping functions from (5.55) and with
a scale factor of α = 1. Moreover, the directions to infinity zi are computed using the
expressions (5.56) and (5.57), respectively. Finally, the test- and trial-functions according
to the infinite elements match the definition (5.64) with an exponent of n = 3. Note that
this exponent is primarily chosen for consistency reasons. In fact, an exponent of 2 would
be sufficient with view on the demanded kernels’ regularity (5.62). But since the kernels
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in the time-dependent case claim an exponent of 3 and since there exist no physical rea-
sons for choosing different orders of test- and trial-function the exponent is set to n = 3
throughout this section.

If the prescribed traction is just a point load at the origin the boundary value problem (6.24)
exhibits an analytical solution which is commonly denoted as the Boussinesq-solution.
This solution is a singular solution since the displacements become infinitely large at the
origin due to the point load. The Boussinesq solution may be found, e.g., in the book of
Love [75]. A more general solution can also be found in the paper of Mindlin [83] where
the point load is not restricted to act on the surface but also may be placed within the
solid.
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Figure 6.31: Vertical displacements of an elastostatic half-space

The Figure 6.31 presents the vertical displacements u3(x) for the sample points x ∈ L lying
on the line L := {x ∈ Γ∞ : x2 = 0}. The numerical results show a very good convergence
in comparison with the Boussinesq solution except around the region where the inhomo-
geneous tractions are applied. Of course, this deviation is due to the different loading in
the numerical examples compared to the single point load in the Boussinesq solution.

The observation continues also for the radial displacements u1(x) with the same sample
points x ∈ L as before. Those results are depicted in Fig. 6.32 and the radial displacements
are coincident with the Boussinesq solution beyond the region of loading.

Moreover, it can be observed that the results for the vertical as well as for the radial dis-
placements coincide for the respective larger and smaller discretizations, i.e., the results
for mesh 1A and the mesh 2A are almost identical. And the same holds for the discretiza-
tions 1B and 2B. Even the variations between the mesh 1A and the mesh 1B are rather
small. Hence, two main conclusions could be made. Firstly, the results for the finest mesh
vary just slightly from the results which are obtained for the coarsest mesh. Secondly, and
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Figure 6.32: Horizontal displacements of an elastostatic half-space

even more important, the infinite element-approach yields meaningful results which are in
good agreement with the analytical reference solution. Actually, this means that the far
field Dirichlet condition is included in the hypersingular bilinear form 〈D̂u,v〉Γ∞

.

6.7.2 Dynamic solution

The initial boundary value problem according to the elastodynamic half-space problem
reads as [(

L+%0
∂ 2

∂ t2

)
u
]
(x̃, t) = 0 ∀(x̃, t) ∈Ω× (0,∞)

t(y, t) = g̃(y)H(t) ∀(y, t) ∈ Γ∞× (0,∞)

u(x̃,0+) = 0 ∀ x̃ ∈Ω

u̇(x̃,0+) = 0 ∀ x̃ ∈Ω

(6.25)

with its corresponding boundary integral representation

〈D ∗u,v〉Γ∞
= 〈(1

2I −K
′)∗ g̃,v〉Γ∞

.

In (6.25), the prescribed tractions g̃ are that of (6.23) and the differential operator L is
the Lamé-Navier operator (2.34). Analogous to the elastostatic half-space, for the equiv-
alent elastodynamic problem there exists an analytical solution which has been deduced
by Pekeris [95]. As the Boussinesq solution the dynamic half-space solution supposes that
the semi-infinite domain is stressed by a single point load applied at the origin.
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Figure 6.33: Vertical displacements of an elastodynamic half-space at the observation
point x∗

In the previous subsection, the presented examples show that the results’ quality is almost
independent of the discretization. Therefore, in the following the numerical tests are per-
formed using the discretization 1A (see Fig. 6.30a) only. Moreover, the infinite elements
are the same as before but with the test- and trial-functions corresponding to (5.63).

Figure 6.34: Radial displacements of an elastodynamic half-space at the observation
point x∗

The Figs. 6.33 and 6.34 depict the vertical and radial solutions u3(x∗, t) and u1(x∗, t) at the
observation point x∗ = [4, 0, 0 ]>. Thereby, at least three different calculations have been
performed. The first two numerical solutions are done by using infinite elements but with
varying time step sizes. The last numerical solution has been obtained without invoking



158 6 Numerical results

the infinite elements.

