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Abstract

The aim of the book is to provide an analysis of the boundary element method for the
numerical solution of Laplacian eigenvalue problems. The representation of Laplacian
eigenvalue problems in the form of boundary integral equations leads to nonlinear eigen-
value problems for related boundary integral operators. The solution of boundary element
discretizations of such eigenvalue problems requires appropriate methods for algebraic
nonlinear eigenvalue problems. Although the numerical solution of eigenvalue problems
for partial differential operators using boundary elementmethods has a long tradition, a
rigorous numerical analysis has not been established so far. One of the main goals of this
work is to develop a convergence and error analysis of the Galerkin boundary element
approximation of Laplacian eigenvalue problems. To this end, the concept of eigenvalue
problems for so–called holomorphic Fredholm operator functions is used. This concept is
a generalization of the theory for eigenvalue problems of bounded linear operators. The
analysis of the approximation of eigenvalue problems for holomorphic Fredholm opera-
tor functions is usually done in the framework of the conceptof regular approximation
schemes. In this work convergence results and error estimates are derived for Galerkin
discretizations of such eigenvalue problems. These results are then applied to the dis-
cretizations of Laplacian boundary integral operator eigenvalue problems. Furthermore,
numerical methods for the solution of algebraic nonlinear eigenvalue problems are re-
viewed. The little–known Kummer’s method is presented and its convergence behavior
for algebraic holomorphic eigenvalue problems is analyzedby using the concept of holo-
morphic operator functions. Finally, a numerical example is considered and results of
a boundary element and a finite element approximation of the eigenvalues are presented
which confirm the theoretical results.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Analysis der Randelementmethode zur nu-
merischen Lösung von Eigenwertproblemen für den Laplace-Operator. Die Darstellung
von Eigenwertproblemen des Laplace-Operators in Form von Randintegralgleichungen
führt auf nichtlineare Eigenwertprobleme für entsprechende Randintegraloperatoren. Die
Lösung der Randelementdiskretisierung dieser Eigenwertprobleme erfordert Algorithmen
für algebraische nichtlineare Eigenwertprobleme. Obwohldie Verwendung von Rand-
elementmethoden zur numerischen Lösung von Eigenwertproblemen eine lange Tradition
aufweist, existiert dafür keine vollständige numerische Analysis. Ziel dieser Arbeit ist es,
eine Konvergenz- und Fehleranalysis für die Galerkin–Randelementmethode für Eigen-
wertprobleme des Laplace-Operators durchzuführen. Es wird gezeigt, dass dafür die Theo-
rie der holomorphen Fredholm Operatorfunktionen ein geeignetes theoretisches Konzept
ist. Diese Theorie stellt eine natürliche Erweiterung der Spektraltheorie für beschränkte li-
neare Operatoren dar. Die Untersuchung von Diskretisierungen von Eigenwertproblemen



für holomorphe Fredholm Operatorfunktionen wird gewöhnlich im Rahmen der Theo-
rie regulärer Approximationen durchgeführt, in welche sich auch die Galerkin-Methode
einordnen lässt. In dieser Arbeit werden Konvergenzaussagen und Fehlerabschätzungen
für Galerkin-Diskretisierungen solcher Eigenwertprobleme hergeleitet. Diese Ergebnisse
werden dann auf die Diskretisierung von Randintegraleigenwertproblemen des Laplace-
Operators angewandt. Des Weiteren werden Verfahren zur numerischen Lösung von alge-
braischen nichtlinearen Eigenwertproblemen untersucht.Dabei wird das wenig bekannte
Kummersche Verfahren vorgestellt und die Konvergenz des Verfahrens für algebraische
holomorphe Eigenwertprobleme unter Verwendung der Theorie von holomorphen Opera-
torfunktionen nachgewiesen. Am Ende der Arbeit wird ein numerisches Beispiel betrach-
tet und die Genauigkeit der Approximationen der Randelementmethode und der Finiten
Elemente Methode für die Eigenwerte verglichen. Dabei werden die theoretischen Resul-
tate der Arbeit bestätigt.
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1 INTRODUCTION

Laplacian eigenvalue problems provide a mathematical model for the description of dif-
ferent phenomena in science and engineering [18]. Eigenvalues and eigenfunctions char-
acterize the response of physical systems which are subjectto forces. In acoustics the
eigensolutions describe the resonance behavior of mechanical systems. Their knowledge
plays an important role for the design of objects which are subject to oscillations. In quan-
tum mechanics the eigenvalues represent energy levels of certain quantum mechanical
systems. For the design of waveguides in fiber optics also an analysis of Laplacian eigen-
value problems is needed. Moreover, Laplacian eigenvalue problems can be considered as
model problems for more general second order partial differential operators in elasticity
and electromagnetics.

The computation of eigenvalues and eigenfunctions of Laplacian eigenvalue problems can
be done only in a few cases analytically. As for source problems for partial differen-
tial equations the most commonly used numerical method is the finite element method
(FEM). For this method, a profound functional analytical framework and a rigorous error
analysis have been established for eigenvalue problems [85, 10, 89, 12, 8]. The finite ele-
ment method for eigenvalue problems is formally equivalentto source problems. Based
on a variational formulation of the eigenvalue problem in anappropriate function space,
approximate solutions are sought in finite-dimensional subspaces. The main idea of the
discretization is to decompose the computational domain into geometrically simple subdo-
mains, the so–called finite elements, on which finite–dimensional subspaces are defined,
e.g., polynomials. This approach finally leads in the case ofLaplacian eigenvalue prob-
lems to algebraic generalized eigenvalue problems with sparse matrices. Efficient solution
techniques for such problems are presented in [34, 11, 54, 59, 68]. Small eigenvalues and
corresponding eigenfunctions can be approximated very well by the finite element method,
however an accurate approximation of large eigenvalues requires a very fine discretization
of the computational domain and leads to prohibitive computational costs.

An alternative approach for the numerical solution of Laplacian eigenvalue problems is
the boundary element method (BEM) [22, 81, 60, 45, 15, 51] which is also used for eigen-
value problems in elastodynamics [7, 52] and for plate problems [25, 52]. The boundary
element method for Laplacian eigenvalue problems is based on equivalent boundary inte-
gral formulations which are nonlinear eigenvalue problemsfor related boundary integral
operators. Different to finite element approaches which require a discretization of the com-
putational domain, the use of boundary integral formulations and boundary element meth-
ods for the numerical solution of the eigenvalue problems requires only a discretization

1



2 1 Introduction

of the boundary. The discretized eigenvalue problems are algebraic nonlinear eigenvalue
problems with fully populated matrices, where the matrix entries are transcendental func-
tions with respect to the eigenparameter. Usually, these eigenvalue problems are solved
by using iterative schemes to determine the roots of the corresponding characteristic equa-
tions [81, 52, 60, 22, 23]. In several publications different approaches are suggested to ap-
proximate the nonlinear boundary integral operator eigenvalue problem by a polynomial
one. A Taylor polynomial approximation of the fundamental solution with respect to the
wave number is suggested by so-called multiple reciprocitymethods [45, 46, 16, 69, 15].
In [51] an interpolation of the fundamental solution is considered. The discretization of
polynomial boundary integral operator eigenvalue problems leads to algebraic polyno-
mial eigenvalue problems which can be transformed into equivalent generalized eigenvalue
problems.

To our knowledge, a rigorous numerical analysis for the approximations of boundary inte-
gral operator eigenvalue problems has not be done so far. Only in few works [22, 23, 84]
the issue of the numerical analysis has been addressed. One of the main goals of this
work is to give a convergence and error analysis of the Bubnov–Galerkin boundary ele-
ment approximation of Laplacian eigenvalue problems. We use the concept of eigenvalue
problems for so–called holomorphic Fredholm operator functions [27, 97, 26, 55]. This
concept is a generalization of the theory for eigenvalue problems of bounded linear oper-
ators and provides important tools for the numerical analysis of approximations of such
eigenvalue problems. The most important result is the representation of the resolvent close
to an eigenvalue as a Laurent series with finite principle part [55, 26]. The analysis of the
approximation of eigenvalue problems for holomorphic Fredholm operator functions has
a long tradition [31, 44, 91, 90, 47, 48] and is usually done inthe framework of the con-
cepts of the discrete approximation scheme [86] and the regular approximation of operator
functions [30]. In this framework a complete convergence analysis and asymptotic error
estimates for eigenvalues are given by Karma in [47, 48]. These results are also valid for
the Bubnov–Galerkin method since this approach fulfills therequired assumptions. Nev-
ertheless, we do a numerical analysis for the Bubnov–Galerkin method using main ideas
of [47, 48], and in addition we present error estimates for eigenvectors, which has not be
done in [47,48].

The solution of discretized boundary integral operator eigenvalue problems for the Lapla-
cian requires numerical algorithms for algebraic nonlinear eigenvalue problems. The con-
struction of robust and efficient nonlinear eigenvalue solvers is a subject of ongoing re-
search and there is a lot of literature on this topic, see the review article [63] and references
therein. The numerical analysis of nonlinear eigenvalue solvers is available only for special
classes of nonlinear eigenvalue problems. In particular, the focus lies on polynomial eigen-
value problems. The numerical analysis of algorithms for more general nonlinear eigen-
value problems is usually restricted to simple eigenvalues. This is mainly due to the fact
that there is no standard theory for general nonlinear eigenvalue problems. Although most
algebraic nonlinear eigenvalue problems which are considered in the literature would fit in
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the concept of holomorphic Fredholm operator functions, this concept is usually not used
for the analysis of the algorithms. In this work the little–known Kummer’s method [57,58]
is presented and an error analysis for simple and multiple eigenvalues is given by using the
theory of holomorphic Fredholm operator functions.

This book is organized as follows. In Chapter 2, different formulations of Laplacian eigen-
value problems are presented and their properties are described. First, the standard varia-
tional formulations of Laplacian eigenvalue problems are considered and they are charac-
terized in terms of compact selfadjoint operators. The well–known properties of the Lapla-
cian eigenvalue problems follow directly from the spectraltheory of compact selfadjoint
operators. We briefly address the finite element approximation of eigenvalue problems and
present some error estimates. In the second part of this chapter, boundary integral repre-
sentations of Laplacian eigenvalue problems are derived and the properties of the related
boundary integral operators are presented.

The concept of eigenvalue problems for holomorphic Fredholm operator functions is intro-
duced in Chapter 3. The basic definitions are provided and important results of the spectral
theory are summarized.

A numerical analysis for the Bubnov–Galerkin approximation of eigenvalue problems for
holomorphic Fredholm operator functions is done in Chapter4. First, the convergence of
the approximations of the eigenvalues and eigenvectors to the continuous ones is proven.
Then, asymptotic error estimates are derived. Finally, thestability of the algebraic multi-
plicity of the approximations of the eigenvalues is shown.

In Chapter 5, Galerkin boundary element approximations of the Dirichlet and Neumann
Laplacian eigenvalue problem are analyzed. It is shown thatthe boundary integral operator
eigenvalue problems which are derived in Chapter 2 are eigenvalue problems of holomor-
phic Fredholm operator functions. The results of Chapter 4 are applied to the boundary
element approximations of the boundary integral operator eigenvalue problems. Conver-
gence of the boundary element approximations for the eigenvalues and the eigenfunctions
are shown and asymptotic error estimates are given.

Numerical algorithms for algebraic nonlinear eigenvalue problems are discussed in Chap-
ter 6. The well–known inverse iteration for nonlinear eigenvalue problems and two variants
of it, the two–sided Rayleigh functional iteration and the residual inverse iteration are re-
viewed. The convergence behavior and the computational costs of these algorithms are
compared. In the second part of this chapter we introduce Kummer’s method for algebraic
holomorphic eigenvalue problems and analyze its convergence properties.

In Chapter 7, a numerical example for the Dirichlet Laplacian eigenvalue problem is con-
sidered and results of a boundary element and a finite elementapproximation of the eigen-
values are presented. The numerical results of the boundaryelement approximations con-
firm the theoretical error estimate. Moreover, a high accuracy of the boundary element
approximations is noticeable by a comparatively small number of boundary elements.
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2 FORMULATIONS AND PROPERTIES OF LAPLACIAN
EIGENVALUE PROBLEMS

In this chapter we present different formulations of the Laplacian eigenvalue problem on
bounded Lipschitz domains with either Dirichlet or Neumannboundary conditions. We
first consider the standard variational formulation of the Laplacian eigenvalue problems
which can be characterized in terms of compact selfadjoint operators. We use the spectral
theory for compact selfadjoint operator to analyze the properties of the Laplacian eigen-
value problems. Further, we briefly address the finite element method for eigenvalue prob-
lems for compact selfadjoint operators and present some error estimates for the eigenvalues
and eigenelements.

In the second part of this chapter we derive boundary integral representations of Laplacian
eigenvalue problems. These formulations lead to nonlineareigenvalue problems for related
boundary integral operators. We provide an analysis of the boundary integral operators
such that the theory of eigenvalue problems for holomorphicFredholm operator functions
can be applied in the following chapters.

2.1 Sobolev spaces

In this section we introduce the relevant function spaces for the formulations of the Lapla-
cian eigenvalue problems. The main references of this section are the textbooks [61]
and [41].

Definition 2.1.1. Let Ω be an open subset ofRd. For k∈ N0 the Sobolev space Wk2 (Ω) is
defined by

Wk
2 (Ω) := {u∈ L2(Ω) : ∂ αu∈ L2(Ω) for |α| ≤ k},

whereα = (α1, . . . ,αd) ∈ Nd
0, |α|= α1+ . . .+αd, and∂ αu(x) =

∂ α1

∂xα1
1

. . .
∂ αd

∂xαd
d

u(x) are to

be understood as weak partial derivatives.

The Sobolev spaceWk
2 (Ω) is equipped with the norm

‖u‖Wk
2 (Ω) :=


 ∑

|α|≤k

∫

Ω

|∂ αu(x)|2dx




1/2

5



6 2 Formulations and properties of Laplacian eigenvalue problems

and it is a Hilbert space with the inner product

(u,v)Wk
2 (Ω) := ∑

|α|≤k

∫

Ω

∂ αu(x)∂ αv(x)dx,

see [61, p.75]. The definition of Sobolev spacesWs
2(Ω) can be extended for any arbitrary

s> 0.

Definition 2.1.2. LetΩ be an open subset ofRd. For s= k+µ with k∈N0 andµ ∈ (0,1),
the Sobolev space Ws2(Ω) is defined by

Ws
2(Ω) = {u∈Wk

2 (Ω) : |∂ αu|µ,Ω < ∞ for |α| = k},

where the Sobolev-Slobodeckii semi–norm| · |µ,Ω is given by

|u|µ,Ω :=



∫

Ω

∫

Ω

|u(x)−u(y)|2
|x−y|d+2µ dxdy




1/2

.

The Sobolev spaceWs
2(Ω) for s= k+ µ with k ∈ N0 andµ ∈ (0,1) is equipped with the

norm

‖u‖Ws
2(Ω) :=

(
‖u‖2

Wk
2 (Ω)

+ ∑
|α|=k

|∂ αu|2µ,Ω

)1/2

.

Again,Ws
2(Ω) is a Hilbert space with respect to the inner product

(u,v)Ws
2(Ω) := (u,v)Wk

2 (Ω) + ∑
|α|=k

∫

Ω

∫

Ω

[∂ αu(x)−∂ αu(y)][∂ αv(x)−∂ α v(y)]

|x−y|d+2µ dxdy,

see [61, Chapter 3, p.75 ].

A second family of Sobolev spacesHs(Rd) can be introduced by using the Fourier trans-
form

û(ξ ) =
∫

Rd

e−i2πx·ξ u(x)dx

for u∈ L1(Ω). The Sobolev spaceHs(Rd) for s∈ R is defined by

Hs(Rd) := {u∈ S∗(Rd) : J su∈ L2(R
d)},

whereS∗(Rd) is the space of the continuous linear functionals on the Schwartz space of
rapidly decreasing functions inC∞(Rd),

S(Rd) := {ϕ ∈C∞(Rd) : sup
x∈Rd

|xα∂ β ϕ(x)| < ∞ for all multi-indicesα andβ},
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and whereJ s is the Bessel potential of orders,

J su(x) :=
∫

Rd

(1+ |ξ |2)s/2û(ξ )ei2πξ ·xdξ for x∈ R
d.

The Sobolev spacesHs(Rd) andWs
2(Rd) coincide for eachs≥ 0, see for example [61,

Theorem 3.16].

For general domainsΩ ⊂ Rd the following Sobolev spacesHs(Ω) are defined.

Definition 2.1.3. Let Ω be an open subset ofR
d and s∈ R. We define

Hs(Ω) := {u = ũ|Ω : ũ∈ Hs(Rd)},

with the norm
‖u‖Hs(Ω) := inf

ũ∈Hs(Rd), ũ|Ω=u
‖ũ‖Hs(Rd).

Further,

H̃s(Ω) := C∞
0 (Ω)

‖·‖Hs(Rd) ,

Hs
0(Ω) := C∞

0 (Ω)
‖·‖Hs(Ω).

So far we have considered arbitrary non-empty subsetsΩ in Rd. In order to relate the
above defined Sobolev spaces to each other we have to make someregularity assumptions
for the boundaryΓ := ∂Ω. First of all consider the set

Ω = {x = (x′,xd) ∈ R
d : xd < f (x′) for all x′ = (x1, . . . ,xd−1) ∈ R

d−1}, (2.1)

where f : Rd−1 → R is a bounded function which isk times differentiable, and where the
derivatives∂ α f with |α| = k satisfy

|∂ α f (x′)−∂ α f (y′)| ≤ M|x′−y′|µ for all x′,y′ ∈ R
n−1

with someµ ∈ [0,1]. Such a setΩ as defined in (2.1) is called aCk,µ hypograph.

Definition 2.1.4. The open setΩ⊂Rd is called a Ck,µ domain if its boundaryΓ is compact
and if there exist finite families{Wj} and{Ω j} which have the following properties:

i) The family{Wj} is a finite open cover ofΓ.

ii) EachΩ j can be transformed to a Ck,µ hypograph by a rigid motion.

iii) For each j the equality Wj ∩Ω = Wj ∩Ω j is satisfied.
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If Ω is aCk,µ domain, then the boundary can be parameterized byk times differentiable
functions. Therefore we call the boundary of aCk,µ domaink times differentiable. If this
property is only locally satisfied, then we call the boundarypiecewise smooth.

A C0,1 domain is called a Lipschitz domain. For instance, any polygonal bounded domain
in R2 and any domain inR3 which is bounded by a polyhedron is a Lipschitz domain.
Note that a Lipschitz domain may be unbounded. For example, if Ω is a bounded Lipschitz
domain, then its complementRd \Ω is also a Lipschitz domain.

The following theorem quotes results about the relations ofthe above defined Sobolev
spaces for Lipschitz domains.

Theorem 2.1.5.Let Ω ⊂ Rd be a Lipschitz domain. Then, we have for s≥ 0:

i) Ws
2(Ω) = Hs(Ω).

ii) H̃s(Ω) ⊂ Hs
0(Ω).

iii) H̃s(Ω) = Hs
0(Ω) for s /∈

{
1
2, 3

2, 5
2, . . .

}
.

Moreover, for all s∈ R,

H̃s(Ω) =
[
H−s(Ω)

]∗
and H−s(Ω) =

[
H̃s(Ω)

]∗
.

Proof. See [61, Chapter 3].

Sobolev spaces on the boundary

In the following we assume thatΩ ⊂ R
d is a Lipschitz domain. TheL2-norm on the

boundaryΓ = ∂Ω is defined by

‖u‖L2(Γ) :=




∫

Γ

|u(x)|2dsx




1/2

.

Fors∈ (0,1) the Sobolev-Slobodeckii-norm is defined by

‖u‖Hs(Γ) :=


‖u‖2

L2(Γ) +
∫

Γ

∫

Γ

|u(x)−u(y)|2
|x−y|d−1+2s dsxdsy




1/2

.

Definition 2.1.6. Let Ω ⊂ Rd be a Lipschitz domain with the boundaryΓ = ∂Ω. The
spaces L2(Γ) and Hs(Γ) are defined as closures,

L2(Γ) := C0(Γ)
‖·‖L2(Γ)

,

Hs(Γ) := C0(Γ)
‖·‖Hs(Γ) for s∈ (0,1).
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The spacesL2(Γ) and Hs(Γ) for s∈ (0,1) are Hilbert spaces equipped with the inner
products

(u,v)L2(Γ) :=
∫

Γ

u(x)v(x)dsx,

(u,v)Hs(Γ) := (u,v)L2(Γ) +

∫

Γ

∫

Γ

[u(x)−u(y)][v(x)−v(y)]

|x−y|d−1+2s dsxdsy for s∈ (0,1),

see [41, p. 172].

For indicess≥ 1 also Sobolev spacesHs(Γ) can be defined, see, e.g., [41, Section 4.2].
This requires fors> 1 stronger regularity assumptions for the boundary than theLipschitz
property, i.e., the boundary must be of classCk,κ ands≤ k+κ . For definitions and details
see [41, Section 4.2].

For negative indicess the Sobolev spacesHs(Γ) are defined by duality with respect to the
L2(Γ)-inner product. More precisely, fors< 0 we define the norm

‖t‖Hs(Γ) := sup
06=u∈H−s(Γ)

|(u, t)L2(Γ)|
‖u‖H−s(Γ)

. (2.2)

The closure ofL2(Γ) with respect to (2.2) is denoted byHs(Γ). Note that forℓ ∈ L2(Γ) ⊂
Hs(Γ), s < 0, andv ∈ H−s(Γ), we can identify the duality product by using the inner
product inL2(Γ),

ℓ(v) = 〈v, ℓ〉H1/2(Γ)×H−1/2(Γ) = (v, ℓ)L2(Γ),

see [41, p. 175]. Further, fors< 0 we define for functionalsℓ ∈ Hs(Γ) andv∈ H−s(Γ) the
sesquilinear form

(v, ℓ)Γ := 〈v, ℓ〉H1/2(Γ)×H−1/2(Γ) := ℓ(v) := 〈v, ℓ〉H1/2(Γ)×H−1/2(Γ). (2.3)

For an open subsetΓ0 ⊂ Γ and for a sufficiently smooth boundaryΓ we define the Sobolev
spaces fors≥ 0,

Hs(Γ0) := {v = ṽ|Γ0
: ṽ∈ Hs(Γ)},

H̃s(Γ0) := {v = ṽ|Γ0
: ṽ∈ Hs(Γ), suppṽ⊂ Γ0},

with the norm
‖v‖Hs(Γ0) := inf

ṽ∈Hs(Γ)∧ṽ|Γ0
=v

‖ṽ‖Hs(Γ).

Fors< 0 the Sobolev spaces are defined as dual spaces

Hs(Γ0) :=
[
H̃−s(Γ0)

]∗
and H̃s(Γ0) :=

[
H−s(Γ0)

]∗
.
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Let us now assume thatΓ is closed and piecewise smooth,

Γ =
J⋃

i=1

Γi , Γi ∩Γ j = /0 for i 6= j.

The Sobolev spaceHs
pw(Γ) for s> 0 is defined by

Hs
pw(Γ) := {v∈ L2(Γ) : v|Γi

∈ Hs(Γi), i = 1, . . . ,J}

with the norm

‖v‖Hs
pw(Γ) :=

(
J

∑
i=1

‖v|Γi
‖2

Hs(Γi)

)1/2

.

Fors< 0 we define

Hs
pw(Γ) :=

J

∏
i=1

H̃s(Γi)

with the norm

‖w‖Hs
pw(Γ) :=

J

∑
i=1

‖w|Γi
‖H̃s(Γi)

.

Lemma 2.1.7. If w ∈ Hs
pw(Γ) and s< 0, then

‖w‖Hs(Γ) ≤ ‖w‖Hs
pw(Γ). (2.4)

Proof. See [83, Lemma 2.20].

Remark 2.1.8. If Ω is a Lipschitz domain, then for all definitions and statements above
concerning Sobolev spaces on subsets on the boundaryΓ = ∂Ω we have to assume that
|s| ≤ 1. The results for|s| > 1 are only valid if stronger regularity conditions for the
boundaryΓ are assumed, see [41, Section 4.3].

Trace operators and normal derivatives

The trace operators relate the Sobolev spaces on a domainΩ to the Sobolev spaces on its
boundaryΓ = ∂Ω.

Theorem 2.1.9.Let Ω be a bounded domain inRd. Define the interior trace operator
γ int
0 : C∞(Ω) →C∞(Γ) by

γ int
0 u := u|Γ.

If Ω is a Ck−1,1 domain then the operatorγ int
0 has a unique extension to a bounded linear

operator
γ int
0 : Hs(Ω) → Hs−1/2(Γ) (2.5)

for 1
2 < s≤ k. This extension has a continuous right inverseE : Hs−1/2(Γ) → Hs(Ω).
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Proof. See [61, Theorem 3.37].

If Ω is a bounded Lipschitz domain, i.e.,k = 1, then (2.5) implies that the interior trace
operator is a continuous linear map

γ int
0 : Hs(Ω) → Hs−1/2(Γ)

for s∈ (1
2,1]. This result can be extended tos∈ (1

2, 3
2), see [61, Theorem 3.38].

For a bounded Lipschitz domainΩ ⊂ Rd there exists a unique outward unit normal vector
n : ∂Ω → Rd almost everywhere [61, p. 96f]. We define for a functionu ∈ C∞(Ω) the
interior normal derivative

γ int
1 u := ∇u|Γ ·n.

The interior normal derivativeγ int
1 can be extended to a bounded linear operator

γ int
1 : H1(Ω,∆)→ H−1/2(Γ),

see [17, Lemma 3.2], where

H1(Ω,∆) := {u∈ H1(Ω) : ∆u∈ L2(Ω)}.

In a similar way an exterior trace operator and an exterior normal derivative with respect
to a bounded Lipschitz domainΩ can be defined. SetΩc := Rd \Ω and letn be again the
outward unit normal vector ofΩ. Then we define for a functionu∈C∞(Ωc)

γext
0 u : = u|Γ,

γext
1 u : = ∇u|Γ ·n.

For the exterior trace operatorγext
0 there exists a bounded linear extension to

γext
0 : H1

loc(Ω
c) → H1/2(Γ),

see [17, Lemma 3.2], where

Hs
loc(Ω

c) := {u : Ωc → C : u|Ωc∩K ∈ Hs(Ωc∩K) for any compactK ⊂ R
d},

for s≥ 0. Also the exterior normal derivativeγext
1 can be extended to a bounded linear

operator
γext
1 : H1

loc(Ω
c,∆) → H−1/2(Γ),

see [17, Lemma 3.2], where

H1
loc(Ω

c,∆) := {u∈ H1
loc(Ω

c,∆) : ∆u∈ L2,loc(Ωc)}.
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2.2 Variational formulation of Laplacian eigenvalue problems

In this section we analyze the standard variational formulation of the Laplacian eigenvalue
problem with either Dirichlet or Neumann boundary conditions on bounded Lipschitz do-
mains inRd. We will show that these eigenvalue problems can be formulated in terms
of compact selfadjoint operators. Therefore we use the spectral theory for compact self-
adjoint operators to characterize the properties of these eigenvalue problems. The main
references of this section are [4,8].

