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Abstract

In this book we consider the application of boundary integgaiation methods to the solu-
tion of boundary control problems governed by boundarye@itwoblems of linear second
order elliptic and parabolic partial differential equaiso A difficulty when dealing with
Dirichlet control problems is the choice of the control spatn the literature almost all
contributions considek,(I") as the control space. But these approaches require to con-
sider the state equation within an ultra-weak variatiopaifulation, and an adjoint state
variable to be sufficiently regular. Hence the consideredala has to be either polygonal
or polyhedral but convex, or sufficiently smooth. In this Wweéine controls are considered
in the related energy spaces. This approach allows to cenaidtandard variational for-
mulation. Moreover, it shows the proper mapping propestiegh link the Dirichlet and
Neumann data in the optimality condition by using some appate operators. In the case
of box constraints the optimality condition is a variatibimequality inH/2(I") which can
be written as a Signorini boundary value problem with biiateonstraints.

Since the unknown function in boundary control problem® ibé found on the boundary
of the computational domain, the use of boundary elemenhodstseems to be a natu-
ral choice. To the best of our knowledge, there are only fesulte known on the use of
boundary integral equations to solve optimal boundaryrocbptroblems. The most popu-
lar approaches are based on the use of finite element metlcisequire a discretization
of the computational domain. In contrast, the use of boundEment methods requires
only a discretization of the boundary. In principle, the n§boundary integral equations
is based on an explicit knowledge of fundamental solutidriseoconsidered partial differ-
ential equations. Then, the solutions of both the state djuire boundary value problems
are represented by surface and volume potentials. Sincgdteenters the adjoint prob-
lem as volume density, we apply integration by parts to m@pkhese volume potentials
by surface potentials. This results in a system of boundasgral equations which in-
volve the standard Laplace and Bi-Laplace boundary integparators. In the case of
parabolic boundary control problems we first transfer thpiatistate equations to the
heat equations and then use an auxiliary function whicheglwo the fundamental solu-
tion of the heat equation, to get rid of volume potentialse ©btained system of boundary
integral equations is similar to the system in the ellipgase&. We prove the unique solv-
ability and study the boundary element discretizationfiefdptimality system. Piecewise
linear boundary elements are used to approximate the Detichntrol and piecewise con-
stant approximations for Neumann control. We prove stgtaind related error estimates.
While the non-symmetric boundary integral formulationaean additional condition on
the discretization to ensure stability, we can prove thbilsya of the symmetric bound-
ary element approach without any condition on the disagtn. We consider only the
symmetric formulation in the case of parabolic boundarytcdmproblems. Note that the
primal-dual active set strategy is employed to solve relatgiational inequalities. Some
numerical examples are tested to confirm the theoreticaltses



Zusammenfassung

In dieser Arbeit betrachten wir die Anwendung von Randirdégethoden zur Losung
von Randkontrollproblemen, wobei die Nebenbedingungeatdineare partielle ellipti-
sche und parabolische Differentialgleichungen zweiteinfdng beschrieben werden. Eine
Schwierigkeit besteht dabei in der Wahl des Funktionenesufiar die Kontrolle. Fast al-
le Beitrége in der Literatur verwendén(I") als Kontrollraum. Diese Anséatze bendtigen
aber eine ultraschwache Formulierung der Zustandsglegchad gentigend Regularitat
der adjungierten Zustandsvariablen. Dementsprechend dassbetrachtete Gebiet ent-
weder polygonal oder polyhedral und konvex, oder glatt gesain. In dieser Arbeit wird
die Kontrolle im entsprechenden Energieraum betrachte¢sdd Ansatz erlaubt es, die
ubliche Variationsformulierung zu verwenden. Weitershéittdie Optimalitatsbedingung
eine Dirichlet zu Neumann Abbildung welche die korrekterbAdungseigenschaften wi-
derspiegelt.

Fur die Lésung von Randkontrollproblemen erscheint diede@mentmethode als ein
geeignetes Diskretisierungsverfahren. Im Gegensatz mteRi Element Methoden ver-
langt die Randelementmethode nur eine DiskretisierundRdesles. Bei Kenntnis einer
Fundamentalldsung kdnnen die Losungen der Zustandsglegaimd der adjungierten Zu-
standsgleichung durch Oberflachenpotentiale und Voluwtengiale beschrieben werden.
Da die Zustandsvariable jedoch in der adjungierten Gleighals Volumenpotential zu
beriicksichtigen ist, erfolgt durch partielle Integratene Ruckfihrung auf Oberflachen-
potentiale. Dies resultiert in einem System von Randiatigdgichungen mit Laplace und
Bi-Laplace Randintegraloperatoren. Im Falle eines pdisditen Randkontrollproblems
wird die adjungierte Zustandsgleichung zunéchst in einenvéeitgleichung transfor-
miert. Um das Volumenpotential zu vermeiden, wird im Ansissl eine auf der Funda-
mentallésung der Warmeleitgleichung basierende Hilfisfion verwendet. Das resultie-
rende System entspricht dem System fur den elliptischdn\Wal beweisen die eindeuti-
ge Losbarkeit und studieren die Randelementdiskretisgedes Optimalitatssystems. Die
Dirichletkontrolle wird mittels linearer Formfunktioneapproximiert und die Neumann-
kontrolle wird durch stiickweise konstante Formfunktion®&ir beweisen Stabilitat und
zugehdrige Fehlerabschatzungen. Wahrend fur die Stglalkt nicht-symmetrischen For-
mulierung zusatzliche Anforderungen an die Diskretisigrgestellt werden missen, kann
die Stabilitdt der symmetrischen Formulierung ohne zlise Anforderungen bewiesen
werden. Fir parabolische Probleme beschranken wir unsiaidydnmetrische Formu-
lierung. Fur die Losung der auftretenden Variationsumglengen verwenden wir die
primal-dual aktive Mengen-Strategie. Numerische Belspiestéatigen die theoretischen
Ergebnisse.
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1 INTRODUCTION

Optimal control problems subject to partial differentiguations (PDEs) with additional
constraints on the controls play an important role in mamcpecal applications, see [28,
38, 66] and references given therein. In particular, fordbiet boundary control problems
in fluid mechanics, consult [22, 25]. Here, let us considens@xamples of optimal
heating problems, [66].

Optimal stationary heating. Consider the equilibrium distribution of the absolute tem-
peratureu : Q — R inside a bodyQ ¢ R® which is determined by the stationary heat
equation

—div(kOu) = f, (1.2)

wherek is the body’s thermal conductivity, anfdrepresents possible heat sources. In the
simplest cases is a positive constant. We can apply a heat sotireez (thecontrol) in the
domainQ. The goal is to find the contralin such a way that the temperature distribution
uin Q (thestatg is the best possible approximation to a desired temperaligtribution
uin Q. Problems of this kind arise if the body is heated by electromagnetic induction
or by microwaves. Assuming that the boundary temperatuneskas, we can model an
optimal control problem as follows:

Minimize J(u,2) = %/[u(x)—U(x)]zdx+%/[z(x)]2dx (1.2)
Q Q

subject to the PDE constraints, for= 1,

—Au(x) = z(x) inQ, (1.3)
uix)=0 onl =0Q, (1.4)

and to the pointwise control constraints

7(X) < z(x) <zp(x) inQ. (1.5)
The constantr > 0 can be seen as a regularization parameter. It has the thif¢gtossible
optimal controls show improved regularity properties. Tost functional Ju,z) to be
minimized is called th@bjective functional Observe that the control acts in the volume
domainQ. Hence we have distributed control problem
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In a similar way, the control can act at each point of the beup@. The control is no
longer distributed in the domai®, we have now @oundary control problemThe problem
leads to the minimization of the objective functional

3(u,2) 2/ dx+—|]zHV (1.6)

subject to the PDE constraints

—Au(x) = f(x) inQ, (1.7)
u(x) =2z(x) onr, (1.8)

and
71(x) <z(x) <z(x) onT. (1.9)

Here f(x) is a given function. The second term in (1.6}|2 describes either the costs
of the control or represents some regularization, where an appropriate Hilbert space
to be specified. In a slightly more realistic applicationeanight only be able to control
the temperature on some péaig of ' with 'c C I'. In this case, we need an additional
boundary condition on the remaining pé&r ¢ of the boundary, e.g., a homogeneous
Neumann boundary condition which describes an isolation.

Optimal nonstationary heating. The temperature is now changing with the tim&hen
the temperature distribution is modeled by the transieat bgquation

ou—div(kOu) = f, (1.10)

where the heat sourcdsand the temperatung in general, depend on time as well as on
the space coordinates. They are defined in the space-tiimeley® := Q x (0,T), where

T > 0 represents a final time. We know the temperature distabuai the initial time¢ =0,
u(-,0) = up, and we want to reach a temperaturat the final timet = T. The problem
then reads as follows:

Minimize J(u,2) = %/[U(X,T) —u(x)]zdx+%||z||$,, (1.12)
Q
subject to
gdu—Au=0 inQ, (1.12)
u=z onx:=TIx(0,T), (1.13)
u(-,0)=up inQ, (1.14)
and

z(xt) <z(xt) <z(xt) onx. (1.15)



Here the controk is considered in an appropriate Hilbert spatee.g.,V = Ly(%). The
temperature distributionfulfills a parabolic partial differential equation, whereontrols
the temperature on the boundary. We thus have to deal witlear-quadratic parabolic
boundary control problem.

The numerical analysis of the distributed control probldih®)-(1.5) by finite element
methods (FEMs) was considered in [46, 47, 55]. In particWN&yer and Rdsch derived
error estimates of ordew for the controls in thd_, norm by using piecewise constant
controls, and of linear convergence in thg norm by using piecewise linear controls.
For the approximation of the discretization for semiline#iptic optimal control prob-
lems, see, e.qg., [2, 9]. We refer to [13, 27, 54] for generadr-quadratic optimal control
problems.

For the Dirichlet boundary control problem, the choice @ finction space for the control
is crucial. In [25], the Dirichlet boundary condition is @dered iny c HY/2(T"), where
the objective functional is the domain integral over thaisttensor of the velocity field
satisfying the steady Navier-Stokes equations. To obtaimosher optimal solutions one
may consideH?(I") as a control space, see [30]. Note that such an approachresqui
sufficient regularity of the domaif which is assumed to be of the clag8%!. In [36],
several variational formulations of Dirichlet control ptems are discussed. The most
popular choice is to considép as control space. However, the associated partial differen
tial equation of the state has to be considered within aa-weak variational formulation.
To include a Dirichlet boundary condition lp(I") in a standard variational formulation,
one may approximate Dirichlet boundary control problemsakyegularization which is
based on Robin boundary controls, see [7, 10, 29]. For thielgmo(1.6)-(1.9), a finite
element approach is considered in [51], where the energy merealized by using the
Steklov-Poincaré operator which links the Dirichlet cohtrvith the normal derivative of
the adjoint variable.

Numerical solutions of,(I") Dirichlet boundary control problems by finite element ap-
proximations are considered in [11, 19, 42]. Casas and Raginibl] present a finite
element analysis for piecewise linear approximations ef@irichlet controls governed
by semilinear elliptic equations on two-dimensional conpgelygonal domaing2. They
prove an error estimate of the optimal control of ordiih'~%/P) for somep > 2 in the
Lo() norm. In [42] May, Rannacher and Vexler consider the DigtHiloundary control
without control constraints (1.6)-(1.8) inla setting. They present error estimates for
the state and adjoint state and derive optimal error estisriatH ~1/2(I") for the Dirichlet
control. For two- and three-dimensional smooth domaing)ém,/|logh|) bound for the

L, error of the optimal control and state is proved in [19], whian be improved t(j)(h%)
under additional conditions in two space dimensions. Ince of a finite dimensional
Dirichlet control [67], Vexler derives an error estimatetioé optimal control of quadratic
order for two-dimensional bounded polygonal domains.
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In a recent contribution [12], the Dirichlet and Neumann thaary control problems gov-
erned by a semilinear elliptic equation on a curved converalnQ c R? are analyzed.
Casas and Sokolowski approximate the curved dor@aly a polygonal domaify, and
consider the corresponding infinite dimensional controbfgms inQ;,. Some error esti-
mates for the relatecé controls are derived. While for theri@on control the order of the
approximation ig7(h3), a linear order is proved in the case of Dirichlet controlonl

Let us briefly recall some publications of parabolic optiroahtrol problems. Such opti-
mal control problems with observations in the dom&iror on the boundary are con-
sidered in [38] from an analytic point of view. In [44, 45]stlibuted parabolic optimal
control problems without and with control constraints weoasidered. The authors es-
tablished several a priori error estimates which corredporvarious types of control dis-
cretizations. For the analysis of the parabolic Dirichletubdary control problems, we
cite [3, 4], see also [36, 38]. In [68, 69], a numerical Gailenethod was proposed to
solve a parabolic Neumann control problem. This approxmnatvas based on a backward
discretization with respect to time, and for every time léve nh, the author proved the
order(’)((log%)z(ht +h2)) of the error of the control i (I"). For the control and/or state
constrained case of the parabolic Neumann control prohlsees[53, 56].

This thesis is concerned with the application of boundatggral equation methods to
optimal boundary control problems. The controls are carsid in the related energy
spaces. This approach allows to consider the standardigaahformulation. There are
several papers to deal with optimal boundary control prolslby FEMs, see the discussion
above. But to our knowledge there are only few results on #eeai boundary integral
equations to solve optimal boundary control problems, seg, [70] for the problem with
point observations. While the finite element approachesired discretization of the
computational domain, the use of boundary integral fortnuta and boundary element
methods (BEMS) requires only a discretization of the bompnddlence, BEMs can be
easier to deal with a complicated domain. Moreover, the Hagnelement solution exactly
fulfills the considered partial differential equation idsithe domain. Since the unknown
function in the optimal boundary control problems is to bagid on the boundary of the
computational domain, the use of boundary element methemtasto be a natural choice.
However, this approach can only be employed if a fundameotation of the underlying
partial differential equation is available.

Then, by using the potential theory, the solutions of thatesl state and adjoint partial
differential equations can be represented by surface ahanepotentials. Applying
the proper limiting processes, a system of boundary integyaations is obtained. The
first approach is based on the first boundary integral egusind the state and the ad-
joint partial differential equations. The system of bourydategral equations results in a
non-symmetric variational formulation. We prove uniquérability of the related elliptic
variational inequality of the first kind. Note that the costrh of the control in the en-
ergy spacéd1/2(I) is characterized by using the Steklov-Poincasé opeBatdrich links



the Dirichlet with the Neumann data. For Galerkin bounddeyrent methods, we use a
non-symmetric representation of the opera&or his results in a non-symmetric Galerkin
boundary element approximation which requires the use pfaguiate boundary element
spaces to ensure stability. As a second approach, we cotisgdgecond boundary integral
equation of the adjoint problem. The obtained system of Hagnintegral equations re-
sults in a symmetric variational formulation which is s&fdr standard boundary element
discretization. Moreover, we use the symmetric Galerkinruary element approxima-
tion of the Steklov-Poincas® We then derive error estimates which are confirmed by
numerical examples. For the mixed boundary control problednere the control acts on
a partl'p C I' of the boundary, we consider the symmetric variational formulation by
using the so-called Dirichlet to Neumann m@pFor an overview on boundary integral
equations and boundary element methods, see, e.g., [337439, 64].

For parabolic boundary control problems, similarly, thiated state and the adjoint state
can be represented by some layer heat potentials, and Né&airpotentials. Since the
final state appears in a representation of the adjoint bayinddue problem, we modify
the representation by using an auxiliary function whiclhtes to the fundamental solution
of the heat equation. This results in a system of boundaegrat equations. We consider
only the Galerkin boundary element approximation of themsatric formulation which is
stable for standard boundary trial spaces. In particulackoose an approximation for the
Dirichlet control which is piecewise linear and continuauspace and piecewise constant
in time, and for the Neumann control an approximation whgpiecewise constant both
in space and in time, see [15]. We derive related error egtisrend test some numerical
examples.

Outline

In Chapter2 we present some mathematical preliminaries. We recallctmeept of
Sobolev spaces which are used for boundary and finite elemetitods. Then we in-
troduce some finite dimensional trial spaces and discugsaibgroximation properties.

In Chapter3 we consider a Dirichlet boundary control problem assediab the Poisson

equation with box control constraints. The Dirichlet cohis considered in the energy
spaceH 1/2(F), where the energy norm is realized by using the Steklovd¢2o@éoperator.

The primal and adjoint equations are written as boundaggnat equations. The optimal-
ity condition results in a variational inequality which iudied in a non-symmetric or a
symmetric formulation. We also discuss related Galerkinnatary element methods.

In Chapter4 an elliptic mixed boundary control problem is considerathwontrol con-
straints. The Dirichlet control acts on a pai$ of the boundary™ where the Neumann
boundary condition is given on the remaining dagt:= I \ I'p. In order to avoid volume
potentials, the idea of integration by parts a€mapter3 is used. We investigate a system
of boundary integral equations which is related to the Steloincaré operator.
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Chapter5 is devoted to the analysis of a parabolic Dirichlet boupdamtrol problem
with control constraints. We setup a system of boundangnaieequations in a symmet-
ric formulation which is similar to the elliptic version assdussed inChapter3. The
unique solvability of the related variational inequalitydaa related error analysis of the
Galerkin discretization are based on the mapping propsesfithe standard heat potentials
and new “bi-heat” potentials. In addition, the boundaryre@t approach can be applied to
a parabolic Neumann boundary control problem as well. Thegwe some main results
for this problem.

Finally, in Chapter6 we give some conclusions and discussions.



2 MATHEMATICAL PRELIMINARIES

2.1 Sobolev spaces and trace theory

In this section we recall some relevant Sobolev spaces adoisthe analysis of boundary
and finite element methods. A brief summary of the basic defits and results of Sobolev
spaces are presented which suffice for our purposes. Therefanences of this section
are the standard books [1, 31, 39, 40, 43].

2.1.1 Isotropic Sobolev spaces

Definition 2.1. Let Q be an open subset &Y. For k € Ng the Sobolev space Q) is
defined by

WK(Q) :={ue Ly(Q): D% e Ly(Q) for all multi-indicesa € N§ with |a| < k}.

The Sobolev spad&/s(Q) is equipped with the norm

/2
”u”Wzk(Q) = ( z /|Da X)| dx) (2.1)
lal<kg

and it is a Hilbert space with respect to the inner product

(U Vwk o /D" X)DV(X)
|cr|<kQ

For the case of a fractional ordee= k+ u with k € Ng andu € (0,1), the Sobolev space
W5(Q) is defined by

VE(Q) 1= {ue WS(Q): |lullwga) < =}

where

/2

1
ay 2
HUHWZS(Q = (ka |z //|D x— y|d+2u(y)| dxdy) (2.2)
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is theSobolev-Slobodetskii normAgain, W5(Q) is a Hilbert space with respect to the inner
product

(U Vwg(@) = (U Vi) + | |Zk / / (D%u(x) — DC"t)J((z)})/'(dli‘;\l/(w —DVY)) gy
aI=Kg o

Clearly, fork = 0 we haveA?(Q) = L»(Q).

In what follows we introduce Sobolev spacE$(Q) which may be equivalent to the
Sobolev space®/;(Q) when some regularity assumptions Qnare satisfied. The defi-
nition of the Sobolev spacé$(Q) is based on the Fourier transform

(&) i= (FU)(&) = (2m) %2 [ e *upgdx & R,
Rd

for u e L1(RY). Now letS(RY) be the Schwartz space of rapidly decreasing functions in
C*(RY),

S(RY) :={¢p e C*(RY): sup|x*DP¢(x)| <o for all multi-indicesa andp},

xeRd
and letS’(RY) be its dual space. The Sobolev spat¢RY) is defined by
H3RY) == {ue S'(RY): J%u€ Lo(RY)},
where 75 : S(RY) — S(RY) is the Bessel potential operator
TU(X) = (2n)d/2/<1+ E2)%20(2)d*9) de,  xe RY.
Rd

The Sobolev spadd3(RY) is equipped with the norm

1/2
ulbssgee) = 117l ey = ( / <1+52>Sa<f)2df) . (2:3)

Rd

For all 0< s€ R, the Sobolev spacé$3(RY) andWs(RY) coincide, see for example [43,
Theorem 3.16].

For a domair ¢ RY we introduce the following definitions of Sobolev spaces.