The first and the second numerical solution reveal in general the same behavior. Com-
pared to the analytical solution [95] both displacement solutions exhibit oscillations for
larger times which are presumably due to artificial reflections at the crossing of finite and
infinite boundary elements. But beside these effects, both numerical solutions show ap-
proximately the characteristics of the analytical solution. Contrary, a computation without
infinite elements but with the same time step size as the first depicted numerical solution
yields a defective result for times larger than 0.034s. This is exactly the time the com-
pression wave with the velocity c1 =

√
λ+2µ/% = 465.8m/s has to travel from the center

of loading to the truncated boundary and back to the observation point x∗. Therefore, the
infinite element approach for the treatment of semi-infinite domains is also worth to be
applied to the time-domain. Nevertheless, it must be mentioned that the results obtained
here, reach not the quality of those which are gained by the more classical collocation
methods using the first boundary integral equation only [105, 111].



7 CONCLUSION

In this work, a unified Symmetric Galerkin Boundary Element Method (SGBEM) has
been presented which covers some classical mechanical problems. Since a meaningful
Boundary Element Method can be formulated within a linear setting only, all underlying
constitutive equations have been derived under the assumptions of linear kinematics as
well as a linear, homogeneous, and isotropic material behavior. Explicitly, the derived
constitutive equations correspond to the acoustic fluid and to the system of elastodynamics.
Additionally, both material models have been reduced to their static counterparts which are
the Laplace equation and the elastostatic system. Further, as an enhancement to a perfectly
elastic solid the concept of linear viscoelasticity has been introduced in order to model also
physical problems with energy losses.

Based on the previously mentioned governing equations the equivalent elliptic and hyper-
bolic boundary integral equations have been deduced. Therefore, the so-called reciprocity
theorems were employed in order to derive the representation formulae. Then, after an
application of proper limiting processes a system of boundary integral equations has been
obtained by means of the first and the second boundary integral equation. This system of
equations depicts the prerequisite for the symmetric Galerkin formulation which embeds
the system of integral equations into a variational form. In fact, this variational form serves
as the starting point for the later proposed discretization scheme.

As a preliminary work with view to a numerical scheme, the necessary regularizations
concerning the integral kernels’ singularities have been performed extensively in chapter
4. Those regularizations are based on variations of the Stokes theorem and in some sense
they form the backbone of this work. Especially, the regularization of the Laplace trans-
formed hypersingular bilinear form of elastodynamics marks original research. The reason
why those regularizations are essential is the fact that independent of the actual physical
problem and independent of the particular integral kernel the final occurring singularities
are always at least of weakly singular type. Fortunately, there exist some rather general and
easy to implement quadrature rules by what the resulting singular kernels are computable
without any further modifications. This advantage not only simplifies the implementation
of the SGBEM considerably but gives also great freedom concerning the choice of test-
and trial-spaces as well as concerning the approximation of the geometry. Another ad-
vantage of the regularization consists in the fact that the hypersingular bilinear forms are
originally defined as a finite part integrals which hardly allow a purely numerical treatment
— at least not in the 3-dimensional space. Hence, the reduction to weakly singular integral
kernels guarantees their robust numerical evaluation.

With the knowledge of dealing with weakly singular integrals only the final step, namely
the deduction of the SGBEM, has been straightforward. Standard techniques known from
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the Finite Element Method have been used for the spatial discretization while the temporal
discretization has been performed by means of the Convolution Quadrature Method. Since
this temporal discretization scheme uses the Laplace transformed fundamental solutions
the aforementioned consideration of dissipative material models poses no problems. It is
simply done by making use of the elastic-viscoelastic correspondence principle.

Within the discretization just one additional problem has arisen which, somehow, goes
back to the regularization of the method’s integral kernels. The half-space problem is
typically a kind of Neumann problem by what it demands the discretization of the hy-
persingular bilinear form on the complete surface. But actually, this surface is of infinite
extent and, therefore, it cannot be approximated by finite boundary elements only. On the
other hand, approximating just a finite surface patch of the infinite boundary is impossi-
ble as well since the regularization demands either a closed surface or assumes vanishing
kernel functions at infinity. To overcome this problem the concept of infinite boundary
elements has been picked up in order to avoid both the discretization error as well as the
regularization error. And although infinite elements are widely known the use of them
within the symmetric Galerkin Boundary Element Method is done herein probably for the
first time.