First, we consider the Dirichlet Laplacian eigenvalue problem in the classical form:
Find λ ∈ C and 06= u∈C2(Ω)∩C0(Ω) such that

−∆u = λu onΩ, γ int
0 u = 0 onΓ = ∂Ω. (2.6)

A solution(λ ,u) of (2.6) is called an eigenpair of the Dirichlet Laplacian eigenvalue prob-
lem in the classical sense. Multiplying the first equation bythe complex conjugate of a
test functionv∈ H1

0(Ω), integrating over the domainΩ and using integration by parts, we
obtain the variational formulation of (2.6):
Find λ ∈ C and 06= u∈ H1

0(Ω) such that

a(u,v) = λb(u,v) for all u,v∈ H1
0(Ω) (2.7)

with the sesquilinear forma(·, ·) : H1
0(Ω)×H1

0(Ω) → C defined by

a(u,v) :=
∫

Ω

∇u ·∇vdx, (2.8)

and the sesquilinear formb(·, ·) : L2(Ω)×L2(Ω) → C defined by

b(u,v) :=
∫

Ω

uvdx. (2.9)

A solution (λ ,u) ∈ C×H1
0(Ω) \ {0} of (2.7) is called an eigenpair of (2.6) in the weak

sense. Every eigenpair(λ ,u) which fulfills the eigenvalue problem (2.6) in the classical
sense is obviously a solution of the variational problem (2.7).
On the other hand, if(λ ,u) ∈ C×H1

0(Ω) \ {0} is a solution of the variational eigenvalue
problem (2.7) and if we assume thatu ∈ C2(Ω), then we can apply Green’s formula to
(2.7) and obtain with the DuBois-Reymond lemma [61, Theorem3.7] that(λ ,u) is a solu-
tion of the eigenvalue problem in the classical sense. However, the assumptionsu∈C2(Ω)
requires in general stronger regularity conditions on the domainΩ than the Lipschitz prop-
erty. From the regularity result in [2, Theorem 9.8] it follows that an eigenfunctionu of
the variational problem is inC2(Ω) if the domain is of classC5.
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Let us now consider the sesquilinear forma(·, ·) as defined in (2.8). By the Cauchy–
Schwarz inequality,a(·, ·) is bounded onH1

0(Ω). From the Poincaré’s inequality

‖u‖L2(Ω) ≤ c‖∇u‖L2(Ω) for all u∈ H1
0(Ω),

see, e.g., [19], [87, Lemma 10.2], it follows thata(·, ·) is H1
0(Ω)-elliptic, i.e.,

a(u,u)≥ c‖u‖2
H1(Ω) for all u∈ H1

0(Ω).

In addition, the sesquilinear forma(·, ·) is Hermitian. Therefore we may considera(·, ·) as
inner product of the Hilbert spaceH1

0(Ω). Define

[H1
0(Ω)]× := { f : H1

0(Ω) → C, f is continuous and conjugate-linear},

then as a consequence of the Riesz representation theorem, see, e.g., [99, p. 105], there
exists an isomorphismR : [H1

0(Ω)]× → H1
0(Ω) such that

f (v) = a(R f,v) (2.10)

is satisfied for allf ∈ [H1
0(Ω)]× andv∈ H1

0(Ω).
Further let us define the operatorS: H1

0(Ω) → [H1
0(Ω)]× by

(Su)(·) := b(u, ·) for u∈ H1
0(Ω). (2.11)

The operatorS is obviously linear and bounded. Sinceb(·, ·) is the inner product inL2(Ω),
it follows by Rellich’s embedding theorem [1] thatS : H1

0(Ω) → [H1
0(Ω)]× is compact.

Using the definitions (2.10) and (2.11) ofRandS, respectively, we have the representation

a(RSu,v) = (Su)(v) = b(u,v)

for all u,v∈ H1
0(Ω). Hence, the variational problem

a(u,v) = λb(u,v) = λa(RSu,v) for all v∈ H1
0(Ω)

is equivalent to
u = λRSu. (2.12)

Consequently,(λ ,u) ∈ C\{0}×H1
0(Ω) is an eigenpair of the variational problem (2.7) if

and only if(
1
λ

,u) is an eigenpair of the eigenvalue problem

1
λ

u = RSu in H1
0(Ω). (2.13)

Let us define the operator
T := RS: H1

0(Ω) → H1
0(Ω), (2.14)
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then from the properties of the operatorsR andS it follows immediately thatT is linear,
bounded and compact. Furthermore,T is selfadjoint with respect to the inner product
a(·, ·), since

a(RSu,v) = b(u,v) = b(v,u) = a(RSv,u) = a(u,RSv)

is satisfied for allu,v∈ H1
0(Ω). Finally, notice that all eigenvalues of the variational eigen-

value problem (2.7) are larger than zero, because otherwisewe would have an eigenvalue
λ ≤ 0 and a corresponding eigenfunction 06= u∈ H1

0(Ω) such that

a(u,u) = λb(u,u) ≤ 0, (2.15)

which is a contradiction to the fact that the sesquilinear form a(·, ·) is H1
0(Ω)-elliptic. In

the next theorem we summarize the above results.

Theorem 2.2.1.(λ ,u) ∈ C×H1
0(Ω) is an eigenpair of the eigenvalue problem (2.7), if

and only if(
1
λ

,u) is an eigenpair of the eigenvalue problem

Tu=
1
λ

u, (2.16)

where T: H1
0(Ω) → H1

0(Ω) is defined by (2.14). The operator T is linear, compact and
selfadjoint.

So we can use the spectral theory of compact selfadjoint operators for the analysis of the
variational eigenvalue problem (2.7).

Theorem 2.2.2.Let T : X → X be a linear, compact and selfadjoint operator on a Hilbert
space X and letσ(T) the spectrum of T , i.e.,

σ(T) = {λ ∈ C : (λ IX −T) is not invertible}.

Then:

i) σ(T) \ {0} consists of countably many eigenvalues with zero as the onlypossible
accumulation point.

ii) All eigenvalues are real.

iii) The eigenelements are orthogonal in X.

iv) The geometric multiplicity of each eigenvalueλ is finite, i.e.,dimker(λ IX −T) < ∞.

v) The ascent

κ(T,λ ) := max{n∈ N : ker(λ IX −T)n−1 6= ker(λ IX −T)n}

of each eigenvalueλ is equal to1.
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vi) The algebraic multiplicity

m(T,λ ) := dimker
(
(λ IX −T)κ(T,λ )

)
(2.17)

of each eigenvalueλ is equal to its geometric multiplicity.

Proof. The assertions follow from the Riesz–Schauder theory for compact selfadjoint op-
erator, see, e.g., [4, Satz 9.6 and Satz 10.12].

Using Theorem 2.2.2, we can summarize the properties of the variational eigenvalue prob-
lem (2.7).

Corollary 2.2.3. Consider the variational formulation of the Dirichlet Laplacian eigen-
value problem (2.7). Then:

i) All eigenvalues are real and strictly positive.

ii) The set of eigenvalues is a countable infinite sequence diverging to+∞.

iii) The dimension of the geometric eigenspace of each eigenvalueλ is finite, i.e.,

dimspan{u∈ H1
0(Ω) : a(u,v) = λb(u,v) for all v ∈ H1

0(Ω)} < ∞. (2.18)

iv) The eigenfunctions are orthogonal in H1
0(Ω).

Let us now consider the Neumann Laplacian eigenvalue problem. The formulation in
classical form reads as follows:
Findλ ∈ C and 06= u∈C2(Ω)∩C1(Ω) such that

−∆u = λu on Ω, γ int
1 u = 0 on∂Ω = Γ. (2.19)

The variational problem is derived in the same way as for the Dirichlet case and leads to:
Findλ ∈ C and 06= u∈ H1(Ω) such that

a(u,v) = λb(u,v) for all v∈ H1(Ω), (2.20)

wherea(·, ·) : H1(Ω)×H1(Ω)→ C andb(·, ·) : L2(Ω)×L2(Ω)→C are defined as in (2.8)
and (2.9), respectively. An eigenpair(λ ,u) of (2.19) is obviously also an eigenpair of
the variational formulation (2.20). On the other hand, we get with the same arguments as
for the Dirichlet case that a solution(λ ,u) ∈ C×H1(Ω) \ {0} of the variational problem
(2.20) is a solution of the eigenvalue problem (2.19) in the classical sense ifu∈C2(Ω).

Before we can show that the Neumann variational eigenvalue problem is equivalent to
an eigenvalue problem for a compact selfadjoint operator, we have to make two remarks.
First, if u 6= 0 is a constant function onΩ, then(0,u) is an eigenpair of the Neumann
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eigenvalue problem in the classical and in the variational sense. Ifu∈ H1(Ω) is an eigen-
function of (2.20) corresponding to a nonzero eigenvalue, and if we choose as test function
v≡ 1 onΩ, then from

0 = a(u,1) = λ
∫

Ω

udx

it follows that ∫

Ω

udx= 0.

Therefore, we can restrict the corresponding space for the variational formulation of the
Neumann eigenvalue problem (2.20) for nonzero eigenvaluesto

H1
∗ (Ω) := {u∈ H1(Ω) :

∫

Ω

udx= 0}. (2.21)

The Poincaré’s inequality (2.10) holds also onH1
∗ (Ω), see, e.g., [87, Lemma 10.2], and so

the sesquilinear forma(·, ·) is H1
∗ (Ω)-elliptic. Sincea(·, ·) is Hermitian and bounded, it

defines an inner product ofH1
∗ (Ω). Therefore, we can conclude with the same arguments

as in the Dirichlet case that there exists a linear, compact selfadjoint operator

W : H1
∗ (Ω) → H1

∗ (Ω)

such that(λ ,u) ∈ C\{0}×H1
∗ (Ω) is an eigenpair of the Neumann variational eigenvalue

problem (2.20) if and only if(
1
λ

,u) is an eigenpair of the eigenvalue problem

Wu=
1
λ

u in H1
∗ (Ω).

Hence, the properties of the variational Neumann eigenvalue problem follows from Theo-
rem 2.2.2.

Remark 2.2.4. Theorem 2.2.2 shows that all eigenvalues of a compact selfadjoint oper-
ator are real. Moreover, the eigenelements may be taken to bereal, see [8, Remark 4.1].
Therefore eigenvalue problems in Hilbert spaces for compact selfadjoint operators may be
formulated in terms of real Hilbert spaces.

For the numerical approximations of the eigenvalue problems (2.7) and (2.20) regularity
properties of the eigenfunctions are important. There are different results with respect
to the assumptions on the boundary, see, e.g., [8, Theorem 4.1], [32, Theorem 2.4.2.7]
or [35, Chapter 9 and 11]. Here we quote a general result, see [35, Korollar 9.1.19].
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Theorem 2.2.5.Let Ω be a bounded domain of class C1+k,µ with k∈ N0. Let µ ∈ [0,1]
and let(λ ,u) be an eigenpair of the variational eigenvalue problem (2.7)or (2.20). Let
s≥ 0 and

s≤ k+ µ if µ ∈ {0,1},
s< k+ µ if µ ∈ (0,1),

then
u∈ H1+s(Ω).

It is important to mention that the conditions on the boundary in Theorem 2.2.5 for the
regularity of the eigenfunctions are sufficient but not necessary conditions.

2.3 FEM for eigenvalue problems of compact selfadjoint operators

In this section we consider variational posed eigenvalue problems which can be reduced to
eigenvalue problems for compact selfadjoint operators. Webriefly sketch a finite element
approximation of such problems and present an apriori errorestimate for the eigenpairs.
The main reference of this section is the review article [8] of Babuška and Osborn.

Let X andW be real Hilbert spaces whereX is compactly imbedded inW. We consider
the following eigenvalue problem: Find(λ ,u) ∈ R×X \{0} such that

a(u,v) = λb(u,v) for all v∈ X, (2.22)

where
a(·, ·) : X×X → R

is a bounded symmetric andX-elliptic bilinear form, and where

b(·, ·) : W×W → R

is a bounded and symmetric bilinear form which satisfies

b(u,u) > 0 for all 0 6= u∈ X.

From the assumptions on the spaces and the bilinear forms, itfollows with the same ar-
guments as for the variational eigenvalue problems (2.7) and (2.20) that there exists a
compact selfadjoint operatorT : X → X such that

a(Tu,v) = b(u,v) for all u,v∈ X. (2.23)

Further,(λ ,u) ∈ R×X is an eigenpair of (2.22) if and only if(
1
λ

,u) is an eigenpair of the

eigenvalue problem

Tu=
1
λ

u in X.
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By Theorem 2.2.2, the eigenvalue problem (2.22) has a countable sequence of eigenvalues.
Let {λi}∞

i=1 denote the ordered sequence of eigenvalues withλi ≤ λi+1 and where theλi

are repeated according to their multiplicities. Then, the corresponding sequence{ui}∞
i=1

of eigenelements can be chosen such that

a(ui,u j) = λib(ui,u j) = δi j ,

see Theorem 2.2.2.

The finite element method for eigenvalue problems is formally equal to the finite element
method for source problems. Here we present a conforming finite element method for
eigenvalue problems. A discontinuous Galerkin method is presented in [6]. In order to ap-
proximate the eigenvalues and eigenelements of the eigenvalue problem (2.22) a sequence
of finite dimensional subspaces{XN}N∈N ⊂ X is chosen which has the approximation
property

lim
N→∞

inf
xN∈XN

‖u−xN‖X = 0 for all u∈ X.

Approximate solutions of the eigenvalue problem (2.22) aresolutions of the Galerkin vari-
ational problem which reads as follows: Find(λN,uN) ∈ R×XN \{0} such that

a(uN,vN) = λNb(uN,vN) for all vN ∈ XN. (2.24)

Let {ϕ1, . . . ,ϕnN} be a basis ofXN, then the variational problem is equivalent to the alge-
braic generalized eigenvalue problem: Find(λN,z) ∈ R×RnN \{0} such that

Az= λNBz,

with z= (z1, . . . ,znN),

A[i, j] = a(ϕi ,ϕ j), B[i, j] = b(ϕi ,ϕ j) for 1≤ i, j ≤ nN,

and whereuN =
nN

∑
i=1

ziϕi . The Galerkin eigenvalue problem (2.24) has a finite sequence of

eigenvalues
λ1,N ≤ λ2,N ≤ . . . ≤ λnN,N

where the corresponding sequence of eigenelements{ui,N}nN
i=1 can be taken to satisfy

a(ui,N,u j ,N) = λi,Nb(ui,N,u j ,N) = δi j . (2.25)

The analysis of the Galerkin variational eigenvalue problem can be again reduced to a
corresponding eigenvalue problem of a compact selfadjointoperatorTN : X → XN ⊂ X
which is defined by

a(TNu,vN) = b(u,vN) for all u∈ X, vN ∈ XN.
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The operatorTN can be written asPNT, wherePN : X → X denotes the projection ofX onto
XN defined by

a(PNu,vN) = a(u,vN) for all u∈ X, vN ∈ XN.

From the approximation property ofXN and the compactness ofT, the operator conver-
genceTn → T follows, see [8, Section 2.8]. These considerations are thebasis for the error
estimates which are given in the next theorem.

Theorem 2.3.1.Let λk be an eigenvalue of (2.22) with the geometric multiplicity qand
assume thatλk = λk+1 = . . . = λk+q−1. Then:

i) There exists a constant C> 0 such that

λk ≤ λ j ,N ≤ λk +Cd2
N(λk) for j = k, . . . ,k+q−1, (2.26)

where
dN(λk) := sup

u∈E(λk)

inf
ϕ∈XN

‖u−ϕ‖X,

and where

E(λk) := {u is an eigenvector corresponding toλk with ‖u‖ = 1}.

ii) Let uj ,N be an eigenelement corresponding toλ j ,N for j = k, . . . ,k+q−1, then there
exists a constant c> 0 such that

inf
u∈E(λk)

‖u−u j ,N‖X ≤ cdn(λk). (2.27)

Proof. See [8, p. 699].

Theorem 2.3.1 shows that as for source problems a quasi optimal error estimate for eigen-
functions for compact selfadjoint operators can be achieved by using finite element ap-
proximations. For additional results concerning the erroranalysis we refer to [8, Section 7
and 8] and references therein.

2.4 Boundary integral formulations of Laplacian eigenvalue
problems

The numerical solution of Laplacian eigenvalue problems with boundary element methods
is based on equivalent boundary integral representations [81, 51, 60, 45, 22, 15]. These
representations differ in the choice of the fundamental solution and in the choice of the
boundary integral equations. In all cases these formulations lead to nonlinear eigenvalue
problems for related boundary integral operators.
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In this section we derive boundary integral formulations for the Dirichlet and Neumann
Laplacian eigenvalue problem on bounded Lipschitz domainsΩ ⊂ R3 with piecewise
smooth boundary. For this purpose we consider the Helmholtzequation

−∆u−κ2u = 0 onΩ, (2.28)

since every eigenpair(κ2,u) of a Laplacian eigenvalue problem is a solution of (2.28). In
the following we will give an introduction to boundary integral equations for the Helmholtz
equation and provide a review of important properties of thecorresponding boundary in-
tegral operators. The main references for this section are [61,17,41,83].

A fundamental solutionU∗
κ for κ ∈ C of the Helmholtz equation (2.28) inR3 is given by

U∗
κ(x,y) =

1
4π

eiκ|x−y|

|x−y| for x 6= y, (2.29)

see, e.g., [61, Theorem 9.4]. The single layer potential fora functionw∈ H−1/2(Γ) and
κ ∈ C is defined by

(Ṽ(κ)w)(x) :=
∫

Γ

U∗
κ (x,y)w(y)dsy for x∈ Ω∪Ωc, (2.30)

which provides a solution of the Helmholtz equation (2.28),see [61, p. 202]. For a function
v∈ H1/2(Γ) andκ ∈ C the double layer potential is defined by

(W(κ)v)(x) :=
∫

Γ

γ int
1,yU

∗
κ (x,y)v(y)dsy for x∈ Ω∪Ωc, (2.31)

which is also a solution of the Helmholtz equation (2.28), cf. [61, p.202]. Applying the
interior trace operatorγ int

0 and the normal derivativeγ int
1 to the potentials yields

γ int
0 Ṽ(κ) = V(κ), (2.32)

γ int
0 W(κ) = −1

2
I +K(κ), (2.33)

γ int
1 Ṽ(κ) =

1
2

I +K′(κ), (2.34)

γ int
1 W(κ) = −D(κ), (2.35)

almost everywhere onΓ, see [61, p. 218], with the single layer potential operatorV(κ) :
H−1/2(Γ) → H1/2(Γ), the double layer potential operatorK(κ) : H1/2(Γ) → H1/2(Γ), the
adjoint double layer potential operatorK′(κ) : H−1/2(Γ)→ H−1/2(Γ) and the hypersingu-
lar boundary integral operatorD(κ) : H1/2(Γ)→H−1/2(Γ). Note that it is sufficient, due to
their use within a variational framework, to consider the above representations on smooth
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parts of the surface. These boundary integral operators arecontinuous linear operators and
admit the following representations [17, p.615]:

(V(κ)w)(x) :=
∫

Γ

U∗
κ(x,y)w(y)dsy for x∈ Γ, (2.36)

(K(κ)v)(x) :=
∫

Γ

γ int
1,yU

∗
κ (x,y)v(y)dsy for x∈ Γ,

(
K′(κ)w

)
(x) :=

∫

Γ

γ int
1,xU

∗
κ (x,y)w(y)dsy for x∈ Γ,

(D(κ)v)(x) := −γ int
1,x

∫

Γ

γ int
1,yU

∗
κ (x,y)v(y)dsy for x∈ Γ. (2.37)

The integral representation ofV(κ) andD(κ) are to be understood as weakly singular and
as hypersingular surface integral, respectively. The integrals forK(κ) andK′(κ) are in
general Cauchy singular integrals.

Using the single layer potential and the double layer potential, any weak solutionu of
(2.28) can be represented by

u(x) = (Ṽ(κ)γ int
1 u)(x)− (W(κ)γ int

0 u)(x) for x∈ Ω, (2.38)

see, e.g., [61, Theorem 7.5]. Applying the trace operatorsγ int
0 andγ int

1 to (2.38) leads to
the boundary integral equations

γ int
0 u(x) = (V(κ)γ int

1 u)(x)+
1
2

γ int
0 u(x)− (K(κ)γ int

0 u)(x) for x∈ Γ, (2.39)

γ int
1 u(x) =

1
2

γ int
1 u(x)+(K′(κ)γ int

1 u)(x)+(D(κ)γ int
0 u)(x) for x∈ Γ. (2.40)

Let us now consider the exterior Helmholtz equation

−∆u = κ2u on Ωc = R
3\Ω. (2.41)

Here we assume thatκ > 0 and introduce the following radiation condition

lim
R→∞

∫

∂BR(0)

∣∣∣∣
∂
∂y

u(y)− iκu(y)

∣∣∣∣
2

dsy = 0. (2.42)

The single layer potential (2.30) and the double layer potential (2.31) provide solutions of
(2.41), see [61, p. 202]. Any solutionu ∈ H1

loc(Ω
c) of (2.41) which fulfills the radiation

condition (2.42) can be represented by

u(x) = −(Ṽ(κ)γext
1 u)(x)+(W(κ)γext

0 u)(x) for x∈ Ωc, (2.43)
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see [61, Theorem 6.10]. Applying the operatorsγext
0 andγext

1 to (2.43) leads to the boundary
integral equations [61, p. 218]

γext
0 u(x) = −(V(κ)γext

1 u)(x)+
1
2

γext
0 u(x)+(K(κ)γext

0 u)(x) for x∈ Γ, (2.44)

γext
1 u(x) =

1
2

γext
1 u(x)− (K′(κ)γext

1 u)(x)− (D(κ)γext
0 u)(x) for x∈ Γ. (2.45)

The potentials̃V(κ) andW(κ) satisfy the jump relations on the boundary

γext
0 Ṽ(κ)w− γ int

0 Ṽ(κ)w = 0, γext
1 Ṽ(κ)w− γ int

1 Ṽ(κ)w=−w for w∈ H−1/2(Γ) (2.46)

γext
0 W(κ)v− γ int

0 W(κ)v = v, γext
1 W(κ)v− γ int

1 W(κ)v=0 for v∈ H1/2(Γ). (2.47)

The following two lemmas address the uniqueness of the solutions of exterior boundary
value problems for the Helmholtz equation.

Lemma 2.4.1.Let κ ∈ R+. Let u∈ H1
loc(Ω

c) be a solution of the exterior boundary value
problem

−∆u−κ2u = 0 onΩc

with either a homogeneous Dirichlet boundary condition

γext
0 u = 0 onΓ,

or with a homogeneous Neumann boundary condition

γext
1 u = 0 onΓ.

If u satisfies the radiation condition (2.42), then u= 0 onΩc.

Proof. See, e.g., [13, Theorem 7.6.1, Theorem 7.6.2].

Lemma 2.4.2.Let κ ∈ R+.

i) If w ∈ H−1/2(Γ) with V(κ)w = 0 on Γ, thenṼ(κ)w = 0 onΩc.

ii) If v ∈ H1/2(Γ) with D(κ)v = 0 on Γ, then W(κ)v = 0 on Ωc.

Proof. i) Let κ ∈ R+ and letw ∈ H−1/2(Γ) with V(κ)w = 0 on Γ. The single layer po-
tential Ṽ(κ)w ∈ H1

loc(Ω
c) is a solution of the Helmholtz equation onΩc and fulfills the

radiation condition (2.42), see, e.g., [61, Theorem 7.15, Theorem 9.6]. From the jump
relation (2.46) of̃V(κ) and from (2.32) we obtain

γext
0 Ṽ(κ)w= γ int

0 Ṽ(κ)w = V(κ)w = 0 onΓ.

Thus, by Lemma 2.4.1,̃V(κ)w = 0 onΩc.
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ii) Let κ ∈ R+ and letv ∈ H1/2(Γ) with D(κ)v = 0 on Γ. ThenW(κ)v ∈ H1
loc(Ω

c) is
a solution of the Helmholtz equation onΩc and fulfills the radiation condition (2.42),
see [61, Theorem 7.15, Theorem 9.6]. Using the jump relation(2.47) ofW(κ) and (2.35),
we get

γext
1 W(κ)v= γ int

1 W(κ)v= −D(κ)v = 0 onΓ.

Hence, by Lemma 2.4.1, the assertion follows.

Now we can state the following equivalence between the weak formulation of the Dirichlet
Laplacian eigenvalue problem (2.7) and the boundary integral formulation (2.39).

Theorem 2.4.3.Consider the Dirichlet Laplacian eigenvalue problem

−∆u = κ2u onΩ, γ int
0 u = 0 onΓ. (2.48)

i) If (κ,u) ∈ R+ ×H1
0(Ω) is an eigenpair of (2.48) in a weak sense, then the normal

derivativeγ int
1 u 6= 0 and w= γ int

1 u fulfills the boundary integral equation

V(κ)w = 0 onΓ. (2.49)

The eigenfunction u admits the representation

u = Ṽ(κ)w onΩ.

ii) If (κ,w) ∈ R+ ×H−1/2(Γ) \ {0} fulfills the boundary integral equation (2.49), then
u = Ṽ(κ)w is an eigenfunction of the eigenvalue problem (2.48) in theweak sense
corresponding to the eigenvalueκ2 .

Proof. i) Let (κ,u) ∈ R+ ×H1
0(Ω) be an eigenpair of the Dirichlet Laplacian eigenvalue

problem (2.48) in the weak sense. Then the boundary integralequation (2.39) gives

0 = V(κ)γ int
1 u onΓ.

Using the representation formula (2.38), we can write the eigenfunctionu as

u = Ṽ(κ)γ int
1 u onΩ.

Sinceu 6= 0 onΩ and sincẽV(κ) is linear, it follows thatγ int
1 u 6= 0 onΓ.

ii) Let (κ,w)∈R+×H−1/2(Γ)\{0} be a solution of the boundary integral equation (2.49).
The functionu defined by

u = Ṽ(κ)w onΩ

is a weak solution of the Helmholtz equation (2.48), cf. (2.30). The boundary condition of
(2.48) is fulfilled, since by (2.32) and by assumption onw, we have

γ int
0 u = γ int

0 Ṽ(κ)w = V(κ)w = 0.
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It remains to show thatu 6= 0 onΩ. FromV(κ)w= 0 onΓ it follows by Lemma 2.4.2 that

Ṽ(κ)w = 0 onΩc,

and thereforeγext
1 Ṽ(κ)w= 0 onΓ. Using the jump relation (2.46) of̃V(κ), we get

γ int
1 Ṽ(κ)w = w 6= 0 onΓ. (2.50)

Hence,u= Ṽ(κ)w 6= 0 onΩ. Thus,u is an eigenfunction of the eigenvalue problem (2.48)
in the weak sense corresponding to the eigenvalueκ2 .

Theorem 2.4.3 provides an equivalent boundary integral formulation of the Dirichlet Lapla-
cian eigenvalue problem and it reads as follows:
Find (κ,w) ∈ R+×H−1/2(Γ)\{0} such that

V(κ)w = 0. (2.51)

Obviously, the eigenvalue problem (2.51) is a nonlinear eigenvalue problem.

Note that an alternative boundary integral formulation forthe Dirichlet Laplacian eigen-
value problem is possible by using the boundary integral equation (2.40). This yields the
following eigenvalue problem [23]: Find(κ,w) ∈ R+×H−1/2(Γ)\{0} such that

−1
2

w+K′(κ)w = 0.

Also for the Neumann Laplacian eigenvalue (2.20) problem equivalent boundary integral
formulations can be stated. First, we consider the boundaryintegral equation (2.40).

Theorem 2.4.4.Consider the Neumann eigenvalue problem

−∆u = κ2u onΩ, γ int
1 u = 0 onΓ. (2.52)

i) If (κ,u) ∈ R+×H1(Ω) is an eigenpair of (2.52) in the weak sense, thenγ int
0 u 6= 0 and

v = γ int
0 u fulfills the boundary integral equation

D(κ)v= 0 on Γ. (2.53)

The eigenfunction u admits the representation

u = −W(κ)v onΩ.

ii) If (κ,v) ∈ R+ × H1/2(Γ) \ {0} fulfills the boundary integral equation (2.53), then
u = −W(κ)v is an eigenfunction of the eigenvalue problem (2.52) in theweak sense
corresponding to the eigenvalueκ2 .
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Proof. i) Let (κ,u) ∈ R+ ×H1(Ω) be an eigenpair of the Neumann Laplacian eigenvalue
problem (2.52) in the weak sense. The boundary integral equation (2.40) shows that

0 = D(κ)γ int
0 u onΓ.

Using the representation formula (2.38), we can write the eigenfunctionu by

u = −W(κ)γ int
0 u on Ω.