Definition 2.2. Let Q be an open subset &Y. We define the Sobolev spacé&€l) for
s€ R by restriction,
HY(Q) == {u=Tgq: TeHRY)},
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with the norm

Ullgsioy i= inf Ul| sy -
[ullHs(q) UeHS(Rd)%:uH [ Hs(ra)

Further,
I—~|S(Q) ::WHMHS(Rd)’ H3(Q) ::WH-HH%Q)‘

To see the connection of the above definitions of Sobolevespaee need to make some
regularity assumptions on the doman Let us recall the definition of the classg§¥,
k € N, k € [0,1] as in [31, Section 3.3]. Given a poigit= (y1,...,yq) € RY, we shall
write
y=(Y.Ya)

where

y, = (yl, ...,yd,]_) € Rdil.
Definition 2.3. A bounded domai in RY is said to be of class & (in shortQ e Ck¥)
if the following properties are satisfied:

i. There exists a finite number p of orthogonal linear tramsfations T, (i.e. dxd
orthogonal matrices) and the same number of poiptsI™ and functions g)()/),
r=1,...,p, defined on the closures of tfe— 1)-dimensional ball,

Q={y eR¥*: |y| <35} (2.4)
whered > 0 is a fixed constant. For each«T there is at least one € {1, ..., p}
such that

X=Xn+Tn (Y, a0 ¥))- (2.5)

ii. The functions g, belong to ¢(Q).
iii. There exists a positive numbersuch that for any E {1, ..., p} the open set
By :={Xn+Tny: Y=(Y,Ya),Y € Qand|yq| < &}

is the union of the sets

Z/l(?) :B(r)ﬂQ
= {x=X0+Try: Y=(Y.¥a),Y €Qand ay(y) —& <ya <an(y)},
Uy, =B N(RN\Q)

= {X=X1)+Tny: y=(Y,ya),y € Qand q,)(Y) < ya <an(y) + &},

and

Cr) =B NoQ = {x=xy)+Tn(Y,an)): Y €Q}.
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The boundary surfacE = dQ is said to be in the clasg®¥ if Q € CkX, and in short
we writel” € C*X_ In the special case, whdne C%1, the boundary is called kipschitz
boundaryandQ is called aLipschitz domain Note that a Lipschitz domain may be un-
bounded. For example, f is a Lipschitz domain, then its compleméft\ Q is also a
Lipschitz domain.

The relations among the above Sobolev spaces can be seethidollowing theorem,
see for example [43, Section 3].

Theorem 2.1. LetQ be a Lipschitz domain. Fors 0 we have
i W3(Q) =H3(Q).
i. H(Q) C H§(Q).
ii. HY(Q)=H3(Q)fors¢ {3,3.3,...}.

Moreover, for all se R

Sobolev spaces on the boundary
In what follows, we assume th& is a Lipschitz domain, unless stated otherwise.

Let L,(I"), s= 0, be the completion oE°(I"), the space of all continuous functions Bn

with respect to the norm
1/2
Uiy = ( / u<x>2d&) . (2.6)
r

This is a Hilbert space with the inner product

(UV)Ly(r) = /u(x)v(x)ds(.
r

For 0< s< 1 we defineHS(I") to be the completion aE°(I") with respect to the Sobolev-
Slobodetskii norm

1/2
Ul = (uLz + / / P MSdsxdsy) - @)

Again,H3(I") is a Hilbert space equipped with the inner product

(U Vs = (U V)ip(r +// |X y|d V09 O g, s,
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For generak € R, a regularity assumption for the bounddpyc C*X is required. Let us
recall the parametric representation (2.5)

X=X+ T (Y, an(y)) foryeQr=1,..p.

Then, fors € R with 0 < s< k+ k for nonintegek + kK or 0 < s< k+ K for integerk+ kK
we define the Sobolev spat(I") by

H3(T) == {ueLa(T): u(Xe) + T (Y, an(y))) € HXQ),r=1,.... p}

equipped with the norm

- 1/2
[Ul[s(ry == <Zl||U(X(r)+T(r)(}/,a(r)()/)))||aS(Q)> : (2.8)

This space is a Hilbert space with the inner product

p

W Vi) = 3 (e + T (80 (V)): V) + T (800 (V) s

r=
see [31, Section 4.2].
Note that, for O< s< 1, the Sobolev norms as defined in (2.7) and (2.8) are equivale

For negative order, the Sobolev spad&") for s < 0 is defined as the dual space of
H™3(T),
H3(T) = [H™3(1)

with respect to thé,(I") inner product, i.e., the completion bf(I") with respect to the
associated norm

(UV)yr
lUlpsry == sup 20 (2.9)
ozveH-s(r) [IVlln-s(r)
and to the duality pairing
() = (V)i = [ UV dse (2.10)
r

For the study of the mixed boundary control problems we frtheed to define some
Sobolev spaces on an open part of the boun@arsee [64, p.37]. Le[og C I be some
open part of a sufficient smooth bounddry= Q. Fors> 0 we define the Sobolev
spaces

H¥To) = {v=Vjr,: Ve HXM)},
H(Fo) 1= {v="Vjr,: V€ HT), supy C lo}
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with the norm
\Y, = inf V
| ||HS(r0) VM), V|| ||HS(r)

For s < 0 we define the appropriate Sobolev spaces by duality witectgo thel (o)
inner product,

H(Fo) := [H~%(Fo))', H(To) :=[H%(To)]"
Remark 2.1. For a Lipschitz domair©2, we have to assumg| < 1 to ensure the above
definitions and statements concerning the Sobolev spatiesden subsets of the bound-

ary ' = 0Q. For the casgs| > 1 stronger regularity conditions of the boundary need to
be assumed, i.el, € C1, k€ Ng for |g| < k+ 1, see [31, Section 4.3].

Moreover, let” be a closed boundary which is piecewise smooth,

i, iNCj=0 fori#j.

-
uc=

We define fors > 0 the spaced;,,(I") as the space of piecewise smooth functions
HSwW(M) == {ve La(T): v, e H(M),i=1,....3}

with the norm

3 1/2
IVI[Hs, (r 1={ Vi, l13s i}
$,(1) i; rillFsery
J ~
~ []FE(r)
J]l j

while for s < 0 we have

with the norm

J
)= 3 19l

Lemma 2.1. Forw € Hg,,(I) and s< 0 we have

IWlhsry < l[Wilhg,,r)

Proof. See [64, Lemma 2.20]. O
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2.1.2 Anisotropic Sobolev spaces

In this subsection, we briefly recall some definitions angprtes of anisotropic Sobolev
spaces for studying parabolic boundary control probleess[$5, 40].

Let Q c RY be a bounded Lipschitz domain with bounddry= Q. For a fixed real
numberT > 0, we write

| :=(0,T), Q:=Qxl, =:=rxl.

Let X be a Banach space with the notm||x. We defineLx(l;X) as the space of all
measurable functions: [0, T] — X with

T 1/2
||u||L2(I;X) = (/U(',t)idt) < 00.
0

e tTy(x,t)dt

Let
a(x, 1) 1= \/_n/
be the Fourier transform afwith respect to the time variable, we have
UEHS(RL2(Q)) < (1+]|1]9)%20 e La(R;Lx(Q)) = Lo(Q x R).
The Sobolev spadd"S(RY x R) for r,s> 0, is defined by
H"S(RY x R) := Lo(R; H" (RY)) N HS(R; Lo(RY)),

see [15], with the natural norms defined in these spaces beHispace valued distribu-
tions. We have

Iulesr = | (18,0 @) + A+ TR DR, q) d.

R

With r > 0 ands e (0,1), an equivalent norm is given by

”U(,t) - U(-, T)”EZ(Q)
sz = /M S e e
R R

Forr,s < 0 we define by dualityd"S(RY x R) := [H~"~S(RY x R)]’. By H"S(Q) we denote
the space of restrictions of eIementsfd)'fs(Rd x R) to Q, equipped with the obvious
guotient norm.
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Moreover, we define the following subspaces:

HUS(Q) i= {u € (@ x (—0,T)): u(xt) =0 fort < 0}  H'¥(@x (~<,T))
ﬂ)r,S(Q) ={ue H"3(Q x (0,»)): u(x,t)=0fort>T},

and

Hg3(Q) := La(1;Hg(Q)) NH3(I; L2(Q)) € H™S(Q).

)

It can be verified that the spaét;°(Q) coincides with the closure iH"S(Q) of the sub-
space of functions which vanish in a (spatial variable) heaurhood of;

HG(Q) = La(I1H"(Q)) NHG(1: L2(Q)) € H™(Q),

which is the closure ii"3(Q) of the subspace of functions which vanish in the neighbour-
hood oft =0 and oft =T, and

Hoo(Q) == Hg (Q) NHF(Q),

~ (T)
which is the closure oD(Q) in H"S(Q). Similarly, H;*(Q) or H *(Q) are defined as
the closure irH"3(Q) of the subspace of functions which vanish in the (spatiabtée)
neighbourhood ok and the neighbourhood o= 0 ort =T, respectively.

The negative indexed Sobolev spaces are defined as the @easswith respect to the
L2(Z) inner product as following, see [40, p.41], [15]:

HT75(Q) = Hep(Q)) forrs>0,

and
7 —r,—S . (T)r.s / i 1
H™7%(Q):=[H g (QI" forallr,swithr — > ¢ Z.

Another important space is
V(Q) := Loa(l;HY Q) nHY(;H1Q)) = {ue La(I;HY(Q)): due La(I;HH(Q))}.

The subspaceB(Q) C V(Q x (—x,0)) andVo(Q) C V(Q) are defined analogously. It is
true that, see [15, 39],

V(Q) is a dense subspace HF’%(Q).
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Sobolev spaces on the boundary

Analogously we may first define the spa¢#’s’(I" x R) and therH"S(X) by restriction to
>, see [40, Section 13.3].

The Sobolev spadd"3(I" x R) for r,s> 0, is defined by
H™S(M x R) = {u: ue Ly(R;H"(N),|1[80 € La(R;HO(M))}, (2.11)

equipped with the norm

1/
A2
HUHHferR (”u”LzRHr )+|HT‘SUHL2(R;HO(F))) .

We defineH"S(Z) as the restriction ofd"S(I" x R) to X, equipped with the corresponding
guotient norm. This definition is equivalent to

HS(S) = La(I;H' (M) NHS(1; Ly(T)).

For 0< r,s< 1, an equivalent norm inl"3(X) is given by

]
UGt —u(yt)?
L A e y‘d W OF dtds.ds,
0 r

f
/!

+

JDIIE
/ ‘t — T|1+23 D dtdr.
0

SinceH{ (") = H'(I"), there is no distinction betweet;*(Z) andH"S(X), but we may
set ’
H(Z) = La(1I;H' (M) NHS(; HO(M)).

)

The spacéi™S(=) is defined analogously. By duality, fars> 0,
H™5(3) = [H()]"

Remark 2.2. As discussed in Remark 2.1, for Lipschitz boundamye have to assume
Ir] <1 (se R arbitrary) to define the above anisotropic Sobolev spacetherboundary.
For |r| > 1 stronger regularity assumptions on the boundary need todseirmed, first to
formulate H ("), then to define FF(I" x R) as in (2.11).
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Trace theorem

Theorem 2.2.For u € H"S(Q) with r > 3,5 > 0, we may define:

j 1 J -
%u on X if | <r—é (integer j> 0), %UEH“JNJ(Z),
where .
. . r N i =
r S r
, al :
The linear map u- ﬁu IS continuous,

H"S(Q) — HHIYi(T).
o . o . L
Here an is the normal derivative o, oriented toward the interior of Q.

We may also define, fors 3,r >0,

% 1 %
U0 on Q if k<s—Z (integerk>0), ——Uu(x,0) € H*(Q),

otk otk
r 1
pk: g(S—k—é) .
dk

The linear map u- ﬁu(x, 0) is continuous,

where

H"S(Q) — HP(Q).
Proof. See [40, Theorem 2.1]. O

Next we consider the trace Efl’%(Q) on the boundarg, see [15, Lemma 2.4].

Lemma 2.2. The trace mapp : U~ Uz is continuous and surjective frorﬁlv%(Q) to
H24(5).
Remark 2.3. The traces orx have to be understood in a distributional sense, i.e., they a

defined by continuous extensions of the traces defined indinénise sense for smooth
functions.
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2.2 Boundary elements

For the approximate solution of boundary integral equatiehus summarize some appro-
priate finite dimensional trial spaces. We recall some appration properties in various
Sobolev spaces. We refer to [48, 64] for more details.

Letl = dQ be a piecewise smooth Lipschitz boundary wWits Uf:f,— where any bound-
ary partl"j can be smoothly mapped in a 1 to 1 fashion onto some parameteaid

Q CRYL I = x;(Q). The domainQ can be(0,1) in the two dimensional case or a
unit square in the three dimensional case. We consider angezsition of the parameter
domaing@ into finite elementqé which correspond to an admissible decomposition of the

boundary parf j into boundary elements = X (qé). We denote by
Oy = / ds,, hy Z:A;/(d_l)
5%

the volume and the local mesh size of the boundary elemergspectively. The (global)
mesh size is defined by
h:= mgaxhg.

The boundary decomposition is called globally quasi-umifif

_ <
mglnhg -

is satisfied with a global constart > 1. Note, in the three dimensional case, the boundary
decomposition is called admissible if two neighboring baany elements share either a
node or an edge, and it is called shape regular if there exisbdmstantg such that

d, <cgh, forall boundary elements,

whered, = supyer, [X— Y.

Trial spaces

Let us recall some trial spac%*(r) of local polynomials of degreéy. In particular we
will consider the trial spac&)(I") of piecewise constant functions and the trial Spgi¢€)
of piecewise linear continuous functions:

) :=spar{ ¢y, Sy(M) :=spar g}y,

where the basis function(x) are given by

1 forxe 1y,
¢£<x>={ ‘

0 otherwise
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Moreover, a functiov, € SH(I) is determined by the nodal values which are described at
theM nodesx, i.e., a basis 08(I") is given by

1 forx = xi,
ol(x)=1¢0 forx = xj # X,
linear otherwise

If ue Ly(I) is a given function, thé., projectionPPu € S(I) is defined as the unique
solution of the variational problem

<,P}9U,Vh>|_2(r) = <U,Vh>|_2(r) for all Vh € ﬁ(r)

In addition, we define thé, projectionPﬁu € S%(I‘) as the unique solution of the varia-
tional problem

(Pau, Vi Ly(r) = (U V), for all vy € Sy(I).

The following error estimates for the projection operaﬂﬁ?‘, when assuming sufficient
smoothness oh, can be found in, e.g., [48, 64].

Lemma 2.3. Let ue HS(I") be given for some s [0,1]. For o € [—1,0] there holds the
error estimate

lu=PRullno(r) < ™ ulpsr). (2.12)

Lemma 2.4. Let ue HS(I") be given for some s [0,2]. For o € [—1,0] there holds the
error estimate

lu=Paullory < ch® % ulysir). (2.13)
Moreover, the following approximation properties of thaltspaces are available as shown
in [64, Section 10.2].

Theorem 2.3.Leto € [—1,0]. For ue HS(I") with some « [0, 1] there holds the approx-
imation property of ),

inf ||U—Vh||Ho(r) < Chs_0|U|Hs(r). (214)
VheSH(M)

Theorem 2.4.Let" = 9Q be sufficiently smooth. Far € [0,1] and for some & [0, 2]
we assume & H3(I"). Then there holds the approximation property MI'S,

i [Ju—Vallno(ry < ch™ 7[ulpsr). (2.15)
VheS (M)
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To construct the trial spaces for parabolic boundary copirablems, we use a uniform
partition of the intervalO, T] with a time stepsizé;. We defineTh‘?t as the space of locally

polynomials of degreed; in time. For exampIeTh? is the space of piecewise constant func-
tions. This space is conveniently described as the sparedbtlowing basis functions,
see [48],

_ ., k=01,..,N—1 (2.16)
0 otherwise

¢fa%:{1 if khy <t < (k+1)hy,

We describe a standard class of tensor product sma%éj's(Z) = ﬁi(l‘) ® Th‘?‘. We would
like to estimate

inf{HU—VhHHpﬁq(z) - VhE ngydt(z)}

forue H™3(Z) with0<r,0<sandp <r, g <s. The following approximation properties
are recalled from [15, 48].

Theorem 2.5. Let
—O<p<O0<r<d+1, 0<s<d+1

Then there is a constant € 0 which depends ofp,r,s) such that

, 3 _p
inf{lu—vall pp . V€ QRN (D)} <CP+h A M) ulursy  (217)

(2)
forallu e H"S(Z).

Theorem 2.6.Let

0<p<r<dy+1, p<dg+1/2
0<g<s<d+1, qg<d+1/2

and
r_p
s q
Then there is a constant(€s) > 0 such that

inf{{lu—vallpas): o € QX (D)} < CLY P+ ufpess)  (2.18)

forallu e H"3(Z).

In the simplest finite element approximations compatibldawie energy norm, i.ep= %
(p= —%), q= g, we choose the approximations of piecewise linear and rootis (or
piecewise constant) in space and piecewise constant in tihresults in the following
corollary.
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Corollary 2.1. Assume that there are constanis@ > 0 such that
c1h? < hy < coh2.

Then, for0<r < 1,1 <s< 2 we have

: ) 0,0 r+1
inf{Ju=vhll, 3 3 5 Vo € Q°(2)} < CH 2 ul g o (2.19)

1
IF{lu=hll 3 3 5, V0 € QRO < CHE 2l ez (2.20)



3 ELLIPTIC DIRICHLET BOUNDARY CONTROL PROBLEMS

This chapter is devoted to study Dirichlet boundary conprablems subject to elliptic
partial differential equations. The Karush-Kuhn-Tucke€K) system [28], which com-
prises the state equation, the adjoint equation, and thenality condition is rewritten
as either a system of boundary integral equations in a nom¥tric or in a symmetric
formulation. The unique solvability of these systems caddmived from the properties of
the standard boundary integral operators of the Laplaceoatite Bi-Laplace equations.
We discuss stability and error estimates of the related fégalboundary element meth-
ods. While the non-symmetric formulation leads to a non{satmic matrix representation
of a self-adjoint operator in which we need an additionalditbon on the discretization
to guarantee the stability, we can prove the stability ofdpemetric boundary element
approach by using the hypersingular Bi-Laplace boundasgial operator. In the case
of box constraints on the Dirichlet control, we obtain anpgit variational inequality of
the first kind to be solved. It will be treated by using semiesih Newton methods which
give superlinear convergence.

This chapter is based on our paper [52]. Itis organized &sl In the first section, the
model problem is described where we also discuss the agyjmbtem which characterizes
the solution of the reduced minimization problem. In SetBa2 we present the represen-
tation formulae to describe the solutions of both the priamal adjoint Dirichlet boundary
value problems. We formulate the weakly singular boundaiggral equations. Since the
state enters the adjoint boundary value problem as a volemstg, an additional volume
integral has to be considered. By using integration by p#rts Newton potential can be
reformulated by using boundary potentials of the Bi-Laplaperator. Some properties
of boundary integral operators for the Bi-Laplace operater presented. We analyze a
non-symmetric formulation of boundary integral equatitmsolve the Dirichlet bound-
ary control problem, and we discuss stability and erromesties of the related Galerkin
boundary element method in Section 3.4. By using the sedadlypersingular boundary
integral equation in the optimality condition, we get a syatnt formulation. This is pre-
sented in Section 3.5, again we discuss a related stahildyearor analysis. In Section
3.6, we use a semi-smooth Newton method as in [18, 24, 3303%j}lve the variational
inequality. Finally, in Section 3.7 we describe some nuoamexamples.

21
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3.1 Dirichlet boundary control problems

Let Q ¢ RY, d = 2,3 be a bounded Lipschitz domain with bound&ry: Q. As a model
problem, we consider the Dirichlet boundary control prabte minimize

J(u,2) = %/[u(x) —U(x)]zdx-i—%a(Szz)r for (u,z) € HY(Q) x HY2(r)  (3.1)
Q

subject to
—Au(x) = f(x) for xeQ, u(x)=zx) forxerl (3.2)

with box constraints

71(x) <z(X) <z7(x) forxerTl, (3.3)
wherell € L,(Q) is a given targetz;, z € HY2(T") are given functions satisfying < z
onl; f € Lx(Q) is a given volume densityg € R, is a fixed parameter. Moreover, we
use the Steklov-Poincaré opera®rHY2(I) — H~Y2(I) to describe the cost, or some

regularization term, via a semi-normit/2(I"), see [51, 63]. Note that, -)r denotes the
related duality pairing, see (2.10).

To rewrite the Dirichlet boundary control problem (3.1),28and (3.3) by using a re-
duced cost functional we introduce a linear solution oerdescribing the application of
the constraint (3.2). Leatis be a particular weak solution of the homogeneous Dirichlet
boundary value problem

—Aus(X) = f(x) forxeQ, uf(x)=0 forxerl.

The solution of the Dirichlet boundary value problem (32jhen given byu = u; + us,
whereu, € H(Q) is the unique solution of the Dirichlet boundary value pesbl

—Auy(X) =0 forxe Q, uxx)=2zXx) forxerl. (3.4)
In particular, by using Green'’s first formula, we have
Dup(0)2dx= [ -2 dsc= (Sz2)r =: |23
Ou(x)Pdx= [ 3 ux)us(x) ds = (S22)r = 21
Q r
where the Steklov-Poincaré operagirH/?(r) — H=Y2(I"),

J
S2(X) ;= —uz(x) forxerTl
(209 = 5 -tel¥ ,
characterizes the Dirichlet to Neumann map related to thietdet boundary value prob-
lem (3.4). This motivates the use of the Steklov-PoincaefratprSto describe the cost
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termin (3.1). In addition, one may think of using the hypegsilar operatoD in (3.1) to
realize a semi-norm ik Y/2(I"), see [64].