Finally, the present Boundary Element Method has underwent a set of different numerical
tests in order to validate the method and to illustrate it’s capabilities. Except one numerical
test, the method succeeded in every other numerical experiment. Beside the numerical con-
firmation of the theoretical prediction concerning the systems’ conditioning, the method
has delivered very good results in case of the static examples as well as in the dynamic
examples. Additionally, also the interior stress evaluation has shown extraordinary con-
vergence against the respective reference solutions. Further, a comparison of the present
method with the more common Collocation Boundary Element Method has shown the ro-
bustness of the SGBEM in the time domain. At least, also the elastostatic half-space has
been performed very well by the SGBEM.

The method’s only problem has been the elastodynamic half-space. This is disappointing
since this problem is the classical case where Boundary Element Methods are supposed
to be superior compared to other numerical schemes. But in contrast to the classical col-
location schemes where the Boundary Element Methods seem to work well in an almost
magical but somehow causeless way also on a truncated mesh, the reasons for the present
failure are mostly explainable. Beside a possible implementation fault the major problem
consist in the fact that, contrary to the elastostatic half-space, the integration on the infi-
nite elements is done over oscillating kernel functions. Therefore, in conjunction with the
infinite mapping the integrations are finally performed over a semi-infinite domain with
oscillating kernel functions and, additional, weak singularities. With the proposed rather
naive quadrature implementation the integrals’ approximation quality is uncontrollable.

Of course, the quadrature with respect to the infinite elements marks in a sense the worst
case but it reflects another major weakness of the present formulation. Until now, the
involved quadratures are performed by using heuristic rules only. Although there exist
some error estimates which have been deduced for the standard finite boundary elements
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there exist no such estimates in case of infinite boundary elements. Hence, it would be
preferable to use some adaptive integration schemes in the future. In the very personal
author’s opinion the development of reliable numerical integration schemes should be one
of the major topics in future research.

At the end, it must be mentioned that one of the method’s characteristics are the result-
ing fully populated system matrices. Moreover, the complexity of the computation for
each matrix entry is considerably high due to the Galerkin scheme with its double inte-
grations. A reduction of this complexity is strongly required in order to apply this method
also to much larger problems. Fortunately, there exists a broad range of so-called Fast
Boundary Element Methods which have been developed in the recent years. Those meth-
ods are the Fast Multipole Method, the Adaptive Cross Approximation, H-matrices, and
Panel Clustering techniques just to note a few of them. In fact, all of these techniques
are based on some low-rank approximations of the systems matrices and they apply some
iterative solver schemes to the final system of equations. At this point in time, those meth-
ods are mostly applied to symmetric Galerkin Boundary Element Methods dealing with
elliptic problems but there exist ambitions to transfer those techniques also to hyperbolic
problems. Obviously, the present Galerkin method results in very good conditioned, and
positive definite systems also in the time-domain by what the incorporation of fast meth-
ods should be possible. Hence, the present work marks one step towards a fast symmetric
Galerkin Boundary Element Method in time-domain.
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A APPENDIX

A.1 Integral kernels for inner stress evaluations

The numerical examples in sections 6.2.3 and 6.5 are done by employing the represen-
tation formulae for the interior stresses. These formulae are derived in section 3.5. But
contrary to the rather abstract notation given there, here, the detailed expressions of the
involved integral kernels are presented. Naturally, those kernels are intended to be used
within some Boundary element implementation. For this purpose, the kernel functions are
given in indical notation in the following. Although this notation is not consistent with the
notation being used for the rest of this work it is considerably more advantageous from an
implementation point of view. First, some useful abbreviations concerning the spatial and
normal derivative

r,i :=
∂ r
∂yi

=
yi− xi

r

r,n :=
∂ r

∂n(y)
= 〈∇yr,n(y)〉

of the distance function r := |y−x| from (4.51) are introduced. Above, xi, yi, and ni denote
the i-th component of the respective expression.