Sinceu 6= 0 onΩ and sinceW(κ) is linear, it follows thatγ int
0 u 6= 0 onΓ.

ii) Let (κ,v) ∈ R+×H1/2(Γ)\{0} be a solution of the boundary integral equation (2.53).
The functionu defined by

u = −W(κ)v on Ω

is a weak solution of the Helmholtz equation (2.52), cf. (2.31). The boundary condition of
(2.52) is fulfilled, since by (2.32), we haveγ int

1 u=−γ int
1 W(κ)v= D(κ)v= 0. It remains to

show thatu 6= 0 onΩ. FromD(κ)v= 0 onΓ it follows by Lemma 2.4.2 thatu=W(κ)v= 0
onΩc and thereforeγext

0 W(κ)v = 0 onΓ. Using the jump relation (2.47) ofW(κ), we get

−γ int
0 W(κ)v = v 6= 0 onΓ.

Hence,u = −W(κ)v 6= 0 on Ω. Thus,u is an eigenfunction of the Neumann eigenvalue
problem (2.52) in the weak sense corresponding to the eigenvalueκ2 .

An alternative formulation of the Neumann Laplacian eigenvalue is obtained by using the
boundary integral equation (2.39). This yields the eigenvalue problem [23]:
Find (κ,v) ∈ R+×H1/2(Γ)\{0} such that

1
2

v+K(κ)v = 0.

In the following we analyze the properties of the boundary integral operatorsV(κ) and
D(κ).

Lemma 2.4.5.Let κ ∈ C. Then the operators

V(κ)−V(0) : H−1/2(Γ) → H1/2(Γ)

D(κ)−D(0) : H1/2(Γ) → H−1/2(Γ)

are compact.

Proof. In [77, Lemma 3.9.8] the assertions are proven for realκ . The proof there remains
valid also for complexκ because it relies on the regularity of the kernel of the correspond-
ing Newton potential from which required mapping properties are derived.
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Lemma 2.4.6.The operator V(0) : H−1/2(Γ) → H1/2(Γ) is H−1/2(Γ)-elliptic, i.e., there
exists a constant cV > 0 such that

(V(0)w,w)Γ ≥ cV‖w‖2
H−1/2(Γ)

(2.54)

holds for all w∈ H−1/2(Γ).

Proof. See, e.g., [40], [61, Corollary 8.13].

A direct consequence of Lemma 2.4.5 and Lemma 2.4.6 is the following result forV(κ).

Theorem 2.4.7.The boundary integral operator V(κ) : H−1/2(Γ)→ H1/2(Γ) is Fredholm
with zero index.

Proof. The operatorV(κ) : H−1/2(Γ)→H1/2(Γ) is a compact perturbation of theH−1/2(Γ)-
elliptic operatorV(0),

V(κ) = V(0)+V(κ)−V(0).

ThereforeV(κ) is Fredholm and indV(κ) = 0, see, e.g., [61, Theorem 2.38].

In the following we will show that the hypersingular operator D(κ) is also Fredholm op-
erator with zero index. However,D(0) is notH1/2(Γ)-elliptic, since

kerD(0) = span{1Γ},

where 1Γ ≡ 1 onΓ. But, if we consider the subspace

H1/2
∗∗ (Γ) := {v∈ H1/2(Γ) : (v, 1̃Γ)Γ = 0},

where1̃Γ ∈ H−1/2(Γ) is defined by

1̃Γ(v) =
∫

Γ

v(x)dsx for v∈ H1/2(Γ),

then there exists a constantcD > 0 such that

(v,D(0)v)Γ ≥ cD‖v‖2
H1/2(Γ)

for all v∈ H1/2
∗∗ (Γ), (2.55)

see, [83, p. 147], [61, Theorem 8.21]. Let us define the stabilized boundary integral
operator

D̃(0) := D(0)+ξ (·, 1̃Γ)Γ1̃Γ, (2.56)

with ξ ∈ R+. Then the operator̃D(0) is H1/2(Γ)-elliptic, see [83, p. 177]. Hence, we can
state the desired result forD(κ).



2.4 Boundary integral formulations of Laplacian eigenvalue problems 27

Lemma 2.4.8.Letκ ∈ C. The boundary integral operator D(κ) : H1/2(Γ)→ H−1/2(Γ) is
Fredholm withindD(κ) = 0.

Proof. We can write

D(κ) = D̃(0)+D(κ)−D(0)+ξ (·, 1̃Γ)Γ1̃Γ.

The operator
D(κ)−D(0)+ξ (·, 1̃Γ)Γ1̃Γ : H1/2(Γ) → H−1/2(Γ)

is compact, sinceD(0)−D(κ) and the operator defined byv 7→ (v, 1̃Γ)Γ1̃Γ are compact.
Further, the operator̃D(0) : H1/2(Γ)→ H−1/2(Γ) is H1/2(Γ)-elliptic. Thus,D(κ) is Fred-
holm and indD(κ) = 0, see [61, Theorem 2.38].
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3 EIGENVALUE PROBLEMS OF HOLOMORPHIC FREDHOLM
OPERATOR FUNCTIONS

Boundary integral formulations of Laplacian eigenvalue problems lead to nonlinear eigen-
value problems for related boundary integral operators. A standard theory for general
nonlinear eigenvalue problem is not available. However, for eigenvalue problems for so-
called holomorphic Fredholm operator functions a generalization of the theory of linear
eigenvalue problems has been developed [50, 28, 27, 76, 97, 26, 55]. This theory will be
essential for the analysis and the discretization of boundary integral operator eigenvalue
problems in the subsequent chapters.

3.1 Holomorphic operator functions

In this section we give a short introduction to holomorphic functions which map into Ba-
nach spaces. We will restrict ourselves to the basic definitions and some important results
which are needed for our purpose. For a detailed presentation and analysis of this topic we
refer to [39].

Definition 3.1.1. LetΛ be an open and connected subset ofC and let B be a Banach space.
A function u: Λ → B is called holomorphic onΛ if it can be represented as the sum of a
power series

u(λ ) =
∞

∑
k=0

(λ −µ)kak, ak ∈ B,

which is convergent in B in a neighborhood of any pointµ ∈ Λ.

The following theorem gives useful equivalent characterizations of holomorphic func-
tions.

Theorem 3.1.2.Let Λ be an open and connected subset ofC, let B be a Banach space,
and let u: Λ → B. The following statements are equivalent:

i) u is holomorphic onΛ.

ii) u is differentiable for everyλ ∈ Λ, i.e., there exists a u′(λ ) ∈ B such that

lim
h→0

∥∥∥∥
u(λ +h)−u(λ )

h
−u′(λ )

∥∥∥∥
B

= 0.

29
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iii) The function defined byλ 7→ 〈u(λ ),g〉B×B∗ is holomorphic onΛ for all g ∈ B∗, where
〈·, ·〉B×B∗ denotes the duality pairing of B and its dual B∗.

Proof. See, e.g., [101, Chapter V.3] or [39, Chapter 3.2].

Let X andY be Banach spaces and letL(X,Y) be the space of the bounded linear operators
which map fromX intoY. Let

‖A‖L(X,Y) := sup
x∈X,‖x‖X≤1

‖Ax‖Y

be the induced operator norm, thenL(X,Y) is a Banach space and the above definition and
characterizations of holomorphic functions can be appliedto so-called operator functions
A : Λ → L(X,Y). In the next corollary we specify the property iii) in Theorem 3.1.2 for
operator functions.

Corollary 3.1.3. Let A: Λ →L(X,Y) be an operator function onΛ. Then the following
statements are equivalent:

i) A is holomorphic onΛ.

ii) The function defined byλ 7→ 〈A(λ )x,g〉Y×Y∗ is holomorphic onΛ for all x ∈ X and
all g ∈Y∗.

Proof. See [49, Theorem 3.12].

In the next corollary we show that the maximum modulus principle for holomorphic func-
tions f : Λ → C is also valid for holomorphic operator functions.

Corollary 3.1.4. Let A: Λ →L(X,Y) be a holomorphic operator function onΛ and letΛ0

be a bounded and closed subset ofΛ. Then

max
λ∈Λ0

‖A(λ )‖L(X,Y) = max
λ∈∂Λ0

‖A(λ )‖L(X,Y). (3.1)

Proof. Using that
‖y‖Y = sup

g∈Y∗,‖g‖Y∗≤1
〈y,g〉Y×Y∗

for everyy∈Y, we can write

‖A(λ )‖L(X,Y) = sup
x∈X,‖x‖X≤1

‖A(λ )x‖Y = sup
x∈X,‖x‖X≤1

g∈Y∗ ,‖g‖Y∗≤1

|〈A(λ )x,g〉Y×Y∗|.

By Corollary 3.1.3, the function defined byλ → 〈A(λ )x,g〉Y×Y∗ is holomorphic onΛ0 for
all x∈ X andg∈Y∗. Hence, the assertion follows from the maximum modulus principle
in C [72, Theorem 10.24].
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Definition 3.1.5. Let A: Λ →L(X,Y) be a holomorphic operator function onΛ. The set

ρ(A) = {λ ∈ Λ : ∃A(λ )−1 ∈ L(Y,X)}

is called resolvent set of A. The complement of the resolventset inΛ is called spectrum
σ(A) of A.
A numberλ0 ∈ Λ is called eigenvalue of A if there exists a non trivial x0 ∈ X such that

A(λ0)x
0 = 0.

x0 is called eigenelement of A corresponding to the eigenvalueλ0.

In the next lemma we present an important result for the resolvent of a holomorphic oper-
ator function.

Lemma 3.1.6.Let A: Λ →L(X,Y) be a holomorphic operator function onΛ and assume
that λ0 ∈ ρ(A). Then there exists a neighborhood Uδ (λ0) ⊂ Λ of λ0, δ > 0, such that
A(λ )−1 ∈ L(Y,X) for all λ ∈Uδ (λ0). Moreover, the function A(·)−1 : Uδ (λ0) →L(Y,X)
is holomorphic and its derivative admits the representation

d
dλ
(
A(λ )−1)= −A(λ )−1A′(λ )A(λ )−1.

Proof. For λ0 ∈ ρ(A) andλ ∈ Λ we can write

A(λ ) = [A(λ )A(λ0)
−1]A(λ0) =

[
IY − [A(λ0)−A(λ )]A(λ0)

−1]A(λ0). (3.2)

The holomorphy of the operator functionA implies that there exists aδ > 0 such that
∥∥[A(λ0)−A(λ )]A(λ0)

−1
∥∥
L(Y,Y)

≤ ‖A(λ0)−A(λ )‖
L(X,Y)

∥∥A(λ0)
−1
∥∥
L(Y,X)

< 1

for all λ ∈Uδ (λ0). By the Neumann series theorem we have

[
IY − [A(λ0)−A(λ )]A(λ0)

−1]−1
=

∞

∑
k=0

[
(A(λ0)−A(λ ))A(λ0)

−1]k

for all λ ∈Uδ (λ0), where the series converges in the operator norm and defines abounded
linear operator which maps fromY into itself. Using (3.2) we obtain forλ ∈Uδ (λ )

A(λ )A(λ0)
−1

∞

∑
k=0

[
(A(λ0)−A(λ ))A(λ0)

−1]k = IY. (3.3)

Thus, the inverseA(λ )−1∈L(Y,X) exists for allλ ∈Uδ (λ0) and admits the representation

A(λ )−1 = A(λ0)
−1

∞

∑
k=0

[
(A(λ0)−A(λ ))A(λ0)

−1]k . (3.4)
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Next, we can also write

A(λ +h)−1 = A(λ )−1
∞

∑
k=0

[
(A(λ )−A(λ +h))A(λ )−1]k (3.5)

for λ ∈Uδ (λ0) and sufficiently smallh > 0. From the continuity of the operator function
A the continuity ofA(·)−1 onUδ (λ0) follows with (3.5). Therefore we can conclude

A(λ +h)−1−A(λ )−1

h
= A(λ )−1A(λ )−A(λ +h)

h
A(λ +h)−1 →−A(λ )−1A′(λ )A(λ )−1

ash→ 0. Thus, by Theorem 3.1.2,A(·)−1 is holomorphic onUδ (λ0).

As a consequence of the last lemma we see that the resolvent set of a holomorphic operator
function is open and that its spectrum is closed.

3.2 Basics of eigenvalue problems of holomorphic Fredholm operator
functions

The study of eigenvalue problems for holomorphic operator functions with Fredholm oper-
ators has a long tradition [50,28,27,76,97,26,55]. With different concepts and approaches
a wide range of results has been derived. For the numerical analysis of approximations
of such eigenvalue problems [38,31,44,90,47,48] these results are essential, in particular
for the error analysis. In this section we provide the basic definitions and concepts of the
theory for eigenvalue problems for holomorphic Fredholm operator functions and present
the main results. For a detailed presentation and analysis we refer to [55].

Definition 3.2.1. We call an operator function A: Λ →L(X,Y) Fredholm if the operator

A(λ ) : X →Y

is Fredholm for allλ ∈ Λ.

Theorem 3.2.2.Let A : Λ →L(X,Y) be a holomorphic Fredholm operator function and
let the resolvent setρ(A) of A be not empty. Then:

i) The indexindA(λ ) = 0 for all λ ∈ Λ.

ii) The spectrumσ(A) has no cluster points inΛ.

iii) Eachλ ∈ σ(A) is an eigenvalue of A.

Proof. For i), see [31]. For ii), see [26, Corollary 8.4]. iii) follows from i), because ifA(λ )
is not surjective thenA(λ ) is not injective. Hence, ifλ ∈ σ(A) thenA(λ ) is not injective
and thus there exists ax 6= 0 with A(λ )x= 0.
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The concept of Jordan chains for linear eigenvalue problemscan be extended to holomor-
phic eigenvalue problems.

Definition 3.2.3. Let A : Λ → L(X,Y) be a holomorphic operator function onΛ. Let
(λ0,x0) be an eigenpair of the eigenvalue problem A(λ )x= 0. Elements x0,x1, . . . ,xm−1 in
X are called generalized eigenelements if they satisfy

n

∑
j=0

1
j!

A( j)(λ0)x
n− j = 0 for n = 0,1, . . . ,m−1. (3.6)

The ordered collection x0,x1, . . . ,xm−1 is called Jordan chain of length m corresponding
to λ0.

For linear eigenvalue problems with compact operators the length of any Jordan chain
of a nonzero eigenvalue is finite [4, Satz 9.6]. In the case of eigenvalue problems for
holomorphic Fredholm operator functions this result is true for any eigenvalue.

Lemma 3.2.4.Let A : Λ → L(X,Y) be a holomorphic Fredholm operator function onΛ
and letρ(A) 6= /0. Letλ0 ∈ Λ be an eigenvalue of the eigenvalue problem A(λ )x = 0, then
the length of any Jordan chain corresponding toλ0 is finite.

Proof. See [55, Lemma A.8.3.].

With the last lemma we can define the maximal length of the Jordan chain of an eigenele-
ment and of an eigenvalue.

Definition 3.2.5. Let A: Λ →L(X,Y) be a holomorphic Fredholm operator function onΛ
and letρ(A) 6= /0. Letλ0 ∈ Λ be an eigenvalue of the eigenvalue problem A(λ )x = 0.

i) Let x0 be an eigenelement corresponding toλ0. The maximal length of a Jordan chain
beginning with x0 is called the order m(A,λ0,x0) of the eigenelement x0.

ii) By
κ(A,λ0) := max

x∈kerA(λ0)\{0}
m(A,λ0,x)

we denote the maximal length of Jordan chains correspondingto λ0.

iii) The closed linear hull of all generalized eigenelements of Acorresponding toλ0 is
called the generalized eigenspace G(A,λ0) of A corresponding toλ0.

For the numerical analysis of the discretization of eigenvalue problems for holomorphic
operator functions it is essential that the dimension of thegeneralized eigenspace for all
eigenvalues is finite.
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Lemma 3.2.6.Let A : Λ →L(X,Y) be a holomorphic Fredholm operator function onΛ
and letρ(A) 6= /0. Letλ0 ∈ Λ be an eigenvalue of the eigenvalue problem A(λ )x= 0. Then,

dimG(A,λ0) ≤ κ(A,λ0) ·dimkerA(λ0). (3.7)

Proof. See [44, pp. 7].

The generalized eigenspace of an eigenvalue can be described by an ordered collection of
eigenelements [55, Proposition A.4.5.], this motivates the following definition.

Definition 3.2.7. Let A : Λ → L(X,Y) be a holomorphic Fredholm operator function on
Λ and letρ(A) 6= /0. Letλ0 ∈ Λ be an eigenvalue of the eigenvalue problem A(λ )x = 0. A
system of eigenelements x0

1, . . . ,x
0
J corresponding toλ0 is called canonical if

i) x0
1, . . . ,x

0
J is a basis ofkerA(λ0),

ii) m(A,λ0,x0
1) = κ(A,λ0),

iii) x0
j is an eigenelement of the maximal possible order belonging to some direct comple-

ment Mj in kerA(λ0) to the linear hullspan{x0
1, . . . ,x

0
j−1} , i.e.,

m(A,λ0,x
0
j ) = max

x∈M j\{0}
m(A,λ0,x) for j = 2, . . . ,J.

Obviously, a canonical system of eigenelements of an eigenvalue is not unique, but the
order of the eigenelements of two canonical systems coincides.

Lemma 3.2.8. Let A : Λ → L(X,Y) be a holomorphic Fredholm operator function on
Λ and let ρ(A) 6= /0. Let λ0 ∈ σ(A) and suppose that x0

1, . . . ,x
0
J and u0

1, . . . ,u
0
J are two

canonical systems of the eigenvalueλ0. Then,

m(A,λ0,x
0
i ) = m(A,λ0,u

0
i ) for i = 1, . . . ,J. (3.8)

Proof. See [55, Proposition A.4.6.].

With the last lemma we can define partial multiplicities of aneigenvalue and extend the
concept of algebraic multiplicity of linear eigenvalue problems to eigenvalue problems for
holomorphic Fredholm operator functions.

Definition 3.2.9. Let A: Λ →L(X,Y) be a holomorphic Fredholm operator function onΛ
and letρ(A) 6= /0. Let λ0 ∈ Λ be an eigenvalue of the eigenvalue problem A(λ )x = 0 and
x0

1, . . . ,x
0
J be a corresponding canonical basis of the eigenspace. The numbers

mi(A,λ0) := m(A,λ0,x
0
i ) for i = 1, . . .J
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are called partial multiplicities of A corresponding toλ0. The number

m(λ0) =
J

∑
i=1

mi(A,λ0)

is called the algebraic multiplicity of A atλ0.

The next technical result is needed later for the numerical analysis of the discretization of
eigenvalue problems of holomorphic Fredholm operator functions.

Lemma 3.2.10.Let A : Λ → L(X,Y) be a holomorphic Fredholm operator function, let
ρ(A) 6= /0 and letλ0 ∈ σ(A). Let x01, . . . ,x

0
J be a canonical system of eigenelements of A

corresponding toλ0. If m(A,λ0,x0
k) = m(A,λ0,x0

j ) = m for some1 ≤ k < j ≤ J and if
(αk,α j) 6= (0,0), then

m(A,λ0,αkx
0
k +α jx

0
j ) = m. (3.9)

Proof. If αk = 0 or α j = 0, then (3.9) is obviously fulfilled. Therefore let us assumethat
αk 6= 0 andα j 6= 0. Sincex0

1, . . . ,x
0
J is a canonical system of eigenelements andk < j, it

follows thatx0
j /∈ span{x0

1, . . . ,x
0
j−1} and therefore

(αkx
0
k +α jx

0
j ) /∈ span{x0

1, . . . ,x
0
j−1}.

Hence by iii) of Definition 3.2.7,m(A,λ0,αkx0
k +α jx0

j )≤m(A,λ0,x0
j ) = m. Letx0

k, . . . ,x
m−1
k

andx0
j , . . . ,x

m−1
j some Jordan chains ofx0

k andx0
j , respectively. Then it can be seen very

easily that
αkx

0
k +α jx

0
j , αkx

1
k +α jx

1
j , . . . ,αkx

m−1
k +α jx

m−1
j

is a Jordan chain ofA corresponding toλ0 of lengthm. Thus,

m(A,λ0,αkx
0
k +α jx

0
j ) = m.

For the investigation of the length of the Jordan chains and of the partial multiplicities of an
eigenvalue the concept of Jordan functions / root functionshas been used in [90,64,47].

Definition 3.2.11. Let A: Λ →L(X,Y) be a holomorphic operator function and letλ0 ∈
σ(A). A holomorphic function u: Uδ (λ0) → X in a neighborhood ofλ0 is called a Jordan
function of order m for A corresponding toλ0 if

i) u(λ0) 6= 0 and



36 3 Eigenvalue problems of holomorphic Fredholm operator functions

ii) λ0 is a zero of multiplicity m of the function f: λ 7→ A(λ )u(λ ), i.e.,

d j

dλ j [A(λ )u(λ )]λ=λ0
= 0 for j = 0,1, . . . ,m−1 and

dm

dλ m [A(λ )u(λ )]λ=λ0
6= 0. (3.10)

Note, if u is a Jordan function forA corresponding toλ0, thenu(λ0) is an eigenelement of
A corresponding toλ0. The following lemma shows that for every Jordan function oforder
m a corresponding Jordan chain of lengthm can be constructed.

Lemma 3.2.12.Let A: Λ →L(X,Y) be a holomorphic operator function, letλ0 ∈ σ(A)
and let u: Uδ (λ0) → X be a Jordan function of order m. Then

u(λ0),
1
1!

u′(λ0),
1
2!

u(2)(λ0), . . . ,
1

(m−1)!
u(m−1)(λ0) (3.11)

is a Jordan chain of A corresponding toλ0.

Proof. Since the functionf : λ 7→ A(λ )u(λ ) has a zero of multiplicitym, we have

0 =
dn

dxn [A(λ )u(λ )]λ=λ0
=

n

∑
j=0

n!
(n− j)! j!

A( j)(λ0)u
(n− j)(λ0)

= n!
n

∑
j=0

1
j!

A( j)(λ0)
1

(n− j)!
u(n− j)(λ0) for n = 0, . . . ,m−1.

If a Jordan chain of lengthm is given, then a corresponding Jordan function can be easily
constructed by a polynomial.

Lemma 3.2.13.Let A: Λ →L(X,Y) be a holomorphic Fredholm operator function with
ρ(A) 6= /0 and let(λ0,x0) be an eigenpair of A with m= m(A,λ0,x0). Let

x0, . . . ,xm−1

be some Jordan chain of x0 of maximal order. Then the polynomial

u(λ ) = x0 +(λ −λ0)x
1 + . . .+(λ −λ0)

m−1xm−1

is a Jordan function of A corresponding toλ0 of order m.
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Proof. Sincex0 is an eigenelement, we haveu(λ0) = x0 6= 0. By Definition 3.2.3 of a
Jordan chain we have

n

∑
j=0

1
j!

A( j)(λ0)u
n− j = 0, n = 0,1, . . . ,m−1.

With u(k)(λ0) = k!xk for k = 0,1, . . . ,m−1 we obtain

dn

dxn [A(λ )u(λ )]λ=λ0
=

n

∑
j=0

n!
(n− j)! j!

A( j)(λ0)u
(n− j)(λ0)

= n!
n

∑
j=0

1
j!

A( j)(λ0)x
n− j = 0, n = 0, . . . ,m−1,

which implies that the functionf : λ 7→ A(λ )u(λ ) has a zero of multiplicity at leastm.
The functionf must have a zero of multiplicity equalsm because otherwise,

u(λ0) = x0,
1
1!

u′(λ0) = x1, . . . ,
1

(m−1)!
u(m−1)(λ0) = xm−1,

1
m!

u(m)(λ0) = 0

would be, by Lemma 3.2.12, a Jordan chain ofx0 of lengthm+1 > m= m(A,λ0,x0). But
this is a contradiction to the fact thatm(A,λ0,x0) is the maximal length of a Jordan chain
beginning withx0.

At the end of this section we cite the Keldysh theorem [50, 55]. It is the key tool of the
numerical analysis of the discretization of eigenvalue problems for holomorphic Fredholm
operator functions. Moreover, we use it for the construction of eigenvalue solvers for al-
gebraic holomorphic eigenvalue problems. The theorem shows that the resolvent admits a
representation as Laurent series in a neighborhood of each eigenvalue, where the principal
part of the Laurent series is a finite sum.

Theorem 3.2.14.Let A: Λ →L(X,Y) be a holomorphic Fredholm operator function and
let ρ(A) 6= /0. Letλ0 ∈ σ(A), then forλ ∈ Λ\{λ0} sufficiently close toλ0 we have

A(λ )−1 =
1

∑
k=r

(λ −λ0)
−kBk +F(λ ),

where r= κ(A,λ0), Bk ∈ L(X,Y) are operators of finite rank with Br 6= 0, and where F is
a holomorphic operator function.

Proof. See [27], [55, Theorem A.10.2.].
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3.3 Adjoint eigenvalue problems

For the numerical analysis of approximations of holomorphic eigenvalue problems we
have to consider also the adjoint eigenvalue problem. Sincethere are different definitions
of the adjoint of an operator, we want to specify these definitions in detail.

Definition 3.3.1. Let X be a Banach space. A continuous map x7→ x which maps X into
itself is called a conjugation on X if

x+y = x+y, αx = αx and (x) = x

is satisfied for all x,y∈ X andα ∈ C.

Notice that a conjugation is bounded, conjugate-linear, and has a bounded inverse. A
conjugation onX induces also a conjugation on the dual spaceX∗ = L(X,C) by

〈x, f̄ 〉X×X∗ = 〈x̄, f 〉X×X∗ for x∈ X, f ∈ X∗, (3.12)

where〈·, ·〉X×X∗ is the duality pairing ofX×X∗, i.e.,

〈x, f 〉X×X∗ = f (x) for x∈ X, f ∈ X∗.

Further we can define a bounded sesquilinear form[·, ·]X×X∗ : X×X∗ by

[x, f ]X×X∗ = 〈x, f̄ 〉X×X∗ for x∈ X, f ∈ X∗.

If X is reflexive and ifX∗∗ is identified withX, then we have

[x, f ]X×X∗ = [ f ,x]X∗×X. (3.13)

If conjugations are defined on a Hilbert spaceX and on its dualX∗ by (3.12), then from

|〈y, f 〉X×X∗| = |〈y, f 〉X×X∗| = |〈y, f 〉X×X∗| (3.14)

it follows that

‖ f‖X∗ = sup
06=x∈X

|〈x, f 〉X×X∗|
‖x‖X

= sup
06=x∈X

|〈x, f 〉X×X∗|
‖x‖X

= ‖ f‖X∗.

Thus, the conjugation onX∗ is a conjugate-linear bijective isometry onX∗. By the Riesz
representation theorem, see e.g. [99, p. 105], there existsa conjugate-linear bijective isom-
etry J : X → X∗ such that

〈x,Jy〉X×X∗ = (x,y)X (3.15)
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is satisfied for allx, y∈ X. Therefore we can define a linear bijective isometryι : X → X∗

by x 7→ J(x). Thus, we can represent the inner product ofX by the sesquilinear form
[·, ·]X×X∗ in the following way,

[x, ιy]X×X∗ = 〈x, ιy〉X×X∗ = 〈x,Jy〉X×X∗ = (x,y)X. (3.16)

If X andY are both equipped with a conjugation and ifA ∈ L(X,Y), then we define the
adjointA∗ : Y∗ → X∗ of A such that

[x,A∗g]X×X∗ = [Ax,g]Y×Y∗

is satisfied for allx∈ X andg∈Y∗.

If X andY are Hilbert spaces and ifA∈ L(X,Y), then the Hilbert space adjointA⋆ : Y → X
is defined such that

(x,A⋆y)X = (Ax,y)Y (3.17)

is satisfied for allx∈ X andy∈Y. The relation between the adjointA∗ : Y∗ → X∗ and the
Hilbert space adjointA⋆ : Y → X is

ι−1
X A∗ιY = A⋆.