Note that the solution of the Dirichlet boundary value pewbl(3.4) defines a linear map
u; = Hz Then, by usingy = Hz+ us, instead of (3.1) we now consider the problem to
find the minimizerz € Uyq of the reduced cost functional
1 a
3@ = 5 [10@)00+ur(x a0 Pdxr 2 (Sz2r
Q

1 a
= é<Hz-|— Ut =0, Hz+Us —T) ) + E<Szz>r
1 ] . 1 — a
= S(HHzr +(H (Uf—U),Z>F+§||Uf—U||EZ(Q)+§<SZZ>F,

where
Ung := {We HY2(T"): z1(x) <W(X) < 2(X) for x e '} (3.5)

is the admissible set, afd" : Lo(Q) — H~1/2(T") is the adjoint operator of : HY/2(I") —
Lz(Q), i.e.,
(M, 9)r = (W, 1), forall g € HYZ(T), g e Ly(Q).

Since the reduced cost functioril) is convex, the minimizez € 4,4 can be found from
the variational inequality

(aSz+H"Hz—g,Ww—2)r >0 forallw € Uag, (3.6)

where we define
g:=H*(U—us) e HY2(I). (3.7)

Note that the operator
To = aS+H'H :HY?(M) - HY2(I) (3.8)

is bounded andil/z(l')-elliptic, see [50, 51]. Hence, the elliptic variationaéguality of
the first kind (3.6) admits a unique solutia HY/2(I"), see, e.g., [23, 38, 41].

The application of the adjoint operator= #*(u— 1) is characterized by the Neumann
datum

T(X) = _9 p(x) foralmostallxeTl,
ony
wherep is the unique solution of the adjoint Dirichlet boundaryusaproblem
—Ap(X) =u(x)—u(x) forxeQ, p(x)=0 forxerl. (3.9

Hence the variational inequality (3.6) is rewritten as

(aSz—%p,w—Z}r >0 forallwe Uyg. (3.10)
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Proposition 3.1([51]). LetQ be either a convex two-dimensional polygonal bounded do-
main or a bounded domain with a smooth boundary. Let z be tiguarsolution of the
variational inequality(3.10) For, f € L»(Q), 1,2 € H¥2(I"), we have the regularity
ze H32(IN).

Proof. Let us consider the variational inequality (3.10). We idtroe

- _ 9 a9y
A :=Tyz—g=0aSz— 0np_aanuz—anpe H (M),

where p is the unique solution of the homogeneous Dirichlet boundatue problem
(3.9), and wherey; is the harmonic extension @& see (3.4). Then we can rewrite the
variational inequality (3.10) as

(A,w—2)r >0 forallw e Uyg.

Let

I:={xel: zi(x) <z(X) < 22(x)}
be the inactive set. We can chooge= HY/2(I") arbitrarily, with ¢(x) > 0 for x e T,
@(x) >0 forxe Z and

W1 =Z— Q€ Uad, Wo=Z+ @ E Upg.

Then we find
(A,@r =0,
i.e.,A =0o0onZ. Hence we have
Az—2z1)(zz—2)=0 onl. (3.11)
Moreover,
A<0 forz=z and A>0 forz=2z7 (3.12)

in the sense ofl —Y/2(T"). Therefore we conclude thag € H1(Q) is the unique solution
of the Signorini boundary value problem

—Au;=0 inQ (3.13)

with the bilateral constraints dn

7} 17} 7} 7}
<z< —U, < — = —Uy; > — = .
z1<z<1p, oranuZ < dnp foru, =2, oranuZ > dnp foru, =12z, (3.14)

and 5 5
[a%uz—%p} [Uz—271][z2— U] =0 onT. (3.15)
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Fort € Ly(Q) andu = Hz+ us € Ly(Q) we havep € H2(Q) for the solution of the ad-
joint problem (3.9), see e.g., [20]. Let,z € H3/2(F), for the solution of the bilateral
Signorini problem (3.13)-(3.15) we then hawec H2(Q), and therefore € H3/2(T"), see
e.g., [5, Theorem 1] in the case of a bounded donawith a smooth boundary. For a
two-dimensional polygonal bounded domain it remains tosaer the behaviour of the
solution at a corner point when it coincides with a boundamypof the active zones, i.e.,
whereu, = z; or u; = 2 is satisfied. In particular, by using local polar coordisate

X1 =X1(r, @) =rcosp, xp=Xo(r,) =rsing, uz(Xy,X2) = Uz(rcosp,rsing) =u(r,¢),

we have

2 ) = cosh O(r.g) T sing Soulr.g).

Xm 6¢
dixzuz(xl,xz) = sing %U(r, ¢)+ % coscp%ﬁ(r, d).

The Laplace equation in polar coordinates reads

92 92 10 [ a9 _ 1 0% _
Auz(Xq,X2) = d—xfuz(xl’xz) + 0—)(%U2(X1,X2) =T ar {rau(r, )} + r——u(r, )=0.

Letu(r,¢) =U(r)V(¢). We then obtain

r o | 0 1 02
This implies ,
r 0| 0 1 0
S Far 0] = g =

for some constart. The second ordinary differential equation of the last egpion can
be solved forc = a? > 0,

V(¢)=Acoqa¢)+Bsin(ag).

For the first ordinary differential equation

=a?u(r),

we use the ansatz(r) =rY. Then it follows thaty = +a. Due to the boundedness of the
solution forr — 0 we finally obtain

u(r,¢) =r%Acoga@)+Bsin(ag)).
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Now we consider the Signorini boundary conditions

%uz(xl,xz) =0, Uz(X1,X) >0 forg=0

and

9
Uz(X1,X2) =0, %UZ(XLXZ) >0 for¢ = ¢o,

wheregg is angle at the considered corner point.
For ¢ =0 and the normal vectar= (0,—1) ", we have

%uz(xl,xz) = n-DUz(Xl,Xz):—aiXZUZ(Xl’XZ)
— _sin¢%ﬁ(r,¢)—%cos¢%ﬁ(r,¢)
= —sin(p%[r“(Acos(ad))+Bsin(0’¢))]
_%Cow%[r“(Acos(adl)+Bsin(0’¢))]

= —sing[ar® 1(Acoga¢)+Bsin(ag))]
—cosp[ar® L (—Asin(a¢) +Bcogag))]
= ar® *Asin((a —1)¢) —Bcos(a — 1)9)].

The Neumann boundary condition f¢r= 0 reads then

%uz(xl,xz)u,:o =—Bar1=0 = B=0.

Hence,
u(r,¢) =Ar%coqa¢).
For the Dirichlet boundary condition f@r = ¢g, we further obtain

_ T
200

Moreover, the complementary Dirichlet boundary condifimng = O results in

a(r,¢o) = Ar%cogage) =0 = a¢0:7—2T = 0p

ar,0)=Ar>0 = A>0.

. ... 0 .
We now consider the normal derlvatl\%uz(xl,xz) for ¢ = ¢o with the normal vector
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n= (—singg, cosgo) ',

0 ) 0 0
%Uz(xl,xz) = _5'n¢od—X1U2(X1,X2)+COS¢00—X2U2(X1,X2)

= —singg {co&p%(Ar"O cogaopd)) — %sind)%(Ar"o cogaopd))
17}

T

= —singg {cos«ﬁ (Aagr®1cogagd)) — %sind)(—Ar“ansin(ao(p))

+Ccospg {sind)%(Ar“o cogaod)) + % cosp — (Ar%cogqapd))

+cospg {sind) (Aaor®1cogagd)) + % cosg (—Ar®agsin(apg))

—Aaor®tsingocog (ag—1)¢) — Adgr®Lcosposin((ap— 1))
= —Adagr® tsin(ap—1)¢ + ¢o].
The complementary Neumann boundary conditionffet ¢o now reads

0 .
%uz(xl,xz)|¢:¢0 = —Aaor® 1sin(ago) = —Aagr® >0 = A<O.

Therefore we concluda = 0. It turns out that no singularity functions appear in theeca
of Signorini boundary conditions. This implies € H?(Q) also for a two-dimensional
convex polygonal domain. O

3.2 Boundary integral equations

To find the controlz € HY/2(T") on the boundary, we discuss in this section the use of
boundary integral equations for the solution of the stateaign and of the adjoint equa-
tion. Some properties of boundary integral operators areded.

Firstly, for the solution of the state equation (3.2)
—Au(x) = f(x) for xeQ, u(x)=1zXx) forxerl,

we obtain a representation formula fo€ Q,
2 * (G J J * (S * (G
uR) = [UrRY)Sumds— [T RYZYds+ [URY) Ty (3.16)
y Ny
r r Q
whereU*(x,y) is the fundamental solution of the Laplace operator, sek [64
1
—ZTIog\x—y| ford =2,

U*(x,y) = 1 1 ford—3 (3.17)

4r|x—y|
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. - 0
For a given Dirichlet daturae H/2(T"), the related Neumann datun= SoUE H-2(r)

can be found by considering the representation formul&§3dr Q > X — x € I'. Due to
the jump relation of the double layer potential, we obtamlibundary integral equation

/U X, Y)W dsy+ z / dsy+/U x,y) f(y)dy

for almost allx € I, which can be written as
Vw)(x) = (%I +K)z(x) — (Nof)(x) foralmostallxeT. (3.18)

Here,
/U x,y)w(y)ds, forxel

is the Laplace single layer potential: H=1/2(I") — HY/2(I") satisfying
V@l < B ll@lly-12ry forallwe H2(r),
and
/—U* z(y)ds, forxel

is the Laplace double layer potentiél: HY/2(I") — HY/2(T") satisfying

1
1G4+ K)Zrry < ¢S |12lyyzry forallze HY2().

Moreover,
(Nof)( /U x,y)f(y)dy forxerl

is the related Newton potentitb : H=1(Q) — HY/2(T"). For the properties of these oper-
ators, see, e.g., [14, 31, 64].

Note that the single layer potentidlis H*l/z(l')-elliptic, see [64], where fod = 2 we
assume the scaling conditioiiamQ < 1 to ensure this:

(V,w)r > ¢ |]|Z 1, forallweH 3.

(N

Hence, we can solve the boundary integral equation (3.18)t@in

w:vl(%l +K)z—V INof. (3.19)
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Secondly, the solution of the adjoint Dirichlet boundarjuesproblem (3.9),
—Ap(x) =u(x)—u(x) forxeQ, p(x)=0 forxerl,

is given correspondingly by the representation formulaferQ,
* (G (9 * (G i
= [U Gy gpmds+ [UTRyluy) -umlay (320
r Q

As in (3.18) we obtain the boundary integral equation
(Vg)(x) = (Not)(x) — (Nou)(x) forxeTl (3.21)
to determine the unknown Neumann datgra- %p e H7Y2(I).

Hence we conclude a system of boundary integral equatiad8)(33.21) and the opti-
mality condition (3.10) to be solved. However, since theigoh u of the primal Dirichlet
boundary value problem (3.2) enters the volume potehijal in the boundary integral
equation (3.21), we also need to include the representttiarula (3.16). Hence we have
to solve a coupled system of boundary and domain integradteans. Instead, we will
describe a system of only boundary integral equations tegbk adjoint boundary value
problem (3.9).

In doing so, instead of (3.20), we introduce a modified regmegtion formula for the
adjoint statep as follows. First we note that

1
—gx—y*(loglx—y|—1) ford=2
V*(xy) = 1 (3.22)

is a solution of the Poisson equation

ANV (xy) =U"(xy) forx#y, (3.23)

i.e., V*(x,y) is the fundamental solution of the Bi-Laplacian. Hence, Bing Green’s
second formula, we can rewrite the volume integraluan (3.20), as follows

/u%xwwwdwa/mwwxwwwmy
Q
0
= y)d d
/ S//nyny(y)sf

+/VWXWMWWMy
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Therefore, from (3.20) we now obtain the modified repredemtdormula forx € Q,

Z/U*(Xy ds/+/ y)ds, — /V (X y)w(y)ds,

r (3.24)

- / U*(Xy)u(y)dy— / Vi(Xy) f(y)dy,
Q

where the volume potentials involve given data only.

Due to the regularity of the fundamental solution of the Biplacianv*(x,y), there is no
jump relation occuring across the boundéarysee, e.g., [59]. Hence, when taking the
limit Q 5 X— x €T, the representation formula (3.24) results in the boundarngral
equation

0=p(x) = / dSy+/ y)ds, — /V X y)w(y)dsy
—/U x,yUydy—/V (x,y) f(y)dy

for almost allx € I, which can be written as

(Va)(x) = (M1w)(X) — (K12)(X) + (No) (X) + (Mo f)(x) forxeT. (3.25)

Note that
(Vi) = [V (xy)oly)ds
r

is the Bi-Laplace single layer potenthal : H=3/2(I") — H3/2(I") satisfying, see, e.g., [31,
Theorem 5.7.3],

M@l arzry < G| @]y -a2ry for all we HT¥2(T), (3.26)
and
(K12)(x / (y)ds, forxeTl

is the Bi-Laplace double layer potentk] : H—1/2(I") — H3/2(I") satisfying
1Ka2Zl a2y < Ci2llzlg-rvzr)  forallze H-Y2(r). (3.27)

In addition, we have introduced a second Newton potentiathvis related to the funda-
mental solution of the Bi-Laplace operator,

(Mof)( /V xy)f(y)dy forxerl.
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By inserting (3.19) into the boundary integral equatior2§3, this gives
Vq:Vlvl(%I +K)z—K1z+Not+Mof —ViV~INgf,
and therefore
q= vlvlvl(%l +K)z—=V IKiz+V INu+V Mo f =V ViV INgf.  (3.28)

Now we are in a position to rewrite the variational inequya{8.10) to findz € Uzq such
that
(Taz—g,Ww—2)r >0 forallw e Uy, (3.29)

where 1
T, = aS+V 1K, _v—lvlv—1(§| +K) (3.30)

is a boundary integral representation of the opergiaas defined in (3.8), and

g:=V INgu+V Mof =V V3V INg f (3.31)
is the related right hand side as defined in (3.7).
Mapping properties

The operatoil, as defined in (3.30) is composed of the standard Laplace ahdBace
boundary integral operators. To investigate the uniqueakdlity of the variational in-
equality (3.29), we next recall some mapping propertiehes¢ boundary integral opera-
tors. We first start with the related Bi-Laplace partial éifntial equation.

Consider the Bi-Laplace equation
A%u(x)=0 forxe Q. (3.32)
This equation can be written as a system
Aw(x) =0, Au(x)=w(x) forxe Q.

For the Laplace equation we obtain two boundary integrabgqgns of the associated

Cauchy data of: {w, T := %w}, see [64, section 6]

(%)= (%IB “ L) (3): (3:33)

(K’r)(x):/ainxu*(x,y)r(y)dsy forxel
r

where
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is the adjoint Laplace double layer potentidl: H=%/2(r") — H=Y/2(I"), and
(DW)(x) = dnx/ w(y)ds, forxerl

is the related hypersingular boundary integral oper@toH/2(I") — H—1/2(I").

To obtain a representation formula for the solutioof the Bi-Laplace equation (3.32), we
first consider Green'’s first formula

/Au YAv(y)dy = /—u )Av(y)ds, — /inyAv( y)u( dSy—l—/A2 u(y)dy,

r

(3.34)
and in the sequel Green’s second formula,
/ y)Av(y)ds, — /—Av dsy+/A2 u(y) dy
_/ y)Au(y)ds, — /—Au dSy—l—/A2 v(y)dy.

When choosing(y) = V*(X,y) for X € Q as the Bi-Laplace fundamental solution (3.22),
the solution of the Bi-Laplace partial differential equaatti(3.32) is given by the represen-
tation formula forx € Q,

0 -
/ (y)AV* (X y)ds, — /mAyV*(X,Y)U(Y)dSy

r

/ (X y)Au(y dsy—i—/—Au V*(Xy)ds,.

By using (3.23) this can be written as

4 :/U*(i,y)w(y)dsy—/%U*(Y,Y)U(Y)dsy
r r

; (3.35)
_r/a_nyv*(xy)w(y)ds/+r/V*(Y,y)T(y)dS/~

Hence, by taking the trace and the normal derivative of tpeasentation formula (3.35),
we get two additional boundary integral equations for alnadisx € I',

u(x) = (V) (x) + %U(X) — (Ku)(¥) = (Kaw)(x) + (V1T) (%), (3.36)

w(X) = %w(x) + (K'w)(X) + (Du) (x) + (Daw) (x) + (K1) (X), (3.37)
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where
(K1T)(X /a—v (xy)t(y)ds, forxeTl
X

is the adjoint Bi-Laplace double layer potential, and
(Daw) (x) = (3nx/ w(y)ds, forxerl

is the Bi-Laplace hypersingular boundary integral operato

Altogether, we obtain a system of boundary integral equatfor the Bi-Laplace equation
(3.32), including the so-called Calderon projectiin

u JI-K Vv K1V u
w D li+k" D K] W
— 2 1
wl| oKV w (3.38)
T D 3I+K// \1

Lemma 3.1. The Calderon projectiod as defined if{3.38)is a projection, i.e.£? =

Proof. Let w, w € H-Y/2(T"), ¢, @ € HY2(I") be arbitrary but fixed. The function
u(x) == (Vw)(X) — (W) (X) + (Vo) (X) — (Wi@)(X) forXe Q (3.39)

solves the Bi-Laplace partial differential equation (3.3%0ote that

/U X, y)w(y)ds, Vlt,u /V Xy)p(y)ds, forxXeQ (3.40)
are the Laplace and Bi-Laplace single layer potentialpeaetsvely, and fox € Q,
/ ¢(y)ds, (Wig)(X / p(y)ds  (3.41)

define the Laplace and Bi-Laplace double layer potentiatgpectively. The assertion now
follows from the system of boundary integral equations§3d u, and the jump relation of
the standard single and double layer potentials as in [6dhnh& 6.18], see also [59]. [

From the projection property? = C we can immediately conclude some well-known re-
lations of all boundary integral operators which were idtroed for both the Laplace and
the Bi-Laplace equations, see [59, 64].
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Corollary 3.1. For all boundary integral operators there hold the relat®n

1 1
KV=VK', DK=K'D, VD= 7! —K?2, DV= n —K"? (3.42)

and
KiV —VK] = ViK' —KVi, (3.43)
KiD—DK; = DiK—K’'Dy, (3.44)
VD;+ViD+KK;i+KiK = 0, (3.45)
DVi+ D1V +K/K{+K/K' = 0. (3.46)

To prove the ellipticity of the Schur complement boundarggmal operator as defined in
(3.30) we need the following result.

Lemma 3.2. For any w, i € H=1Y/2(T") there holds the equality

~ o~ 1
Vo Vi), = KV, w)r — Va5l + KW, w)r. (3.47)
In particular,
_ 1
IVWIE ) = KV, ) — MG+ KDY, gir (3.48)

where the single layer potentisl is defined ir(3.40), and (*;")Ly(@) is the standard inner
product in Lp(Q).

Proof. Forw, Y € H_l/z(r) the application of the Bi-Laplace single layer potentiat
Viw andv =V, as defined in (3.40) are solutions of the Bi-Laplace equd832) whose
related Cauchy data are given by

u(x) = (V10)(x), dinu(x) = (Kjw)(x) forxerl.
X
On the other hand, fore Q

D) = By [ V' (cy)ey) sy = [U*(y)ely)dsy = (Vo) (),

r

J
W) = B0 = by [V ey ds = [V (xy)e)ds = (V) ()
r

r

are solutions of the Laplace equation. The related Cauctayata given by

0

1 /
0—nxw(x> = é(,u(x) + (K'g)(x) foralmostallxeT.

w(x) = (Vi) (x),
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Now, Green’s first formula (3.34) reads

Voo = [KoOVE©)dy - [1560)+K$)$))0h0)0)ds,
r r
and then the assertion follows. O

Remark 3.1. For the representation of the Steklov-Poincaré operatoraeundary in-
tegral operators, we may use either the non-symmetric sgm&tion

S:V_l(%l +K), (3.49)

or the symmetric representation

1 1
S=D+ (5! +K’)V*1(§| +K), (3.50)

see, e.g., [62, 63, 64].

3.3 Discretization of variational inequalities

Boundary element approximations

Let

Sh(r) =spar{¢}; CHYA(T)
be a boundary element space of, e.g., piecewise linear amthgous basis functions
¢, which is defined with respect to a globally quasi-unifornd ahape regular boundary
element mesh of mesh sit¢. For continuous functiong; andz, define the discrete
convex set

U = {wy € S4(M): z1(x) <wh(x) < z2(x) forall nodesx e I'}.