Elastostatic kernels. In the elastostatic case the underlying stress representation formula
is

σσσ(x̃) = (S1tΓ)(x̃)− (S2uΓ)(x̃) ∀ x̃ ∈Ω

with the operators

(S1tΓ)(x̃) :=
∫
Γ

(
(4)

C : ∇̃x̃UES
)

(y− x̃)tΓ(y) dsy

(S2uΓ)(x̃) :=
∫
Γ

[
Ty

(
(4)

C : ∇̃x̃UES
)]

(y− x̃)uΓ(y) dsy ∀y ∈ Γ .

(A.1)

In Eqn. (A.1), UES denotes the elastostatic fundamental solution (4.46) and ∇̃x̃ is the
symmetric gradient. With the definitions of the third order tensors

(3)

S1 :=
(4)

C : ∇̃x̃UES

(3)

S2 := Ty

(
(4)

C : ∇̃x̃UES
)
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the tensors’ components are

S1[k, i, j](y,x) =
1

8π(1−ν)r2

[
(1−2ν)(δk jr,i +δkir, j− r,kδi j)+3r,ir, jr,k

]
S2[k, i, j](y,x) =

E
8π(1−ν)(1+ν)r3

[
3r,n

(
(1−2ν)δi jr,k +νr,iδ jk +νδikr, j−5r,ir, jr,k

)
+3nk(1−2ν)r,ir, j +ni

(
(1−2ν)δ jk +3νr, jr,k

)
+n j

(
(1−2ν)δik +3νr,ir,k

)
−nkδi j(1−4ν)

]
.

(A.2)
In (A.2), δi j denotes the Kronecker delta from (4.41). Moreover, for brevity, the stress
kernels are given in terms of the Young’s modulus E and the Poisson’s ratio ν .

Elastodynamic kernels. Since all time-domain computations are done by utilizing the
Convolution Quadrature Method it is sufficient to formulate the elastodynamic representa-
tion formula (3.41) in the Laplace domain. This gives

σ̂σσ(x̃,s) = (Ŝ1t̂Γ)(x̃,s)− (Ŝ2ûΓ)(x̃,s) ∀ x̃ ∈Ω, s ∈ C

with the operators

(Ŝ1t̂Γ)(x̃,s) :=
∫
Γ

(
(4)

C : ∇̃x̃ÛED
)

(y− x̃,s)t̂Γ(y,s) dsy

(Ŝ2ûΓ)(x̃,s) :=
∫
Γ

[
Ty

(
(4)

C : ∇̃x̃ÛED
)]

(y− x̃,s)ûΓ(y,s) dsy ∀y ∈ Γ .

As before, two third order tensors

(3)

Ŝ1 :=
(4)

C : ∇̃x̃ÛED

(3)

Ŝ2 := Ty

(
(4)

C : ∇̃x̃ÛED
)

are defined whose components are

Ŝ1[i, j,k](y,x,s) =
1

4πr

[
η1r,iδ jk +η1r, jδik−2r,k(η2r,ir, j−η3δi j)

]
Ŝ2[i, j,k](y,x,s) =

E
8πr2(1+ν)

[
r,n
(
η4r,iδ jk +η4r, jδik +4r,k(η5r,ir, j−η6δi j)

)
−4n,k

(
η6r,ir, j−η7δi j

)
+n,i

(
η4r, jr,k +2η1δ jk

)
+n, j

(
η4r,ir,k +2η1δik

)]
.
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Analogous to the elastostatic kernels (A.2) the kernels above are given in terms of the
Young modulus E and Poisson’s ratio ν . The abbreviations η1, . . . ,η7 are given as

η1 :=2χ +
(
1+ k̃2

) exp(−k̃2)
r

η2 :=6χ−3ψ +
(
3+ k̃2

) exp(−k̃2)
r

− k̃1
c2

2
c2

1

exp(−k̃1)
r

η3 :=
1

1−2ν

[
χ−ν

(
2χ−

(
1+ k̃1

) c2
2

c2
1

exp(−k̃1)
r

)]
η4 :=−24χ +12ψ−

(
15+7k̃2 + k̃2

2
) exp(−k̃2)