Definition 3.3.2. Let A: Λ →L(X,Y) be a holomorphic Fredholm operator function. The
operator function

A∗ : {λ : λ ∈ Λ}→ L(Y∗,X∗)

defined by

A∗(λ ) = A(λ)∗

is called adjoint operator function of A.

In the next lemma we show that the properties of a holomorphicFredholm operator func-
tion remain valid for its adjoint.

Lemma 3.3.3. Let A : Λ → L(X,Y) be a holomorphic Fredholm operator function with
ρ(A) 6= /0 and let Y be reflexive. Then the adjoint operator function

A∗ : {λ : λ ∈ Λ}→ L(Y∗,X∗)

is holomorphic and A∗(λ) is Fredholm withindA∗(λ ) = 0 for all λ ∈ Λ.
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Proof. Let µ ∈ Λ be arbitrary but fixed. SinceA is holomorphic onΛ, there exists aδ > 0
such thatA(λ ) admits a representation as power series

A(λ ) =
∞

∑
k=0

(λ −µ)kBk, Bk ∈ L(X,Y),

which is convergent inL(X,Y) for all λ ∈Uδ (µ). Then, by Theorem 3.1.2, we can write

〈A(λ )x,g〉Y×Y∗ = [A(λ )x,g]Y×Y∗ =
∞

∑
k=0

(λ −µ)k[Bkx,g]Y×Y∗

for λ ∈Uδ (µ), where the series is convergent for allx∈ X andg∈Y∗. Consequently, for
λ ∈Uδ (µ) also

∞

∑
k=0

(λ −µ)k[Bkx,g]Y×Y∗ (3.18)

is convergent for allx∈ X andg∈Y∗.
Let us now consider the adjoint operator function ofA which is given byA∗(λ ) = A(λ )∗.
We can write forλ ∈Uδ (µ), x∈ X andg∈Y∗,

〈A∗(λ )g,x〉X∗×X = 〈A(λ)∗g,x〉X∗×X = [A(λ)∗g,x]X∗×X

= [g,A(λ)x]Y∗×Y = [A(λ)x,g]Y×Y∗ =
∞

∑
k=0

(λ −µ)k[Bkx,g]Y×Y∗

=
∞

∑
k=0

(λ −µ)k[Bkx,g]Y×Y∗ ,

where we used thatY is reflexive and (3.13). Thus, by (3.18), the function

λ 7→ 〈A∗(λ )g,x〉X∗×X

is holomorphic onUδ (µ) for all x∈ X andg ∈Y∗ and we conclude with Corollary 3.1.3
thatA∗ : {λ : λ ∈ Λ} →L(Y∗,X∗) is holomorphic.

Sinceρ(A) 6= /0, it follows immediately from Theorem 3.2.2 that indA(λ )= 0 for all λ ∈Λ.
The adjoint operator of any Fredholm operator with index 0 isFredholm with index 0, see,
e.g., [61, Theorem 2.27]. This implies that indA(λ )∗ = indA∗(λ) = 0 for all λ ∈ Λ.

The Fredholm alternative, see, e.g., [61, Theorem 2.27], shows that

dimkerA(λ0) = dimkerA∗(λ0).

Hence,λ0 is an eigenvalue ofA if and only if λ 0 is an eigenvalue ofA∗. Further, the
geometric multiplicities ofλ0 andλ 0 coincide. Also the partial and algebraic multiplicities
of λ0 andλ 0 are equal as we see in the next lemma.
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Lemma 3.3.4. Let A : Λ → L(X,Y) be a holomorphic Fredholm operator function and
let ρ(A) 6= /0. Then,λ0 ∈ σ(A) if and only if λ ∈ σ(A∗) and the geometric, partial, and
algebraic multiplicities coincide.

Proof. See [55, Proposition A.9.2.].

If X is a Hilbert space and ifA : Λ→L(X,X) is a holomorphic Fredholm operator function,
then we want to consider the Hilbert space adjoint

A(λ )⋆ = ι−1A(λ )∗ι (3.19)

and defineA⋆ : {λ : λ ∈ Λ} →L(X,X) by

A⋆(λ ) = ι−1A∗(λ )ι.

Remark 3.3.5. If X is a Hilbert space and if X= Y, then Lemma 3.3.3 and Lemma 3.3.4
remain valid when we replace A∗ by A⋆, sinceι : X → X∗ is an isomorphism.
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4 APPROXIMATION OF HOLOMORPHIC EIGENVALUE
PROBLEMS

The approximation of eigenvalue problems for holomorphic Fredholm operator functions
is in the most cases analyzed by using the concept of the so-called discrete approxima-
tion scheme [86] together with the concept of the regular approximation of operator func-
tions [30]. Such approaches [31, 44, 91, 90, 47, 48] require assumptions on the approxi-
mation spaces as well as several assumptions on the approximations of the operator. The
Galerkin approximation of eigenvalue problems for holomorphic Fredholm operator func-
tions of the formA(λ ) = T +S(λ ), whereT is elliptic andS(λ ) is compact, fulfills those
assumptions. Nevertheless, we will establish an alternative convergence and error anal-
ysis for the Galerkin discretization of such eigenvalue problems in this chapter. For that
we only have to assume the standard approximation property of the sequence of the trial
spaces.

4.1 Assumptions and basic properties

We consider eigenvalue problems
A(λ )x = 0 (4.1)

for holomorphic operator functions

A : Λ →L(X,X),

whereΛ ⊂ C is an open and connected subset ofC andX is a Hilbert space overC. We
assume that the operatorA(λ ) admits the representation

A(λ ) = T +S(λ ) for all λ ∈ Λ, (4.2)

whereT ∈ L(X,X) is X-elliptic, i.e., there exists a constantcT > 0 such that

(Tx,x)X ≥ cT‖x‖2
X for all x∈ X, (4.3)

and whereS(λ ) ∈ L(X,X) is compact for allλ ∈ Λ. These assumptions on the operator
function A imply that A(λ ) is Fredholm with indA(λ ) = 0 for all λ ∈ Λ. Indeed, by
the Lax-Milgram theorem, see, e.g., [4, Satz 4.7], the operator T has a bounded inverse
and therefore indT = 0. Since every compact perturbation of a Fredholm operator is a

43



44 4 Approximation of holomorphic eigenvalue problems

Fredholm operator with the same index [61, Theorem 2.26], weconclude that the operator
A(λ ) is Fredholm with indA(λ ) = 0 for all λ ∈ Λ.

For the Galerkin approximation of the eigenvalue problem (4.1) we assume that there exists
a sequence

{Xn}n∈N (4.4)

of nested finite dimensional subspacesXn ⊂ X with Xn ⊂ Xn+1, which satisfies the approx-
imation property

lim
n→∞

inf
xn∈Xn

‖x−xn‖X = 0 for all x∈ X. (4.5)

Theorem 4.1.1.Let X be a Hilbert space and let W be a finite dimensional subspace of X.

i) v∈W is a best approximation to x∈ X with respect to W, i.e.,

‖x−v‖X = inf
w∈W

‖x−w‖X, (4.6)

if and only if
(x−v,w)X = 0 for all w ∈W. (4.7)

ii) For every element x∈ X there exists a unique best approximation v∈W with respect
to W.

Proof. See [61, Lemma 2.28, Lemma 2.29].

Using Theorem 4.1.1, we can define for everyn∈ N a map

Pn : X → Xn ⊂ X (4.8)

which maps each element ofx ∈ X to its unique best approximation inXn. The operator
Pn : X → X is a projection, since ImPn = Xn andPnxn = xn for all xn ∈ Xn. The operatorPn

is linear, since by Theorem 4.1.1, we have

0 = α(x−Pnx,zn)X +β (y−Pny,zn)X = (αx+βy− [αPnx+βPny],zn)X

for all x,y∈ X andzn ∈ Xn. Thus,αPnx+βPny = Pn(αx+βy).

Further,
‖Pn‖L(X,X) = 1, (4.9)

since we have on the hand

‖Pn‖L(X,X) = ‖PnPn‖L(X,X) ≤ ‖Pn‖L(X,X)‖Pn‖L(X,X),

i.e.,‖Pn‖L(X,X) = 0 or‖Pn‖L(X,X) ≥ 1. On the other hand, by i) of Theorem 4.1.1,

‖x‖2
X = ‖Pnx+x−Pnx‖2

X = ‖Pnx‖2
X +‖x−Pnx‖2

X ≥ ‖Pnx‖2
X for all x∈ X,
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i.e.,‖Pn‖L(X,X) ≤ 1.

Pn is selfadjoint, because by using again i) of Theorem 4.1.1 wesee that

(Pnx,y)X = (Pnx,Pny)X +(Pnx,y−Pny)X = (Pnx,Pny)X = (x−Pnx,Pny)X +(x,Pny)X

= (x,Pny)X (4.10)

for all x,y∈ X.

Finally, the approximation property (4.5) of{Xn}n∈N implies that

lim
n→∞

‖x−Pnx‖X = 0 for all x∈ X. (4.11)

Lemma 4.1.2.Let G be a finite dimensional subspace of X and let{Xn}n∈N be a sequence
of finite dimensional subspaces of X which has the approximation property (4.5). Then for
any c> 0 we have

sup
x∈G

‖x‖X≤c

inf
xn∈Xn

‖x−xn‖X → 0 as n→ ∞. (4.12)

Proof. Let x1, . . . ,xk be some orthonormal basis ofG and letc > 0 be arbitrary but fixed.
From the approximation property of the spacesXn it follows that for everyε > 0 there
exists aN ∈ N such that for alln≥ N there exists a subset{x1

n, . . . ,x
k
n} ⊂ Xn satisfying

‖xi −xi
n‖X ≤ ε

kc
for 1≤ i ≤ k. (4.13)

Let x∈ G with ‖x‖X ≤ c, thenx admits a representation by

x =
k

∑
i=1

αix
i

with |αi| ≤ c. So we conclude for ˜xn =
k

∑
i=1

αix
i
n ∈ Xn with (4.13) that

inf
xn∈Xn

‖x−xn‖X ≤ ‖x−
k

∑
i=1

αix
i
n‖X = ‖

k

∑
i=1

αi(x
i −xi

n)‖X

≤
k

∑
i=1

|αi|‖xi −xi
n‖X ≤ ε

k

k

∑
i=1

|αi | ≤ ε,

which implies that
sup
z∈G
‖z‖≤c

inf
xn∈Xn

‖x−xn‖→ 0 asn→ ∞.
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4.2 Convergence results for Galerkin approximations

In this section we consider eigenvalue problems

A(λ )x = 0 (4.14)

for holomorphic Fredholm operator functionsA : Λ →L(X,X) with A(λ ) = T +S(λ ) as
given in (4.2). We use a Bubnov-Galerkin method with the testand trial spaces{Xn}n∈N

as given in (4.4) for the approximation of the eigenvalue problem (4.14).
A pair (λ n

0 ,x0
n) ∈ Λ×Xn\{0} is an approximate solution of the eigenvalue problem (4.14)

if it satisfies the Galerkin variational eigenvalue problem

(A(λ n
0)x0

n,vn)X = 0 for all vn ∈ Xn. (4.15)

The orthogonality relation (4.7) gives

(A(λ n
0)x0

n−PnA(λ n
0)x0

n,vn)X = 0 for all vn ∈ Xn.

This implies that(λ n
0 ,x0

n)∈Λ×Xn\{0} is a solution of the Galerkin variational eigenvalue
problem (4.15) if and only if it is a solution of the projectedeigenvalue problem

PnA(λ n
0)x0

n = 0. (4.16)

The convergence analysis of the approximate solutions of the eigenvalue problem (4.14)
follows [38].

Lemma 4.2.1.Let A: Λ→L(X,X) be as given in (4.2) and let{λn}n∈N ⊂Λ be a sequence
with

lim
n→∞

λn = λ0 ∈ Λ. (4.17)

Suppose that{xn}n∈N is a sequence with xn ∈ Xn and‖xn‖X = 1 such that

lim
n→∞

PnA(λn)xn = 0. (4.18)

Then there exists an element x0 ∈ X with‖x0‖X = 1 and

A(λ0)x
0 = 0. (4.19)

Further there exists a subsequence{xnk}k∈N ⊂ {xn}n∈N with

lim
k→∞

‖x0−xnk‖X = 0. (4.20)
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Proof. Since{xn}n∈N is a bounded sequence in the Hilbert spaceX, there exists a weakly
convergent subsequence{xnk}k∈N [98, Theorem III.3.7], i.e., there exists ax0 ∈ X such
that

lim
k→∞

(xnk,v)X = (x0,v)X for all v∈ X. (4.21)

First we show that

lim
k→∞

(PnkA(λnk)xnk,v)X = lim
k→∞

(xnk,A(λnk)
⋆Pnkv)X = (x0,A(λ 0)⋆v)X = (A(λ0)x

0,v)X

(4.22)
holds for allv∈ X. We have

‖A(λnk)
⋆Pnkv−A(λ0)

⋆v‖X ≤ ‖[A(λnk)
⋆−A(λ0)

⋆]Pnkv‖X +‖A(λ0)
⋆[Pnkv−v]‖X

≤ ‖[A(λnk)
⋆−A(λ0)

⋆]‖L(X,X)‖Pnkv‖X +‖A(λ0)
⋆‖L(X,X)‖[Pnkv−v]‖X

≤ ‖[A(λnk)
⋆−A(λ0)

⋆]‖L(X,X)‖v‖X +‖A(λ0)
⋆‖L(X,X)‖[Pnkv−v]‖X (4.23)

for all v∈X, where we used that‖Pn‖L(X,X) = 1, see (4.9). The holomorphy of the operator
functionA : Λ →L(X,X) implies

‖A(λnk)
⋆−A(λ0)

⋆‖L(X,X) = ‖[A(λnk)−A(λ0)]
⋆‖L(X,X) → 0

ask → ∞ and together with the approximation property (4.11) of{Xn}n∈N we get from
(4.23)

lim
k→∞

‖A(λnk)
⋆Pnkv−A(λ0)

⋆v‖X = 0 for all v∈ X. (4.24)

Using (4.24) and (4.21) we obtain

|(xnk,A(λnk)
⋆Pnkv)X − (x0,A(λ0)

⋆v)X|
≤ |(xnk,A(λnk)

⋆Pnkv−A(λ0)
⋆v)X|+ |(xnk −x0,A(λ0)

⋆v)X|
≤ ‖xnk‖X‖A(λnk)

⋆Pnkv−A(λ0)
⋆v‖X + |(xnk −x0,A(λ0)

⋆v)X| → 0

ask→ ∞ for all v∈ X, thus we have shown (4.22),

lim
k→∞

(PnkA(λnk)xnk,v)X = (A(λ0)x
0,v)X for all v∈ X.

Therefore (4.18) implies that

(A(λ0)x
0,v)X = 0 for all v∈ X,

hence
A(λ0)x

0 = 0. (4.25)
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SinceS(λ ) : X → X is compact for allλ ∈ Λ, the convergenceS(λ0)xnk → S(λ0)x0 follows
from the weak convergencexnk ⇀ x0. Together with the continuity of the operator function
S: Λ →L(X,X),

lim
k→∞

‖S(λnk)−S(λ0)‖L(X,X) = 0,

we obtain

‖S(λnk)xnK −S(λ0)x
0‖X ≤ ‖[S(λnk)−S(λ0)]xnk‖X +‖S(λ0)[xnk −x0]‖X → 0 ask→ ∞.

This yields

‖S(λ0)x
0−PnkS(λnk)xnk‖X ≤ ‖S(λ0)x

0−PnkS(λ0)x
0‖X +‖Pnk[S(λ0)x

0−S(λnk)xnk]‖X

≤ ‖(IX −Pnk)S(λ0)x
0‖X +‖S(λ0)x

0−S(λnk)xnk‖X → 0
(4.26)

ask→ ∞. SinceA(λ ) = T +S(λ ), we get with (4.25), (4.18) and (4.26)

‖Tx0−PnkTxnk‖X = ‖[A(λ0)−S(λ0)]x
0−Pnk[A(λnk)−S(λnk)]xnk‖X

≤ ‖[A(λ0)x
0−PnkA(λnk)xnk‖X +‖S(λ0)x

0−PnkS(λnk)xnk‖X → 0
(4.27)

ask→ ∞. Using thatT is X-elliptic and thatPnk is selfadjoint, it follows with (4.21) and
(4.27) that

cT‖x0−xnk‖2
X ≤ |(T(x0−xnk),x

0−xnk)X|
≤ |(Tx0,x0)X − (Txnk,x

0)X|+ |(Txnk,xnk)X − (Tx0,xnk)X|
= |(x0,T⋆x0)X − (xnk,T

⋆x0)X|+ |(Txnk,Pnkxnk)X − (Tx0,xnk)X|
= |(x0,T⋆x0)X − (xnk,T

⋆x0)X|+ |(PnkTxnk,xnk)X − (Tx0,xnk)X|
≤ |(x0,T⋆x0)X − (xnk,T

⋆x0)X|+‖PnkTxnk −Tx0‖X‖xnk‖X → 0

ask→ ∞, thus
lim
k→∞

‖x0−xnk‖X = 0

and‖x0‖X = 1, since‖xnk‖X = 1.

Note that the last lemma does not assert the existence of a converging sequence of eigen-
values of the projected eigenvalue problems.

Lemma 4.2.2.Let A: Λ →L(X,X) be given as in (4.2) and suppose thatΛ0 ⊂ ρ(A) is a
compact set inC. Then there exist a constant C(Λ0) > 0 and a N(Λ0) ∈ N such that for
all n ≥ N(Λ0) and all xn ∈ Xn with ‖xn‖X = 1 the following properties hold:
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i)
‖PnA(λ )xn‖X ≥C(Λ0) for all λ ∈ Λ0, (4.28)

ii) [PnA(λ )]−1 : Xn → Xn exists and is uniformly bounded,

‖[PnA(λ )]−1‖L(Xn,Xn) ≤
1

C(Λ0)
for all λ ∈ Λ0. (4.29)

Proof. i) Let us assume that the inequality (4.28) does not hold. Then there exists a sub-
sequence{λnk}k∈N ⊂ Λ0 and a subsequence{xnk}k∈N with xnk ∈ Xnk and‖xnk‖X = 1 such
that

lim
k→∞

PnkA(λnk)xnk = 0.

SinceΛ0 is compact, there exists a subsequence{λñk}k∈N ⊂ {λnk}k∈N such that

lim
k→∞

λñk → λ ∗ ∈ Λ0.

Lemma 4.2.1 implies that there exists ax0 ∈ X with ‖x0‖X = 1 and

A(λ ∗)x0 = 0,

which is a contradiction to the fact thatλ ∗ ∈ Λ0 ⊂ ρ(A). Thus, inequality (4.28) holds.

ii) Part i) implies thatPnA(λ ) : Xn → Xn is injective for allλ ∈ Λ0 and alln≥ N(Λ0). Since
Xn is finite dimensional, we conclude thatPnA(λ ) : Xn → Xn is invertible for allλ ∈ Λ0 and
all n≥ N(Λ0). From the estimate (4.28) it follows for allxn ∈ Xn with ‖xn‖X = 1 that

1 = ‖xn‖X = ‖PnA(λ )[PnA(λ )]−1xn‖X ≥C(Λ0)‖[PnA(λ )]−1xn‖X

for all λ ∈ Λ0 and alln≥ N(Λ0), which proves the inequality (4.29).

The next theorem shows that for every eigenvalue ofA there exists a converging sequence
of eigenvalues of the projected eigenvalue problems.

Theorem 4.2.3.Let A: Λ →L(X,X) be as given in (4.2).

i) For each eigenvalueλ0 ∈ σ(A) there exists a sequence{λ n
0}∞

n=N0
of eigenvalues of the

projected eigenvalue problem PnA(λ n
0)x0

n = 0 such that

lim
n→∞

λ n
0 = λ0.
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ii) If {λ n
0}n∈N is a sequence of eigenvalues of the projected eigenvalue problem

PnA(λ n
0)x0

n = 0,

and if{x0
n}n∈N is a sequence of corresponding eigenelements with x0

n ∈ Xn and
‖x0

n‖X = 1, then
lim
n→∞

λ n
0 = λ0 ∈ σ(A).

Moreover, every limit point̂x0 of the sequence{x0
n}n∈N is an eigenelement of A corre-

sponding toλ0 with ‖x̂0‖X = 1.

Proof. i) Let us assume the contrary of assertion i) and let

εn := inf{|λ0−λ | : λ ∈ σ(PnA)} for n≥ N0.

Then there exists a subsequence{εnk}k∈N ⊂ {εn}n∈N and a constantε > 0 such that

inf{|λ0−λ | : λ ∈ σ(PnkA)} = εnk ≥ ε for all k∈ N.

Hence, we have

Uε(λ0) = {λ : |λ −λ0| < ε} ⊂ ρ(PnkA) for all k∈ N.

By Theorem 3.2.2, all eigenvalues ofA are isolated, which implies that there exists aδ > 0
with δ < ε such that

Λδ := {λ : |λ −λ0| = δ} ⊂ ρ(A).

SinceΛδ is a compact subset ofC we can use Lemma 4.2.2 to conclude that there exits a
N(Λδ ) ∈ N and a constantc(Λδ ) > 0 such that for allnk ≥ N(Λδ )

Λδ ⊂ ρ(PnkA) and ‖[PnkA(λ )]−1‖L(Xnk,Xnk)
≤ c(Λδ ) for all λ ∈ Λδ .

By Theorem 3.1.6, the operator function[PnkA](·)−1 : Λ →L(Xnk,Xnk) is holomorphic on
the set

{λ : |λ −λ0| ≤ δ} ⊂ ρ(PnkA),

therefore we can apply the principle of maximum of modulus (3.1) and obtain

‖[PnkA(λ0)]
−1‖L(Xnk,Xnk)

≤ c(Λδ ) for all nk ≥ N(Λδ ).

Since for allx∈ X

‖PnA(λ0)Pnx−A(λ0)x‖X ≤ ‖PnA(λ0)Pnx−PnA(λ0)x‖X +‖PnA(λ0)x−A(λ0)x‖X

≤ ‖A(λ0)‖L(X,X)‖(Pn− IX)x‖X +‖(Pn− IX)A(λ0)x‖X → 0



4.3 Asymptotic error estimates 51

asn→ ∞, it follows for all x∈ X that

PnA(λ0)Pnx→ A(λ0)x

asn→ ∞. Hence, forx0 ∈ kerA(λ0) with ‖x0‖X = 1 andnk ≥ N(Λδ ) we get

‖Pnkx
0‖X = ‖[PnkA(λ0)]

−1PnkA(λ0)Pnkx
0‖X

≤ c(Λδ )‖PnkA(λ0)Pnkx
0‖X → c(Λδ )‖A(λ0)x

0‖X = 0,

which is a contradiction to‖Pnkx
0‖X →‖x0‖X = 1. Thus i) holds.

ii) follows immediately from Lemma 4.2.1.

4.3 Asymptotic error estimates

For the error analysis of the Galerkin approximations of theeigenvalue problem (4.14)
we use the approach of [47, 48]. There an error analysis is given for so–called regular
approximations of eigenvalue problems for holomorphic Fredholm operator functions. The
idea of that approach is to construct for the eigenvalue problems forA andPnA equivalent
eigenvalue problems for matrix functionsM andMn. The error analysis is done then for
the matrix functionsM andMn.

We follow [47,48] for the construction of the matrix functionsM andMn as well as for the
error analysis. But since we have other assumptions for the approximations, we use partly
other arguments. Moreover, we also give error estimates forthe eigenelements which is
not done in [47,48].

The first result in this section provides the theoretical basis of this approach.

Lemma 4.3.1.Let X, Y and Z be Banach spaces and let

A : Λ →L(X,Y), R : Λ →L(X,Y),

C : Λ →L(X,Z), D : Λ →L(Z,X), M : Λ →L(Z,Z)

be holomorphic operator functions. Let A(λ ) be Fredholm for allλ ∈ Λ, let λ0 ∈ σ(A)
and letρ(A) 6= /0. LetΛ ⊂ ρ(R) and let the following relations

A(λ ) = R(λ ) [IX −D(λ )C(λ )] , (4.30)

M(λ ) = IZ−C(λ )D(λ ) (4.31)

hold for all λ ∈ Λ.

i) If A(λ0)x0 = 0 and0 6= x0 ∈ X, then

x0 = D(λ0)C(λ0)x
0, C(λ0)x

0 6= 0 and M(λ0)C(λ0)x
0 = 0.
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ii) If M(λ0)z0 = 0 and0 6= z0 ∈ Z, then

z0 = C(λ0)D(λ0)z
0, D(λ0)z

0 6= 0, and A(λ0)D(λ0)z
0 = 0.

iii) If u is a Jordan function of order m for A corresponding toλ0, then the function

f : λ 7→C(λ )u(λ )

is a Jordan function of order m′ ≥ m for M corresponding toλ0.

iv) If v is a Jordan function of order m′ for M corresponding toλ0, then the function

g : λ 7→ D(λ )v(λ )

is a Jordan function of order m≥ m′ for A corresponding toλ0.

v) If x0, x1, . . . ,xm is a Jordan chain of A corresponding toλ0 and m(A,λ0,x0) = m+1,
then m(M,λ0,C(λ0)x0) = m+1.

vi) If z0, z1, . . . ,zm is a Jordan chain of M corresponding toλ0 and m(M,λ0,z0) = m+1,
then m(A,λ0,D(λ0)z0) = m+1.

vii) If x0
1, . . . ,x

0
J is a canonical system of eigenelements of A corresponding toλ0, then

C(λ0)x0
1, . . . ,C(λ0)x0

J is a canonical system of eigenelements of M corresponding to
λ0 and the partial and algebraic multiplicities of A and M coincide.