Then the Galerkin discretization of the variational indgud3.6), see also (3.29), is to
find zq4 € Uy such that

(TaZH,WH —Z4)r > (Q,WH —zq)r forallwy € Uy. (3.51)

Theorem 3.1.Let z€ Uyq and 74 € Uy be the unique solutions of the variational inequal-
ities (3.6)and (3.51) respectively. Then there hold the error estimates

1
12— 24 [[y2r) < CH>2|Zl|nsr) (3.52)

and
12— 24 lly(r) < CHEIZl|s(ry, (3.53)

when assuming z,z, € HS(I) for some  [3,2], and T,z— g € Lo (M) NHS ().
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Proof. From theH/2(I")-ellipticity of T4, we obtain for alWwy € Uy, by using the varia-
tional inequality (3.51) and := T,z—ge H~Y2(I"),
Ta 2
¢’ [12=Znlljaser) < (Ta(z=24),2—20)r
(Ta(z—21),2—WH)r +(Ta(Z—2H),WH — Z1)r
( a(Z—=24),Z=WH)r + (A, WH — Z4)r + (9 — TaZH,WH — Z4)r

& ||z— 24 22y 12— Wh a2y + (A, WH — Z4)r

| /\

In particular for the piecewise linear interpolatiopy = Iyz we conclude, by using the
interpolation error estimate,

T 2
CZLGHZ_ZHHHl/Z( )<CZG||Z ZHHHl/2 ||Z_|HZ||H1/2(F)+<)\7|HZ_ZH>F
<o HY ZHZ 24 ||l yrzy | 2dlmsry + (A, TWZ—Z0)r

Let
an:=lwzeS(N), zn:=lnzecSy()

be the piecewise linear interpolations of the constranendz,, respectively. Then, for
all wy € Uy we have

z1H(X) <WH(X) < 2oH(X) for all nodesx;,
and therefore, for the solutiagy € Uy of (3.51),
H(X) <zq(X) <22H(x) forallxerl.

Let
Api={xel:z(x) =z}, Az:={xel:z(x)=2(X)}

be the active sets. Due 0> 0 on.A; andA < 0 on A in the sense of—l_l/z(r), see
(3.12), we conclude

JANEH0 -2 (] dsc< 0. [ A(lzzn(0) ~ 21 (X)) ds< O,
Aa
and therefore, by using(x) =0onZ =T\ (A1 U .A»),

Adnz=za)r = [ A1z~ 2 (9] dsc+ [ A00[Inz() ~ 24(0] s,
A As

< / A [IHZ(X) — 2z (X)) ds+ / AX)[IHZ(X) — 2z (X)) dsc
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SinceA (x) = 0 onZ, it remains to consider only those boundary elemenighich include
both the active and the inactive set. By using some estinfatethe piecewise linear
interpolation onry, we can conclude

(A Inz=2z0)r < ¢ A || rH®.
Hence,
Ta Ta —1 3
¢, [lz— ZHHHl/Z < H® 2[|z=zn a2y |2l msry +CllA L H,

and the inequality (3.52) follows. The error estimate (3.&8lows from the Aubin-
Nitsche trick for variational inequalities, see [65]. O

Approximate variational inequality
The error estimates (3.52) and (3.53) seem to be optimal.eMexythe composed bound-
ary integral operatofy and the right hand sidgas defined in (3.30), (3.31) do not allow

a direct boundary element discretization in general. Heimstead of (3.51) we need to
consider a perturbed variational inequality to fipde U/ such that

(TaZH,WH —ZH)r > (GWH —Zu)r  forall wy € Uy, (3.54)
where T, andg are appropriate approximations o andg, respectively. The follow-
ing theorem, see [51], presents an abstract consistenaly, nekich will later be used to
analyse the boundary element approximations.

Theorem 3.2. Let z be the unique solution of the variational inequal(iey6) and Ty :
HY/2(I") — H~Y/2(T") be a bounded and!gI")-elliptic approximation of F satisfying

(TazH,24)r >c1 HZHHHl/Z for all zy e S4(IN)

and -
TaZllyy-vz) < 12y forallze HYA(T).

Letg € H1/2(I") be some approximation of g. For the unique solut@ne Uy, of the
perturbed variational inequality3.54)there holds the error estimate

2% lyoror) < Callz— 2 lyoror) +C2ll(To— Ta )2y v +Callg—Glly v2(r) (3.55)

where g € Uy is the unique solution of the discrete variational ineqtyaB.51)
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Proof. The unique solvability of the discrete variational inedtya(3.54) follows from the
S, (M)-ellipticity of Ty. From this we further obtain

o' 24 = 2|2y < (Ta(@4—Zn).24 —Z)r
< (Tazi,20 —Z)r + (00,24 —2)r + (TaZn, 20 — 2Z4)r
< (ITa = Ta)zualla-sr2r) + 19— Gl ) 120 = Z ey

Therefore

20 =Bl < = (1T~ Ta)zll ey + 18~ Gl ) )
1

Moreover, by using the triangle inequality and the boun@sdrfT, andT, we have
1(Ta —Ta)2 lp-22ry < [1(Ta = Ta)2ly- va(ry + I(Ta —Ta)(Z2=21) -1z
< (T = Ta) 2l -z + (€5 +65) 2= 2y,

The assertion now follows from the triangle inequality. O

3.4 Non-symmetric boundary integral formulation

Based on the mapping properties of the standard Laplaceiaoaidace boundary integral
operators as given in the previous section, we are now alsk&ate the mapping properties
of the boundary integral operat®y as defined in (3.30), see also the propertie$0és
introduced in (3.8). Then we discuss the Galerkin discatibn of (3.29). The stability
and error estimates are given with an additional conditiothe mesh size.

Theorem 3.3. The composed boundary integral operator

1
To = aS+V Ky =V WV (G K) T HYA() = HYA(T)

is self-adjoint, bounded and ¥#(I")-elliptic, i.e.,
(Taz,2)r > C}° |2l forallze HY2(r).
Proof. The mapping properties @ : HY/2(I") — H~Y2(I") follow from the boundedness

of all used boundary integral operators [31, 43, 64]. In &ddj we also used the compact
embedding oH3/2(I") in HY/2(T).
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For the self-adjointness %, we consider foz,w € HY/2(I")

(Taz,W)r = (aSzw)r 4+ (V Kiz,w)r — %<v1v1v1z, Wir — (V™I V Ik z wyr
= (z,aSwWr + (z, KjVtw)r — %(z,vlvlvlvwr —(zK'V~ v iw)
= (z,aSwWr — %<z,v—1v1v—1w>r +(z [KV 1=KV Vv Hw)r.

By using (3.42) and (3.43) we have

Kiv 1KVt = Kivi-vikwpywt=v-ivK]-Kvv1
= VKV —viK' V1 =v-IK; —v iK'Vl
= VK, —vinyyv k.

Hence we get
1 11 -1 —Iy\/—1
<TaZ,W>r = <Z,CISV\>r — §<Z,V V1V W>r + <Z, [V Ki—V—*\W\WVW K]W>r
1
= (z [aS+V_1K1—V_1V1V_1(§I +K)W)r = (z, TaW)r,
l.e., Ty is self-adjoint.
Moreover, forze HY/2(I"), by using (3.42) and by Lemma 3.¢,=V 'z, we have
1
(Tazr = a(Sz2r+(V Kz 2)r— <V*1V1V*1(§I +K)z2)r
= a(Sz2r+ (KW lzviz - (Vl(%l +KHWVlzZv1y;
1
= a({Szzr +(KVY, )r =G + KW, d)r
= a(Sz2)r + VY|, )

The Steklov-Poincaré operatSdefines a semi-norm iHY/2(I"). However, forz= 1 we
obtain

(TaL, Dr = VI, 0 = IV (VD) q) > 0.
Therefore, the operatdi, defines an equivalent norm #/2(I"), the HY/2(I")-ellipticity
of T, follows. O

In what follows we introduce computable boundary elemeptaximationsT, andg of T,
andg as defined in (3.30), (3.31), respectively. We use also arogpiate approximation
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of the non-symmetric representation (3.49) &as well, see [62].
For an arbitrary but fixed € H/2(T"), the application offyz reads

1
Taz= aSz+V*1K1z—V*1v1V*1(§| +K)z=aw, — s,
whereqz, w, € H—l/z(r) are the unique solutions of the boundary integral equations

1
Vg =Viw,— K1z, Vw,= (§| +K)z

For a Galerkin approximation of the above boundary integgalations, let

(M) =span{g 1Ly < HYA(T)

be another boundary element space of, e.g., piecewiseattigtsis functionqbl?, which

is defined with respect to a second globally quasi-uniform simape regular boundary
element mesh of mesh sikeWe defined,, € (") as the unique solution of the Galerkin
formulation

(Vzh, Bh)r = (Vawon — K1z, 6,)r  for all 8, € (1), (3.56)
wherew,, € S(I') solves
(Vg h, Bh)r = ((%I +K)z 6y forall 6, e SAI). (3.57)

Hence we can define an approximatifnof the operatofly by
TaZ:= QW;p — Gz (3.58)

Lemma 3.3. The approximate operatdr, : HY2(") — H~1/2(T") as defined in(3.58)is
bounded, i.e., N
ITaZllyy-vzr) < |2y, forallze HYA(T),
and there holds the error estimate
v

~ C
Tyz— TaZ| - <2 inf — 6l
[ Ta aZlly-1/2r) < o eheﬁ(r)nqz hll-1/2(m)
ot
+—C%, |00z — Welly-2r2(r) + Al @z — wonlly-12r)- (3.59)
1

Proof. The boundedness of the operaiigr follows from the mapping properties of all
boundary integral operators involved. Indeed, by choosingst functionf, = w,h in
(3.57), we obtain, byl ~%/2(I")-ellipticity of V and the boundedness kf

1
C\]{H(*)Z,hna—l/Z(r) < <V0)Z,h70)z7h>r - <(§I + K)Z7 (*)Z7h>r

1
< ||(§| + K>Z||H1/2(r)||wz,h|||-|fl/2(r) < C2K||Z|||-|1/2(r)||°‘)Z,h|||-|fl/2(r)-
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This implies
K

&
Iz hllpy-1/2(r) < a”ZHHl/Z(F)'

Similarly, from (3.56) we have

ot ch?
= 2 2
10zl H-272(ry < a||wz7h||Hfl/2(r) + qHZHHl/z(F) < cllzlyuzry-

Hence, by the triangle inequality we conclude from (3.58),
~ :I-Va
Tazlly-v2ry < & 12l pazry-

Moreover, for an arbitrary chosen but fixed HY/2(I") we have, by definition,

1
_1[Vla)Z_KlZ]7 O')Z:V_l(_l +K)Z7

Tez=aw;— 0z, Qz=V 5

and therefore, by using (3.58),
Taz—Taz= (W, — wyp) — (Gz—Tzn).
Let us further define|,, € ﬁ(l‘) as the unique solution of the variational problem
(Vth, Bh)r = Vi, — K12, 8- for all 8, € ().
We then obtain the perturbed Galerkin orthogonality

(V(Gzh—8zn), On)r = (Vi(@, — wyh), Bh)r  for all 6, € ().

From this we conclude

- 1 cy!
1920 = Gznlly-12(r) < 7 V2 (@ = @zn) 12y < 7 [l 02— @enlly-s2(r)-
1 1

The error estimate (3.59) now follows from the triangle inakty, and by applying Cea’s
lemma. ]

By using the approximation property of the trial spaﬁer) and the Aubin-Nitsche trick,
it results in a corollary when assuming some regularity.cdnd w,, respectively. For the
approximation properties of the trial spaS%(F) (and S, () hereinafter), see e.g., [64,
Section 10].

Corollary 3.2. Assume g w; € Hp,(I") for some s= [0,1]. Then there holds the error
estimate

~ 1
ITaz—TaZ||ly-172(ry < ch™2 (HQZHng(r) + HWZHHgW(r)) ~ (3.60)
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Analogously we may define a boundary element approximafitmeoright hand sidg as
defined in (3.31)
g=V"INgu+V Mof — VIV INpf.

In particular,g € H=2(I") is the unique solution of the variational problem
(Vg,0)r = (Noi+Mof,8)r — (Vicwy, 8)r forall @ e HY2(I),
wherew; =V 1Ny f solves the variational problem
Var,0)r = (Nof,8)r forall @ e H-Y/2(I).

Hence we can define a boundary element approxim@H@wSﬂ(F) as the unique solution
of the Galerkin variational problem

(VGn, Bh)r = (Not+Mof, Bh)r — (Vicy , Bh)r  for all 6 € SH(T), (3.61)
wherews h € (") solves the variational problem
(VW p, Bn)r = (Nof, B forall 6, € S(I). (3.62)

Lemma 3.4. Let g,, be the boundary element approximation as define(Bii1) of the
right hand side g. Then there holds the error estimate

v CV1
Gl <2 inf — B + 2 llwr — ws pll sz - 3.63
19— Ghlly y2(r) = C\l/ Ghe$(r)”g Ohlly 1/2(r) C\l/ || s fhlly 3/2(r) ( )

Proof. Letg, € Sﬂ(r) be the unique solution of the variational problem

(Vth, Bn)r = (Not+Mof, Br)r — (Viwr, B)r  forall 8, € S(I).

By applying Cea’s lemma, we first obtain

CV
— B < 2 inf — _ )
I gh”H 12(ry = C\l/ BreSI(r) 9 ehHH 1/2(r)

Moreover, the perturbed Galerkin orthogonality

(V(Gh—0h), Bh)r = (Va(wrp— ), Bh)r  forall 6, € ()

follows. From this we further conclude
Vi

~ 1 C,
[ —9h|||-|71/2(r) < C_anl(wf - wf,h)|||-|1/2(r) < C_Vwa - ol)f,h|||-|73/2(r)-
1 1

The assertion now follows from the triangle inequality. O
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By using the approximation property of the trial sp@(&l’) and the Aubin-Nitsche trick,
from (3.63) we can conclude an error estimate when assunoimg segularity ofg and
ws, respectively.

Corollary 3.3. Assume gy € Hp,,(I") for some s= [0,1]. Then there holds the error
estimate

_ 1 3
19— Ghll-12(r) < €Lh™2]|gllns,r) +C2N*" 2| [ls,r)- (3.64)

Approximate variational inequality

By using the approximations (3.58) and (3.61), the Galebdandary element approxi-
mation of the variational inequality (3.29) now reads to fmd= Uy such that

(TaZit — Gy WH — Zn)r = (A W3, h — Gzyn— Oh, W — Z4)r >0 for allwy € Uy, (3.65)

wheregh := 0wz, h — 0z, h— 0h € ﬁ(l‘) is the unique solution of the Galerkin formula-
tion
1 - ~ _
(Vth, 6h)r = G((él +K)Z4, 6h)r + (K1Z4 — V103, 1, Bh)r — (NoU+Mof, 6h)r, (3.66)

for all 6, € S(I"), andws, p € () solves

(Vs n, Bh)r = ((%' +K)Zn, 6n)r — (Nof, Br)r  for all 6, € S(I). (3.67)

The Galerkin formulation (3.66) is equivalent to a lineasteyn
1 -~ -~
Vhg = a(éMh +Kh)Z+KinZ—Vihw—f,, (3.68)

and (3.67) is equivalent to

Vo2 = (M +Kn)Z— 1, (3.69)
where
Vhw?k] = <V¢|9,¢?>r, Kh[&'] = <K¢i17¢59>r7
Vl,h[&k] = <V1¢|?,¢?>F, Kl,h[&i] = <K1¢i17¢?>r7
th?I] = <¢i17¢[9>r7
and

f1[€] = (NoG+Mof,d)r,  f2[f] = (Nof, dd)r
fork,/=1,...,Nandi=1,..., M.
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Since the Laplace single layer potenWfak H *1/2(F)-elliptic and self-adjoint, the Galerkin
matrix Vi, is symmetric and positive definite and therefore invertilblence we can solve
w andg from (3.69) and (3.68) to obtain

1

and

4,1 o yly o g 1 o _ -
q=aV, 1(§|v|h+ Kn)Z+V,, HKenZ— Vi, ViV, 1(§|v|h+ Kn)Z+V,y ViV, =Vt

Therefore, the matrix representation of the variationatjurality (3.65) is given by a dis-
crete variational inequality

(Mpg,w—2) >0 forallwe R <> wy € Uy,
or equivalent to
(fa,Hz— gw—-27)>0 forallwe RM s wy € Uy, (3.70)
where
~ _ 1 B B B 1
Tan = aMy V; 1(§Mh+ Kn) +Mp Vi 1K p — My Vi Ve 1(§|v|h+ Kn)  (3.71)

defines a non-symmetric Galerkin boundary element appratkm of the self-adjoint
boundary integral operatdg, as defined in (3.30). Moreover,

. -1 -1
Q= MVt (f,—Vanvi ')
is the boundary element approximationgds defined in (3.31).

Theorem 3.4(see [52]) The approximate Schur complem&a;H as defined in(3.71)is
positive definite, i.e.,

(TaHz,2) > cl"HzH Iz foralize RM & zy € S5(I),
if h < cgH is sufficiently small.

Proof. For an arbitrary chosen but fixgd: RM letz; € S (I") be the associated boundary
element function. Then we have

(fa,HZ@) = <:I:GZH ZH)FZ<TaZH,ZI-|>F—<(Ta—fa)ZHaZH>F
> ) — | (Ta — Ta) 2l v 20

V
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Sincezy € S4(IN) is a continuous function, we hawg € H(I"). Hence we find, see [14]

1
Wy =V HZI+K)zn €Lo(T), Oay =V M1y, — Kazn] € Lp(T).

2
Therefore we can apply the error estimate (3.60)%fer0 to obtain
~ 1 1
I Tazt — Tazally-v2(ry < €h2 (1[0 Ly + ll@a llyr)) < €1h2lzn Iy

Now, by applying the inverse inequality f&, (I"),

1
1Z4llnary < @ H72 | lla2r),

we obtain

~ h\ 2
I(Ta = Tolanlla-szey <0 (7 ) 2l

Hence we get

~ h\?2 1
Ta 2 Ta 2
(TaHz2) = [01 — GG (q) ] HZHHHl/Z(r) > 5% ”ZHHHl/Z(ry

is satisfied. O

The above Theorem 3.4 ensures the unique solvability ofidoeate variational inequality
(3.70) as well as of the perturbed variational inequalit$$3. Moreover, we can apply
Theorem 3.2 to derive an error estimate for the approximateien z4 of the perturbed

variational inequality (3.65), as follows.

When combining the error estimate (3.55) with the erronestes (3.52), (3.60) and (3.64),
we obtain the error estimate

12— Znllgorzry < lH® 2|21y +C2 072 (||qz||HgW(F) + ||°°Z||H3w(r)>
1 3
+C3h3+2H9HH,§W(F) —|—C4h5+2”a)f HHSW(F)

when assuming € HS"1(I") and gy, w,, g, wr € H5w(I") for somes € [0,1]. Forh < coH
sufficiently small, we finally obtain the error in the energym

12— Zn |[j12r) < (20, f) HS* 2, (3.72)
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Moreover, by applying the Aubin-Nitsche trick [64] we ares@lable to derive an error
estimate irL(), i.e.,

12— Zn Ly <z U, f)HS . (3.73)
In the case of a non-constrained minimization problemgemdiof the discrete variational
inequality (3.70) we have to solve the linear system

fa7H2: 97
which can be written as
—Vin  Wn Kih w £, —V1,th_1j2
Vi ~(3Mn+Kn) | T ] = 0 (3.74)
aM,  —M, z 0

Remark 3.2. For the approximatiornw, of the fluxw of the primal Dirichlet boundary
value problem, the same order of an error estimate in"f(I")-norm can be obtained as
in (3.72) see [64], i.e.,

=l 1) < ©(z @1, F)HE2, (3.75)
By applying standard arguments, we get also an error estrrat, ("),
Hw_wn”Lz(r) < C(Z7 w, U, f)HS (376)

Remark 3.3. The error estimate$3.72) and (3.73) provide optimal convergence rates
when approximating the control z by using piecewise lineasi® functions. However,
we have to assume< cgH to ensure the unique solvability of the perturbed variaéib
inequality(3.65) where the constangds in general unknown. Moreover, the matflagH

as given in(3.71)defines a non-symmetric approximation of the self-adjquetrator T,.
Hence we are interested in deriving a symmetric boundarmeid method which is stable
without any additional constraints in the choice of the bdary element trial spaces.