r
+4k̃1

c2
2

c2
1

exp(−k̃1)
r

η5 :=30χ +15ψ + k̃2
(
10+ k̃2

) exp(−k̃2)
r

−
c2

2
c2

1

(
15+10k̃1 + k̃2

1
) exp(−k̃1)

r

η6 :=
1

1−2ν

[
5(1−2ν)χ +(1+ k̃2)(1−2ν)

exp(−k̃2)
r

−
c2

2
c2

1
((1−5ν)(1+ k̃1)−ν k̃2

1)
exp(−k̃1)

r

]
η7 :=

1
(1−2ν)2

[
(1−4ν +4ν

2)χ +
c2

2
c2

1
ν
(
2(1−2ν)(1+ k̃1)−ν k̃2

1
) exp(−k̃1)

r

]
with the auxiliary functions

ψ(r,s) :=−
c2

2
c2

1

(
1
k̃2

1
+

1
k̃1

)
exp(−k̃1)

r
+
(

1
k̃2

2
+

1
k̃2

+1
)

exp(−k̃2)
r

χ(r,s) :=−
c2

2
c2

1

(
3

1
k̃2

1
+3

1
k̃1

+1
)

exp(−k̃1)
r

+
(

3
1
k̃2

2
+3

1
k̃2

+1
)

exp(−k̃2)
r

,

and with
k̃i := kir =

s
ci

r , i = 1,2 .

A.2 Mapping functions

All of the following functions confer to the configurations of the boundary elements which
are stated in section 5.1. All mapping functions are based on the reference elements de-
picted in Fig. 5.1 on page 87.

• 3-node triangle
Monoms:

ψψψ(x̂) =
[
1 x̂1 x̂2

]
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Shape-, trial-, and test-functions:

ϕϕϕ
1
3(x̂) =

ϕ1
1 (x̂)

ϕ1
2 (x̂)

ϕ1
3 (x̂)

=

 1− x̂1

x̂1− x̂2

x̂2


• 6-node triangle

Monoms:
ψψψ(x̂) =

[
1 x̂1 x̂2 x̂2

1 x̂1x̂2 x̂2
2
]

Shape-, trial-, and test-functions:

ϕϕϕ
2
6(x̂) =



ϕ2
1 (x̂)

ϕ2
2 (x̂)

ϕ2
3 (x̂)

ϕ2
4 (x̂)

ϕ2
5 (x̂)

ϕ2
6 (x̂)


=



1−3x̂1 +2x̂2
1

(1−2x̂1 +2x̂2)(x̂2− x̂1)
x̂2 (2x̂2−1)

4(1− x̂1)(x̂1− x̂2)
4(x̂1− x̂2) x̂2

4(1− x̂1) x̂2


• 4-node quadrilateral

Monoms:
ψψψ(x̂) =

[
1 x̂1 x̂2 x̂1x̂2

]
Auxiliary functions:

φ1(x̂) = 1− x̂ , φ2(x̂) = x̂ , x̂ ∈ [0,1]

Shape-, test-, and trial-functions:

ϕϕϕ
1
4(x̂) =


ϕ1

1 (x̂)
ϕ1

2 (x̂)
ϕ1

3 (x̂)
ϕ1

4 (x̂)

=


φ1(x̂1)φ1(x̂2)
φ2(x̂1)φ1(x̂2)
φ2(x̂1)φ2(x̂2)
φ1(x̂1)φ2(x̂2)


• 9-node quadrilateral

Monoms:
ψψψ(x̂) =

[
1 x̂1 x̂2 x̂2

1 x̂1x̂2 x̂2
2 x̂2

1x̂2 x̂1x̂2
2 x̂2

1x̂2
2
]

Auxiliary functions:

φ1(x̂) = 1−3x̂+2x̂2 , φ2(x̂) = x̂(2x̂−1) , φ3(x̂) = 4x̂(1− x̂) , x̂ ∈ [0,1]
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Shape-, test-, and trial-functions:

ϕϕϕ
2
9(x̂) =



ϕ2
1 (x̂)

ϕ2
2 (x̂)

ϕ2
3 (x̂)

ϕ2
4 (x̂)

ϕ2
5 (x̂)

ϕ2
6 (x̂)

ϕ2
7 (x̂)

ϕ2
8 (x̂)

ϕ2
9 (x̂)