Proof. i) If A(λ0)x0 = 0 andx0 6= 0, then the construction (4.30) ofA andΛ ⊂ ρ(R) imply
that [IX −D(λ )C(λ )]x0 = 0 andx0 = D(λ )C(λ )x0 6= 0. Thus,C(λ )x0 6= 0. Further, with
M(λ ) = IZ−C(λ )D(λ ) it follows

M(λ0)C(λ0)x
0 = [IZ−C(λ0)D(λ0)]C(λ0)x

0 = C(λ0)[IX −D(λ0)C(λ0)]x
0 = 0.

ii) If z0 6= 0 andM(λ0)z0 = 0, then the definition ofM(λ ) = IZ −C(λ )D(λ ) implies that
C(λ0)D(λ0)z0 = z0 6= 0. Further, with (4.30) we obtain

A(λ0)D(λ0)z
0 = R(λ0)[IX −D(λ0)C(λ0)]D(λ0)z

0

= R(λ0)D(λ0)[z
0−C(λ0)D(λ0)z

0] = 0.

iii) Let u : Λ → X be a Jordan function of orderm, then the functionA(λ )u(λ ) has a zero
of multiplicity m andu(λ0) 6= 0. Hence by part i),C(λ0)u(λ0) 6= 0. By using (4.31) and
(4.30) we can write

M(λ )C(λ )u(λ ) = [IZ−C(λ )D(λ )]C(λ )u(λ ) = C(λ )[IX −D(λ )C(λ )]u(λ )

= [C(λ )R(λ )−1]A(λ )u(λ ).
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Since all occurring functions are holomorphic, we concludethat the multiplicity ofλ0

of the functionλ 7→ M(λ )C(λ )u(λ ) is greater than or equal tom. Thus, the function
f : λ 7→C(λ )u(λ ) is a Jordan function of order greater than or equal tom.

iv) The proof can be done analogously as for part iii).

v) Let (λ0,x0) be an eigenpair ofA and letx0, x1, . . . ,xm be a Jordan chain withm+ 1 =
m(A,λ0,x0). Then, by Lemma 3.2.13, the function

u : λ 7→ x0 +(λ −λ0)x
1 + . . .+(λ −λ0)

mxm

is a Jordan function ofA corresponding toλ0 of orderm+1. From iii) we know that the
function f : λ 7→C(λ )u(λ ) is a Jordan function ofM corresponding toλ0 of order at least
m+1. By Lemma 3.2.12,

f (λ0) = C(λ0)x
0,

1
1!

f ′(λ0),
1
2!

f (2)(λ0), . . . ,
1

m!
f (m)(λ0)

is a Jordan chain ofM corresponding toλ0. Assume thatm(M,λ0,C(λ0)x0) > m+1, then
there exists a Jordan chain

C(λ0)x
0, z1, z2, . . . ,zm+1

of M and by Lemma 3.2.13 there exists a Jordan function

w : λ 7→C(λ )x0+(λ −λ0)z
1+ . . .+(λ −λ0)

m+1zm+1

of M of order at leastm+2. From iv) it follows that the functiong : λ 7→ D(λ )w(λ ) is a
Jordan function ofA of order at leastm+2. Hence, by Lemma 3.2.12 and by i),

g(λ0) = D(λ0)w(λ0) = D(λ0)C(λ0)x
0 = x0,

1
1!

g′(λ0),
1
2!

g(2)(λ0), . . . ,
1

(m+1)!
g(m+1)

is a Jordan chain ofA corresponding toλ0 of lengthm+ 2 beginning with the eigenele-
ment x0. This is a contradiction to the fact thatm(A,λ0,x0) = m+ 1. Thus, we have
m(M,λ0,C(λ0)x0) = m+1.

vi) The proof can be done analogously as for part v).

vii) Let x0
1, . . . ,x

0
J be a canonical system of eigenelements ofA corresponding toλ0. First

we show thatC(λ0)x0
1, . . . ,C(λ0)x0

J is a basis of the eigenspace kerM(λ0). From i) we
know thatC(λ0)x0

j are eigenelements ofM corresponding toλ0 for j = 1, . . . ,J. Assume
that

α1C(λ0)x
0
1 + . . .+αJC(λ0)x

0
J = 0

for some(α1, . . . ,αJ)
⊤ ∈ CJ. Then by i) we have

α1D(λ0)C(λ0)x
0
1 + . . .+αJD(λ0)C(λ0)x

0
J = α1x0

1 + . . .+αJx0
J = 0,
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implying thatα j = 0 for j = 1, . . . ,J. ThusC(λ0)x0
1, . . . ,C(λ0)x0

J are linearly independent
in Z. Assume now that there exists az0 ∈ Z such thatC(λ0)x0

1, . . . ,C(λ0)x0
J,z

0 are lin-
ear independent eigenelements ofM corresponding toλ0 in Z. Then from ii) it follows
analogously as above thatx0

1, . . . ,x
0
J,D(λ0)z0 are linear independent eigenelements ofA

corresponding toλ0, which is a contradiction to the fact thatx0
1, . . . ,x

0
J is a basis of the

eigenspace kerA(λ0). Hence,C(λ0)x0
1, . . . ,C(λ0)x0

J is a basis of the eigenspace kerM(λ0).

Next we show thatC(λ0)x0
1, . . . ,C(λ0)x0

J is a canonical basis of kerM(λ0). Let us consider
Jordan chains ofx0

j

x0
j ,x

1
j , . . . ,x

mj−1
j

of maximal ordermj = m(A,λ0,x0
j ) for j = 1, . . .J. From v) we know that

m(A,λ0,x
0
j ) = m(M,λ0,C(λ0)x

0
j ) for j = 1, . . . ,J.

First we show thatκ(M,λ0) = m(M,λ0,C(λ0)x0
1). Assume the contrary, then there exists

a Jordan chainz0
1, . . . ,z

m̃
1 of M corresponding toλ0 with m̃> m(M,λ0,C(λ0)x0

1). By vi),
there exists a Jordan chain ofA beginning withD(λ0)z0

1 of lengthm̃ > κ(A,λ0), which
gives a contradiction. Henceκ(M,λ0) = m(M,λ0,C(λ0)x0

1).

It remains to show iii) of the Definition 3.2.7 forM and the elementsC(λ0)x0
1, . . . ,C(λ0)x0

J.
We do this by induction. Let us assume that the condition iii)of Definition 3.2.7 is fulfilled
for C(λ0)x1, . . . ,C(λ0)x j for somej ∈ 2, . . . ,J−1, i.e.,

C(λ0)x
0
j ∈ kerA(λ0)\span{C(λ0)x

0
1, . . . ,C(λ0)x

0
j−1} =: M̃ j and

m(M,λ0,C(λ0)x
0
j ) = max

z∈M̃ j

m(M,λ0,z).

We show that this condition holds also forC(λ0)x0
1, . . . ,C(λ0)x0

j ,C(λ0)x0
j+1. Assume the

contrary, then there exists a Jordan chain ˆz0, ẑ1, . . . , ẑm̂ with

ẑ0 /∈ span{C(λ0)x1, . . . ,C(λ0)x j−1} andm̂> m(M,λ0,C(λ0)x j+1) = mj+1. (4.32)

Suppose that
α1x0

1+ . . .+α jx
0
j +α j+1D(λ0)ẑ

0 = 0

for some(α1, . . . ,α j+1)
⊤ ∈C j+1. From i),D(λ0)C(λ0)x0

i = x0
i for i = 1, . . . , j, we get then

0 = α1D(λ0)C(λ0)x
0
1 + . . .+α jD(λ0)C(λ0)x

0
j +α j+1D(λ0)ẑ

0

= D(λ0)
[
α1C(λ0)x

0
1+ . . .+α jC(λ0)x

0
j +α j+1ẑ0] .

With (4.32) and ii) we conclude thatαi = 0 for i = 1, . . . , j +1 and hence

D(λ0)ẑ
0 /∈ span{x0

1, . . . ,x
0
j} andm(A,λ0,D(λ0)ẑ

0) > mj+1 = m(A,λ0,x
0
j+1).
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This is a contradiction to the fact that the partial multiplicities of a Jordan chain do not
depend on the special choice of the canonical system of eigenelements, see Lemma 3.2.8.
Thus, condition iii) of the Definition 3.2.7 of a canonical system of eigenelements is ful-
filled for C(λ0)x0

1, . . . ,C(λ0)xJ
0, which proves the assertion.

In the following we will construct for the eigenvalue problem (4.14),

A(λ )x= 0,

a decomposition ofA(λ ) according to Lemma 4.3.1,

A(λ ) = R(λ )[IX −D(λ )C(λ )],

with operator functions of the form

C : Λ →L(X,CJ) and D : Λ →L(CJ,X),

whereCJ is the standardJ-dimensional complex vectorspace. Then, the operator function
A : Λ →L(X,X) is equivalent to the matrix functionM : Λ →L(CJ,CJ),

M(λ ) = IJ−C(λ )D(λ ),

in the sense of Lemma 4.3.1.

Lemma 4.3.2. Let A : Λ → L(X,X) be a holomorphic Fredholm operator function with
ρ(A) 6= /0, λ0 ∈ σ(A) anddimkerA(λ0) = J.
Let x01, . . . ,x

0
J be some canonical system of eigenelements of A corresponding to λ0 with

mk = m(A,λ0,x0
k) for k = 1, . . . ,J. Let

x0
k, . . . ,x

mk−1
k

be some Jordan chain of maximal length of x0
k for k = 1, . . . ,J and let

ak(λ ) =
mk−1

∑
i=0

(λ −λ0)
ixi

k for k = 1, ...,J. (4.33)

Then,
1
j!

d j

dλ j [A(λ )ak(λ )]|λ=λ0
=

{
0 for j = 0,1, . . .mk−1

uk 6= 0 for j = mk,
(4.34)

for k = 1, . . . ,J, where u1, . . . ,uJ are linearly independent in X and constitute a basis in
some direct complement ofImA(λ0) in X, i.e.,

X = ImA(λ0)⊕span{u1, . . . ,uJ}. (4.35)
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Proof. The property (4.34) follows immediately from Lemma 3.2.12,since the functions
ak are Jordan functions of ordermk.

By Theorem 3.2.2,A(λ0) is a Fredholm operator function with indA(λ0) = 0 and therefore
codimImA(λ0) = dimkerA(λ0) = J. Assume that (4.35) does not hold. Then, either
u1, . . . ,uJ are linearly dependent or ImA(λ0)∩span{u1, . . . ,uJ} 6= {0}. In both cases there
existα1, . . . ,αJ ∈ C such that

|α1|+ . . .+ |αJ| 6= 0 and α1u1+ . . .+αJuJ = ũ∈ ImA(λ0). (4.36)

Let x̃∈ X with A(λ0)x̃ = ũ, and let

m= max{mk : k = 1, . . . ,J; αk 6= 0}.

Consider the functiona : Λ → X defined by

a(λ ) =

(

∑
αk 6=0

αk(λ −λ0)
m−mkak(λ )

)
− (λ −λ0)

mũ. (4.37)

Then
a(λ0) = ∑

mk=m
αkak(λ0) = ∑

mk=m
αkx

0
k 6= 0

becausex0
k are linearly independent eigenelements ofA for k= 1, . . . ,J. The elementa(λ0)

is a nontrivial linear combination of eigenelements of order mof a canonical system of the
eigenspace ofA corresponding to the eigenvalueλ0. Therefore, by Lemma 3.2.10, we have
m(A,λ0,a(λ0)) = m.

Let us consider

dn

dλ n [A(λ )a(λ )]|λ=λ0

= ∑
αk 6=0

{
n

∑
j=0

(
n
j

)
d j

dλ j

[
αk(λ −λ0)

m−mk
]
|λ=λ0

dn− j

dλ n− j [A(λ )ak(λ )]|λ=λ0

}

− dn

dλ n [(λ −λ0)
mA(λ )ũ]|λ=λ0

. (4.38)

We have

d j

dλ j

[
αk(λ −λ0)

m−mk
]
|λ=λ0

=

{
0, if j 6= m−mk,
αk(m−mk)!, if j = m−mk.

(4.39)

Note, if j = m−mk, then

n− j ≤ m−1− (m−mk) = mk−1, if n≤ m−1,
n− j = mk, if n = mk.
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Since the functionak is a Jordan function ofA corresponding toλ0 of ordermk, and using
the definition ofuk, we get

dn− j

dλ n− j [A(λ )ak(λ )]|λ=λ0
=

{
0 if j = m−mk andn≤ m−1,
mk!uk if j = m−mk andn = m.

(4.40)

Hence, from (4.38) we conclude with (4.39) and (4.40) that

dn

dλ n [A(λ )a(λ )]|λ=λ0
= 0 for 0≤ n≤ m−1

and, by using that∑αk 6=0 αkuk = ṽ = A(λ0)x̃,

dm

dλ m [A(λ )a(λ )]|λ=λ0
= ∑

αk 6=0

(
m

m−mk

)
αk(m−mk)!mk!uk−m!A(λ0)x̃ = 0.

Thus, the functiona is a Jordan function of order at leastm+ 1. By Lemma 3.2.12, we
havem(A,λ0,a(λ0))≥ m+1, which is a contradiction to the fact thatm(A,λ0,a(λ0)) = m.
Therefore assumption (4.36) gives a contradiction and consequently (4.35) holds.

Define
ui(λ ) := (λ −λ0)

−mi A(λ )ai(λ ) for λ 6= λ0 andi = 1, . . . ,J, (4.41)

where the functionai is given by (4.33). Lemma 4.3.2 shows that the functionA(λ )ai(λ )
has atλ0 a zero of multiplicitymi , therefore the functionui can be continued atλ = λ0 by
continuity by

ui(λ0) :=
1

mi !
dmi

dλ mi
[A(λ )ai(λ )]|λ=λ0

= ui . (4.42)

Note that the functionui is holomorphic onΛ and that by Lemma 4.3.2 we have

X = ImA(λ0)⊕span{u1(λ0), . . . ,uJ(λ0)}. (4.43)

Let us now consider the adjoint eigenvalue problemA⋆(λ )x = 0. Lemma 3.3.4 and Re-
mark 3.3.5 show thatλ0 is an eigenvalue ofA if and only if λ 0 is an eigenvalue ofA⋆.
Furthermore, the geometric and partial multiplicities ofλ0 andλ 0 coincide. Let

y0
1, . . . ,y

0
J

be some canonical system of eigenelements ofA⋆ corresponding toλ 0 with

mk = m(A⋆,λ 0,y
0
k)

for k = 1, . . . ,J. Let
y0

k, y1
k, . . . ,y

mk−1
k (4.44)



58 4 Approximation of holomorphic eigenvalue problems

be some Jordan chain of maximal ordermk of y0
k for k = 1, . . . ,J. Finally, let us define the

functionsbk : C → X by

bk(λ ) =
mk−1

∑
j=0

(λ −λ 0)
jy j

k for k = 1, ...,J.

In an analogous way as forA andλ0 we can define holomorphic functions

vk : {λ : λ ∈ Λ} → X, k = 1, ...,J,

for A⋆ by

vk(λ ) :=





(λ −λ 0)

−mkA⋆(λ )bk(λ ) for λ 6= λ 0,
1

mk!
dmk

dλ mk
[A⋆(λ )bk(λ )]|λ=λ0

for λ = λ 0.
(4.45)

With Lemma 4.3.2 we get the decomposition

X = ImA⋆(λ 0)⊕span{v1(λ0), . . . ,vJ(λ0)}.

Let us further define the operator functionsK : Λ → L(X,X) andKn : Λ → L(X,X) for
n∈ N by

K(λ )x :=
J

∑
i=1

(x,vi(λ))Xui(λ ) and Kn(λ )x := PnK(λ ). (4.46)

Obviously, the operatorsK(λ ) andKn(λ ) are compact for allλ ∈ Λ, since both have a
finite dimensional range. Notice thatλ 7→ vi(λ ) is antiholomorphic inλ0. But it can be
easily seen thatλ 7→ (x,vi(λ ))X is holomorphic inλ0. Since the functionvi is holomorphic
in λ 0, it admits a representation by

vi(λ ) =
∞

∑
i=0

(λ −λ 0)
iṽi ,

and by Theorem 3.1.2,

λ 7→ (vi(λ ),x)X =
∞

∑
i=0

(λ −λ 0)
i(ṽi ,x)X

is holomorphic inλ 0 for all x∈ X. This implies that

λ 7→ (x,vi(λ ))X = (x,
∞

∑
i=0

(λ −λ 0)
iṽi)X =

∞

∑
i=0

(λ −λ0)
i(ṽi ,x)X.

is holomorphic inλ0 for all x∈ X. Hence,K andKn are also holomorphic. Let us finally
define the operator functionsR : Λ →L(X,X) andRn : Λ →L(X,X) for n∈ N by

R(λ ) := A(λ )+K(λ ) and Rn(λ ) := PnR(λ ). (4.47)
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The next lemma shows thatR(λ ) : X → X andRn(λ ) : Xn → Xn have a bounded inverse
in a neighborhoodΛ1 ⊂ Λ of λ0. Moreover, we we can show thatRn(λ )−1 is uniformly
bounded inΛ1 for sufficiently largen.

Lemma 4.3.3. Let A be as given in (4.2). Further, let R and Rn be as defined in (4.47).
Then there exist a neighborhoodΛ1 ⊂ Λ of λ0 and a N1(Λ1) ∈ N such that the following
properties hold:

i) The operators
R(λ ) : X → X and Rn(λ ) : Xn → Xn

are invertible for all n≥ N(Λ1) and allλ ∈ Λ1.

ii) For any compactΛ2 ⊂ Λ1 there exist a N(Λ2)∈N and a constant c(Λ2) > 0 satisfying

sup
{∥∥Rn(λ )−1

∥∥
L(Xn,Xn)

: λ ∈ Λ2, n≥ N(Λ2)
}
≤ c(Λ2).

Proof. First we show thatR(λ0) is invertible. SinceR(λ0) = A(λ0)+K(λ0) is a compact
perturbation of the Fredholm operatorA(λ0) with indA(λ0) = 0, it follows thatR(λ0) is
Fredholm and indR(λ0) = 0, see [61, Theorem 2.26]. To prove the invertibility ofR(λ0), it
suffices therefore to show thatR(λ0) is injective. Suppose thatR(λ0)x̃= 0 for some ˜x∈ X,
then, by construction ofR(λ0) andK(λ0), we haveA(λ0)x̃ = K(λ0)x̃ = 0. From

K(λ0)x̃ =
J

∑
i=1

(x̃,vi(λ0))Xui(λ0) = 0,

it follows that
(x̃,vi(λ0))X = 0 for i ∈ 1, . . . ,J, (4.48)

sinceui(λ0) are linearly independent inX by construction (4.41) and Lemma 4.3.2. From
x̃∈ kerA(λ0) we get(x̃,A⋆(λ 0)y)X = 0 for all y∈ X and thus

(x̃,z)X = 0 for all z∈ ImA⋆(λ 0). (4.49)

SinceX = ImA⋆(λ 0)⊕span{v1(λ 0), . . . ,vJ(λ 0)}, we get with (4.48) and (4.49) that

(x̃,w)X = 0 for all w∈ X,

which implies that ˜x = 0. Consequently,R(λ0) is injective and thus invertible.

By Lemma 3.1.6, there exists a neighborhoodΛ1 := Uδ (λ0) of λ0 such that we have
R(λ )−1 ∈ L(X,X) for all λ ∈ Λ1. Using the definition (4.2) ofA, we can write

R(λ ) = A(λ )+K(λ ) = T +S(λ )+K(λ ) = T +C̃(λ ) for all λ ∈ Λ,
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whereT is X-elliptic andC̃(λ ) is compact. By Lemma 4.2.2, there exist for any compact
Λ2 ⊂ Λ1 a N(Λ2) ∈ N and a constantc(Λ2) > 0 such thatRn(λ )−1 ∈ L(Xn,Xn) for all
n≥ N2 and allλ ∈ Λ2 satisfying

‖Rn(λ )−1‖L(Xn,Xn) ≤ c(Λ2).

Now we are able to define equivalent matrix functionsM andMn for A andPnA, respec-
tively, in the sense of Lemma 4.3.1. We can write for allλ ∈ Λ1, whereΛ1 is given as in
Lemma 4.3.3,

A(λ ) = R(λ )−K(λ ) = R(λ )[IX −R(λ )−1K(λ )]

= R(λ )[IX −
J

∑
i=1

(·,vi(λ))XR(λ )−1ui(λ )].

DefineC(λ ) : X → CJ andD(λ ) : CJ → X by

C(λ ) := ((·,v1(λ ))X, . . . ,(·,vJ(λ ))X), D(λ )(ξ1, ....,ξJ) :=
J

∑
i=1

ξiR(λ )−1ui(λ ),

then we can write

A(λ ) = R(λ )[IX −D(λ )C(λ )] for all λ ∈ Λ1. (4.50)

Now we can define the matrix functionM : Λ1 →L(CJ,CJ) by

M(λ ) := IJ−C(λ )D(λ ) (4.51)

and have

(M(λ )(ξ1, ...,ξJ))i = ξi − (D(λ )ξ ,vi(λ ))X

= ξi −
J

∑
i= j

ξ j(R(λ )−1u j(λ ),vi(λ ))X. (4.52)

Analogously we can derive a matrix functionMn for PnA. For all λ ∈ Λ1, whereΛ1 is
defined as in Lemma 4.3.3, we can write

PnA(λ ) = Rn(λ )−Kn(λ ) = Rn(λ )[IXn −Rn(λ )−1Kn(λ )]

= Rn(λ )[IX −
J

∑
i=1

(·,vi(λ ))XRn(λ )−1Pnui(λ )].
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DefineCn : Λ1 →L(Xn,C
J) andDn : Λ1 →L(CJ,Xn) by

Cn(λ ) = ((·,v1(λ))X, . . . ,(·,vJ(λ))X), Dn(λ )(ξ1, ....,ξJ) =
J

∑
i=1

ξiRn(λ )−1Pnui(λ ),

then
PnA(λ ) = Rn(λ )[IXn −Dn(λ )Cn(λ )].

Finally, let us define the matrix functionMn : Λ1 →L(CJ,CJ) by

Mn(λ ) := IJ−Cn(λ )Dn(λ ), (4.53)

then

(Mn(λ )(ξ1, ...,ξJ))i = ξi − (Dn(λ )ξ ,vi(λ))X

= ξi −
J

∑
j=1

ξ j(Rn(λ )−1Pnu j(λ ),vi(λ ))X. (4.54)

With the above constructions of the matrix functionsM andMn we can apply Lemma 4.3.1
which shows that the eigenvalue problems forA andM and forPnA andMn are equivalent
in Λ1.

Corollary 4.3.4. Let M and Mn be defined by (4.51) and (4.53), respectively.

i) λ0 ∈ Λ1 is an eigenvalue of A if and only ifλ0 is an eigenvalue of M. For any eigen-
valueλ0 ∈ σ(A)∩Λ1 the geometric, partial, and algebraic multiplicities are equal for
A and M.

ii) λ0 ∈ Λ1 is an eigenvalue of PnA if and only ifλ0 is an eigenvalue of Mn. For any
λ0 ∈ σ(PnA)∩Λ1 the geometric, partial, and algebraic multiplicities are equal for
PnA and Mn.

In the next lemma we consider the matrix functionsM andMn and give an asymptotic
error estimate for the matrix entries which depends on the approximation property of the
trial spacesXn with respect to the generalized eigenspaces ofA and A⋆. This estimate
is essential for the derivation of the error estimate for theeigenvalues of the Galerkin
approximation.

Lemma 4.3.5.Let M and Mn be defined by (4.51) and (4.53), respectively. Then for every
compactΛ2 ⊂ Λ1 there exist a constant c(Λ2) > 0 and a N∈ N such that the estimate

sup
{
|mi j (λ )−mi j

n (λ )| : λ ∈ Λ2, 1≤ i, j ≤ J
}

≤ c(Λ2) sup
z∈G(A,λ0)
‖z‖X≤1

inf
xn∈Xn

‖z−xn‖X sup
z∈G(A⋆,λ 0)
‖z‖X≤1

inf
yn∈Xn

‖z−yn‖X (4.55)

holds for all n≥ N.
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Proof. Let Λ2 be an arbitrary but fixed compact subset ofΛ1. Forλ ∈ Λ2 we can write

mi j (λ )−mi j
n (λ ) = (Rn(λ )−1Pnu j(λ ),vi(λ ))X − (R(λ )−1u j(λ ),vi(λ ))X

= ([Rn(λ )−1Pn−R(λ )−1]u j(λ ),vi(λ ))X

= ([Rn(λ )−1PnR(λ )− IX]R(λ )−1u j(λ ),vi(λ ))X. (4.56)

We have
[Rn(λ )−1PnR(λ )− IX]xn = 0

for all xn ∈ Xn and therefore

[Rn(λ )−1PnR(λ )− IX]x = [Rn(λ )−1PnR(λ )− IX](x−xn) (4.57)

for all x∈ X and allxn ∈ Xn. Using thatPn is selfadjoint, we obtain

0 = (Pn[R(λ )Rn(λ )−1− IX]Pnx,y)X

= (x,Pn{[Rn(λ )−1]⋆R(λ )⋆− IX}Pny)X

= (x,{Pn[Rn(λ )−1]⋆R(λ )⋆− IX}Pny)X

for all x,y∈ X from which we get

0 = (x,{Pn[Rn(λ )−1]⋆R(λ )⋆− IX}yn)X (4.58)

for all x∈ X and allyn ∈ Xn. Since

Rn(λ )−1PnR(λ )− IX = R(λ )−1[R(λ )Rn(λ )−1Pn− IX]R(λ ),

we obtain with (4.57) and (4.58)

([Rn(λ )−1PnR(λ )− IX]x,y)X

= (R(λ )−1[R(λ )Rn(λ )−1Pn− IX]R(λ )(x−xn),y)X

= (R(λ )(x−xn),{Pn[Rn(λ )−1]⋆R(λ )⋆− IX}[R(λ )−1]⋆y)X

= (R(λ )(x−xn),{Pn[Rn(λ )−1]⋆R(λ )⋆− IX}{[R(λ )−1]⋆y−yn})X

= ([R(λ )Rn(λ )−1Pn− IX]R(λ )(x−xn), [R(λ )−1]⋆y−yn)X (4.59)

for all x, y∈ X and allxn, yn ∈ Xn. From (4.56) we get

|mi j (λ )−mi j
n (λ )| =

= |([Rn(λ )−1PnR(λ )− IX]R(λ )−1u j(λ ),vi(λ))X|
= |([R(λ )Rn(λ )−1Pn− IX]R(λ )[R(λ )−1u j(λ )−xn], [R(λ )−1]⋆vi(λ )−yn)X|
≤ ‖[R(λ )Rn(λ )−1Pn− IX]R(λ )‖L(X,X)‖R(λ )−1u j(λ )−xn‖X‖[R(λ )−1]⋆vi(λ )−yn‖X

(4.60)
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for all xn, yn ∈ Xn. By Lemma 4.3.3, the inverseRn(λ )−1 is uniformly bounded onΛ2, i.e.,
there exists a constantC2 > 0 and aN2 ∈ N such that

‖Rn(λ )−1‖L(Xn,Xn) ≤C2 for all λ ∈ Λ2 and alln≥ N2.

With the continuity ofR and using that‖Pn‖L(Xn,Xn) = 1, we get

‖[R(λ )Rn(λ )−1Pn− IX]R(λ )‖L(X,X)

≤
[
‖R(λ )‖L(X,X)‖Rn(λ )−1‖L(Xn,Xn) +1

]
‖R(λ )‖L(X,X) ≤ c2

for all λ ∈ Λ2 and alln≥ N2. From (4.60) it follows that

|mi j (λ )−mi j
n (λ )| ≤ c2 inf

xn∈Xn

∥∥R(λ )−1u j(λ )−xn
∥∥

X inf
yn∈Xn

‖[R(λ )−1]⋆vi(λ)−yn‖X (4.61)

for all λ ∈ Λ2 and alln≥ N2.

Next we show thatR(λ )−1u j(λ ) is an element of the generalized eigenspaceG(A,λ0) for
all λ ∈ Λ2 and for j = 1, . . . ,J. Recall the definition (4.41) of the functionu j ,

u j(λ ) =

{
(λ −λ0)

−mj A(λ )a j(λ ) for λ 6= λ0,

u j for λ = λ0,

where

a j(λ ) =
mj−1

∑
k=0

(λ −λ0)
kxk

j ,

and wherexk
j are generalized eigenelements ofA corresponding toλ0. By Lemma 4.3.2

and by the construction of the operator functionR, we see thatR(λ0)
−1u j is an element of

the eigenspace kerA(λ0) and therefore it is also an element of the generalized eigenspace
G(A,λ0). Forλ0 6= λ ∈ Λ2 we can write

R(λ )−1 = A(λ )−1[A(λ )+K(λ )−K(λ )]R(λ )−1 = A(λ )−1[IX −K(λ )R−1(λ )]. (4.62)

Using the definition of the functionu j we have

A(λ )−1u j(λ ) = (λ −λ0)
−mj A(λ )−1A(λ )a j(λ ) = (λ −λ0)

−mj a j(λ )

and we see that
u j(λ ) ∈ G(A,λ0), (4.63)

sincea j(λ ) is a linear combination of generalized eigenelements. We can write

A(λ )−1K(λ )x =
J

∑
i=1

(x,vi(λ ))XA(λ )−1ui(λ ) for all x∈ X,



64 4 Approximation of holomorphic eigenvalue problems

and with (4.63) we haveA(λ )−1K(λ )u j(λ ) ∈ G(A,λ0). Hence, with (4.62) we conclude
R(λ )−1u j(λ ) ∈ G(A,λ0).