3.5 Symmetric boundary integral formulation

As in the previous section, to determine the unknown Neundatumg € H~2(I") of the
adjoint Dirichlet boundary value problem (3.9), we usedfitst boundary integral equa-
tion (3.25). In what follows, we will use in addition a secdmalundary integral equation,
the so-called hypersingular boundary integral equatiortfe adjoint problem to obtain
an alternative representation f@rin particular, when computing the normal derivative of
the representation formula (3.24), this gives

Q(X)I(;+K')Q(X)—(D12)(X)—(Kiw)(x)—(NlU)(X)—(le)(X) forxerl, (3.77)
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where we introduce the Newton potentials %af I

Q>X—xel

(N = lim _nOx [ U (R y)u(y)dy
Q

and

QoXx—xel

(Mif)(x) = lim nx.Dg/V*(i,y)f(y)dy.
Q

Furthermore, by using (3.19), (3.28) we obtain

q= (%I + K’)vlvlvl(%l +K)z— (%I +KWKz— Kivl(%l +K)z—Dsz
+ (%I + KW INgu— Nyo+ (%I + KW Mg — VoV INg f + KV INg f — My f.
(3.78)
Therefore, instead of (3.10), we have to solve the variatiorequality
(Taz—g,Ww—2)r >0, (3.79)

where we obtain an alternative representationg,ods defined in (3.30),

1 1 1 1
Ta = aS+ D1+ KV I +K) + (S + KWV K - G+ KWV vV (21 +K)

2 2
(3.80)
and ofg as defined in (3.31),
1 "\ 1IN T 1 -1 -1 -1
9= (51 +K)V Nt — Nyt + (51 + K)V Mo —VaV " No] f + KV " “Nof — My .
(3.81)

Theorem 3.5. The composed boundary integral operatgr ds defined in(3.80)is self-
adjoint, bounded, i.e.,qT: HY2(I") — H~Y/2(T"), and HY2(I")-elliptic, i.e.,

(Taz.2r = ¢ |23, forallze HYZ(T).

)

Proof. While the self-adjointness df, in the symmetric representation (3.80) is obvious,
the boundedness and ellipticity estimates follow as in tle®fof Theorem 3.3. In par-
ticular, the operator$, in the symmetric representation (3.80) and in the non-sytmme



48 3 Elliptic Dirichlet boundary control problems

representation (3.30) coincide. Indeed, by using (3.48)(8m3) we obtain
ny—1/1 1 n—1 1 -1k

1 1 1
= aS+Dy+ {Ki -G+ K’)v—lvl] V_l(él +K)+ G+ KV ~1Ky

1 1 1
= aS+D;+Vv? {v Kj —KVi — Evl} V‘l(él +K)+ (51 + K')V~1Ky

1 1 1
= aS+D;+V1? {Klv — ViK' — Evl} V*1(§| +K)+ (51 + KWV ~1K;

1 1 1 1
= aS+D1+V K51 +K) —VTVI(GH KOV ST HK) + (S + KOV K,

Due to the representation of the Laplace Steklov-Poincpeéator, see, e.g., [64],

1 1 1
S:V*l(él +K)=D+(3| +K’)V*1(§I +K),

we have by using (3.42) and (3.45),

1 1 1
Ta = aS+D; +V_1K1(§I +K)-Viv [v—l(él +K)— D} +v—1(§| +K)Kq

1 1 1
= aS+v! [v D1 +ViD +Ki (5! +K) —V1V‘1(§I +K)+ G+ K)Kl}

1
= aS+v? {Kl—vlv—l(il +K)} :
and we finally obtain the non-symmetric representationQ(3.3 O

Again we conclude the unique solvability of the variatiomedquality (3.79). By com-
paring the representation of the right hand ggdes in (3.31) with (3.81), it results in the
following corollary.

Corollary 3.4. For anyu, f € L»(Q) there hold the equalities
1
Ny = (=51 + KWV~ INou (3.82)
and
1 1 1 NV N ny-1
M f = (—§| +K )V Mof — (—§| +K )V ViV~ Nof + K3V "Nof. (3.83)

Remark 3.4. To obtain a symmetric discretization of the operatgr if what follows, we
shall use the symmetric representation of the SteklovelaoinS as given i(3.50)
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Galerkin boundary element formulation

For the Galerkin discretization of the variational ineqgya{3.79) we now define appro-
priate approximations of the symmetric representaligrand of the right hand sidg

in (3.81) as well, see [52]. First, let us recall the boundelgment spaces of piecewise
constant and piecewise linear basis functions

) =spa{¢ s cHYAT), S4(T) =span{¢f M, c HYA(T),

which are defined with respect to some admissible boundamngesit meshes of mesh size
h andH, respectively. For the symmetric representationg,oSand forze HY/2(I"), the
application ofT,zreads

1 1
Tqz=aDz+ a(él +K)w,+D1z+Kjw, — (5' +K"dy,

whereqz, w, € H—l/z(r) are the unique solutions of the boundary integral equations
1
Vo, =Viw,— K1z, Vw,= (EI +K)z

As for the non-symmetric representationTgf we can define approximate Galerkin solu-
tionsw, h,Gzh € ﬁ(r) and then we can define the approximation

~ 1 1 -
Taz:= aDz+ a(él + K" owyn+ D12+ Kiwyn — (él +K")dzh. (3.84)

Lemma 3.5. The approximate operatdr, : HY/2(") — H-Y/2(T") as defined in(3.84)is
bounded, i.e., )
ITazlly-vary < & I 2lnzr forallze HYZ(T),

and there holds the error estimate

Taz—TaZ,y- <cp inf - - +cC - - . 3.85
Taz—TaZ|ly-vz(ry < 19he$(r)HQZ 6hlly-12(r) +C2l Wz — Wenlly-12ry-  (3.85)

Proof. The proof follows as for the boundary element approximasidhe non-symmetric
formulation, see Lemma 3.3. O

By using the approximation property of the trial spaﬁer) and the Aubin-Nitsche trick,
we conclude an error estimate from (3.85) when assuming segugarity ofg, andcw;.

Corollary 3.5. Assume g w;, € Hp,(I") for some s= [0,1]. Then there holds the error
estimate

-~ 1
ITaz—TaZ||y-172(ry < ch™2 (HQZHng(r) + HWZHHgW(r)) ~ (3.86)
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Similarly, we can rewritgy which was defined in (3.81), as

1
g = Koy +(§| + K)o, f — NiU— My f,

whereqg s € H*l/z(l') Is the unique solution of the boundary integral equation
(V1) (%) = (Not) (X) + (Mof)(X) — (Vo) (x) forxeT,
andwr € H~Y2(T") solves
(Vwr)(X) = (Nof)(x) forxerl.

We then can define approximate Galerkin solutingos , € S)(I), and therefore, we can
introduce the approximation

~ 1 - _
§:=Kiwrn+ (51 +K')Gh— Not— My f. (3.87)
As in (3.64) we obtain the error estimate

A 1 3
lg—4dll H-12(r) = c1h® 2 |qy ¢ | HSW(M) T C2h>"2 || x| HSw(T) (3.88)

when assumingy ¢, wr € Hg, () for somes € [0, 1].
Approximate variational inequality

By using the approximations (3.84) and (3.87) we now haveoteesthe approximate
variational inequality to fin& € U4 such that

(TaZ—GW—2)r >0 forallw € Uag, (3.89)
which corresponds to a discrete version
(TaZ—Gw—2) >0 forallweRM < wy € Un. (3.90)

Here,
~ 1 _ 1,1
Tan:=aSy+Dip— (EMhT + Ky Vi ViV, 1(§|v|h+ Kp)

1 1
+KenVh M (GMi+Kn) + (GMy + Ky )V, "Kan (3.9)

and
1 1
S4 =Dy + (éMhT - +<hT)vh*1(§|\/|hJr Kn) (3.92)
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are the symmetric Galerkin boundary element approximatidthe self-adjoint operators
Ty andS, respectively. Moreover,
1

g: KIthiliz + (EM;— + KJ)Vhil[il _Vl,hvhiliz] - i

is the related boundary element approximatiorgas defined in (3.81). Note that, in
addition to those entries of the linear system (3.74) we use

Dufi, ] = (D¢}, ¢)r, Dimlj,il=(D1gi,0{)r, fai] = (NaU+Maf, ¢f)r,
fori,j=1,...,M.

; (3.93)

The computation of the Galerkin matrix; 4 of the Bi-Laplace hypersingular boundary
integral operatoD; can be reduced to the computation of the Galerkin matricabeof
Bi-Laplace and Laplace singular layer potentd@ndV. In particular, we can derive the
following lemma in the two dimensional case.

Lemma 3.6. Let d; denote the derivative with respect to the arc lengtii ohet n denote
the exterior normal vector. Then

(D1z,wW)r = —(V1(0r2),0rW)r +_i<V(zn),wni>r forallzzwe HY2(I).  (3.94)

Proof. We adopt the proof from the paper by Costabel [15, Theorein 6.1

Letx,y eI, x#Yy. Letny, ny andty, Ty denote the normal and tangent vectors and

y, respectively. Herg can be obtained from by a counterclockwise rotation by a right
angle. For any % 2 matrixM with trace t{(M) we have

Ny Mny + 7, M7 = tr(M) (nyny).
Taking forM the second derivatives of the Bi-Laplacian fundamentaltgmhV*(x,y),
0° 0

—~V*(x, V*(X,
w_ | 2o (xy) %10y (x,y)
%29y, (X,y) A (X,y)

we obtain
OnOn V" (%,Y) = — 0I5,V (X,Y) +tr(M)(nxny)
= 0,0V (xy) — U (xY) (nuy).

We now multiply (3.95) byw(x)z(y), integrate ovef x ' and observe that oh we may
use integration by parts fal,

(3.95)

(z,0:W)r = —(drz W) forall zwe HY?(),

and then the assertion follows. O
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Remark 3.5. To implement the right hand sid_% fve may approximate the Newton po-
tentials Nu and M f by using the representation formulé®82) (3.83)as we did for the
right hand side g in the non-symmetric formulation. In peutar, we can define

fy= (—éMhTJFKhT)Vh lil— (—éMkuT+Kr1T)Vh ViaVh 1iszKlT,th 1127
Ao mTy—1 -1 _ =
g=MpV, (il —VinVy Iz) =9
Lemma 3.7. The symmetric matrix
= T Ty 11 1T Tyw—1
TH = TO{,H —aSq — Dl,H = KLth (EMh—i— Kh) + (éMh + Kh )Vh K]_’h
1 _ 4,1
— (EMthLKhT)Vh ViV, 1(§Mh+Kh)
is positive semi-definite, i.e.,

(Tuz,2) >0 forallze RM.
Proof. We consider the generalized eigenvalue problem

- - 1 1
Thz=A S4+(§MJ+KJ>vh—1(§Mh+Kh> z (3.96)

where the stabilized discrete Steklov-Poincaré operator

~ 1 1
S =Dy +ggT+(§MJ+KJ)vh*1(§Mh+Kh)

is symmetric and positive definite. Note that the veete given by

ali] = /cpil(x)ds( fori=1,..,M.
r

Since the eigenvalue problem (3.96) can be written as

“Vip K ~1(1
(AMT+KVL 1) ( i 1’“) (Vh <2'\|"h+K“))z
1h

= A ((GMy +KV™ |)<Vh §H> (V“_l(%'\f'“’LK“))z,

it is sufficient to consider the generalized eigenvalue lammb

—Vih Kin) (8) _, (VhE
(e ) (2) =2 (5): @
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where

1
8=V, H(5Mn+Kn)z

From (3.97) we conclude
(Kl,hZ7 Q) - (Vl,hQ7Q> = A (Vh67Q>7
(K:IhQ7Z) = A (S‘|Z7 2)7

and by taking the difference we obtain
(Vi8,8) =2 [(§122) — (V8.8)| =2 ((Dn +aa")z2).

Since the Galerkin matri¥ j is positive semi-definite, it follows that > 0, which implies
the assertion. O

As a corollary of Lemma 3.7, we find the positive definitenesthe symmetric Schur
complement matri¥y 4 as defined in (3.91).

Corollary 3.6. The Schur complement matff;ng as defined ir{3.91)is positive definite,
Le.,

(Tay2,2) > a(S12.2) + (D1nz.2) > (@D +D1)zn, zu)r = ¢z | uz )

forallze RM <z, € §4(I"), sinceaD + D; implies an equivalent norm in H2(I").

Remark 3.6. The symmetric Schur complement malﬁxH IS positive definite for any
choice of conformal boundary element spacg$§'S C Hl/2 ) and (1) c HY2(T).

In particular we may use the same boundary element mesh veisih mze b; H. From

a theoretical point of view, this is not possible in generalew using the non-symmetric
approximatioriTy .

Hence we can ensure the unique solvability of the discretiati@nal inequality (3.90).
As in (3.55), when combining the approximation propertyra ansatz spacg (") with
the error estimates (3.86) and (3.88), we can derive an estonate for the approximate
solutionZy of the variational inequality (3.89), see also [52].

Theorem 3.6. Let z andzy be the unique solutions of the variational inequalit{8s79)
and(3.90) respectively. Then there holds the error estimate

& 1 1
Hz—zHHHM(r)sclH%HzHHsﬂ(rwcth*z(uqzuHs )+ g ir))

+c3h®* 2||Quf||HS +C4hs+2||wf||H5 r (3.98)
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when assuminge H1(I") and o, wy, qu f, wr € How(I") for some « [0, 1]. In particular,
for h=H we have the error estimate

2= 2 lyzqr) < C(2T, F)HE2, (3.99)
Moreover, we are also able to derive the error estimate4(l, i.e.,
1Z— 2|,y < c(z,0, F)HS, (3.100)

when applying the Aubin-Nitsche trick.

In the case of a non-constrained minimization problemgemdiof the discrete variational
inequality (3.90) we have to solve the linear system

-/I-\G,H/_Z\: /_g\7
which can be written as
—Vih Vh Kih w f
Vi —(%Mh‘FKh) ql=|(-f,]: (3.101)
K{h ~(3M{ +K/) aSy+Din Z —f

Moreover, by usingv = avhfl(%Mh-i— Knh)Z as given in (3.74), we obtain the linear sys-
tem

—Vih Vh . Kih w f,
Vi —(3Mn+Kp) g -1,
== 3.102
Kin —GMy+KJ) aDu+Din (3My +K) | | 2 ~f, ( )
(M +Kp) —1y, w 0

3.6 Semi-smooth Newton methods

In this section, we study semi-smooth Newton methods toestiie discrete variational
inequalities (3.70), (3.90). For the ease of presentatierconsider the symmetric formu-
lation only, i.e., we have to seelke RM < z, € Uy such that

(Tanzw—2)> (Gw—2) forallweR" < wy €U, (3.103)

where we use the Galerkin boundary element approximatibtieecperatof, and the
right hand sideg as in (3.91), (3.93). For more details on semi-smooth Newtethods,
see, e.g., [24, 32, 33, 35, 61].
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Semi-smooth Newton methods and regularization

By settingA = 'IA'mH Z—gwe arrive at

{(faZH,WH)r — (A, Wh)r = (Gwh)r  forallwy e Sh(I), (3.104)

(AH,WH —2zq)r >0 forallwy € Uy.

Semi-smooth Newton algorithm with regularization

(i). ChooseA, o > 0,7, and sek = 0.
(i). Set
At ={ieN:
A2 ={ieN:
(iii). If k>1, At ; = At andAZ ; = AZ stop, else
(iv). Solve forz e g (r):
(Tad i)+ (A -+ 0 (2™ ~22))X g, Wi
(A +0(@ —20))x g, Wh)r = (@ wh)r (3.105)
for all wy € §(I"). Setk :=k+ 1 and go to Step (ii).
Note that in step (iv) we obtain the associated linear systief8.105)

TanZ + o (M + M) 2 =g+ f (3.106)

—0

where

MiLi i = (81X, 81r MALLIT=(8'X4z,, 9])r fori,j=1,..M,
and

folj] = <(021_X>XA%+17¢]'1>F + <(022—X)XA§H,¢J-1>r for j=1,...,M.

Remark 3.7. The mass matrices Mand Mj are symmetric and positive semi-definite.
Hence the conjugate gradient method can be applied to sbé/brtear systen(3.106)
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3.7 Numerical experiments

We present in this section some numerical results for thieldet boundary control prob-
lems in two-dimensiom = 2. We test some numerical examples as given in the papers
[11, 19, 42]. For the boundary element discretization weophice a uniform triangula-
tion of the boundary” = dQ on several levels by 2-+2 nodes. The boundary element
discretization is done by using the trial spﬁél‘) of piecewise constant basis functions
and S, () of piecewise linear and continuous functions. We use theedaoundary el-
ement mesh in the symmetric formulation to approximate tharol z by a piecewise
linear approximation, and piecewise constant approxwonatfor the fluxego andg. In

the case of the non-symmetric formulation, we consider aloitianal level of refinement
to define the trial spacg(I"), i.e.,h/H = 1/2. Note that in this case we can not ensure
theSﬁ(F)-eIlipticity of the non-symmetric boundary element appnoation. However,
the numerical examples show stability. It is not stable ifuge the same mesh as in the
symmetric formulation.

Since the analytic solutions are unknown in these exampiesise the approximate solu-
tions on the finest level(= 9) as reference solutions. For the following examples, vee us
the norm as defined in (2.7) to compute the errord Jrhz(r) norm.

Numerical example 1
In our first numerical example we consider the Dirichlet baany control problem (3.1)
for circle Q = Bp 4(0) with regular data as given in [19]. We set= 1,

urg) = Tor*maxo,cody)

ulr,p) = 2—;(35rzco§(p—|—30rz—12r)cos<p+u(r,(p) and

f(r,p) = —?r max0, cosgp).

For aLy(I")-control, i.e., instead of the Steklov-Poincaré oper&we choose an identity
operator in (3.1), it is easy to check tI#0.4, p) = u|r = max(0,cos’ @) is the solution

of the minimization problem wherg;, z] = [0,1] and the associated adjoint variable is
_ 253

given byp(r, @) = 2r3(5r — 2) cos’ .

We present the errors in the (") norm of the boundary element approximations for the
non-constrained minimization problem and the estimatel&oof convergence (eoc) of
the non-symmetric formulation and of the symmmetric foratioln in Table 3.1.

In this example, the data are smooth. Hence we can expecttamabprder of conver-
gence, i.e., second order convergence for the conteoid linear convergence for the flux
w, see the error estimates (3.73), (3.76) for the non-symertiundary element approxi-
mation and the error estimate (3.100) for the symmetric dannelement approximation
(s=1).
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Non-symmetric BEM (3.74) Symmetric BEM (3.101)
L | 2o = Zo Iy | 19— Gugllipe) | (12— Zrgllir) | 110 — G llyir)
error eoc error eoc error eoc error eoc
3.0938e-3 - 4.2361le-1] - 3.4359e-3 - 3.9355e-1 -
7.1975e-4| 2.104 | 2.0095e-1| 1.076| 8.1293e-4| 2.079| 1.9543e-1| 1.009
1.7553e-4| 2.036| 9.8235e-2| 1.032| 2.0464e-4| 1.990| 9.7464e-2| 1.004
4.3428e-5 2.015| 4.8796e-2 1.009| 5.4279e-5| 1.915| 4.8632e-2| 1.003
1.0834e-5| 2.003| 2.4324e-2 1.004| 1.5316e-5| 1.825| 2.4169e-2| 1.009
2.7031e-6| 2.003| 1.2085e-2| 1.009| 4.1463e-6| 1.889| 1.1793e-2| 1.035
6.5553e-7| 2.044| 5.8965e-3 1.035| 1.1821e-6) 1.810| 5.2738e-3| 1.161
expected 2.000 1.000 2.000 1.000

O~NO O~ WN

Table 3.1: Comparison of non-symmetric and symmetric BEM.

For the box-constrained minimization problem we use senvoeth Newton method with
regularization to solve the variational inequality. Wegmet here the symmetric formula-
tion only. The obtained results are given in Table 3.2 whmre,| = [0, 1]. The data in the
semi-smooth Newton algorithm are chosen as

A=0 o=10% Z=o0 (3.107)

With these data, the algorithm stops after less than 20 ,s$epsthe last column in Table
3.2. Note that at level = 9 to compute the reference solutions, we nked 17 itera-
tions.

L | IZh, —Zhllipr) | €0C | 117, —Zngllirrzr) | €0C | flah, — ahlliyry | €OC | #it(K)
2| 8.4004e-3 - 6.6399e-2 - 0.3970350 - 10
3| 1.5959e-3 | 2.396| 2.0421e-2 | 1.701| 0.1960640 |1.018| 12
4| 3.4967e-4 | 2.190| 7.7228e-3 | 1.403| 0.0982184 | 0.997| 13
5| 8.0322e-5 | 2.122| 2.8896e-3 | 1.418| 0.0496215 | 0.985| 16
6| 1.6539%e-5 |2.279| 7.9336e-4 | 1.865| 0.0248726 | 0.996| 14
7| 4.9567e-6 | 1.738| 3.2703e-4 | 1.279| 0.0122548 | 1.021| 15
8| 1.9666e-6 | 1.334| 1.4044e-4 | 1.219| 0.0054306 |1.174| 15
expected 2.000 1.500 1.000

Table 3.2: The results of semi-smooth Newton algorithm efsyimmetric formulation.