=



φ1(x̂1)φ1(x̂2)
φ2(x̂1)φ1(x̂2)
φ2(x̂1)φ2(x̂2)
φ1(x̂1)φ2(x̂2)
φ3(x̂1)φ1(x̂2)
φ2(x̂1)φ3(x̂2)
φ3(x̂1)φ2(x̂2)
φ1(x̂1)φ3(x̂2)
φ3(x̂1)φ3(x̂2)



A.3 Computation of relevant time steps

The integration weights ωn can be estimated by

ωn ≈
ηn

n!
exp(−3

2
η) η =

rmax

c2 ∆t
, (A.3)

where rmax is the maximum distance in the discretized body, c2 is the velocity of the
shear wave, and ∆t is the time step size. Figure A.1 depicts the integration weights (A.3)
schematically.

n̂ n

ωn̂ = ωmax

ω
n

Figure A.1: Integration weights ωn

The influence of those integration weights is assumed to vanish if there exist a n̄ such
that ∣∣∣∣ωn̄−ωn̄−1

ωmax

∣∣∣∣ !
≤ ε (A.4)

is fulfilled for some pre-defined tolerance ε .
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To compute the time step n̂ for the maximal integration weight ωmax the condition

ωn̂+1
!
< ωn̂ (A.5)

holds. Inserting (A.3) into (A.5) and using (n+1)! = n! · (n+1) yields

η n̂

n̂!
η

n̂+1
exp(−3

2
η) <

η n̂

n̂!
exp(−3

2
η) =⇒ n̂ > η−1 =⇒ n̂ = dηe−1 . (A.6)

Above, dηe is the smallest integer greater or equal η . Moreover, the difference ωn̄−ωn̄−1
can be expressed by

ωn̄−ωn̄−1 =
(

η n̄

n̄!
− η n̄−1

(n̄−1)!

)
exp(−3

2
η) =

η n̄

n̄!

(
1− n̄

η

)
exp(−3

2
η) . (A.7)

Inserting the results from (A.6) and (A.7) into the left hand side of (A.4) gives∣∣∣∣ωn̄−ωn̄−1

ωmax

∣∣∣∣= ∣∣∣∣η n̄

η n̂
n̂!
n̄!

(
1− n̄

η

)∣∣∣∣ . (A.8)

Obviously the condition n̄ > n̂ holds. Therefore, n̄ = n̂ + i holds for some positive inte-
ger i≥ 1. Inserting this expression into (A.8) yields an error εi

εi = η
i n̂!
(n̂+ i)!

(
1− n̂+ i

η

)
. (A.9)

The identity

(n̂+ i)! = n̂! · (n̂+1) · . . . · (n̂+ i) = n̂! ·
i

∏
k=1

(n̂+ k)

simplifies (A.9) to

εi = η
i

i

∏
k=1

(n̂+ k)−1

︸ ︷︷ ︸
αi

·
(

1− n̂+ i
η

)
︸ ︷︷ ︸

βi

= αiβi .

It is easy to proof that αi and βi can be recursively defined

αi = αi−1
η

n̂+ i

βi = βi−1−
1
η

.

Therefore, also the error εi can be formulated recursively

εi = αiβi

=
η

n̂+ i
αi−1

(
βi−1−

1
η

)
=

1
n̂+ i

(ηεi−1−αi−1) .

Note that for an application of the FFTW it is necessary to demand that n̄ is equal. This is
ensured by the final statement of the following algorithm:
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Algorithm 1 Compute the number of relevant time steps
1: define a tolerance εT , (e.g., εT = 10−4)
2: compute η = rmax/(c2 ∆t)
3: compute n̂ = dηe−1
4: compute α = η/(n̂+1) // α1
5: compute ε = α−1 // ε1
6: initialize iterator i = 2
7: repeat
8: compute ε = 1

n̂+i (ηε−α)
9: compute α = η

n̂+iα

10: increment i by 1
11: until |ε|< εT
12: compute n̄ = n̂+ i−1
13: if n̄%2 6= 0 then
14: n̄ = n̄+1
15: end if

A.4 Analytical solutions for the 1-dimensional column

Here, the analytical and semi-analytical solutions for the 1-dimensional rod are recalled.
All solutions are obtained via the Laplace transform of the original initial boundary value
problem and they are restricted to a unit step load as impact force. A more general time-
domain solution is given in the textbook of Graff [47], and more details concerning the
viscoelastodynamic solution can be found in the thesis of Schanz [109].