In a similar way we show now that[R(λ )−1]⋆vi(λ ) is an element of the generalized
eigenspaceG(A⋆,λ0) for all λ ∈ Λ2 and i = 1, . . . ,J. Recall the definition (4.45) of the
functionvi ,

vi(λ ) =





(λ −λ 0)

−mi A⋆(λ )bi(λ ) for λ 6= λ 0,
1

mi !
dmi

dλ mi
[A⋆(λ )bi(λ )]λ=λ0

for λ = λ 0,

where

bi(λ ) =
mi−1

∑
k=0

(λ −λ 0)
kyk

i

and whereyk
i are generalized eigenelements ofA⋆ corresponding toλ 0. By Lemma 4.3.2

and by the construction of the operator functionR, we see that[R(λ0)
−1]⋆vi(λ0) is an

element of the eigenspace kerA⋆(λ0) ⊂ G(A⋆,λ 0). Forλ0 6= λ ∈ Λ2 we can write

[R(λ )−1]⋆ =
{

R(λ )−1 [A(λ )+K(λ )−K(λ )]A(λ )−1}⋆

=
{[

IX −R(λ )−1K(λ )
]
A(λ )−1}⋆

= [A(λ )−1]⋆{IX −K(λ )⋆[R(λ )−1]⋆}. (4.64)

Note that forK(λ )⋆ we have

(K(λ )x,y)X = (
J

∑
k=1

(x,vk(λ))Xuk(λ ),y)X =
J

∑
k=1

(x,vk(λ))X(uk(λ ),y)X

=
J

∑
k=1

(x,(y,uk(λ ))Xvk(λ ))X = (x,K(λ )⋆y)X (4.65)

for all x,y∈ X. Using that[A(λ )−1]⋆ = A⋆(λ)−1, we can write

[A(λ )−1]⋆vi(λ ) = (λ −λ 0)
−mi A⋆(λ )−1A⋆(λ )vi(λ0) = (λ −λ 0)

−mi vi(λ),

and with the definition of the functionvi we have

[A(λ )−1]⋆vi(λ ) ∈ G(A⋆,λ 0). (4.66)

Moreover with (4.65) we get

[A(λ )−1]⋆K(λ )⋆y =
J

∑
k=1

(y,uk(λ ))XA⋆(λ )−1vk(λ) for all y∈ X,

and with (4.66) we have[A(λ )−1]⋆K(λ )⋆vi(λ )∈ G(A⋆,λ0). From (4.64) we conclude that
[R(λ )−1]⋆vi(λ) ∈ G(A⋆,λ0).
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Since the functionsR(λ )−1, [R(λ )−1]⋆, u j(λ ), andvi(λ ) are continuous inΛ2, there exists
a constantc3 > 0 such that

‖R(λ )−1u j(λ )‖X ≤ c3 and ‖[R(λ )−1]⋆vi(λ )‖X ≤ c3

for all λ ∈ Λ2 and for 1≤ i, j ≤ J. Hence, we get the estimates

sup
λ∈Λ2

inf
xn∈Xn

‖R(λ )−1u j(λ )−xn‖X ≤ sup
z∈G(A,λ0)
‖z‖X≤c3

inf
xn∈Xn

‖z−xn‖X = c3 sup
z∈G(A,λ0)
‖z‖X≤1

inf
xn∈Xn

‖z−xn‖X

for 1≤ j ≤ J and

sup
λ∈Λ2

inf
yn∈Xn

‖[R(λ )−1]⋆vi(λ )−yn‖X ≤ sup
z∈G(A⋆,λ0)
‖z‖X≤c3

inf
yn∈Xn

‖z−yn‖X = c3 sup
z∈G(A⋆,λ 0)
‖z‖X≤1

inf
yn∈Xn

‖z−yn‖X

for 1≤ i ≤ J. Therefore we finally obtain from (4.61) the estimate

sup{|mi j (λ )−mi j
n (λ )| : λ ∈ Λ2, 1≤ i, j ≤ J}

≤ c2c2
3 sup

z∈G(A,λ0)
‖z‖X≤1

inf
xn∈Xn

‖z−xn‖X sup
z∈G(A⋆,λ0)
‖z‖X≤1

inf
yn∈Xn

‖z−yn‖X

for all n≥ N2.

Let us definedn andd⋆
n by

dn = sup
z∈G(A,λ0)
‖z‖X≤1

inf
xn∈Xn

‖z−xn‖X and d⋆
n = sup

z∈G(A⋆,λ0)
‖z‖X≤1

inf
yn∈Xn

‖z−yn‖X. (4.67)

Lemma 4.1.2 shows that
dn → 0 and d⋆

n → 0

asn→ ∞, sinceG(A,λ0) andG(A⋆,λ0) are finite dimensional subspaces ofX, see Lemma
3.2.6. Using the matrix norm

‖M‖L(CJ,CJ) := sup
1≤i, j≤J

|mi j | for M ∈ C
J×J,

we get from (4.55) the following convergence result

sup{‖M(λ )−Mn(λ )‖L(CJ,CJ) : λ ∈ Λ2} ≤ cdnd⋆
n → 0 (4.68)

asn → ∞. Hence, the sequence{Mn}n∈N of matrix functions is uniformly convergent in
every compact subsetΛ2 of Λ1.

With the estimate (4.68) we are now able to prove an asymptotic error estimate for the
eigenvalues of the projected eigenvalue problem (4.16).
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Theorem 4.3.6.Let A : Λ →L(X,X) be as given in (4.2). LetΛc ⊂ Λ be a compact set
such that∂Λc ⊂ ρ(A) and Λc∩σ(A) = {λ0}. Then there exist a constant C> 0 and a
N ∈ N such that

σ(PnA)∩Λc 6= /0 (4.69)

and
|λ n

0 −λ0| ≤C(dnd⋆
n)1/κ for all λ n

0 ∈ σ(PnA)∩Λc (4.70)

hold for all n≥ N, with dn and d⋆
n given as in (4.67) andκ = κ(A,λ0).

Proof. The assertion,σ(PnA)∩Λc 6= /0 for sufficiently largen, is a direct consequence of
i) of Theorem 4.2.3.

Let us choose a neighborhoodΛ1 ⊂ Λc of λ0 such thatM(λ ) andMn(λ ) are defined for all
λ ∈ Λ1 and alln≥ N1. Then, by Corollary 4.3.4 and Theorem 4.2.3 we have

{λ0} = σ(A)∩Λ1 = σ(M)∩Λ1,

σ(PnA)∩ΛC = σ(PnA)∩Λ1 = σ(Mn)∩Λ1
(4.71)

for all n≥ N1. By Theorem 3.2.14, we can represent the inverseM(λ )−1 by

M(λ )−1 =
∞

∑
k=−r

(λ −λ0)
kM̃k for all λ ∈Uδ̂ (λ0)\{λ0}, (4.72)

for sufficiently smallδ̂ > 0 withUδ̂ (λ0) ⊂ Λ1 and wherer = κ(M,λ0).

Choose aδ > 0 with Uδ (λ0) ⊂ Uδ̂ (λ0). By Theorem 4.2.3, there exists aNδ ≥ N1 such
that

σ(PnA)∩Λc ⊂Uδ (λ0) for all n≥ Nδ .

With (4.71) andUδ (λ0) ⊂ Λ1 it follows that

σ(PnA)∩Λc = σ(PnA)∩Uδ (λ0) = σ(Mn)∩Uδ (λ0) for all n≥ Nδ . (4.73)

So it is sufficient to consider the eigenvalues ofM andMn in Uδ (λ0).

Using the representation (4.72) of the inverseM(λ )−1, we can define the matrix function
H : Uδ (λ0) →L(CJ,CJ) by

H(λ ) = (λ −λ0)
rM(λ )−1.

The matrix functionH is continuous inUδ (λ0) and therefore there exists ac1 > 0 such that

‖H(λ )‖L(CJ,CJ) ≤ c1 for all λ ∈Uδ (λ0). (4.74)

Obviously, we have

‖[(λ −λ0)
−rM(λ )]−1‖L(CJ,CJ) = ‖H(λ )‖L(CJ,CJ) ≤ c1
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for all λ ∈Uδ (λ0)\{λ0}. If λ ∈Uδ (λ0)\{λ0} satisfies

‖(λ −λ0)
−rM(λ )− (λ −λ0)

−rMn(λ )‖L(CJ,CJ) <
1
c1

, (4.75)

then by the Neumann series theorem [21, Lemma 8.3], the matrix function(λ −λ0)
−rMn(λ )

is invertible. Using the estimate (4.68), we have for sufficiently largen∈ N,

‖(λ −λ0)
−r [M(λ )−Mn(λ )]‖L(CJ,CJ) ≤ c(δ )|λ −λ0|−rdnd⋆

n

for all λ ∈Uδ (λ0)\{λ0}. Hence, for allλ ∈Uδ (λ0)\{λ0} with

c(δ )|λ −λ0|−rdnd⋆
n <

1
c1

,

i.e.,
|λ −λ0|r > c1c(δ )dnd⋆

n,

it follows with (4.75) that the inverseMn(λ )−1 exists. Consequently,λ n
0 ∈ σ(Mn)∩Uδ (λ0)

holds only if
|λ n

0 −λ0|r ≤ c1c(δ )dnd⋆
n

is satisfied. This gives with (4.73) andr = κ(M,λ0) = κ(A,λ0) the error estimate (4.70).

In the next theorem we give an asymptotic error estimate for the eigenelements of the
projected eigenvalue problem (4.16). The error estimate depends on the error of the eigen-
value of the projected eigenvalue problem and on the approximation property of the trial
spaces with respect to the eigenspace.

Theorem 4.3.7.Let A : Λ → L(X,X) be as given in (4.2) and letλ0 be an eigenvalue
of A. Let{λ n

0}∞
n=n0

be a sequence of eigenvalues of the projected eigenvalue problems
PnA(λ )xn = 0 which converges toλ0, and let{x0

n}∞
n=n0

be a sequence of corresponding
eigenelements with x0

n ∈ Xn and‖x0
n‖X = 1. Then there exist a constant c> 0 and a N∈ N

such that

inf
x0∈kerA(λ0)

‖x0
n−x0‖X ≤ c(|λ 0

n −λ0|+ sup
y0∈kerA(λ0)

‖y0‖X≤1

inf
xn∈Xn

‖y0−xn‖X) (4.76)

holds for all n≥ N.

Proof. Let {λ n
0}∞

n=n0
be a sequence of eigenvalues of the projected eigenvalue problems

PnA(λ )xn = 0 which converges to an eigenvalueλ0 of A, and let{x0
n}∞

n=n0
be a corre-

sponding sequence of eigenelements withx0
n ∈ Xn and ‖x0

n‖X = 1. Let us first define
x̂0,n ∈ kerA(λ0) by

‖x0
n− x̂0,n‖X = min

x∈kerA(λ0)
‖x0

n−x‖X. (4.77)
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The above minima are attained, since kerA(λ0) is a finite dimensional subspace ofX.
Using Lemma 4.2.1, we have

lim
n→∞

‖x0
n− x̂0,n‖X = 0. (4.78)

With the approximation property of{Xn}n∈N we get

‖x0
n−Pnx̂0,n‖X ≤ ‖x0

n− x̂0,n‖X +‖x̂0,n−Pnx̂0,n‖X → 0 (4.79)

asn→ ∞. Let εn andx0,n ∈ ker(A,λ0) defined by

εn = ‖x0
n−Pnx0,n‖X = min

x∈Pnker(A,λ0)
‖x0

n−x‖X. (4.80)

The above minima are attained, sincePnkerA(λ0) is a finite dimensional subspace ofX.
Let us consider the estimate

inf
x∈kerA(λ0)

‖x0
n−x‖X ≤ ‖x0

n−x0,n‖X ≤ ‖x0
n−Pnx0,n‖X +‖Pnx0,n−x0,n‖X. (4.81)

Using (4.80) and (4.79) we get

‖x0
n−Pnx0,n‖X ≤ ‖x0

n−Pnx̂0,n‖X ≤ ‖x0
n− x̂0,n‖X +‖x̂0,n−Pnx̂0,n‖X → 0 (4.82)

as n → ∞, from which it follows that limn→∞ ‖Pnx0,n‖X = 1. Therefore the sequence
{x0,n}∞

n=n0
is bounded by a constantc0 > 0. Hence, using Lemma 4.1.2 we get the es-

timate

‖Pnx0,n−x0,n‖X ≤ sup
z0∈kerA(λ0)

‖z0‖≤c0

‖Pnz0−z0‖X = c0 sup
y0∈kerA(λ0)

‖y0‖X≤1

inf
xn∈Xn

‖xn−y0‖X. (4.83)

Let us consider now‖x0
n−Pnx0,n‖X. First we show that there exists a constantc1 > 0 such

that
‖x0

n−Pnx0,n‖X ≤ c1‖PnA(λ n
0)[x0

n−Pnx0,n]‖X (4.84)

holds for sufficiently largen ∈ N. Assume the contrary, then there exists a subsequence
{x0

nk
−Pnkx

0,nk}k∈N ⊂ {x0
n−Pnx0,n}∞

n=n0
such that

‖x0
nk
−Pnkx

0,nk‖X > ‖PnkA(λ nk
0 )[x0

nk
−Pnkx

0,nk]‖X (4.85)

holds for allk∈ N. With the continuity ofA and with (4.82) we have

‖PnkA(λ nk
0 )[x0

nk
−Pnkx

0,nk]‖X ≤ c‖x0
nk
−Pnkx

0,nk‖X → 0

ask→ ∞. Assumption (4.85) implies then that

lim
k→∞

∥∥∥∥∥PnkA(λ nk
0 )

x0
nk
−Pnkx

0,nk

‖x0
nk
−Pnkx

0,nk‖X

∥∥∥∥∥
X

= 0. (4.86)
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By Lemma 4.2.1, there exist a subsequence
{

x0
n̂k
−Pn̂kx

0,n̂k

‖x0
n̂k
−Pn̂kx

0,n̂k‖X

}

k∈N

⊂
{

x0
nk
−Pnkx

0,nk

‖x0
nk
−Pnkx

0,nk‖X

}

k∈N

and ay0 ∈ kerA(λ0) such that

lim
k→∞

x0
n̂k
−Pn̂kx

0,n̂k

‖x0
n̂k
−Pn̂kx

0,n̂k‖X
= y0.

So we conclude

εn̂k ≤
∥∥∥x0

n̂k
−Pn̂kx

0,n̂k −
∥∥x0

n̂k
−Pn̂kx

0,n̂k
∥∥

X
Pn̂ky

0
∥∥∥

X

≤
∥∥x0

n̂k
−Pn̂kx

0,n̂k
∥∥

X

∥∥∥∥∥
x0

n̂k
−Pn̂kx

0,n̂k

‖x0
n̂k
−Pn̂kx

0,n̂k‖X
−Pn̂ky

0

∥∥∥∥∥
X

≤
∥∥x0

n̂k
−Pn̂kx

0n̂k
∥∥

X

(∥∥∥∥∥
x0

n̂k
−Pn̂kx

0,n̂k

‖x0
n̂k
−Pn̂kx

0,n̂k‖X
−y0

∥∥∥∥∥
X

+
∥∥y0−Pn̂ky

0
∥∥

X

)
(4.87)

= εn̂ko(1),

which is a contradiction. Consequently, estimate (4.84) holds.

Using the continuity ofA, there exist a constantc2 > 0 and aN ∈ N such that

‖PnA(λn)−PnA(λ0)‖L(X,X) ≤ c2|λ n
0 −λ0| (4.88)

for all n≥ N. SincePnA(λ n
0)x0

n = 0, we can write

PnA(λ n
0)[x0

n−Pnx0,n] = [PnA(λ0)−PnA(λ n
0)]Pnx0,n−PnA(λ0)Pnx0,n,

and with (4.84) and (4.88) we get
∥∥x0

n−Pnxn,0
∥∥

X ≤ c1
{∥∥[PnA(λ0)−PnA(λ n

0)]Pnx0,n
∥∥

X +
∥∥PnA(λ0)Pnx0,n

∥∥
X

}

≤ c1c2 |λn−λ0|
∥∥Pnx0,n

∥∥
X +c1

∥∥PnA(λ0)Pnx0,n
∥∥

X (4.89)

for sufficiently largen∈ N. Sincex0,n ∈ kerA(λ0), we have
∥∥PnA(λ0)Pnx0,n

∥∥
X =

∥∥PnA(λ0)Pnx0,n−PnA(λ0)x
0,n
∥∥

X

≤ ‖A(λ0)‖L(X,X)

∥∥Pnx0,n−x0,n
∥∥

X .

Using that the sequence{Pnx0,n}n∈N is bounded, we get from (4.89)
∥∥x0

n−Pnxn,0
∥∥

X ≤ c
(
|λ n

0 −λ0|+
∥∥Pnx0,n−x0,n

∥∥
X

)
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for sufficiently largen. Hence, we finally obtain from (4.81) with (4.83) the estimate

inf
x∈kerA(λ0)

‖x0
n−x‖X ≤ c


|λ n

0 −λ0|+ sup
y0∈kerA(λ0)

‖y0‖X≤1

inf
xn∈Xn

‖y0−xn‖X


 (4.90)

for sufficiently largen.

Using the error estimate (4.70) for the eigenvalues of the projected eigenvalue problem,
we get from (4.76) the following asymptotic error estimate for the eigenelements

inf
x∈kerA(λ0)

‖x0
n−x‖X ≤ c[(dnd⋆

n)1/κ(A,λ0) +dn], (4.91)

where we used that the eigenspace kerA(λ0) is a subset of the generalized eigenspace
G(A,λ0).

4.4 Stability of the algebraic multiplicities

Approximations of linear and nonlinear eigenvalue problems affect the geometric and al-
gebraic multiplicities of the eigenvalues [75, 35, 44, 27].In general, a multiple eigenvalue
of the continuous problem splits into several discrete eigenvalues. In this section we show
that for eigenvalue problems for holomorphic Fredholm operator functions the algebraic
multiplicity is stable under Galerkin discretization, i.e., the algebraic multiplicity of a con-
tinuous eigenvalue is equal to the sum of the algebraic multiplicities of its discretizations.
For the proof we use again the equivalence of the eigenvalue problems for the opera-
tor functionsA andPnA to the eigenvalue problems of the matrix functionsM andMn,
see [47]. Another approach for the proof is chosen in [100] where an alternative equivalent
characterization of the algebraic multiplicity from [27] is used.

For our approach we need the following essential result which shows how the perturbation
of a holomorphic operator function effects the algebraic multiplicities of its eigenvalues.

Theorem 4.4.1.LetΛ ⊂ C be open and connected with a simple rectifiable boundary. Let
A : Λ →L(X,Y) be holomorphic onΛ and continuous onΛ. Letσ(A)∩Λ = {λ1, . . . ,λn}
and letΛ \ {λ1, . . . ,λn} ⊂ ρ(A). Then there exists aδ > 0 such that for each function
B : Λ →L(X,Y) which is holomorphic onΛ and continuous onΛ, and which satisfies

max
λ∈∂Λ

‖B(λ )−A(λ )‖L(X,Y) < δ ,

it follows thatσ(B)∩Λ = {µ1, . . . ,µr}, Λ\{µ1, . . . ,µr} ⊂ ρ(B) and
n

∑
k=1

m(A,λi) =
r

∑
k=1

m(B,µk).
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Proof. See [24].

Theorem 4.4.2.Let A: Λ →L(X,X) be given as in (4.2) and letΛc ⊂ Λ be compact and
connected with a simple rectifiable boundary. Let∂Λc ⊂ ρ(A) and Λc∩σ(A) = {λ0}.
Then there exists a N(Λc) ∈ N such that for all n≥ N(Λc) we have

m(A,λ0) = ∑
λ0∈σ(PnA)∩Λc

m(PnA,λ0). (4.92)

Proof. Consider the matrix functionsM andMn as defined in (4.51). Chooseε > 0 suf-
ficiently small such that the matrix functionsM andMn are defined inUε(λ0). For suffi-
ciently largen∈ N we have by Theorem 4.2.3

σ(PnA)∩Λc = σ(PnA)∩Uε(λ0). (4.93)

Corollary 4.3.4 shows that

σ(A)∩Uε(λ0) = σ(M)∩Uε(λ0) = {λ0} (4.94)

and that the algebraic multiplicities ofλ0 coincide forA andM. Further, again by Corollary
4.3.4, we have

σ(Mn)∩Uε(λ0) = σ(PnA)∩Uε(λ0),

and

∑
λ0∈σ(PnA)∩Uε(λ0)

m(PnA,λ0) = ∑
λ0∈σ(Mn)∩Uε(λ0)

m(Mn,λ0) (4.95)

for sufficiently largen∈ N. Using (4.68), we have

max
λ∈∂Uε (λ0)

‖M(λ )−Mn(λ )‖L(CJ,CJ) → 0 asn→ ∞.

So we may apply Theorem 4.4.1 and obtain

m(M,λ0) = ∑
λ0∈σ(Mn)∩Uε(λ0)

m(Mn,λ0)

for sufficiently largen∈ N. From (4.95), (4.94) and (4.93) the assertion follows.
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5 GALERKIN APPROXIMATION OF BOUNDARY INTEGRAL
OPERATOR EIGENVALUE PROBLEMS

Discretizations of boundary integral formulations of Laplacian eigenvalue problems by
using boundary elements are considered in many works, see [23, 46, 51, 52, 3, 14, 84] and
references therein. However, only in a few works [22, 23, 84]the issue of the numerical
analysis is addressed. To our knowledge, a rigorous numerical analysis of the discretiza-
tions of boundary integral operator eigenvalue problems including error estimates for the
eigenvalues and eigenelements has not be done so far.

In this chapter we show that the boundary integral formulations of the Dirichlet and Neu-
mann Laplacian eigenvalue problem which we derived in Chapter 2 are eigenvalue prob-
lems for holomorphic Fredholm operator functions. Therefore we can apply the results of
Chapter 4 to Galerkin boundary element discretizations of the boundary integral operator
eigenvalue problems. We prove the convergence of the boundary element approximations
for the eigenvalues and eigenelements and give asymptotic error estimates. Furthermore,
we show that the algebraic multiplicity of the eigenvalues are stable under Galerkin dis-
cretizations.

5.1 Properties of boundary integral operator eigenvalue problems

First we consider the boundary integral formulation of the Dirichlet Laplacian eigenvalue
problem (2.51): Find(κ,w) ∈ R+×H−1/2(Γ)\{0} such that

V(κ)w = 0. (5.1)

By Theorem 2.4.7, the single layer potential operatorV(κ) is Fredholm for allκ ∈C. Next
we show thatV(·) defines a holomorphic operator function.

Lemma 5.1.1.The operator function

V : C →L(H−1/2(Γ),H1/2(Γ)),

κ 7→V(κ),

where V(κ) is the single layer potential operator as given in (2.36), isholomorphic.

73
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Proof. According to Corollary 3.1.3 it is sufficient to show that thefunction

ft,w(κ) := 〈V(κ)t,w〉H1/2(Γ)×H−1/2(Γ)

is holomorphic onC for everyt,w∈ H−1/2(Γ). Forκ ∈ C we can write

ft,w(κ) = 〈V(κ)t,w〉H1/2(Γ)×H−1/2(Γ) = 〈 1
4π

∫

Γ

eiκ|·−y|

| ·−y| t(y)dsy,w〉H1/2(Γ)×H−1/2(Γ)

=
∞

∑
n=0

κn〈 1
4π

∫

Γ

in| ·−y|n−1

n!
t(y)dsy,w〉H1/2(Γ)×H−1/2(Γ). (5.2)

Here we used that the operatorAn : H−1/2(Γ) → H1/2(Γ) defined by

(Ant)(x) :=
1

4π

∫

Γ

in|x−y|n−1

n!
t(y)dsy

is linear and bounded for everyn ∈ N0. This property ofAn can be shown forn ≥ 1 in
a similar way as it is done for the casen = 0 in [83, Chapter 6], since the kernel ofAn

for n≥ 1 is more regular than the kernel ofA0. Note thatA0 is the single layer potential
operator of the Laplace equation.
The representation (5.2) of the functionft,w shows thatft,w : C → C is holomorphic for
every t,w ∈ H−1/2(Γ) and we conclude with Corollary 3.1.3 that the operator function
V : C →L(H−1/2(Γ),H1/2(Γ)) is holomorphic.

Next we consider the boundary integral formulation of the Neumann Laplacian eigenvalue
problem (2.53): Find(κ,u) ∈ R+×H1/2(Γ)\{0} such that

D(κ)u = 0. (5.3)

Lemma 5.1.2.The operator function

D : C →L(H1/2(Γ),H−1/2(Γ)),

κ 7→ D(κ),

where D(κ) is the hypersingular boundary integral operator as given in(2.37), is holo-
morphic.

Proof. The proof is done in an analogous manner as in the case of the single layer operator.
We show that the function

gu,v(κ) := 〈D(κ)u,v〉H−1/2(Γ)×H1/2(Γ) (5.4)
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is holomorphic onC for everyu,v∈ H1/2(Γ). Forκ ∈ C we can write

gu,v(κ) = 〈D(κ)u,v〉H−1/2(Γ)×H1/2(Γ) = −〈γ int
1,·

1
4π

∫

Γ

γ int
1,y

eiκ|·−y|

| ·−y| u(y)dsy,v〉H−1/2(Γ)×H1/2(Γ)

= −
∞

∑
n=0

κn〈γ int
1,·

1
4π

∫

Γ

γ int
1,y

in| ·−y|n−1

n!
u(y)dsy,v〉H−1/2(Γ)×H1/2(Γ). (5.5)

Here we used that the trace operatorγ int
1 is linear and thatBn : H1/2(Γ)→H−1/2(Γ) defined

by

(Bnu)(x) :=
1

4π

∫

Γ

γ int
1,y

in|x−y|n−1

n!
u(y)dsy (5.6)

is linear and bounded for everyn∈ N0. The operatorB0 is the hypersingular operator of
the Laplace equation. In [83, Chapter 6] it is proven thatB0 ∈ L(H1/2(Γ),H−1/2(Γ)). In
a similar way this can be shown forBn for n≥ 1, since the kernel ofBn for n≥ 1 is more
regular than the kernel ofB0.
Becausegu,v : C → C is holomorphic for everyu,v ∈ H1/2(Γ), it follows by Corollary
3.1.3 that the operator functionD : C →L(H1/2(Γ),H−1/2(Γ)) is also holomorphic.

In order to apply the results of Chapter 4 to the eigenvalue problems (5.1) and (5.3), we
have to introduce additional operators such that we get eigenvalue problems of the required
form as in (4.2). Consider the Riesz mapJ : H1/2(Γ) → H−1/2(Γ), then the operator
ιH1/2(Γ) : H1/2(Γ) → H−1/2(Γ) defined by

ιH1/2(Γ)v := Jv for v∈ H1/2(Γ)

is an isomorphism, see Section 3.3. Recalling the definition(2.3) of the sesquilinear form

(u,w)Γ = 〈u,w〉H1/2(Γ)×H−1/2(Γ),

we can write

(u, ιH1/2(Γ)v)Γ = 〈u, ιH1/2(Γ)v〉H1/2(Γ)×H−1/2(Γ) = 〈u,Jv〉H1/2(Γ)×H−1/2(Γ) = (u,v)H1/2(Γ)

for all u,v∈ H1/2(Γ). Consequently, we have

(u,w)Γ = (u, ιH1/2(Γ)ι
−1
H1/2(Γ)

w)Γ = (u, ι−1
H1/2(Γ)

w)H1/2(Γ) (5.7)

for all u∈ H1/2(Γ) andw∈ H−1/2(Γ). Using the Hilbert space adjoint[ι−1
H1/2(Γ)

]⋆ we get

(u, ι−1
H1/2(Γ)

w)H1/2(Γ) = ([ι−1
H1/2(Γ)

]⋆u,w)H−1/2(Γ) for all u∈ H1/2(Γ), w∈ H−1/2(Γ).