Note that the parameter plays the role of a penalty parameter and it should be chosen
large enough. As stated in [35], for some choiceopfthe semi-smooth Newton method
may lead to cycling of the iterates unless the initializat®already close to the solution.
For o = 1, the method converges for all initializations.
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Figure 3.1 shows the optimal solutions of the unconstra{feft) and of the constrained
(right) problems. In Figure 3.2 we also plot the optimal esabf the Dirichlet boundary
control problem when using the hypersingular boundarygirateoperatoiD to realize an
equivalent norm itHY/2(I") and when using.»(I") setting wherdz;, z,] = [0, 1], see [19].
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Figure 3.1: Comparison of the unconstrained (left) and efdbnstrained (right) optimal
solutions.
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Figure 3.2: Optimal solution, when using the operat@ and using_, setting.
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Numerical example 2
We now consider the example as in [11], see also [52] withregslarity on the data for
the domairQ = (0, 3)? ¢ R2. The data are chosen as

ux) =(04+x) "3, f(x)=0, a=L1

For these data, we hatee H3(Q) for s < % which impliesp € H2FS(Q), and%p €

HY/2+S(1"). Hence, for the non-constrained problem we haweH3/2S(I"). The obtained
results without control constraints are given in Table 1@ &able 3.4 which are in rea-
sonable agreement with the theoretical results. For casgarwe also give the error of
the related finite element solution, see [51]. From the nigakresults we conclude that
all three different approaches behave almost similar.

| |_Non-symmetric BEM Symmetric BEM FEM
1Zn, —Zhglliyry | €0C | [|Zn, —Znglliyry | €0C | l|Zn, — ZngllLy(r) | €0C
2 5.9100e-4 - 7.6323e-3 - 1.23e-3 -
3 1.6410e-4 | 1.848 1.8559e-3 | 2.040 3.47e-4 1.83
4 4.9258e-5 | 1.736| 4.3695e-4 | 2.086 9.48e-5 1.87
5 1.4683e-5 | 1.746 1.0229e-4 | 2.095 2.57e-5 1.88
6 4.2760e-6 | 1.780 2.4016e-5 | 2.091 6.96e-6 1.88
7 1.2134e-6 | 1.817 5.4261e-6 | 2.146 1.87e-6 1.89
8 3.3324e-7 | 1.864| 9.7897e-7 | 2.471 4.54e-7 2.04
Table 3.3: Comparison of BEM/FEM errors of the Dirichlet tah
Non-symmetric BEM Symmetric BEM
L [T Zng 2y | 10— @holliom) | T2 — Zollgzy | 10h — @hgllip)
error eoc error eoc error eoc error eoc
1.0219e-2 5.3718e-2 3.1105e-2 3.0001e-2

4.0384e-3 1.339| 2.4044e-2| 1.159| 1.0776e-2| 1.529| 1.8082e-2| 0.730
1.6773e-3| 1.268| 1.2363e-2 0.959| 4.1282e-3| 1.384| 1.1066e-2| 0.708
7.0266e-4| 1.255| 7.4291e-3| 0.735| 1.6163e-3| 1.353| 7.1354e-3| 0.633
2.9118e-4| 1.271| 4.7058e-3| 0.659 | 6.3445e-4) 1.349| 4.5821e-3| 0.639
1.1788e-4| 1.305| 2.9591e-3) 0.669| 2.4108e-4| 1.396| 2.8209e-3| 0.699
4.5061e-5 1.387| 1.7928e-3| 0.723| 8.1265e-5| 1.569| 1.4952e-3| 0.916

O~NO OB~ WN

Table 3.4: Comparison of non-symmetric and symmetric BEM.
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In Table 3.5 we also present numerical results for the caimdiz < 2.23. Then, in Figure
3.3 we give a comparison of the unconstrained and constraiolations.

|20, —Znollipr) | €OC | 120, —Zhgllyrrzr) | €OC | [lan, — ahglli,ry | €OC | #it(K)
1.0951e-2 - 4.0474e-2 - 5.1150e-2 - 5
2.5157e-3 | 2.122 1.3748e-2 | 1.558| 3.2851e-2 | 0.639| 8
3.4465e-4 | 2.868| 3.4424e-3 | 1.998| 2.2249e-2 | 0.562| 11
1.4260e-4 | 1.273 1.6853e-3 | 1.031| 1.0105e-2 | 1.138| 11
3.0029e-5 | 2.247| 5.0309e-4 | 1.744| 5.8395e-3 | 0.791| 13
6.3171e-6 | 2.249 1.5802e-4 | 1.671| 2.5087e-3 | 1.219| 14
1.1518e-6 | 2.455 7.4408e-5 | 1.087| 1.2581e-3 | 0.996| 12

00O ~NO O~ WNIT

Table 3.5: The results of semi-smooth Newton algorithm efsyyimmetric formulation.
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Figure 3.3: Comparison of unconstrained (left) and consth(right) optimal solutions.

Instead of the Steklov-Poincaré operddpone may use the so-called hypersingular bound-
ary integral operatob to realize an equivalent norm h=h1/2(r) as in [52]. The use of the
hypersingular boundary integral operaf@rdoes not require an inversion as in (3.49),
(3.50). However, it may result in a lower regularity of thentl z, and therefore in a
lower order of convergence. For comparison we present iteTab the numerical results
for both cases and the case when considering the contig( i) with the same parameter
o = 1. Note, in theL»(I") control, the optimality condition reads
7}

2= Py L, as—a—E:o, (3.108)

whereP,, , denotes the pointwise projection oitgy. This approach also results in a lower

regularity of the controt. In particular, for the data in the example 2, we haweH?/3(T")
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only, see [11, 42]. Note that we can prozxe H3/2(F) when considering the control
in HY/2(T"), see Proposition 3.1. Moreover, from the optimality coiodis (3.108), we
conclude that is zero in all corner points due to the zero Dirichlet bougdamdition of
the adjoint statg. This behaviour is independent of the target functiofor illustration,
we plot in Figure 3.4 the statesfor the H1/2(F) setting when using the operatbrand
for theL,(I") setting (without control constraint).

Using the operato® Using the operatdd L, setting, see [42]
1Zh, —ZngllL,(ry | €0C | [[Z0, —Znglliyry | €0C | l|Zn, — ZngllL,ry | €OC
7.6323e-3 - 7.7726e-3 - 4.2246e-2 -
1.8559e-3 | 2.040 1.9498e-3 | 1.995 2.1492e-2 | 0.975
4.3695e-4 | 2.086 4.8349e-4 | 2.012 1.1664e-2 | 0.882
1.0229e-4 | 2.095 1.2745e-4 1.923 6.4101e-3 | 0.864
2.4016e-5 | 2.091 3.8231e-5 | 1.737 3.5152e-3 | 0.867
5.4261e-6 | 2.146 1.3206e-5 | 1.533 1.8655e-3 | 0.914
90.7897e-7 | 2.471| 4.6051e-6 | 1.520 8.9452e-4 | 1.060

coO~NO O~ wWN ™

Table 3.6: BEM for Dirichlet boundary control problemsHit/2(I") andL(I").
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Figure 3.4: The states for the Hl/z(l') setting when using the opeartDr(left) and for
theL,(I") setting (right).

To see the behaviour of the statest the origin of cooridinates for smaller, we plot
in Figure 3.5 the states of the boundary control problem (3.1)-(3.2) far= 102 and
a=10"%

The stateu shows a good behaviour at the origin, whereas we obtain tteeczmtrol at
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™
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Figure 3.5: The statasfor theHY2(I") setting witha = 102 (left) anda = 10~ (right).
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all corner points when considering the controllip(l"). More precise, we present the
statesu for the HY/2(I") setting and for the.»(I") setting in Figure 3.6. Note that for
this example we use different values @fto ensure comparable values for the tracking
functional |[u —Tf[_,q)- The related controls fox; € (0,0.5),%; = O are given in Figure
3.7. Moreover, the behaviour of the controls near the oliggadso shown in Figure 3.8.
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Figure 3.6: The states for the HY/2(I") setting witha = 1.18x 103 (left) and for the
Lo(I") setting witha = 10~ (right).
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Figure 3.7: Comparison of the1/2(I") setting (left) and ol,(I") setting (right) optimal
controls,xo = 0.
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Figure 3.8: The behaviour of the optimal controls near thgior
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4 MIXED BOUNDARY CONTROL PROBLEMS

In this chapter we study a mixed boundary control problemrevktee control is considered

in the spaceéH/2(I'p), Mp C I'. One possible approach to solve mixed boundary value
problems is to use the Dirichlet to Neumann map, so-calle®tieklov-Poincaré operator,
see [58, 62]. Then we can formulate and analyse a system otlaoy integral equations
for the mixed boundary control problem which is based ondeea iof integration by parts
as given in Chapter 3. We derive stability and error estimatéhe Galerkin discretization.
Some numerical examples are presented which correspohd thdoretical results.

This chapter is organized as follows. We state the modellpnoln Section 4.1. We
also present the well-known KKT system. In Section 4.2, laauy integral equations are
considered which are based on the ideas as given in Chapiée &ormulate a system of
boundary integral equations for the coupled optimalityelys The Galerkin variational
formulation is presented in Section 4.3. We discuss a rtlstihility and error analysis.
For illustration, we give some numerical results in Sectioh

4.1 Statement of the problem

Let Q ¢ RY, (d = 2,3) be a bounded Lipschitz domain. The bound&ry dQ is parti-
tioned into two nonintersecting paffs=Tp Uy, Tp NIy = 0. As a model problem, we
consider the mixed boundary control problem to minimize

J(u,2) = %/[u(x) —U(x)]?dx+ %(Sz, 2r, for (u,z) e HY(Q) x HY2(Mp)  (4.1)
o)

subject to

—Au(x) = f(x) forxeQ, u(x)=1zx) forxelp, inu(x):t,u(x) forxeln

4.2)
and to pointwise control constraints

Z€ Uag:={we HY?(Mp): z1(xX) <W(X) < z5(x) for x e Tp}. (4.3)

Herel € L»(Q) is a given targetf € L»(Q),p e H-Y2(Ty), z1,2 € HY2(T'p) are given,
a € R, is a fixed parameter. We describe the cost by usirig%?(l'D) semi-elliptic
operatorS : HY/2(I'p) — H~Y/2(I'p) which is specified later.

65
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To reduce the cost functiond{u, z) we introduce a linear solution operator describing the
application of the constraint (4.2). Lep € H1(Q) be a particular weak solution of the
mixed boundary value problem

—Aup(x) = f(x) forxe Q, up(x)=0 forxelp, inup(x) =y(x) forxely.
X
Letu, € H(Q) be a weak solution of the homogeneous mixed boundary vabisgm

—Auy(X) =0 forxeQ, uy(x)=2z(x) forxelp, X)=0 forxeln. (4.4)

7}
0—nXU2( )
The solution of the mixed boundary value problem (4.2) ismtgeven byu = u, + up.
Moreover, by using Green'’s first formula, we have, forw € HY/2(Ip),

/DuZ ) Ouw(X) dx = /—uZ Uw(X)ds = /—uZ S =:(SZzwW)r,

This is the motivation to define an operat®r HY/2(p) — H~Y/2(I'p) which maps the
Dirichlet controlz to the related Neumann datum bp. The operato§ is self-adjoint and
HY/2(I'p)-semi elliptic. In particular, we haw§1 = 0.

The solution of the mixed boundary value problem (4.4) dsfiadinear mapi, = Hz,
whereH : HY2(T'p) — HY(Q) C Lp(Q). Then, by usingi = Hz-+ up we now consider the
problem to find the minimizez € Uyq of the reduced cost functional

3@ = 5 [14200+upx) ~ 00 e+ S(S22)r,

= %(Hz+up—U,Hz+up—U>L2(Q)+%<Sz,z>rD

= S HZ D+ (H (Up—0), 2o + 5 lUp 0P o) + 3 (52,205,
where?* : Lo(Q) — HY2(Ip) is the adjoint operator o : HY/2(I'p) — Lo(Q), i.e.,

(H*w,9)r, = (w0, Ho),q forall¢p e HY?(Mp),w e Lp(Q).

Since the reduced cost functioril) is convex, the minimizez € 44 can be found from
the variational inequality

(aSz+H*Hz—g,W—2)r, >0 forallw e Uyg, (4.5)

where we define N
g:=H*(U—up) € HY2(rp). (4.6)
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The operator N
Ta ==aS+H"H :HY?(Mp) - H Y3(Ip) (4.7)

is bounded, self-adjoint artd'/2(I'p)-elliptic. In particular, forze HY2(I'p), we have
(Taz.2)rp = a(S2,2)ro + (M HZ 21, = || DU, o) + U2, ) > min{a, 1} U3
and the assertion follows from the trace theorem. Hencegltiptic variational inequality
of the first kind (4.5) admits a unique solutiare HY/2(T'p), see, e.g., [23, 38, 41].

The variational inequality (4.5) can be written as
(aSz+H" (u—t),w—2)r, >0 forallw e Usg.

The application of the adjoint operator.= #*(u— 1) is characterized by the Neumann
datum

T(X) = —%nx p(x) forxeTlp,

wherep is the unique solution of the adjoint mixed boundary valuzbpgm

—Ap(x) =u(x) —0(x) forxe Q, p(x)=0forxelp, ainp(x) =0forxeln. (4.8)
X

Hence the variational inequality (4.5) is written as

(aSz— %p,w— Z)r, >0 forallwe Uyg. (4.9)

The primal and the adjoint mixed boundary value problem®)(@nd (4.8) can be solved,
e.g., by using the standard boundary integral equationseoDirichlet to Neumann oper-
atorS, see e.qg, [17, 58, 62, 63]. This will be discussed in the necticn.

4.2 Boundary integral equations

To find the controk € Hl/Z(FD) we have to solve a coupled problem of the primal and the
adjoint mixed boundary value problems (4.2), (4.8) and efdptimality condition (4.9).

In what follows, the coupled optimality system is writtenarform of boundary integral
equations of the Steklov-Poincaré oper&and of some composed operalorThe well-
known properties of the Dirichlet to Neumann map and of therafrT similar to the
results as described in Chapter 3 induce the unique saityabflthe boundary integral
equation system as well as the stability of the Galerkinrdiszation which is presented in
Section 4.3.
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For the sake of convenience, Igf, y1- be the Dirichlet and the Neumann trace maps,
respectively. For the primal problem, the Dirichlet to Neanm map can be written as

yiu(x) = (Syou)(x) — (V INgf)(x) forxeT, (4.10)
see (3.19), also [63], where the boundary integral reptatien of the Steklov-Poincaré
operatorSis
L +K’)v—1(5| +K). (4.11)
2 2
We now consider the adjoint mixed boundary value problem

1
S:V_l(él—i—K):D-i—(

—Ap(x) =u(x) —0(x) forxe Q, wp(x)=0 forxelp, ypx)=0 forxeln.

We first obtain the representation formula ¥of Q,
/U*xyvlp )ds, — / (X Y)yop(y ds/+/ (X y)you(y) dsy
- [V &ymumds - (U Ry dy- [V Ryfy)dy (12)
r Q

where in addition to (3.24) we have the double layer poténfigthe non-zero Dirichlet
dataypp(x). When taking the Dirichlet and the Neumann traces, the semitation formula
(4.12) results in two boundary integral equations

VIS —Viyiu— Notl -
{VOp—vvlp (=31 +K)yop+Kiyou —Viy1u—Noli— Mof, (4.13)

yip= (31 +K')yip+Dyop — D1you— Kiyau— Ny — My f.
Solving y1p from the first equation of (4.13), and by insertipgl from (4.10), (see also
(3.19)), we obtain
ylp:v—lvlv—l(; + K)you—V_lKlyou-i—V_l(%l +K)yop
+V 7 INgU—V ViV INgf +VIMof. (4.14)

When substitutingau, yip from (4.10), (4.14) to the second equation of (4.13), this
gives
V1p(X) = (Syop)(¥) — (Tyouw)(x) +9(x) forxeT, (4.15)

where the operatdr is in the symmetric representation, see (3.80),

T=D1+ Kivl(%l +K)+ (%I + KWK, - (%I + K’)vlvlvl(%l +K), (4.16)
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and

- 1 1
g=(5!+ KV~ INotl — Ny + KV INo f + !+ KW Mo — ViV "IN f — My f
(4.17)
asin (3.81). Moreover, we use the alternative symmetricessgntation oSas in (4.11).

Hence, the application of the operaf®to the Dirichlet datum of the adjoint variable and
of the operatofl to the Dirichlet datum of the state give the Neumann daturhnetdjoint
variablep. Note that

You = YUz + Youp,  Yop € HY2(Mn),  yipe H2(Mp).
LetZe HY2(I") be a fixed extension afe HY/2(I'p). Let
s(X) 1= youz(X) —Z(x) € HY2(Ty). (4.18)
Then the Dirichlet to Neumann map of the mixed boundary vpheblem (4.4) reads
Y1Uz(X) = (Sypuz) (X) = (Ss)(X) + (SZ)(x) forxeT.
This gives a boundary integral equation
(S)(x) = —(SZ)(x) forxeTly. (4.19)

Note that in the last equation we use the same notation foopeeatorS: HY/2(Iy) —
H-Y/2(I'y). In particular, fors € HY2(Iy) we identify s with its zero extensioR e
Hl/z(r). To be more precise, we later use a subscript to indicate rivépage and the
image of the operatds.

Since the operatos: HY2(I'y) — H-Y2(I'y) is bounded andd/2(I"y)-elliptic, the
boundary integral equation (4.19) admits a unique sollﬂierﬁl/z(l'N), see [63, 64].
Hence we can define an opera®t HY2(Fp) — HY2(I") by

Pz:= ywu;=s+72, (4.20)

wheres € ﬁl/Z(FN) is the unique solution of the operator equation (4.19). Tmetion
s depends on the extensi@of z, of course. However, the susy-Z is independent of
choosing the extensidh Indeed, lez € HY2(I") be another extension afe HY/2(I'p)
and lets € HY/2(I"y) be the unique solution of the variational problem

(S5, @)ry = —(S2,@)r, forall @ e HY2(Ty).

Then the function N
Vi=(s+2)— (5+2) € HY2(Iy).

We obtain, by the definition af ands,
<&7V>FN = _<SZ V>FN7 <S§7 V>FN = _<SZV>FN~
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This implies
(SvyV)r, =0.

Hence the assertion follows from th@/Z(FN)-ellipticity of the operatoS.

Moreover, we have
1Pz < 2l (4.21)

We now rewrite the boundary integral equation (4.15) in anfof a system of boundary
integral equations

(4.22)

(Syop)(X) = T (Pz+ youp)(X) — G(X) forxe M,
Yip(X) = (Syop)(X) — T(Pz+ yup)(X) +9(x) forxe lp.

Again the operato8: HY/2(My) — H~Y2(I'y) is bounded anéi¥/2(Iy)-elliptic, we can
solveyp € Hl/Z(FN) from the first equation of (4.22)

Yop = SUNTNPZ+ S T Youlp — SunaN, (4.23)

where the subscript iBag means integration ovdrg and evaluation o o and the sub-
scripts inTp, etc., mean evaluation diy with I'a,'g C I'. By substituting (4.23) in the
second equation of (4.22), we obtain

V1P = (SoNSun TN — To) PZ+ (SoNSUN TN — To) Youp — SonSynOn + 0. (4.24)
Therefore, the variational inequality (4.9) can be writésn
(TaZzW—2)r, > (Q,W—2)rp, (4.25)
where we obtain the alternative representatiofipbs defined in (4.7),
Ta =0aS — (SONSWNTN—Tp) P (4.26)
and ofg as defined in (4.6),
9= (SonSuTN — To) ¥oUp — SonSynGn + G- (4.27)

Theorem 4.1. The composed boundary integral operafigr: H/2(I'p) — H-Y/2(T'p) as
defined in(4.26)is self-adjoint, bounded and¥#(I"p)-elliptic.

Proof. The boundedness of, follows from the boundedness of all boundary integral
operators involved. Moreover, lg; € H1(Q) be a particular solution of the adjoint mixed
boundary value problem, i.e.,

—Apz(X) = Uz (X) forxeQ, ywpAx)=0 forxelp, wp(x)=0 forxely,
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whereu, € H1(Q) is the solution of the mixed boundary value problem (4.4)alagously,
the boundary integral equation (4.15) reads

¥1Pz(X) = (SyoPz) (X) — (T youz) (X) = (Syopz) (X) — (TPZ)(x). (4.28)
Therefore,
(Syopz)(X) — (TP2)(x) =0 forxe Iy,
(Syopz) (X) — (TP2)(X) = y1pz(X) forxep.
Since the operatd: HY/2(I'y) — H~Y/2(Iy) is invertible, we can solvgyp, € HY/2(Iy)

of the first boundary integral equation of (4.29). Hencenpfitbe second boundary integral
equation of (4.29), we can conclude

(4.29)

Taz=aSz—yip; € H Y?(p). (4.30)

Therefore, forz,w € HY/2(I'p) we have, by using Green’s second formula

(TazW)rp = a(Sz,wjr /lez
= a(Szwr / Y1 Pz(X) Yo (X) sy
= a [ Ouz(X)Ouw(X) dX+ [ uz(X)uw(x) dx,
/ /

and the assertion follows. O

Hence we conclude the unique solvability of the variationauality (4.25). In what fol-
lows, we consider a Galerkin boundary element discretinaif the variational inequality
(4.25).