The Figure A.2 depicts a 1-dimensional rod of `m length. It is fixed at x = 0 and is loaded
at the free end x = ` by the impact force F(t) = F0H(t).

F(t)

`
x

Figure A.2: 1-dimensional rod with longitudinal step load
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Governing equations. For this system the homogeneous initial boundary value problem
for the longitudinal displacement u(x, t) is

−∂ 2u
∂x2 +

1
c2

∂ 2u
∂ t2 = 0 ∀(x, t) ∈ (0, `)× (0,∞)

u(0, t) = 0 ∀ t ∈ (0,∞)
N(`, t) = F0H(t) ∀ t ∈ (0,∞)

u(x,0+) = 0 ∀x ∈ (0, `)

u̇(x,0+) = 0 ∀x ∈ (0, `) .

(A.10)

Above, the force N(x, t) := σ(x, t)A is nothing but the stress σ times the constant cross-
sectional area A.

With the Laplace transform ŵ(s) = L {w}(s) :=
∫

∞

0 w(t)exp(−st) dt and under consider-
ation of the initial conditions u(x,0+) = 0 and u̇(x,0+) = 0 the system (A.10) transforms
as

−∂ 2û
∂x2 + k2

c û = 0 ∀x ∈ (0, `)

û(0,s) = 0

N̂(`,s) = F0
1
s

(A.11)

with the complex wave number kc := s/c. Using the definition of N(x, t) in addition with
the one-dimensional Hooke’s law σ̂(x,s) = 2µ

∂ û
∂x the last boundary condition becomes

∂ û
∂x = F0

2µsA . Defining the prescribed traction as σ0 := F0/A and substituting the Lamé pa-
rameter such that 2µ = c2%0 is expressed via the wave velocity and the mass density the
solution of (A.11) in accordance to the boundary conditions is

û(x,s) =
σ0

%0c
1
s2 exp((`− x)kc)

exp(2kcx)−1
exp(2kc`)+1

. (A.12)

Time-domain solution. Next, the time domain solution u(x, t) is obtained by the inverse
Laplace transform of (A.12). Since Re(s) > 0 holds the absolute value of exp(−2kc`) is
always lower than 1. This property enables the use of the identity

1
1+ exp(−2kc`)

=
∞

∑
n=0

(−1)n exp(−2kcn`)

which is nothing more than the infinite geometric series. Thus, the expression (A.12) can,
finally, be transformed into

û(x,s) =
σ0

%0c

∞

∑
n=0

(−1)n
[

exp(−kc((2n+1)`− x))
s2 − exp(−kc((2n+1)`+ x))

s2

]
.
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Now, the expression above is appropriate for the application of the inverse Laplace trans-
form. With the auxiliary function

χn(x, t) := t− (2n+1)`+ x
c

.

this gives the displacement and traction solution

u(x, t) =
σ0

%0c

∞

∑
n=0

(−1)n [χn(−x, t)H (χn(−x, t))−χn(x, t)H (χn(x, t))]

σ(x, t) = 2µ
∂u(x, t)

∂x
= σ0

∞

∑
n=0

(−1)n [H (χn(−x, t))+H (χn(x, t))] .

(A.13)

Viscoelastodynamic solution. From section 2.3, it is known that the Laplace trans-
formed time-domain solution can be used to obtain the Laplace transformed viscoelas-
tic solution. Therefore, the correspondence principle (2.51) has to be applied. For the
1-dimensional rod this correspondence principle is

µ ⇐⇒ µ
1+qsα

1+ psα︸ ︷︷ ︸
=:µ̂(s)

,

which is the 1-dimensional analogue to the 5-parameter model from (2.59). With the
complex modul µ̂(s) and the complex valued wave velocity ĉ(s) =

√
2µ̂(s)/%0 the vis-

coelastodynamic displacement solution is obtained

û(x,s) =
σ0

%0ĉ
1
s2 exp((`− x)kĉ)

exp(2kĉx)−1
exp(2kĉ`)+1

. (A.14)

Consequently, the tractions σ̂(x,s) are

σ̂(x,s) = 2µ̂
∂ û
∂x

=
σ0

s
exp((`− x)kĉ)

exp(2kĉx)+1
exp(2kĉ`)+1

. (A.15)

In general, it is impossible to transform the viscoelastic solutions (A.14) and (A.15) ana-
lytically into the time-domain. Therefore, one has to be content with a numerical inversion
of those solutions. Within this work this numerical inversion is done by using an algorithm
based on Talbot’s method [86].