(5.8)
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Define
I := [ι−1

H1/2(Γ)
]⋆ : H1/2(Γ) → H−1/2(Γ), (5.9)

then we can write using (5.7) and (5.8)

(u,w)Γ = (Iu,w)H−1/2(Γ) for all u∈ H1/2(Γ), w∈ H−1/2(Γ). (5.10)

Note thatI : H1/2(Γ) → H−1/2(Γ) is an isomorphism. Finally, using (5.10) we have the
representations

(V(κ)t,w)Γ = (IV(κ)t,w)H−1/2(Γ) for all t,w∈ H−1/2(Γ), (5.11)

and
(u,D(κ)v)Γ = (u,I⋆D(κ)v)H1/2(Γ) for all u,v∈ H1/2(Γ). (5.12)

Theorem 5.1.3.Consider the operator function

IV : C →L(H−1/2(Γ),H−1/2(Γ)),

κ 7→ IV(κ), (5.13)

whereI : H1/2(Γ) → H−1/2(Γ) is given as in (5.9). Then:

i) The operator functionIV : C →L(H−1/2(Γ),H−1/2(Γ)) is holomorphic and the op-
eratorIV(κ) is a compact perturbation of the H−1/2(Γ)-elliptic operatorIV(0) for
all κ ∈ C.

ii) The spectra of V andIV coincide and

kerV(κ) = kerIV(κ)

for anyκ ∈ C. Further, for any eigenvalueκ ∈ σ(V) the maximal length of a Jordan
chain and the algebraic multiplicity are equal for V andIV,

κ(V,κ) = κ(IV,κ), m(V,κ) = m(IV,κ).

Proof. i) The holomorphy ofIV follows directly from the holomorphy ofV. Next, we can
write

IV(κ) = IV(0)+I(V(κ)−V(0)),

whereI(V(κ)−V(0)) : H−1/2(Γ)→H−1/2(Γ) is compact, since, by Lemma 2.4.5, the op-
eratorV(κ)−V(0) : H−1/2(Γ) → H1/2(Γ) is compact. TheH−1/2(Γ)-ellipticity of IV(0)
follows from the ellipticity ofV(0), see Lemma 2.4.6. With (5.11) we have

(IV(0)t, t)H−1/2(Γ) = (V(0)t, t)Γ ≥CV‖t‖2
H−1/2(Γ)

for t ∈ H−1/2(Γ).

ii) The assertions are a direct consequence of the fact thatI : H1/2(Γ) → H−1/2(Γ) is an
isomorphism.
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Also the eigenvalue problems for the operator functionsD : C → L(H1/2(Γ),H−1/2(Γ))
andI⋆D : C →L(H1/2(Γ),H1/2(Γ)) are equivalent.

Theorem 5.1.4.Consider the operator function

I⋆D : C →L(H1/2(Γ),H1/2(Γ)),

κ 7→ I⋆D(κ), (5.14)

whereI⋆ : H−1/2(Γ) → H1/2(Γ) is given as in (5.12). Then:

i) The operator functionI⋆D : C → L(H1/2(Γ),H1/2(Γ)) is holomorphic and for any
κ ∈C the operatorI⋆D(κ) is a compact perturbation of the H1/2(Γ)-elliptic operator
I⋆D̃(0), whereD̃(0) is given as in (2.56).

ii) The spectra of D andI⋆D coincide and

kerD(κ) = kerI⋆D(κ)

for anyκ ∈ C. Further, for any eigenvalueκ ∈ σ(D) the maximal length of a Jordan
chain and the algebraic multiplicity are equal for D andI⋆D,

κ(D,κ) = κ(I⋆D,κ), m(D,κ) = m(I⋆D,κ).

Proof. The proof can be done in a similar way as for Theorem 5.1.3.

For the error estimates of the Galerkin approximations of the boundary integral operator
eigenvalue problems we have to consider the Hilbert space adjoint operators ofIV(κ) and
I⋆D(κ).

Lemma 5.1.5.Let κ ∈ R, then

[IV(κ)]⋆ = IV(−κ).

Proof. Let κ ∈ R andt,w∈ H−1/2(Γ), then

(IV(κ)w, t)H−1/2(Γ) = 〈V(κ)w, t〉H1/2(Γ)×H−1/2(Γ) =
1

4π

∫

Γ

∫

Γ

eiκ|x−y|

|x−y| w(y)dsyt(x)dsx

=
1

4π

∫

Γ

w(y)
∫

Γ

e−iκ|x−y|

|x−y| t(x)dsxdsy = 〈w,V(−κ)t〉H−1/2(Γ)×H1/2(Γ)

= 〈V(−κ)t,w〉H1/2(Γ)×H−1/2(Γ) = (V(−κ)t,w)Γ

= (IV(−κ)t,w)H−1/2(Γ) = (w,IV(−κ)t)H−1/2(Γ).

Hence,[IV(κ)]⋆ = IV(−κ).
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Next we consider the adjoint of the hypersingular operatorD(κ). The following repre-
sentation of the duality pairing of the hypersingular operator holds for piecewise smooth
functionsu,v∈ H1/2(Γ)∩C(Γ),

〈D(κ)u,v〉H−1/2(Γ)×H1/2(Γ) =
1

4π

∫

Γ

∫

Γ

eiκ|x−y|

|x−y| (curlΓu(y),curlΓv(y))dsydsx

−κ2 1
4π

∫

Γ

∫

Γ

eiκ|x−y|

|x−y| u(y)v(x)(n(x),n(y))dsydsx, (5.15)

see [66, Theorem 3.4.2], where

curlΓu(x) = n(x)×∇ũ(x) for x∈ Γ,

and wheren is the outward unit normal vector and ˜u is some (locally defined) extension of
u into the neighborhood ofΓ.

Lemma 5.1.6.Let κ ∈ R, then

[I⋆D(κ)]⋆ = I⋆D(−κ).

Proof. Using the representation (5.15), we get forκ ∈ R and piecewise smooth functions
u,v∈ H1/2(Γ)∩C(Γ)

(v,I⋆D(κ)u)H1/2(Γ) = (v,D(κ)u)Γ = 〈v,D(κ)u〉H1/2(Γ)×H−1/2(Γ)

= 〈D(κ)u,v〉H−1/2(Γ)×H1/2(Γ) = 〈D(−κ)v,u〉H−1/2(Γ)×H1/2(Γ)

= 〈u,D(−κ)v〉H1/2(Γ)×H−1/2(Γ) = (u,D(−κ)v)Γ

= (u,I⋆D(−κ)v)H1/2(Γ) = (I⋆D(−κ)v,u)H1/2(Γ).

Thus,[I⋆D(κ)]⋆ = I⋆D(−κ).

5.2 Boundary elements

Recall that we have assumed thatΩ ⊂ R3 is a Lipschitz domain with piecewise smooth
boundaryΓ = ∂Ω. We consider a family{Γh} of decompositions of the boundaryΓ,

Γh =
nh⋃

ℓ=1

τℓ, (5.16)

with boundary elementsτℓ. We restrict ourselves to plane triangles for the choice of the
boundary elements. The errors which may occur by this approximation of the boundary



5.2 Boundary elements 79

Γ are not considered here. For an analysis of these errors, see[65]. For each boundary
decomposition (5.16) we assume that two neighboring boundary elements share either a
node or an edge. We define the local mesh size of a boundary elementτℓ

hℓ :=




∫

τℓ

dsx




1/2

and the global mesh sizes of a boundary decompositionΓh

h = hmax := max
ℓ=1,...,nh

hℓ, hmin := min
ℓ=1,...,nh

hℓ.

The diameter of a boundary elementτℓ is defined by

dℓ := sup
x,y∈τℓ

|x−y|.

We assume that the family{Γh} is uniformly shape regular, that is, there exists a constant
c > 0 which is independent of the boundary decomposition such that

dℓ ≤ chℓ for all ℓ = 1, . . . ,nh.

For the Galerkin discretization of the boundary integral operator eigenvalue problems we
consider finite dimensional trial spaces with respect to theboundary decompositionsΓh. A
conforming trial space ofH−1/2(Γ) isS0

h(Γ), the space of piecewise constant functions. We
use{ψh

ℓ }
nh
ℓ=1 as basis functions ofS0

h(Γ) with respect to the boundary decompositionΓh,
whereψh

ℓ is constant one on the boundary elementτℓ and elsewhere zero. The spaceS1
h(Γ)

of continuous piecewise linear functions is a conforming trial space ofH1/2(Γ). We use
nodal basis functions{ϕh

j }
mh
j=1 for S1

h(Γ), where the vertices of the boundary decomposition

Γh are the nodes. Let{x j}mh
j=1 be the set of vertices ofΓh, then the basis functions ofS1

h(Γ)
are given by

ϕh
j (x) =






1 for x = x j ,

0 for x = xi 6= x j ,

piecewise linear elsewhere

for j = 1, . . . ,mh.

The trial spacesS0
h(Γ) andS1

h(Γ) have the following approximation properties.

Theorem 5.2.1.Let η ∈ {0,1}, σ ∈ [−1+ η,η], and s∈ [σ ,η + 1]. Then there exists a
constant c> 0 such that for any v∈ Hs(Γ)

inf
vh∈Sη

h (Γ)
‖v−vh‖Hσ (Γ) ≤ chs−σ‖v‖Hs(Γ). (5.17)
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Proof. See, e.g., [78, p. 252], [83, Section 10.2].

Similar approximation results are also valid for open partsΓi of Γ. For a piecewise smooth
boundary we have forv∈ Hs

pw(Γ)

inf
vh∈Sη

h (Γ)
‖v−vh‖Hη−1/2(Γ) ≤ chs−η+1/2‖v‖Hs

pw(Γ), (5.18)

whereη ∈ {0,1} ands∈ [η −1/2,η +1], see [70, Theorem 2.1, Theorem 2.3].

5.3 Convergence, asymptotic error estimates and stability

Dirichlet Laplacian eigenvalue problem

The boundary integral formulation (2.51) of the Dirichlet Laplacian eigenvalue problem is
by Theorem 5.1.3 equivalent to the boundary integral operator eigenvalue problem:
Find (κ,w) ∈ R+×H−1/2(Γ)\{0} such that

IV(κ)w = 0. (5.19)

Using a family of finite dimensional subspacesS0
h(Γ) spanned by piecewise constant basis

functions{ψh
ℓ }

nh
ℓ=1, the Galerkin variational eigenvalue problem reads as follows: Find

(κh,wh) ∈ C×S0
h(Γ)\{0} such that

(IV(κh)wh,vh)H−1/2(Γ) = (V(κh)wh,vh)Γ = 0 (5.20)

is satisfied for allvh ∈ S0
h(Γ). Setting

wh =
nh

∑
ℓ=1

wℓψh
ℓ ,

then the variational problem (5.20) is equivalent to the algebraic nonlinear eigenvalue prob-
lem: Find(κh,w) ∈ C×Cnh \{0} such that

Vh(κh)w = 0, (5.21)

where

Vh(κh)[k, ℓ] :=
1

4π

∫

τℓ

∫

τk

eiκh|x−y|

|x−y| dsydsx

for k, ℓ = 1, . . . ,nh.

The following theorem shows the convergence of the Galerkinapproximations(κh,wh) to
an eigenpair(κ,w) of the continuous eigenvalue problem (5.19).
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Theorem 5.3.1.

i) Let{(κh,wh)} be a sequence of eigenpairs of the Galerkin variational problem (5.20).
If

lim
h→0

κh = κ,

thenκ is an eigenvalue ofIV.

ii) For each eigenvalueκ of IV there exists a sequence of eigenpairs{(κh,wh)} of the
Galerkin variational problem (5.20) with‖wh‖H−1/2(Γ) = 1 such that

lim
h→0

|κh−κ| = 0

and
lim
h→0

inf
w∈kerIV(κ)

‖w−wh‖H−1/2(Γ) = 0.

Proof. We show that the assumptions of Theorem 4.2.3 are fulfilled. By Theorem 5.1.3,
IV : C →L(H−1/2(Γ),H−1/2(Γ)) is a holomorphic operator function and for anyκ ∈ C

the operatorIV(κ) is a compact perturbation of aH−1/2(Γ)-elliptic operator. Further,
Theorem 5.2.1 shows that the family of trial spaces{S0

h(Γ)} approximatesH−1/2(Γ),

lim
h→0

inf
vh∈S0

h(Γ)
‖u−vh‖H−1/2(Γ) → 0 for all u∈ H−1/2(Γ).

Thus, the assertions follow from Theorem 4.2.3.

Next we give an error estimate for the discretizations(κh,wh).

Theorem 5.3.2.Let κ ∈ σ(IV)∩R and letσ(IV)∩Uδ (κ) = {κ}, where

Uδ (κ) = {µ ∈ C : |κ −µ| < δ}.

Then there exists a h0 > 0 such that for all h∈ (0,h0)

|κ −κh| ≤ cd2/κ(IV,κ)
h for all κh ∈ σ(Vh)∩Uδ (κ) (5.22)

is satisfied, where
dh = sup

t∈G(IV,κ)
‖t‖

H−1/2(Γ)
≤1

inf
th∈S0

h(Γ)
‖t− th‖H−1/2(Γ),

and whereκ(IV,κ) is the maximal length of a Jordan chain and G(IV,κ) is the general-
ized eigenspace ofκ as defined in Definition 3.2.5. Further, for any wh ∈ kerVh(κh) with
‖wh‖H−1/2(Γ) = 1,

inf
w∈kerIV(κ)

‖w−wh‖H−1/2(Γ) ≤ c(|κ −κh|+dh) (5.23)

is satisfied.
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Proof. The error estimate (5.23) for the eigenelements follows immediately from Theorem
4.3.7. For the error estimate (5.22) of the eigenvalues we have to consider the adjoint of
IV(κ). Let κ ∈ σ(IV) be real, then Lemma 5.1.5 shows that

[IV(κ)]⋆ = IV(−κ).

Since kerIV(κ) = kerIV(−κ), we conclude

kerIV(κ) = ker[IV(κ)]⋆ = ker[IV]⋆(κ)

and
G(IV,κ) = G(IV,−κ) = G([IV]⋆,κ). (5.24)

Applying Theorem 4.3.6 the error estimate (5.22) follows with (5.24).

Using the approximation property ofS0
h(Γ), we can give the following error estimates.

Corollary 5.3.3. Letκ ∈ σ(IV)∩R and letσ(IV)∩Uδ (κ) = {κ}. Let k= dimG(IV,κ)
and let{t1, . . . , tk} be an orthonormal basis of the generalized eigenspace G(IV,κ). As-
sume that{ti}k

i=1 ⊂ Hs
pw(Γ) for some s∈ [−1/2,1], then there exists a h0 > 0 such that for

all h ∈ (0,h0)

|κ −κh| ≤ c(h2s+1)1/κ(IV,κ)
k

∑
i=1

‖ti‖Hs
pw(Γ) for all κh ∈ σ(Vh)∩Uδ (κ) (5.25)

is satisfied. Further, for any wh ∈ kerVh(κh) with ‖wh‖H−1/2(Γ) = 1

inf
w∈kerV(κ)

‖w−wh‖H−1/2(Γ) ≤ c

(
|κ −κh|+hs+1/2

k

∑
i=1

‖ti‖Hs
pw(Γ)

)
(5.26)

is satisfied.

Proof. Let κ ∈ σ(IV) be real and let{ti}k
i=1 be an orthonormal basis of the generalized

eigenspaceG(IV,κ). Assume that{ti}k
i=1 ⊂ Hs

pw(Γ) for somes∈ [−1/2,1]. We show that

sup
t∈G(V,κ)

‖t‖
H−1/2(Γ)

≤1

inf
th∈S0

h(Γ)
‖t− th‖H−1/2(Γ) ≤ chs+1/2

k

∑
i=1

‖ti‖Hs
pw(Γ). (5.27)

Since{ti}k
i=1 ⊂ Hs

pw(Γ) and S0
h(Γ) is a finite dimensional subspace ofH−1/2(Γ), there

exists an elementti,h ∈ S0
h(Γ) and a constantci > 0 such that

‖ti − ti,h‖H−1/2(Γ) = min
th∈S0

h(Γ)
‖ti − th‖H−1/2(Γ) ≤ cih

s+1/2‖ti‖Hs
pw(Γ)
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for i = 1, . . . ,k, see (5.18). Lett ∈ G(V,κ) with ‖t‖H−1/2(Γ) ≤ 1, thent admits a represen-
tation

t =
k

∑
i=1

αiti, |αi| ≤ 1. (5.28)

Sett̃h =
k

∑
i=1

αiti,h, then we obtain

inf
th∈S0

h(Γ)
‖t− th‖H−1/2(Γ) ≤ ‖t− t̃h‖H−1/2(Γ) = ‖

k

∑
i=1

αi(ti − ti,h)‖H−1/2(Γ)

≤
k

∑
i=1

cih
s+1/2‖ti‖Hs

pw(Γ) ≤ chs+1/2
k

∑
i=1

‖ti‖Hs
pw(Γ),

which shows that (5.27) holds. Hence, the error estimates (5.25) and (5.26) follow from
(5.22) and (5.23).

In the caseκ(IV,κ) = 1, i.e., the algebraic multiplicity ofκ is equal to its geometric
multiplicity, the generalized eigenspaceG(IV,κ) coincides with kerIV(κ). If in addition
kerIV(κ) ⊂ H1

pw(Γ), then we get with Corollary 5.3.3 the following error estimates for
the Galerkin approximations(κh,wh),

|κ −κh| ≤ ch3
k

∑
i=0

‖ti‖H1
pw(Γ), (5.29)

inf
w∈kerV(κ)

‖w−wh‖H−1/2(Γ) ≤ c

(
|κ −κh|+h3/2

k

∑
i=0

‖ti‖H1
pw(Γ)

)
,

where{t1, . . . , tk} is some orthonormal basis of kerIV(κ) in H−1/2(Γ).

Next we show that the algebraic multiplicity of an eigenvalue of IV is stable under the
Galerkin discretization (5.20), that is, the sum of the algebraic multiplicities of the discrete
eigenvalues corresponding to a continuous eigenvalueκ is equal to the algebraic multiplic-
ity of κ .

Theorem 5.3.4.Let κ ∈ σ(IV)∩R and let σ(IV)∩Uδ (κ) = {κ}. Let m(IV,κ) the
algebraic multiplicity ofκ . Then there exists a h0 > 0 such that for all h< h0

m(IV,κ) = ∑
κh∈σ(Vh)∩Uδ (κ)

m(Vh,κh).

If κ(IV,κ) = 1, then we have for all h< h0

dimkerIV(κ) = dim{th ∈ H−1/2(Γ) : V(κh)th = 0 andκh ∈ σ(Vh)∩Uδ (κh)}.

Proof. The assertions follow immediately from Theorem 4.4.2.
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Neumann Laplacian eigenvalue problem

The boundary integral formulation (2.53) of the Neumann Laplacian eigenvalue problem
is by Theorem 5.1.4 equivalent to the boundary integral operator eigenvalue problem:
Find (κ,u) ∈ R+×H1/2(Γ)\{0} such that

I⋆D(κ)u = 0. (5.30)

Using a sequence of finite dimensional subsacesS1
h(Γ) spanned by continuous piecewise

linear basis functions{ϕh
k}

mh
k=1, the Galerkin variational formulation reads as follows: Find

(κh,uh) ∈ C×S1
h(Γ)\{0} such that

(vh,I⋆D(κ)uh)H1/2(Γ) = (vh,D(κ)uh)Γ = 0 (5.31)

is satisfied for allvh ∈ S1
h(Γ). Setuh = ∑mh

k=1ukϕh
k , then the variational problem (5.31) is

equivalent to the algebraic nonlinear eigenvalue problem:Find (κh,u) ∈ C×Cmh \ {0}
such that

Dh(κh)u = 0, (5.32)

where
Dh(κh)[k, ℓ] := (ϕℓ,D(κh)ϕk)Γ. (5.33)

For an appropriate integral representation of the matrix entries (5.33) see (5.15).

Again, the convergence and error analysis of Chapter 4 can beapplied, sinceI⋆D is a
holomorphic Fredholm operator function and{S1

h(Γ)} is a sequence of conforming trial
spaces with

lim
h→0

inf
vh∈S1

h(Γ)
‖v−vh‖H1/2(Γ) → 0 for all v∈ H1/2(Γ).

Hence, convergence results and error estimates can be derived from Theorem 4.2.3, The-
orem 4.3.6 and Theorem 4.3.7. Also the stability result of Theorem 4.4.2 concerning the
algebraic multiplicities remains valid. Here we want to give only an error estimate for the
discretizations(κh,uh).

Theorem 5.3.5.Let κ ∈ σ(I⋆D) be real and letσ(I⋆D)∩Uδ (κ) = {κ}.
Let k= dimG(I⋆D,κ) and let{w1, . . . ,wk} be an orthonormal basis of the generalized
eigenspace G(I⋆D,κ). Assume that{wi}k

i=1 ⊂ Hs
pw(Γ) for some s∈ [1/2,2], then there

exists a h0 > 0 such that for all h< h0

|κ −κh| ≤ c(h2s−1)1/κ(I⋆D,κ)
k

∑
i=1

‖wi‖Hs
pw(Γ) for all κh ∈ σ(Dh)∩Uδ (κ). (5.34)

Further, for any uh ∈ kerDh(κh) with ‖uh‖H1/2(Γ) = 1

inf
u∈kerI⋆D(κ)

‖u−uh‖H1/2(Γ) ≤ c

(
|κ −κh|+hs−1/2

k

∑
i=1

‖wi‖Hs
pw(Γ)

)
(5.35)

is satisfied.
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Proof. Using that[I⋆D(κ)]⋆ = I⋆D(−κ) and using the approximation property (5.18)
of S1

h(Γ), the error estimates (5.34) and (5.35) follow from Theorem 4.3.6 and Theorem
4.3.7.

If κ(I⋆D,κ) = 1 and kerI⋆D(κ) ⊂ H2
pw(Γ), then we obtain the error estimates

|κ −κh| ≤ ch3
k

∑
i=0

‖wi‖H2
pw(Γ),

inf
u∈kerI⋆D(κ)

‖u−uh‖H1/2(Γ) ≤ c

(
|κ −κh|+h3/2

k

∑
i=0

‖wi‖H2
pw(Γ)

)
,

where{w1, . . . ,wk} is some orthonormal basis of kerI⋆D(κ) in H1/2(Γ).
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6 NUMERICAL METHODS FOR ALGEBRAIC NONLINEAR
EIGENVALUE PROBLEMS

The Galerkin discretization of the boundary integral formulations of the Laplacian eigen-
value problems (5.19) and (5.30) leads to algebraic nonlinear eigenvalue problems of the
form: Find(λ ,x) ∈ C×Cn\{0} such that

A(λ )x = 0 (6.1)

is fulfilled, whereA : C → Cn×n is a holomorphic matrix function. The subject of alge-
braic nonlinear eigenvalue problems is an active and open field in the numerical analysis.
There is a lot of literature on numerical methods, see the review work [63] and references
therein. However, black-box solvers as for linear eigenvalue problems are not available for
general nonlinear eigenvalue problems. Polynomial eigenvalue problems are a special case
of nonlinear eigenvalue problems because they can be transformed into equivalent linear
eigenvalue problems [63]. Therefore they can be treated differently than general nonlin-
ear eigenvalue problems. In the following we will not discuss methods for polynomial
eigenvalue problems but focus on general nonlinear eigenvalue problems.

The classical and standard approach for problems with moderate size is either to consider
the nonlinear eigenvalue problem as system of nonlinear equations and use a variant of
Newton’s method, see [56,42,67,5,71,80], or to reduce the nonlinear eigenvalue problem to
a sequence of linear eigenvalue problems and use appropriate linear eigenvalue solvers, see
[73,96,94]. The first class of methods can be characterized as shift-and-invert methods and
they are generalizations of methods for linear eigenvalue problems as the inverse iteration
or the Rayleigh quotient iteration.

In many applications the size of the nonlinear eigenvalue problems gets very large and
therefore projection methods as Arnoldi/Krylov type methods [92, 43, 62, 74] and the
Jacobi-Davidson type method [93,82] have been introduced.These methods project large
problems into appropriate subspaces whereby the size of theproblems is reduced. For the
solution of the projected problems the above mentioned standard methods are used.

The crucial point of all methods for nonlinear eigenvalue isthat they converge in gen-
eral only locally. Appropriate approximations of the eigenpairs are needed to guarantee
convergence of the methods. In particular there is in general no guarantee to find all eigen-
values in a specified domain. There are some techniques suggested as deflation [33, 62]
or the use of nonlinear Rayleigh functionals [96, 94] to overcome this problem. However,

87
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these techniques works only either for polynomial problemsor for problems with certain
structure.

The convergence and error analysis of methods for nonlineareigenvalue problems is in
almost all cases restricted to simple eigenvalues. This is mainly due to the fact that a stan-
dard theory for nonlinear eigenvalue problems has been not established so far. Although
most algebraic nonlinear eigenvalue problems which are considered in the literature would
fit into the concept of holomorphic Fredholm operator functions, this concept is not used
for the analysis of the standard algorithms.

In the following we will first review the standard Newton typemethods for nonlinear eigen-
value problems and then present the little–known Kummer’s method [57, 58]. For Kum-
mer’s method we will give a convergence analysis for simple and multiple eigenvalues.
Methods which reduce the nonlinear eigenvalue problems to asequence of linear eigen-
value problems are not considered here nor projection methods.

6.1 Standard Newton type methods

6.1.1 Inverse iteration

One of the classical approaches for the solution of the nonlinear eigenvalue problem (6.1)
is to apply Newton’s method to the extended system

F(x,λ ) :=

(
A(λ )x

vHx−1

)
=

(
0
0

)
, (6.2)

where the second equation is a normalization constraint with some chosen vectorv∈ Cn.
The Newton iteration is given by

F ′(xi ,λi)

(
xi+1−xi
λi+1−λi

)
= −F(xi ,λi), (6.3)

where

F ′(x,λ ) =

(
A(λ ) A′(λ )x
vH 0

)
.

The derivativeF ′ exists, since the matrix functionA is holomorphic. The system (6.3) can
be written as

A(λi)(xi+1−xi)+(λi+1−λi)A
′(λi)xi = −A(λi)xi ,

vH(xi+1−xi) = −vHxi +1
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which is equivalent to

A(λi)xi+1 = (λi −λi+1)A
′(λi)xi ,

vHxi+1 = 1.
(6.4)

Let ui+1 ∈ Cn be a solution of

A(λi)ui+1 = A′(λi)xi ,

then, by using thatxi+1 = (λi −λi+1)ui+1, we get from the second equation of (6.4) that
vH(λi −λi+1)ui+1 = 1 and finally

λi+1 = λi −
1

vHui+1
and xi+1 =

ui+1

vHui+1
.

The described method as summarized in Algorithm 1 is a nonlinear version of the inverse
iteration and was introduced in [88] for nonlinear eigenvalue problems.

Algorithm 1 Inverse iteration

1: Input: λ0,x0,v such thatvHx0 = 1
2: for i = 0,1,2, . . . until convergencedo
3: solveA(λi)ui+1 = A′(λi)xi for ui+1
4: λi+1 = λi − (vHxi)/(vHui+1)
5: xi+1 = ui+1/vHui+1
6: end for

The inverse iteration has the following convergence property.

Theorem 6.1.1.Letλ∗ be an algebraically simple eigenvalue of (6.1) and x∗ a correspond-
ing eigenvector with vHx∗ = 1. Then the inverse iteration converges locally quadratically
to (x∗,λ∗).

Proof. Since the inverse iteration is Newton’s method applied to the nonlinear system
(6.2),F(x,λ ) = 0, it suffices to show thatF ′ is Lipschitz continuous in a neighborhood of
(x∗,λ∗) and thatF ′(x∗,λ∗) is a nonsingular matrix, see [20, Theorem 2.1]. The functionF ′

is locally Lipschitz continuous because the matrix function A is holomorphic. It remains
to show thatF ′(x∗,λ∗) is a nonsingular matrix. Assume that

F ′(x∗,λ∗)

(
z
µ

)
=

(
A(λ∗)z+ µA′(λ∗)x∗

vHz

)
=

(
0
0

)
(6.5)

for somez∈ Cn andµ ∈ C. Sinceλ∗ is an algebraically simple eigenvalue, it follows by
Definition 3.2.9 that kerA(λ∗) = span{x∗} and that the maximal length of a Jordan chain
corresponding toλ∗ is one, i.e., there exists nos∈ Cn such that

A′(λ∗)x∗ +A(λ∗)s= 0.
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Consequently,A′(λ∗)x∗ /∈ ImA(λ∗). Together with the first equation of (6.5) it follows that

0 = A(λ∗)z= µA′(λ∗)x∗

andµ = 0. Sinceλ∗ is a geometrically simple eigenvalue, there exists someα ∈C such that
z= αx∗. Using the second equation of (6.5) and the normalization conditionvHx∗ = 1, we
get 0= vHz= αvHx∗ = α. Hence,(z,µ) = (0,0) and thereforeF ′(x∗,λ∗) is nonsingular.