4.3 Symmetric Galerkin approximation formulation

Let
S(Mp) := Sy NHY2(Mp) = span{¢'°}y
be a boundary element space of piecewise linear and comsribasis functiongP
I'p, which is defined with respect to a globally quasi-unifornd ahape regular boundary

element mesh of mesh sibe For continuous functiong, andz,, we define the discrete
convex set

Un = {Wh € S5(Tp): Z1(X) < Wh(x) < z2(x) forall nodesq € Tp} € HY?(I'p).
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Then the Galerkin discretization of the variational inddgud4.25) reads to findy, € Uy,
such that

(TaZn,Wh — Zn)rp > (9, Wh — Zh)rp  for all wy € Uy, (4.31)
The operatof7, as defined in (4.26) is bounded aHd/Z(FD)-eIIiptic. The discrete vari-

ational inequality (4.31) admits a unique solutigne U,. Moreover, we can derive the
following error estimate.

Theorem 4.2. Let z€ Uyg and z € Uy be the unique solutions of the variational in-
equalities(4.25)and (4.31) respectively. If we assumezz z, € H¥(I'p) andTaz—g €
HS-1(I'p) for some s [3,2], then there holds the error estimate

1
12— Znll/2(rp) < ch™2(|Z|ps(rp)- (4.32)

Proof. The proof is similar to the proof of Theorem 3.1 where we ugeahproximation
property of the trial spacﬁ%(l‘D). We skip the details. O

The error estimate (4.32) seems to be optimal. However, ¢thgosed operatof, as
considered in the variational inequality (4.31) does nlmvah practical implementation,
since the inverse single layer potential! as in the composed operat@d is in general
not given in an explicit form. Hence, instead of (4.31) wedé&® consider a perturbed
variational inequality to seek, € U}, such that

(TaZn,Wh — Zn)rp > (G,Wh —Zn)rp  for all wh € Un, (4.33)

whereTq andg are appropriate approximations f§ andg, respectively. The following
theorem presents an abstract consistency result, see/f&ljsed a similar result as given
in Theorem 3.2.

Theorem 4.3.Let 7, : HY2(I'p) — H~Y/2(I'p) be a bounded andi& p)-elliptic approx-
imation of 7, satisfying

1 Talg-1/2r ) < 12l a2, forall ze HY2(Ip) (4.34)

and
(Tazn, 2o > €[ 2012, forall zn € SH(To).

Letg e H Y/2(I'p) be some approximation of g. For the unique solutiqre Uy of the
perturbed variational inequality4.33)there holds the error estimate

12=Z0llyarzry) < C1llz=Znllwvzry) + Coll (Ta = Ta)2llg-12rg) + Call9— G llg-2(r,)
(4.35)
where g € Uy is the unique solution of the discrete variational ineqtyal#.31)
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It remains to define approximatioﬁA‘g andg of the operatof7y and of the right hand side
g, respectively.

Boundary element approximations ofSand T
Letwe Hl/z(r) be a given function. By using the symmetric representatafr&andT,
see (4.11) and (4.16), we obtain

1 1 1

Sw=Dw+ (3| +K’)V*1(§| +K)w=Dw+ (3| +K') ww,
1

Tw=Diw+ Kioq,\,—(il +K" 8y,

where

1,1 -
Wy =V S +HKW By =V (Viay —Kqw),

i.e., wy, By are the unique solutions of the variational problems

Ny, T)r = <(%I +K)w,1)r forall T e H-Y2(I),

VB, T)r = ((Vitaw — Kaw), )¢ forall T € H=Y2(I).

Let () =span{ ¢ }R_, be the boundary element space of piecewise constant basis fu
tions onl", which is defined with respect to a globally quasi-unifornd amape regular
boundary element mesh of mesh diz& hen the associated Galerkin variational formula-
tions read to finduyp, Byn € (") such that

Ve, T = {51 +K)w i) for all & ),
(V By, Thr = (Vi@ — Kaw), Th)r for all 7, € ().

Now we are in a position to define the approximate opereﬁtzmdf by

~ 1

Sw= Dw+ (El +K') s (4.36)
~ 1

Tw=Djw+ Kiam7h—(él +K’)9\Mh. (4.37)

Lemma 4.1. The approximate Steklov-Poincaré operef/ﬁcms defined i(4.36)is bounded,
i.e.,S: HY2(M) — H-Y2(I") satisfying

ISWl-v2(r) < SSlWllparz(ry  for all w e HY2(r). (4.38)
Moreover,S isHY/2(I"y)-elliptic,

(Sww)r > c?||w||ﬁl/2(r) forallw e HY?(I'y), (4.39)
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and satisfies the error estimate

1(S— §)WHHfl/Z(r) <c i%j(r) [Sw— ThHHfl/Z(r)- (4.40)

The

Proof. The proof is similar to the proof of Lemma 3.3. In particultre ﬁl/z(FN)-
ellipticity of Sfollows due to, see [64, Lemma 12.11],

Swwyr = (DWW + (31 +K') g Wr

2
= (OWW)r + (@, (51 + KW
= (DWW)r + (V Wyh, Wun)r > C?”WHal/z(r)-
0]
Lemma 4.2. The approximate operatdr : HY/2(I") — H~Y/2(") is bounded, i.e.,
ITWilyy-1/2) < LWz, forallwe HY2(T). (4.41)

Moreover, there holds the error estimate

T =)Wy < inf 1B Tolly-aizr) + ol — @by sz (442

The

Proof. The proof follows as for the boundary element approximatdrihe Dirichlet
boundary control problems, see Lemma 3.3, [52]. O

Boundary element approximations of the operatorsS and P
Letze HY2(Ip) be a given function. Léte HY/2(I") be a fixed extension afsatisfying

1Zllv2ry < cllZllpyzr,) for some constart > 1. (4.43)

By definition we have
(82)(X) = y1uz(x) forxeTlp,

and
(P2)(X) = Youz(X) =s(X) +2(x) forxel, seHY?(y),

whereu, € H(Q) is the unique solution of the mixed boundary value problem
—Auy(X) =0 forxe Q, wuzx)=2x) forxelp, yu, (x)=0 forxeTly.
The application of the Steklov-Poincaré operé&@oeads

(Sypuz) (X) = yauz(x) forxer.
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This implies

{<Ss><x> ~(S2)(% forxe Iy, (4.44)
WUA(X) = (S)(X) +(SD)(x)  forxe M.

Let

SH(Tn) i= (M) NHY2(Ty) = span(¢N} "
be a boundary element space of piecewise linear and contnoasis functionfpilN on
N, which is defined with respect to a globally quasi-unifornd ahape regular boundary

element mesh of mesh site Letsy € SH(Tn) be the unique solution of the Galerkin
variational problem

(Soh, @hry = —(SZ @)y forall g € SH(Tn),

where S is defined as in (4.36). Hence we can define approximai;ii?namd?3 of the
operatorsS andP, respectively, by

(S2)(X) := (Ssp) (X) + (SZ)(x) forx e p, (4.45)
(P2)(X) :=sn(X) +Z(x) forxeTl. (4.46)

Lemma 4.3. The approximate operators
S:HY2(Fp) - HY2(p), P:HY?(p) = HY?(T)
are bounded, i.e.,

182 g-1/2(rp) < CgHZ”Hl/Z(rD), 1Pz ya2(ry < C§||Z||H1/2(rD) forallze HY*(Ip).
(4.47)
Moreover, there hold the error estimates

S-S <c inf s — ~ +6||(S=9 Pz,
I( )2lg-12(rg,) 1%e§%<rN)H ®llgrzry +C2ll(S= 9P|y -12(ry,)

+ 3| (S=slly-vrz(ry + Cal (S= FZlly-vzry)  (4.48)

and

(P =P)2lyror) < & %egzw Is = @llgez(ry) +C2l (S=Sslly-12ry

+C3[[(S=9)Zlly v2(ry) (4-49)

Proof. The boundedness of the operat@rand73 follows from the mapping properties of
all boundary integral operators involved. For an arbitrelnpsen but fixed H1/2(I'D)



76 4 Mixed boundary control problems

we have, by definition,
(§—8)z2=S%—Sn+(S-97
= (S—9)s+S(s—sn)+(S—9Z
=(S— §)PZ+ §(s —sh),

and

(P—P)z=s—sh.

By the Strang lemma, see, e.g., [64], we obtain

—splls < i — @l —Ss]|,,-
Is ShHHl/z(rN)_Cl%elsfqler)Hs M2y +C2ll(S=Sslly-vz(ry)

+call(S= 52l vry-

The assertion now follows from the triangle inequality. O

By using the estimates (4.21), (4.40), (4.43) and the appration properties of the trial
spacesS}(Tn) and sﬁ’(r), we conclude the error estimates from (4.48), (4.49) when as
suming some regularity &t

Corollary 4.1. Assume & H5(I'p) for some & [%,2]. Then there hold the error estimates

~

1
(=851 < c1h® 2|2l s(rp), (4.50)
~ 1
(P =P)zlqrzry < €2 2|1 Zlnsirp)- (4.51)

Boundary element approximation of the operator74
For an arbitrary but fixed € HY/2(I'p), the application offgzreads as

(Taz)(X) = a(Sz)(x) — (Swg)(X) + (TPz)(x) forxelp,
wherew, € ﬁl/Z(FN) is the unique solution of the boundary integral equation
(Swg)(x) = (TPz)(x) forxe .
Letw,p, € SH(Mn) be the unique solution of the Galerkin variational problem
(Swen, ghiry = (TPZ @)ry  forall g, € SH(Tn). (4.52)
Hence we can define an approximatlﬁﬂof the operatof7, by

(Ta2)(X) = a(82)(x) — (Swen) (X) + (TP2)(x) forx e Ip. (4.53)
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Lemma 4.4. The approximate operatdAﬁ, as defined ir{4.53)is bounded, i.e.,

T To
| 7aZ| A-12(rp) = (2] HY/2(Mp)-

Moreover, there holds the error estimate

(T~ el <0r 00 e @y + 1S - Sl

+ Call (S— SWellyy 172y + Gl (T = T) P2y w2 + Call (P = P2y 1/2(r-
(4.54)

Proof. The boundedness of the operafty follows from the mapping properties of all
boundary integral operators involved, see Lemma 4.1, 4d2ah

For the error estimate (4.54), lete HY/ 2(I'p) be an arbitrary function but fixed. By
definition, we have

(Ta2)(X) = a(Sz)(x) — (Swg)(X) + (TPz)(x) forxelp,
and by using (4.53),

(Ta2)(X) = a(S2)(X) — (Swep)(X) + (TP2)(x) forxe Mp.
Therefore, we obtain fax e I'p

(Ta = Ta)2(x) = a(S = 8)2(x) + (Swep) (x) — (SW) () + (TP2)(x) — (TPZ)(X
= (S —8)z(X) + (S— SHWx(X) + S(Wzh —Wy)(X)
(T =T)Pzx) + T (P —P)zx).

By using the Strang lemma and the triangle inequality, weatantiude

— o < i — @l -3 B
Wz Wz,hHHl/Z(rN)_Cl%e'gger)HWz B2y +C2ll(S— YWl 172y

+3[ (TP = TPz,

<c inf Wy — ~ 1+l (S= Swy[,,
l%eﬁ}(rN)H p (PﬂHHl/Z(rN) 2| ( )We|| 1y 12(ry)

+Cal| (T = T) P2y 172y + CallT(P = P)zly-v2ry -

The assertion now follows from the boundedness of the opex&andT. O

By using the estimates (4.40), (4.42), (4.50), (4.51) asdfproximation properties of the
trial spaces§t(I'y) andS)(I"), we conclude an error estimate from (4.54) when assuming
some regularity o, w,, 8p,, wp,, respectively. Here, we recall the notations

1
Wpz = Vil(é' +K)Pz,  6p; =V~ Viwp, — K1 PZ.



78 4 Mixed boundary control problems

Corollary 4.2. There holds the error estimate

~ 1 1
1(Ta = Ta) 2l g-1/2(rp) < €1 Z[IWellns(ry) +€20% 2|2l ws(ro,)
1 1
+3h? 2| 8py||g, 1) + Cah” 2| wp|lg ). (4.55)

when assuming & HS(I'p), W, € HS(T'y) for some s [3,2] and 6p,, wp; € Hgw(I") for
someo € [0, 1].

Boundary element approximations of the right hand sides
Analogously we may define a boundary element approximafitmeoright hand sidg as
defined in (4.27)

9= (SonSunTn — To) Youp — SonSynGn + G-

Let us first define boundary element approximationg,afee (4.17), angoup. By using
(3.82), (3.83)g € H1/2(I") as in (4.17) can be read

g=V INgu+V Mof =V IV INgf =V INgT+V Mo f —V vy fo,

wherefq :=V~INgf. Hence we can define an approximatie $(F) of g which is the
unique solution of the Galerkin variational problem

(VGh, Bh)r = (NoT+Mof —Vifop, Bryr  forall 8, € ST, (4.56)
wherefon € A solves

(V fon, Bn)r = (Nof, Bn)r  forall 6, e (). (4.57)

As in Corollary 3.3 we conclude the error estimates

1
Ifo— fonll-12¢r) < ch? 2| follg,(r)- (4.58)
SO 1~ 3

19— Ghll-v2(r) < ch?"2([Glng,r) + 22 follg ). (4.59)

when assumindo,§ € Hg,(I") for someo € [0,1]. Note that the factoo + 3 in the last

term follows from the mapping property : H=%/2(I") — H%2(I") and the Aubin-Nitsche
trick.

We now define a boundary element approximatiogaf, whereup, is the unique solution
of the mixed boundary value problem

—Aup(x) = f(x) forxe Q, wup(x)=0 forxelp, yup(x)=y(x) forxeln.
The boundary integral equation (4.10) gives

(S¥6up) () = yaUp(X) + (V"N F)(X) = W(x) + To(x) for x& M.
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Hence we can define an approximatisyy, € 5}([‘,\1) of youp € HY/2(T'y) as the unique
solution of the Galerkin variational problem

(St Gy = (W+ fon @ry  forall gy € SH(Mn). (4.60)
Moreover, we can derive the error estimate
[YoUp — Upnll g2y < C1 ad| YoUpllHs(ry) +C2 ho+2| follg,(r): (4.61)
when assumingpup € H3(Ty) for somes € [3,2] and fy € HSW(I") for someo € [0,1].
Let us rewrite the right hand sidgas follows
g(x) = (Sh)(x) — (Tyoup)(x) +9(x) forxeTlp, (4.62)
wheref; e HY2(T'y) solves
(Sf)(X) = (Tyup)(x) —g(x) forxely.
Then, we defind; , € SH(T'n) as the unique solution of the Galerkin variational problem

(St @iry = (TUpn, @)y — (G, @)ry forall g e SHTN).  (4.63)

By using the Strang lemma, we conclude the error estimate
f1— finlls <c inf |fi—als +¢(S— ) fa -
H . HHl/Z(rN) %eﬁhl(FN) H HHl/Z(rN) ”( ) ”H 1/2(rN)

+c3f|(T — f)VOUpHHflﬂ(rN) + Callyoup — Uphllgazry) 511G — Ghll-v2(ry -
(4.64)

We are now in a position to define an approximafipn ﬁ*l/z(FD) of g by
g(x) = (§f17h)(x) — ('IA'upyh)(x) +0n(x) forxeTlp. (4.65)

Lemma 4.5. Let g andg be defined as i(¥.62)and(4.65) respectively. Then there holds
the error estimate

—0ll5 <c inf fi— ~ +6|[(S=9) fql.
19— 8llg-12(rp) 1%eﬁ#(rN)II1 @llgazry) +C2l(S—= 9 fully-22r)

+c3l|(T-T) YoUpl|-1/2(r) =+ Call Youp — Up,h”ﬁl/Z(rN) + 5[/ = Gnlly-2/2(ry-
(4.66)
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Proof. By the definition ofg and by using (4.65) we obtain farc I'p

909 —g09 = (Sh)(x) — (Sn) (%) = (Tyoup) (X) + (TUpp) () +G(X) — Gn(X)
(S=9) 1) +S(f1— f1n) () = (T = T)yoUp(x)
+T (Uph — YoUp) () +G(X) — Gn(x).

The assertion then follows from the triangle inequality émelerror estimate (4.64). [

When combining the error estimates (4.40), (4.42), (4.5@) @.61) with the approxi-
mation properties of the trial spac&$(I'n) andS(I"), we conclude the following error
estimate

N 1 1 3
19— 8ll5-12¢p) < C2h® 2] falls(ry +C2h7 72| Byeu, g, ) + 3072 [ @youy g,

1
+Cah® 2| youp|ls(ry) +05h0+2Hf0HH0 +Cﬁh0+2H9HH"
(4 67)

when assuming € HS(I"), youp € HS(n) for somes € [2,2] and Byoups Wyouy, fo, 0 €
HSw(I") for someo € [0, 1].

Approximate variational inequality
By using the approximations (4.53) and (4.65) we now comdide approximate varia-
tional inequality, see (4.33), to firgl € U}, such that

(TaZn,Wh — Zn)rp > (G, Wh— Zh)rp  for all Wi, € U, (4.68)
LetZ,, Wh € S(T) be the extensions @, andw, respectively, satisfying
Zn(Xi) =0, Wh(x) =0 forall pointsx ¢ Ip.
SinceTqZy,—§ € HY2(I'p), the variational inequality (4.68) is equivalent to
(TaZn,Wh—Zn)r > (G.Wh—Zn)r  for all W <> Wh € U (4.69)

By using the extension, for the approximations (4.45) and (4.46), we obtain

(82)(X) = S(sh+2n)(X) forx e Ip,
(P2Z)(X) =sh(X) +Zn(x) forxeT,
wheresy, € S}(FN) is the unique solution of the Galerkin variational problem

(Ssh @)y = —(SZn, @)ry  forall gy e SH(Tn). (4.70)
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Hence we conclude from (4.53), fare p,

(TaZn) (X) = aS(sn+2n) (X) — (SW ) (X) + T (sh+Zn) (X), (4.71)

wherews, j, is the unigque solution of the Galerkin variational problem

(SWe, n, @iy = (T(sh+7h). )ry  Torall gh € SHMN). (4.72)
The Galerkin formulation (4.70) is equivalent to the linegstem
s = -z (4.73)

and (4.72) is equivalent to
SN = TNNs + TNDZ (4.74)

where the matriceéir}”\‘, etc., are generated by the approximate operaﬁcaed T, for
example we have

1 1
SN =D} +(2M#+K#)th_l(§Mrl}l+Kr’1\l),
and
1 1 1
Ta'° D h+ K Vhfl(éMr?ﬂLKr?) - (EML\I+Krlw\l)TVhflVLthfl(éMr?JFKk?)

1
MY+ KR TV KD

+(2

Here we introduce the matrix entries, for example

Mi [k, i] = (9%, 9ir KTk, m = (K, &),
Vilk, €] = (Vo7 o), D[, i1 = (D9;°, ¢°)r,
DEN“?m] = <D¢rjf1N7¢i1D>r7 Dlh [m I] <D1¢i1D7 r:!r-lN>r7

fori,j=1,...M1; m=1.. My k/=1..N.

By using (4.71), the matrix representation of the variadionequality (4.69) is then given
by the discrete variational inequality with the Euclidiamér product

(aNs+aSPz— W+ TPNs + PPz W—2) > (G W—2) forall We RM < wy € Uy
or R

(TanzW—2) > (GW—2) forallweR™ « w, € Uy (4.75)
where

%,h _ aiD - CIS?N%NNS:ID—I—S?N%NNTA\]N%NNQ:ID

_$NS;NNThND_ThDNSENNS:ID+ThDD (476)
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defines a Galerkin boundary element approximation of theantdary integral operatof,
as defined in (4.26). Note that the malﬂ}k“ is symmetric and positive definite. Hence it
is invertible. Hergg is the related vector right hand side which is specified dewal.

The Galerkin formulations (4.56) and (4.57) are equivalerthe linear systems

Vhg = 1=Vt Vofo=12

where
f10) = (Nou+Mof, 9dr,  £2[(] = (Nof,¢X)r forf=1,...N.