Quasistatic solution. Neglecting the effects due to the inertia terms in (A.10) or (A.11),
respectively, yields the so-called quasi-static solution. Performing the limit lim|kĉ|→0 û for
the viscoelastodynamic displacement solution (A.14) yields

û(x,s) =
σ0

2
1

µ̂s
x =

σ0

2µ

1+ psα

(1+qsα)s
x . (A.16)
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Again, a general inversion of the expression above is hardly possible but it is easy to obtain
a solution if the derivative order is set to one, i.e., if α = 1 holds. In this case the inverse
of (A.16) is simply

u(x, t) =
σ0

2µ

[
1+
(

p
q
−1
)

exp(−t/q)
]

x . (A.17)

Note that this solution corresponds to the Poynting model from section 2.3.

A.5 Analytical solution for the pressurized spherical cavity

The initial boundary value problem for a spherical cavity of radius R > 0 is considered (Fig.
A.3). Let Ω = {x ∈ R3 : |x|> R} denote the domain, and let Γ = ∂Ω = {x ∈ R3 : |x|= R}
be its boundary. Using spherical coordinates the initial boundary value problem (6.20)
reads as

∂ 2u
∂ r2 +

2
r

∂u
∂ r
− 2u

r2 =
1
c2

1

∂ 2u
∂ t2 ∀r > R, t ∈ (0,∞)

σr(r, t) =−p0H(t) ∀r = R, t ∈ (0,∞)
u(r,0) = u̇(r,0) = 0 ∀r > R, t = 0 .

(A.18)

In (A.18), r =
√
〈x,x〉 denotes the the Euclidean norm of a vector x. Analogously, the

absolute value of the displacement field is given by u =
√
〈u,u〉. Finally, c1 is the velocity

of the compressional wave and σr is the stress field in radial direction.

p0H(t)

R
r

Figure A.3: Pressurized spherical cavity

The solution of (A.18) is taken from [2] and is given given by

u(r, t) =
∂ϕ

∂ r
(A.19)

where the function φ(r, t) can be expressed as

ϕ(r, t) =−R3 p0

4µ

1
r

[
1−
√

2(1−ν)exp(−αs)sin(β s+ γ)
]

H(s)
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with the parameters

α =
1−2ν

1−ν

c1

R

β =
√

1−2ν

1−ν

c1

R

γ = arctan
1√

1−2ν
.

The argument s = s(r, t) represents the retarded time

s(r, t) = t− r−R
c1

.

Finally, the normal stress σr in the radial direction and the normal stress σθ perpendicular
to r are determined by

σr(r, t) =
%0c2

1
1−ν

[
1−ν

c2
1r

∂ 2 f
∂ s2 −2(1−2ν)

u(r, t)
r

]
σθ (r, t) =

%0c2
1

1−ν

[
ν

c2
1r

∂ 2 f
∂ s2 +(1−2ν)

u(r, t)
r

] (A.20)

using the mass density %0 and a function f (s) = rϕ(r, t).

Implementation details. By defining some auxiliary functions

ust(r) =
R3 p0

4µ

1
r2

ψ0(s) =
√

2(1−ν)exp(−αs)
ψ1(s) = sin(β s+ γ)
ϕ̃(s) = [1−ψ0(s)ψ1(s)]H(s)

the displacement solution (A.19) reads as

u(r, t) = ust

(
ϕ̃ +

r
c1

dϕ̃

ds

)
H(s)

with
dϕ̃

ds
= ψ0

(
αψ1−

dψ1

ds

)
,

dψ1

ds
= β cos(β s+ γ) .

The stress solutions (A.20) are computed straightforward using the identity

∂ 2 f
∂ s2 =−ustr2

[
(β 2−α

2)ψ1 +2α
dψ1

ds

]
ψ0H(s) .
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