In the case of linear eigenvalue problemsA(λ ) = B− λ I , Algorithm 1 is the classical
inverse iteration, if no updates forλ are computed, that is if step 4 is neglected. Ifλ is
updated as in step 4, then Algorithm 1 is a variant of Rayleighquotient iteration for linear
problems with the two-sided Rayleigh quotient

λi+1 =
vHBui+1

vHui+1
.

The classical Rayleigh quotient iteration for linear problems is obtained, if for the update

in step 4 the one-sided Rayleigh quotientλi+1 =
uH

i+1Bui+1

uH
i+1ui+1

is used.

6.1.2 Rayleigh functional iterations

As for linear eigenvalue problems also for nonlinear eigenvalue problems several different
updates forλ in Algorithm 1 are suggested in order to improve the convergence behavior.
These updates use in addition approximations of the left eigenvector and different types
of nonlinear Rayleigh functionals, which are generalizations of the Rayleigh quotient for
linear problems. A vectory∗ ∈ Cn\{0} is called a left eigenvector of the eigenvalueλ∗ of
the eigenvalue problem (6.1) if it is a solution of the adjoint equationA(λ∗)Hy∗ = 0.

In this section we present the two-sided Rayleigh functional iteration [71], [80, Section 4.2]
and the complex symmetric Rayleigh functional iteration [80, Chapter 7]. Both methods
have a higher convergence rate than the inverse iteration. For a comprehensive discussion,
an error analysis, and comparison of different methods using Rayleigh functionals we refer
to [80].

Two–sided Rayleigh functional iteration

The two-sided Rayleigh functionalp : Cn×Cn ⊃ I →C for a holomorphic matrix function
A : C → C

n×n is defined implicitly by

wHA(p(u,w))u = 0, (6.6)
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see [80, p. 38]. Ifλ∗ is an algebraically simple eigenvalue ofA andx∗ andy∗ are corre-
sponding right and left eigenvectors, respectively, then the functionalp is locally uniquely
defined [80, Theorem 3.5]. For a given approximation(u,w) for the eigenvectors(x∗,y∗)
the two-sided Rayleigh functionalp(u,w) provides an appropriate approximation for the
eigenvalue andp is stationary at(x∗,y∗) [80, Chapter 3]. The use of the two-sided Rayleigh
functional as updates for the eigenvalues in the inverse iteration requires approximations
of the left eigenvector. Therefore an additional iterationfor the approximation of the left
eigenvector has to be implemented, which leads, combined with the use of the Rayleigh
functional, to Algorithm 2.

Algorithm 2 Two-sided Rayleigh functional iteration

1: Input: λ0,x0,y0
such thatxH

0 x0 = yH
0

y
0
= 1

2: for i = 0,1,2, . . . until convergencedo
3: solveA(λi)ui+1 = A′(λi)xi for ui+1
4: solveA(λi)

Hwi+1 = A′(λi)
Hy

i
for wi+1

5: xi+1 = ui+1/‖ui+1‖
6: y

i+1
= wi+1/‖wi+1‖

7: solveyH
i+1

A(λi+1)xi+1 = 0 for λi+1

8: end for

The costs for the two-sided Rayleigh functional iteration are higher compared with the
inverse iteration, since in addition a second linear systemand a nonlinear equation have
to be solved in every iteration step. If the linear system in step 3 is solved by factoriz-
ing the matrixA(λi), then the same factorization can be used for the conjugate transpose
A(λi)

H for solving the second linear system in step 4. However, large problems require
in general a preconditioned iterative solver. In this case at least only one preconditioner
is needed to solve both linear systems. If the problem is Hermitian, then the right and the
left eigenvector coincide and only one linear system has to be solved. The computation of
the Rayleigh functional in step 7 requires the solution of a nonlinear equation and it can be
tricky. In general some iterative solver has to be used. The costs for it can be expensive if
the computation of the corresponding matrix is complex.

Local cubic convergence of the two-sided Rayleigh functional iteration for algebraically
simple eigenvalues is shown in [80, Theorem 4.13]. To our knowledge no analysis has be
done for multiple eigenvalues.

Complex symmetric Rayleigh functional iteration

The Galerkin discretization of the boundary integral formulations of the Laplacian eigen-
value problems (5.19) and (5.30) leads to complex symmetriceigenvalue problems (5.21)
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and (5.32). For such eigenvalue problems a one–sided Rayleigh functional can be used for
the updates of the eigenvalues in the inverse iteration [80,Chapter 7]. The equivalence

A(λ∗)x∗ = 0 ⇔ x⊤∗ A(λ∗) = 0⊤

motivates to define the so–called complex symmetric Rayleigh functionalpS by

u⊤A(pS(u))u = 0.

For complex symmetric eigenvalue problems the use of the Rayleigh functionalpS as
update for the eigenvalues in the inverse iteration yields alocal cubic convergence [80,
Theorem 7.7].

6.1.3 Residual inverse iteration

A simplified version of the inverse iteration is the so–called residual inverse iteration,
which was introduced by Neumaier [67]. The idea can be described as follows: The
equation (6.4) of the Newton iteration can be written as

xi −xi+1 = xi +(λi+1−λi)A(λi)
−1A′(λi)xi

= A(λi)
−1[A(λi)+(λi+1−λi)A

′(λi)
]
xi

= A(λi)
−1A(λi+1)xi +O(|λi+1−λi |2).

Neglecting the second order term gives

xi+1 = xi −A(λi)
−1A(λi+1)xi .

Neumaier showed that ifλi in A(λi)
−1 is replaced by a fixed shiftσ , then the iteration still

converges [67]. However,λi+1 has to be updated in each iteration step by the solution of
the nonlinear equation

vHA(σ)−1A(λi+1)xi = 0.

Using this update for the approximation of the eigenvalues yields the residual inverse iter-
ation, which is summarized in Algorithm 3.

The advantage of the residual inverse iteration compared with the inverse iteration is that
the system matrix which has to be inverted remains the same during the iteration. More-
over, the computation of the derivativeA′(λi) is no more longer needed. If the problem
size is small a factorization ofA(σ) can be computed in advance which allows an efficient
realization ofA(σ)−1 in step 3 and step 4 of Algorithm 3. For large problems an iterative
solver is needed twice in one iteration step which is a disadvantage compared with the in-
verse iteration where only once in one iteration step an iterative solver is needed. Besides,
for the residual inverse iteration a nonlinear equation hasto be solved for the updates of
λ .
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Algorithm 3 Residual inverse iteration

1: Input: σ ,x0,v such thatvHx0 = 1
2: for i = 0,1,2, . . . until convergencedo
3: solvevHA(σ)−1A(λi+1)xi = 0 for λi+1

4: r i = A(λi+1)xi
5: solveA(σ)si = r i for si
6: ui+1 = xi −si
7: xi+1 = ui+1/vHui+1
8: end for

A convergence result for the residual inverse iteration is given for the case ifλ∗ is a simple
zero of detA(λ∗) = 0, see [67]. Ifx∗ is a corresponding eigenvector toλ∗ with vHx∗ = 1,
then the residual inverse iteration converges for all(σ ,x0) sufficiently close to(λ∗,x0) with
the error estimates

‖xi+1−x∗‖
‖xi −x∗‖

= O(|σ −λ∗|) and |λi+1−λ∗| = O(‖xi −x∗‖).

In [80, Section 4.2] it is shown that a quadratic convergenceorder for the residual inverse
iteration is obtained if the two-sided Rayleigh functionals is used for the updates ofλ .

6.2 Kummer’s method

In this section we want to derive Kummer’s method for algebraic holomorphic eigenvalue
problems, where we follow the work of Langer [58]. Kummer introduced in [57] an iter-
ative method for polynomial eigenvalue problems in arbitrary dimensional Hilbert spaces.
In his approach he constructed a scalar holomorphic function which has the eigenvalues
as zeros. Langer showed in [58] that this approach can be extended to general holomor-
phic eigenvalue problems. Langer required the assumption that the spectrum of the holo-
morphic operator function consists only of isolated eigenvalues which are poles of the
corresponding resolvent. This assumption is always fulfilled for eigenvalue problems for
holomorphic Fredholm operator functions, provided that the resolvent set of the operator
function is not empty, see Theorem 3.2.2 and Theorem 3.2.14.In particular, we have the
following representation of the resolvent of a holomorphicmatrix function.

Lemma 6.2.1. Let Λ be an open and connected subset ofC and let A: Λ → Cn×n be a
holomorphic matrix function with a non-empty resolvent setρ(A). Let λ∗ ∈ σ(A), then
there exists aδ > 0 such that for allλ ∈ {µ ∈ Λ : |µ −λ∗| < δ andµ 6= λ∗} the resolvent
admits the representation

A(λ )−1 =
−1

∑
k=−r

(λ −λ∗)kBk +F(λ ), (6.7)
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where Bk ∈ Cn×n for k = −r, . . . ,−1 with B−r 6= 0, F is a holomorphic matrix function,
and r= κ(A,λ∗) is the maximal length of a Jordan chain of A corresponding toλ∗.

Proof. SinceA(λ ) ∈ L(Cn,Cn) is obviously a Fredholm operator for allλ ∈ Λ, the repre-
sentation of the resolventA(λ )−1 follows immediately from Theorem 3.2.14.

Let us in the following assume thatA : Λ → Cn×n is a holomorphic matrix function with
ρ(A) 6= /0. If λ∗ is an eigenvalue ofA, then, by Lemma 6.2.1, we have the representation

A(λ )−1 =
−1

∑
k=−r

(λ −λ∗)kBk +
∞

∑
k=0

(λ −λ∗)kBk for λ ∈Uδ \{λ∗}, (6.8)

with B−r 6= 0. Therefore there exist vectorsw,z∈ Cn such that

(z,B−rw)2 6= 0. (6.9)

Define the functionϕ : ρ(A) → C by

ϕ(λ ) := (z,A(λ )−1w)2, (6.10)

thenϕ is holomorphic onUδ (λ∗)\{λ∗}, becauseϕ admits the representation

ϕ(λ ) = (z,A(λ )−1w)2 =
−1

∑
k=−r

(λ −λ∗)k(z,Bkw)2+
∞

∑
k=0

(λ −λ∗)k(z,Bkw)2.

Since|ϕ(λ )| → ∞ asλ → λ0, there exist aδ1 > 0 with δ1 ≤ δ and a constantK > 0 such
that

K ≤ |ϕ(λ )| for all λ ∈Uδ1
(λ∗)\{λ∗}. (6.11)

Hence, we may define the functionψ : Uδ1
(λ∗) → C by

ψ(λ ) :=





1
ϕ(λ )

for λ 6= λ∗,

0 for λ = λ∗.
(6.12)

The functionψ is holomorphic onUδ1
(λ∗) and allows the Taylor series expansion

ψ(λ ) =
(λ −λ∗)r

(z,B−rw)2
− (λ −λ∗)r+1(z,B−r+1w)2

(z,B−rw)2
2

+O
(
(λ −λ∗)r+2) .

We see thatλ∗ is a zero ofψ with multiplicity r. From

ψ ′(λ ) =
ϕ ′(λ )

ϕ(λ )2 for all λ ∈Uδ1
(λ∗)\{λ∗}
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it follows thatψ ′(λ ) = 0 inUδ1
(λ∗)\{λ∗} if and only if ϕ ′(λ ) = 0. Since|ϕ ′(λ )| → ∞ as

λ → λ∗, there exists aδ2 > 0 such that

|ϕ ′(λ )| > 0 for all λ ∈Uδ2
(λ∗)\{λ∗}.

Hence,λ∗ is the only zero ofψ ′ in Uδ2
(λ∗) and its multiplicity is(r −1). Thus, we may

define the functionη : Uδ2
(λ∗) → C by

η(λ ) :=






ψ(λ )

ψ ′(λ )
for λ 6= λ∗,

0 for λ = λ∗,
(6.13)

which is holomorphic and admits the Taylor series expansion

η(λ ) =
1
r
(λ −λ∗)+

(z,B−r+1w)2

r2(z,B−rw)2
(λ −λ∗)2+O

(
(λ −λ∗)3) . (6.14)

Further, we have

η(λ∗) = 0 and η ′(λ∗) =
1
r
. (6.15)

Thus, we have described the eigenvalueλ∗ as zero of the functionsψ andη, which is the
essential idea of Kummer’s approach. The use of Newton’s method to determine the zero
of the functionψ yields finally Kummer’s method [57, 58]. In the following theorem we
show its convergence property.

Theorem 6.2.2( [58, Satz 3]). Let s∈ N, where s≤ r = κ(A,λ∗). There exists a R> 0
with R≤ δ2 such that the iteration

λi+1 = λi −sη(λ ) = λi −s
ψ(λi)

ψ ′(λi)
for i = 0,1,2, . . . (6.16)

converges for anyλ0 ∈UR(λ∗) to λ∗. If s= r, then the convergence rate is quadratic and
we have

λi+1−λ∗
(λi −λ∗)2 → (z,B−r+1w)2

r(z,B−rw)2
as i→ ∞. (6.17)

If s < r, then the convergence rate is linear and we have

λi+1−λ∗
λi −λ∗

→ r −s
r

as i→ ∞. (6.18)

Proof. We use the Banach fixed point theorem for the function

f (λ ) := λ −sη(λ )
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to prove the convergence of the iteration (6.16). Sincef is holomorphic onUδ2
(λ∗) and

since

f ′(λ∗) = 1−sη ′(λ∗) = 1−s
1
r

< 1, (6.19)

there exists aR> 0, where we chooseR≤ δ2, such that

| f ′(λ )| < 1 for all λ ∈UR(λ∗).

Hence, by the Banach fixed point theorem the iteration (6.16)converges toλ∗ for all initial
valuesλ0 ∈UR(λ∗).

Using the Taylor series expansion (6.14) ofη we obtain from formula (6.16)

λi+1−λ∗ = λi −sη(λi)−λ∗

= λi −λ∗−s

[
1
r
(λi −λ∗)+(λi −λ∗)

2(z,B−r+1w)2

r2(z,B−rw)2
+O

(
(λ −λ∗)

3)
]
, (6.20)

which shows the convergence rates (6.17) and (6.18).

In practical computationsκ(A,λ∗) is not known a priori and therefores= 1 is chosen for
the iteration (6.16), which gives the classical Newton’s method for ψ(λ ) = 0. Then, a
quadratic convergence rate is obtained, ifκ(A,λ∗) = 1.

Let us now consider the implementation of Kummer’s method. Recalling the definition
(6.12) ofψ,

ψ(λ ) =
1

ϕ(λ )
=

1
(z,A(λ )−1w)2

for λ ∈Uδ1
(λ∗)\{λ∗},

we get
ψ(λ )

ψ ′(λ )
= − (z,A(λ )−1w)2

d
dλ

(z,A(λ )−1w)2

= − (z,A(λ )−1w)2

(z,
d

dλ
A(λ )−1w)2

. (6.21)

Using the representation (3.2) for the derivative ofA(·)−1, we can write

d
dλ

A(λ )−1 = −A(λ )−1A′(λ )A(λ )−1

and obtain

ψ(λ )

ψ ′(λ )
=

(z,A(λ )−1w)2

(z,A(λ )−1A′(λ )A(λ )−1w)2
=

(z,A(λ )−1w)2

([A(λ )−1]Hz,A′(λ )A(λ )−1w)2
.

Let xi ∈ C
n andy

i
∈ C

n denote the solutions of

A(λi)xi = w and A(λi)
Hy

i
= z, (6.22)
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then we can write Kummer’s iteration (6.16) as

λi+1 = λi −
(z,xi)2

(y
i
,A′(λi)xi)2

,

where we have sets= 1.

Kummer’s method also approximates a right and a left eigenvector by xi andy
i
, respec-

tively. In the following theorem we give a convergence result for the right eigenvector.

Theorem 6.2.3( [58, Satz 4]). Let xi be defined by (6.22), then there exists a i0 ∈ N such
that

inf
x∈kerA(λ∗)

∥∥∥∥x− xi

‖xi‖2

∥∥∥∥
2
≤ c|λi −λ∗| (6.23)

for all i ≥ i0, where c> 0 is a constant which is independent of i.

Proof. Let xi be the solution of
A(λi)xi = w.

Then, using the representation (6.8) ofA(λ )−1, we can write

xi = A(λi)
−1w =

∞

∑
k=−r

(λi −λ∗)kBkw =
B−rw

(λi −λ∗)r +
C(λi)w

(λi −λ∗)r−1 , (6.24)

where

C(λ ) :=
∞

∑
k=0

(λ −λ∗)
kBk−r+1.

The operator functionC : Uδ (λ∗) → C is holomorphic, since
∞

∑
k=0

(λ −λ∗)kBk is holomor-

phic onUδ (λ∗) by assumption (6.8). For the norm ofxi we get

‖xi‖2
2 = (xi ,xi) =

‖B−rw‖2
2

(λi −λ∗)2r +2Re
(B−rw,C(λi)w)2

(λi −λ∗)2r−1 +
‖C(λi)w‖2

2

(λi −λ∗)2r−2

=
‖B−rw‖2

2

(λi −λ∗)2r χ(λi), (6.25)

with

χ(λ ) := 1+
2Re[(λ −λ∗)(B−rw,C(λ )w)2]

‖B−rw‖2
2

+
|λ −λ∗|2‖C(λ )w‖2

‖B−rw‖2
2

.

The functionχ is well defined, since‖B−rw‖2
2 6= 0 by assumption (6.9). Note thatχ is real

valued, continuous onUδ (λ∗), and

χ(λ∗) = 1.
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Using (6.24) and (6.25) we can write

xi

‖xi‖2
=

(
B−rw

(λi −λ∗)r +
C(λi)w

(λi −λ∗)r−1

) |λi −λ∗|r
‖B−rw‖2

χ(λi)
−1/2. (6.26)

The vectorB−rw is an eigenvector of the operator functionA corresponding toλ∗, since
from

(λ −λ∗)
rw = (λ −λ∗)

rA(λ )A(λ )−1w

= A(λ∗)B−rw+
∞

∑
k=1

(λ −λ∗)kAk

∞

∑
k=1

(λ −λ∗)kB−r+k

for λ ∈Uδ (λ∗)\{λ∗}, it follows that

0 = lim
λ→λ∗

(λ −λ∗)rw = A(λ∗)B−rw.

Therefore also

x̃i :=
B−rw

(λi −λ∗)r

|λi −λ∗|r
‖B−rw‖2

χ(λi)
−1/2 ∈ kerA(λ∗).

Thus, we get from (6.26)

inf
x∈kerA(λ∗)

∥∥∥∥x− xi

‖xi‖2

∥∥∥∥
2
≤
∥∥∥∥x̃i −

xi

‖xi‖2

∥∥∥∥
2
=

‖C(λi)w‖2

‖B−rw‖2
χ(λi)

−1/2|λi −λ∗|. (6.27)

SinceC(λi) → B−r+1 andχ(λi) → 1 asi → ∞, there exists ai0 ∈ N such that

‖C(λi)w‖2 ≤ ‖B−r+1w‖2+1 and χ(λi)
−1/2 ≤ 2

for all i ≥ i0. Hence, we get the estimate

‖C(λi)w‖2

‖B−rw‖2
χ(λi)

−1/2 ≤ 2
‖B−r+1w‖2+1

‖B−rw‖2
=: c,

which proves with (6.27) the estimate (6.23).

Remark 6.2.4. Kummer’s method relies essentially on the representation of the resolvent
as given in Theorem 3.2.14. Therefore the whole analysis canbe done literally for eigen-
value problems for holomorphic Fredholm operator functions in arbitrary dimensional
Hilbert spaces, provided that the corresponding resolventset is not empty.

The costs of Kummer’s method as presented in Algorithm 4 lie in between the costs of
the inverse iteration and the costs of the two-sided Rayleigh functional iteration. If the
problem is small and a factorization ofA(λi) is used for the solution of the linear system
in step 3 of Algorithm 4, then this factorization can be used again for the linear system in
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Algorithm 4 Kummer’s method

1: Input: λ0,w,z
2: for i = 0,1,2, . . . until convergencedo
3: solveA(λi)xi = w for xi
4: solveA(λi)

Hy
i
= z for y

i
5: λi+1 = λi − (z,xi)2/(y

i
,A′(λi)xi)2

6: end for

step 4. For large problems an iterative solver is needed twice in Algorithm 4 and the costs
are then significantly higher than for the inverse iteration.

For complex symmetric eigenvalue problems the costs of Kummer’s method can be re-
duced, if input vectorsw andz are chosen such thatz= w. Then,y

i
= xi is the solution of

the linear equation in step 4 in Algorithm 4, since

A(λi)xi = w ⇔ A(λi)
⊤xi = w ⇔ A(λi)⊤xi = w ⇔ A(λi)

Hxi = w.

Hence, for complex symmetric eigenvalue problems only one linear system has to be
solved, if we choosez= w. The costs for Kummer’s method are then approximately the
same as for the inverse iteration and as for the complex symmetric Rayleigh functional
iteration.
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7 NUMERICAL EXPERIMENTS

In this chapter we present some numerical results of the boundary element approximation
of the Dirichlet Laplacian eigenvalue problem (2.6). In addition, we compare these results
with the results of a finite element approximation.

As domainΩ for the eigenvalue problem we choose the cubeΩ = (0, 1
2)3. The eigenvalues

are given by
λk = 4π2[k2

1 +k2
2 +k2

3

]

and the associated eigenfunctions are

uk(x) = (sin2πk1x1)(sin2πk2x2)(sin2πk3x3).

It turns out that the first eigenvalue (k1 = k2 = k3 = 1)

λ1 = 12π2, κ1 =
√

λ1 = 2
√

3π

is simple, while the second eigenvalue (k1 = 2,k2 = k3 = 1)

λ2 = 24π2, κ2 =
√

λ2 = 2
√

6π

is multiple.

Let us first consider the boundary element approximation of the eigenvalue problem. We
use the boundary integral formulation (5.19) for the Galerkin discretization with piecewise
constant basis functions as described in Chapter 5. The boundaryΓ = ∂Ω is decomposed
into N uniform plane triangular boundary elements with mesh sizeh. We use the inverse
iteration, the complex symmetric Rayleigh functional iteration, and Kummer’s method to
solve the algebraic nonlinear eigenvalue problem (5.21),

Vh(κh)w = 0.

Each method locally converges to the desired eigenvalues regardless of whether the eigen-
value is simple or multiple. Kummer’s method seems not to be superior concerning the
convergence behavior for multiple eigenvalues than the other methods. The convergence
region of the three methods differs. The largest convergence region has the Rayleigh func-
tional iteration followed by the inverse iteration.

The numerical results of the boundary element approximations for the eigenvalueκ1 and
κ2 are presented in Table 1 and Table 2. A cubic convergence order O(h3) can be observed,
which confirms the theoretical error estimate in (5.29).
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L h N κBEM
1,h |κ1−κBEM

1,h | eoc
2 2−3 384 10.8768 5.986e-03 -
3 2−4 1536 10.8821 6.962e-04 3.1
4 2−5 6144 10.8827 8.619e-05 3.0

Table 7.1: BEM approximation ofκ1 = 2
√

3π ≈ 10.8828, simple eigenvalue.

L h N κBEM
21,h

|κ2−κBEM
21,h

| eoc
2 2−3 384 15.373851 1.7e-02 -
3 2−4 1536 15.3887048 1.9e-03 3.1
4 2−5 6144 15.39037160 2.3e-04 3.1

L h N κBEM
22,h

|κ2−κBEM
22,h

| eoc
2 2−3 384 15.37364 1.7e-02 -
3 2−4 1536 15.3887060 1.9e-03 3.1
4 2−5 6144 15.39037171 2.3e-04 3.1

L h N κBEM
23,h

|κ2−κBEM
23,h

| eoc
2 2−3 384 15.373876 1.7e-02 -
3 2−4 1536 15.3887071 1.9e-03 3.1
4 2−5 6144 15.39037180 2.3e-04 3.1

Table 7.2: BEM approximation ofκ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue.

The number of iterations which have to be performed to reach atolerance for the residual
norm of 10−10 are presented in Table 3. Note that for the Rayleigh functional iteration in
every iteration step the Rayleigh functional has to be determined, which we have approxi-
mated by using three Newton steps.

κ1 κ21 κ22 κ23

Inverse iteration 10 11 12 10
Rayleigh functional iteration 3 4 4 3

Kummer’s method 11 11 12 11

Table 7.3: Number of iterations for BEM approximations, N=384.

For the finite element approximation we have used linear tetrahedral elements with respect
to an uniform discretization ofΩ with mesh sizeh. The FEM matrices are generated
by Netgen/NGSolve [79]. As eigenvalue solver we use LOBPCG [53] with a two-level
preconditioner. The numerical results of the finite elementdiscretization to approximate
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the first and second eigenvalue are listed in Tables 4 and 5, whereM is the number of
interior nodes which is equal to the number of degrees of freedom.

L h M κFEM
1,M |κ1−κ FEM

1,M |
3 2−4 343 11.3693 4.9e-01
4 2−5 3375 11.0038 1.2e-01
5 2−6 29791 10.9132 3.0e-02
6 2−7 250047 10.8903 7.6e-03

Table 7.4: FEM approximation ofκ1 = 2
√

3π ≈ 10.8828, simple eigenvalue.

L h M κFEM
21,M

|κ2−κFEM
21,M

| κFEM
22,M

|κ2−κFEM
22,M

| κFEM
23,M

|κ2−κFEM
23,M

|
3 2−4 343 16.27 8.8e-01 16.28 8.9e-01 17.59 2.2
4 2−5 3375 15.60 2.1e-01 15.60 2.4e-01 16.12 7.3e-01
5 2−6 29791 15.44 5.1e-02 15.44 5.3e-02 15.63 2.4e-01
6 2−7 250047 15.40 1.3e-02 15.40 1.4e-02 15.47 8.0e-02

Table 7.5: FEM approximation ofκ2 = 2
√

6π ≈ 15.3906, multiple eigenvalue.

The numerical results reflect the different convergence rates of both methods for the Dirich-
let Laplacian eigenvalue problem. The convergence order for finite element approxima-
tions with linear elements is quadratic, see (2.26). For boundary element approximations
with piecewise constant elements at the best a cubic convergence order can be achieved.
Note that the BEM approximations of the coarsest mesh on level L = 2 with matrix size
N = 384 are approximately the same as the FEM approximations of the finest mesh on
levelL = 6 with matrix sizeN = 250047.

The disadvantage of the boundary element approach comparedwith the finite element
approach is that in one run of the presented nonlinear eigenvalue algorithms only one
eigenpair is approximated and that sufficiently good initial values are needed for the con-
vergence to a desired eigenpair. In particular, there is no guarantee that all eigenvalues in
a specified domain are found. This is in general a crucial point of nonlinear eigenvalue
algorithms and a main topic of the research in this field [80,95,63].

The described boundary element discretization leads to fully populated matrices, therefore
it is restricted to rather small problem size. Moreover, thecosts of the computation of the
matrix entries are considerably high. Hence, there is a needfor so–called fast boundary
element methods in order to reduce the memory requirements and the costs of the computa-
tions. Several concepts are available for this purpose as the fast multipole method [29], the
adaptive cross approximation [9,70], panel clustering [37], or hierarchical matrices [36].
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