The associated linear systems of the Galerkin formulat{ér&0) and (4.63) read
$§INQIO =¥+ MNNiON
and
S:IN = U - MNN@’N,
respectively, where
Wi = (@, 6, MANAE = (6,0, fo = folre Gy =8l
for/=1,...,M> and all indices with respect to boundary elementse Iy.
Altogether we can compute the right hand sitfeom (4.65) by
g=sNf, —T>Nup,+MPPg,. (4.77)

Lemma 4.6. The symmetric matrii},h as defined ir{4.76)is positive definite, i.e.,

(Tanz2) > cl" |yzh|yH1/2 forall ze RM ¢ 7, € SH(I'p). (4.78)

Proof. Forze RM «» z, € §(Ip), by usings = —S, NPz € RM2 ¢ s, € SH(Ty) we
have from (4.76),

(Tanz2) = a(KPz2) - a(FNS,"\Pz 2) + (TNNs,s) + (TPzs)
+(Th Ns,2) + (TPz 2)

(EPOO-EPOO)

where 1 1
Sn:Dh—i—(ZMh —l—Kh )V (ZMh—I—Kh)
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is the discrete form of the Steklov-Poincré operator and

1 _ .1
Th=D1n— (EMFT + KV, ViRV, 1(§Mh+ Kn)

1 _
—MhT-I-KrT)Vh 1K17h,

1
—I\/Ih—I-Kh)-I-(2

WSt

see (3.91) and (3.92). Moreover, the veatoprresponds to an ansatz functign= z, +sp
wherez, is the extension of,, as defined above.
Therefore, we conclude by using Lemma 3.7,

(Tanz2) = a(SW,V) + (Thv,V) + (D1pv, V)
a(DpV,V) 4 (D1 v, V)

Y

A (DVh, Vh)r + (D1Vh, Vh)r > C||Vh||H1/2 > Cl 1Z0l12,2 (Fo)

sinceaD + D1 implies an equivalent norm id/2(I"), andv;, € SH(I) defines an extension
of z, € S(I'p). O

Hence we can ensure unique solvability of the discrete tranal inequality (4.75) by
applying Theorem 4.3. Moreover, when combining the erromege (4.35) with the error
estimates (4.32), (4.55) and (4.67), we finally obtain tHe¥dng error estimate.

Lemma 4.7. Let ze Uyq andz, € U be the unique solutions of the variational inequalities
(4.25)and (4.68) Then there holds the error estimate

- 1 1 1
Iz Zhllyar2(rg) < Ch® EZls(ro) +C2h® E [Wellusry) + a0 18pzlg, )
+C4h0+2||sz||HU ) +csh®” 2||f1||H’5 +C6ha+2||6V0Up||HU
+C7h0+2Ho‘%Up”HU +cgh®™ 2HVOUDHHS n)
+09h0+2||f0||H0 +Cth0+2||g||HU
when assumlng,zl,22eH5(FD) Taz— geHS YTrp), W, youp € H3(Mn), f1 € H3(IM) for

some s [ 2] and 6pz, Wpz, Bygu,, Wy, fo, G € Hgy () for someo € [0, 1]. In particular
fors=0+1, o €[0,1] we therefore obtain the error estimate

- _ 1
||Z_Zh||H1/2(rD) < C(Z7an7 f,U) hCH_Z' (479)
Moreover, by applying the Aubin-Nitsche trick we are able¢oive an error estimate in

Lo(Tp), i.e
12— 2| Ly(ro) < Sz @, f,U)h7 L, (4.80)
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Remark 4.1. As in Proposition 3.1 we can conclude thatas defined ir{4.4)is the solu-
tion of the bilateral constraints Signorini boundary val@blem with an additional Neu-
mann boundary condition. Then we may expeat #2(Q), and therefore z H3/2(I'p)
for a smooth domain, see [5]. This results in a linear ordeta# error in HY/2(Ip). In
the case of a polygonal or a polyhedral domain, we may have améduced regularity,
see, e.g., [34].

4.4 Numerical experiments

In our numerical example we consider the mixed boundaryrobptoblem (4.1) and (4.2)
for the domairnQ = (0,3)2 ¢ R2. The boundary” = 9Q consists of two partEp andly
where

Mo ={(X1,0):0<x3 <05U{(0,%2) :0<x<05}cl, My=r\Tp.

Let a = 0.1 and the data are chosen as
1
UX) =0G+x5) 7%, f(x)=0, @YX =-—1uX)|r-

For the boundary element discretization we introduce aamitriangulation of the bound-
ary I = TpUT N on several levels where the mesh sizdyis= 2-(L+1. Note that the
minimizer of (4.1) is not known in this example, we use therimary element solution,
on the 9th level as reference solution.

In Table 4.1 we present the errors for the contrahd the estimated order of convergence
(eoc). Moreover, we test the numerical results for the blatdata o y. These results
correspond to the error estimates (4.79) and (4.80).

10, —ZngllLp(ro) | €OC | 1120 —Zollmaszry) | €0C | [[Un. —UhgllLyry) | €0OC
1.8041e-2 - 2.1236e-1 - 2.6788e-2 :
4.8635e-3 | 1.891|  8.2073e-2 | 1.372| 8.4929e-3 | 1.657
1.4322e-3 | 1.764|  3.433le-2 | 1.257| 2.7877e-3 | 1.607
4.5382e-4 | 1.658|  1.4228e-2 | 1271 9.38lle4 |1571
1.5562e-4 | 1.544|  5.7832e-3 | 1.299| 3.2225e-4 | 1.542
5.4047e-5 |1.526|  2.2475e-3 | 1.364| 1.1217e-4 |1.522
1.5723e-5 | 1781  7.4669e-4 | 1.590| 3.9334e-5 | 1512

O~NO O WN T

Table 4.1: The results of mixed boundary control problentheut control constraints.
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In this example, we expect a linear order of convergenddiff(I'p) norm and 15 as
order of convergence ip(I'p) norm as stated in Remark 4.1. Note that the tangeds a
singularity at the origin.

As a second example, we consider an additional constzair2.6. In Figure 4.1 we give
a comparison of the unconstrained and constrained sofytamd in Figure 4.2 we plot the
related controls fok; € (0,0.5), xo = 0.

Cells solution

296

Figure 4.2: Optimal control of the unconstrained and c@nséd problemsy, = 0.

Figure 4.1: Comparison of unconstrained (left) and comstdh(right) optimal solutions.

296
281
— 2.67

— 253

- 239
225
21
197
1.83
1.69
1.55

Cells solution

= = - unconstrained control|
— constrained control

01
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Moreover, we plot in Figure 4.3 the statesf the mixed boundary control problem (4.1)-
(4.2) fora = 102 anda = 10~4. The singularity of the state at the origin appears clearly
for smalla, see also Figure 3.5 for the Dirichlet boundary control peob

Cells solution f Cells solution z
538 258

[ 5 ] [ 233
- a@1 —208
—a22 - 184
—3.82 ""h - 16
— 343 " — 136
—3.04

- 2.65

— 2.26
1.87
1.48

Figure 4.3: The stataswith a = 102 (left) anda = 10~ (right).



4.4 Numerical experiments 87

For comparison we consider the mixed boundary control prab(4.1)-(4.2) where the
control zis in Lp(Fp) with a = 0.1. In Figure 4.4 we plot the statefor the Ly(I'p)
setting and the related control fgg = 0, and in Figure 4.5 we plot the related controls
for x; € (0,0.05), xo = 0 and forx; € (0.45,0.5), x, = 0. As discussed in Section 3.7, the
control is zero at all corner points.

Cells solution
237
22r
221 7
< K 2H
—2.04 i

- 187

=12
B 14
- 133
12
—138 .

—1.19

— 1.02

L L L L L L L L L
I:O'BSS 0 0.05 0.1 0.15 02 025 03 035 04 0.45 05
0.686

Figure 4.4: The statefor theL,(I'p) setting (left) and the related control fior= 0 (right).

26 T T T T T T T T T 2

0.8

L L L L L L L L L L L L L L L L L L
0 0005 001 0015 002 0025 003 0035 004 0045 005 045 0455 046 0465 047 0475 048 048 049 0495 05

Figure 4.5: The related controls fag € (0,0.05), xo = 0 (left) and forx; € (0.45,0.5),
X2 = 0 (right).
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5 PARABOLIC BOUNDARY CONTROL PROBLEMS

The Dirichlet boundary optimal control problem governedayinear heat equation is
analysed in this chapter where the observed temperatuongdered at the end time.
We propose boundary element approaches to solve the relatpded optimality system.
Similar formulations of boundary integral equations ashi tase of stationary boundary
control problems are obtained. Again we ensure the uniglalsitity of the resulting
variational inequalities and we derive a priori error esiies of Galerkin boundary element
discretizations. This approach can be applied to the Nearbanndary control problem
as well. Some numerical results are given at the end of theteha

In the first section a model problem is described where thérabis considered in the
energy spacdﬁ%’?lt(i). We use an equivalent norm m%’%(i) which is induced by the
hypersingular layer heat potential see [15] for instance. We also derive the optimality
condition, i.e., the variational inequality to be solve Section 5.2 we discuss the bound-
ary integral equations to solve the primal and the adjoiat bguations. For the boundary
integral equations of the heat equation, see, for examplE5616, 26, 48, 60].

Since the temperature of the state at the end inappears in a representation formula of
the adjoint state as a volume density, an additional kerhenis based on the fundamen-
tal solution of the heat operator is considered. By Greastesd formula, we can express
the volume potential by some boundary potentials of the amkndata and some volume
potentials of given densities. We end up with boundary irglegquations in a symmetric
formulation which is analyzed in Section 5.3. Again we dgcthe stability and error esti-
mates of a related Galerkin boundary element method. Indes#4, we present the main
results of the application of the boundary element apprdade parabolic Neumann
boundary control problem. Finally, we give some numeriealits.

5.1 Parabolic Dirichlet boundary control problems

Let Q c RY,d = 2,3 be a bounded Lipschitz domain with bound&ry: dQ. For a fixed
real numbei > 0, we write

l:=(0,T), Q:=QxI, Z:=TxlI.

89
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To find a Dirichlet controlz that minimizes the distance of the actual temperatireT )
at the end time and the desired temperatiirge consider the cost functional

J(u,z) = %/[u(x,T) —U(x)]?dx+ %(Dz, 2)s (5.1)

Q
to be minimized subject to
gu(x,t) —Au(x,t)=0 for (x,t) € Q,
u(x,t) = z(xt) for (x,t) € Z, (5.2)
u(x,0) = up(Xx) forxe Q,
and to pointwise control constraints

2€ Ung:= {WEHZH(Z): z1(x,t) <W(x,t) < z(x 1) for (x,t) €Z}.  (5.3)

1 1 . . . .
Heret,up € L2(Q), a € Ry, 71,2, € H2°4(X), and the regularization term, via a norm in
11

H2:4(%), is defined by using the hypersingular heat boundary integerator

1_1

D:HZ4(Z) > H 274(3),

see [15]. Forz e H%ﬁlt(Z) we have

(Dz)(x BETY // E(x—y,t—1)z(y,1)ds,dt for (x,t) € Z,
X
where
L
—— e 4
g(X,t) = (4m)d/2e fort - 07 (54)
0 fort <0

is the fundamental solution of the heat equation. For tregedlSobolev spaces, see Chap-
ter 2, also [1, 15, 40].

Letv be a given function defined d@ x R (orI" x R,) andtp € R, be arbitrary. Define
the time reversal mag, by
KioV(X, 1) = V(X,tg— ). (5.5)

The hypersingular heat boundary integral oper&tas H %7%(2)-elliptic and self-adjoint
with respect to a “time-twisted” duality, -) := (-, k7-)s, See [15], i.e.,

(022)s2 Rz o (DzKTW)s = (DW K23 forallzwe HZ4(5).  (5.6)
24

In order to formulate the KKT system, we reduce the cost fonel and obtain the opti-
mality condition as follows, see [28, 38].
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1

Theorem 5.1. Let (u,z) be an optimal solution. Then there exists ;b-lé’z(Q) such that
the following optimality system holds in the weak sense.

Primal heat boundary value problem

gu(x,t) —Au(x,t) =0 for (x,t) € Q,
u(xt) = z(xt) for (x,t) € 2,
u(x,0) = up(X) forxe Q.

Adjoint heat boundary value problem

_dt p(X,t) —Ap(X,t) =0 for <X7t) € Q7
p(x,t) =0 for (x,t) € Z, (5.7)
p(x,T)=u(x,T)—1(x) forxe Q.

Optimality condition

<a[~)z—%p,w—2>z >0 forallw e Uy, (5.8)

where

1
D:= E(D-i-KTDKT). (5.9)

Proof. For a giverz € H%v%(Z) there exists a unique solutien € Hlv%(Q) of the primal
problem, see [15, 40]. Then the cost functiod@l, z) can be rewritten as

a

~ 1 _
3@ = SI0T) U0 + 5

(Dz,2)s.

Lethe H %7711(2) be a given direction. We have

1 1
J(z+h) -z = EHUerh(T)—U”EZ(Q)_QHUZ(T)—U”EZ(Q)

a a
+§<D(Z+ h),z+h)s — §<DZ, 2)s

= ) =0T+ 2 VTR0

a a a
+§ <DZ, h>z + E <Dh, Z>Z —|— §<Dh, h>z
whereu, p(X,t) = uz(X,t) + v(x,t), andv(x,t) is the unique solution of the problem

av(xt) —Av(x,t) =0 inQ, v(x,t)=h(xt) onX, v(x,00=0 onQ.



92 5 Parabolic boundary control problems

Applying Green’s second formula for the pai p),

O/TQ/ (& — D)W+ V(3 +AD)p| dxdt_//< X,t) (X,t)—%V(X,t)p(xyt)) ds.dt

+ / V0, T)p(X,T) — v(x,0) p(x, 0)] dx

we get
_ J
<UZ(T) - u7V(T>>L2(Q) + <% p, h>z =0.
Therefore, by using the self-adjointness of the opefat@ee (5.6), we obtain

Z (Dhh)s

a a 0 1 2
—(Dz,h)s + §<KTDKTZ, h)s — <% p,h)s + EHV<T)HL2(Q) 3 (

5
—(abz—Zp.rys+o ||
_< _%Q z H%’%(Z) )

Jz+h) -J(2) =

since |V(T) () < cllhl 3.3, andD: H24(3) — H-2~1(X) is a bounded operator.

This implies that the gradient d{z) satisfies

(03(2), )z = (a2~ 2 p.h)s.

The assertion follows, see also [28, 38]. O

In the following we will use a boundary element approach teesthe coupled problem of
the primal heat equation (5.2), the adjoint heat equatiof) @nd the optimality condition
(5.8).

5.2 Boundary integral equations

The boundary integral equations for the heat equation aterécalled. Some properties
of the standard boundary integral layer heat operators edound in, e.g., [15]. For the
adjoint heat equation, instead of using the volume poteatithe stateu, we introduce
some boundary potentials with a regular kernel. We alsaudssome properties of these
operators. The related anisotropic Sobolev spaces weosgluted in Chapter 2.
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The primal heat equation
Let us first start with the primal heat equation. The solutbthe primal heat equation
(5.2) can be written by the representation formula(fot) € Q,

t

t
o o 0 o .,
u(x,t)://S(X—y,t—r)a—wu(y,r)dsydr—//ag(x—y,t—r)z(y,r)dsydr
or

or
+ [ &=y vy (5.10)
Q

where€(x,t) is the fundamental solution of the heat equation as giveB.#)( By taking

Q > X— x eI, we obtain the first kind boundary integral equation to faafk,t) :=

0
%u(x7t>a

(Vw)(x,t) = (%I +K)z(x,t) — (Moup) (x,t) for (x,t) € Z, (5.11)

where )

(Vou)(x,t)://S(x—y,t—r)w(y,r)dsydr for (x,t) € X
0r

is the single layer heat potentMl: H*%f%(Z) — H%ﬁll(Z) and
[ 1o
(Kz)(x,t)://a—ng(x—y,t—r)z(y,r)dg,dr for (x,t) € X
y
or

is the double layer heat potential: H%w‘lt(Z) — H%v%(Z), see [15]. Moreover, fofx,t) €
2,

(Moto) (1) = [ £(x—y.0)uoly)dy
Q

is the related Newton potential. As stated in [15], the snglyer heat potential is
H-2—%(2)-elliptic, i.e.,

Vw,ws > c||w|? forall we H=2~%(3).
( )z > Cy | HH*%f%(a (Z)

Then the boundary integral equation (5.11) is solvable fgivan Dirichlet datune,

1
w:V_l(él +K)z—VMouo. (5.12)
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The adjoint heat equation
We now consider the adjoint heat equation (5.7). The timersal of the adjoint state
variable,kt p solves the heat equation, i.e.,

o (KTp)(X,t) —A(kTp)(X,t)=0 for(xt) €Q,
KTp(x,t) =0 for (x,t) € Z,
KTp(X,0) = u(x,T) —T(x) forx e Q.

Then we have the representation formula(at) € Q,

KTp(Xt) //Sx yt=1)7 KTp(y, )dsjdr+/8>< Y,O)kTp(y,0)dy. (5.13)

This gives the first kind boundary integral equation

(V(ktq))(%,t) = (M) (X,t) — (Mou(-, T))(x,t) for (xt)eX (5.14)

o p(x,t) for (x,t) € Z.
any

In (5.14) the unknown statg-, T) at the end timd appears in the Newton potential. As
discussed in Chapter 3 we will modify the representatiomfda (5.13). The crucial idea
is to use an auxiliary function

to determine the unknown Neumann datgfr,t) =

d2 o
G(X’t’T>Z(T+tt—r) err T forxe Q;t,71 € (0,T) (5.15)

which satisfies
EX)G(Xt,T) =EXT+t—1).

We first write the Newton potential in the representatiomfola (5.13) as

(Mou(-, T))(%,t) = / E(X—y,Hu(y, T)dy for (%t) € Q. (5.16)

By lim G(X—y,t,7)=1forallt € (0,T),ye Q we have

T—T-

( ) u(va) (X y7t7T) (y,O)G(i—y,t,O)—l—Uo(y)G(i—y,t,O)

!
[ 2eluty DGR=y.t, 1)} dr + Uoly) S(X-1.t.0)
0

0GRy, DUy, T) T+ [ G(R—y,t, )3y, T)dT+Uo(y)G(R— Y., 0).

I
O~



5.2 Boundary integral equations 95

Hence ford:u(y, ) = Ayu(y, T) we can rewrite the Newton potential in (5.16)
(Mou(-, T))(%,t) = //5(%- y.)3:G(X—y.t, T)u(y, T) dydr

.
+//5x y,t)G(X—y,t, T)Au(y, T dydr+/5x Y,t)G(X—y,t,0)up(y) dy.
0Q

It is easy to check that
A EX—YH)CX—YL, 1) =L0EX—Y, T+t —T) = -E(X—y,1)0:G(X—y,t,T),
and by definition, we have
EX=YH)GX-yt, 1) =EX-Y, T+t —1).

Together with Green’s second formula we finally obtain

T
(Mou(:, //[S(i—y,T-i—t—T)Ayu(y,r)—u(y, T)AE(X—Y,T+t—1)]dydr
00

+ [ E®=y.T +tuoly) dy

T
0 0
= EX—Y,T+t—1)—u(y,T) —u(y, 7)=—E(X—=Y, T+t —1) | ds,dr
O/F/{ ony ony }
+ / £(X—y. T +t)uo(y)dy

and this gives the modified representation formula for theiativariable for(X;t) € Q,
0 . _
KTp(Xt) = // (X—yt— EKTp(y, T)ds/dT—/E(X—y,t)U(y)dy

-
7} J
+O/r/{€ (X— y,T—i—t—T)a u(y,7) — U(y,T)ES(x—y,T.H_T)} ds,dr

4 / £(X—y,T +t)uo(y)dy. (5.17)
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Taking the limitQ > X — x € I without jump relations, we obtain a boundary integral
equation

0= (V(krQ))(Xt) + (V) (x 1) — (Ka2) (x 1) — (Mgl) (,t) + (Maog) (x 1) (5.18)

for (x,t) € Z where

T
(V1) (X,t) ://Sx Y, T+t—T)w(y,T)dsdr for (x,t) € X, (5.19)
or
T
K12)(x,t —E&XX—y,T+t—1)z(y, 1)ds, dr for (x,t) € 5.20
(ki) = [ [ Goex—y T +t-nay g dr for (x0 (5.20)

o

r

are the bi-single and the bi-double layer heat potentialsredver, we introduce a new
volume potential

(Mlouo)(x,t):/S(X—y,T+t)uo(y)dy for (xt) € 5.

Inserting (5.12) into the boundary integral equation (%.18s gives
V(kTq) = Klz—Vlvl(%l + K)z+ V1V ~Mgug + Mol — M1ouo,
and hence
KTq= V_lKlz—V‘lvlv_l(%l +K)z+V WV IMoug+V Mg —V " Mygug. (5.21)

Now the optimality condition (5.8) can be rewritten as a atonal inequality to find
Z € Uyg, such that

(Taz—g,W—2)5 >0 forallw e Uyg, (5.22)
where 1
Ta = 06—KTV_1K1+KTV_1V1V_1(§| +K) (5.23)
and
g:= KtV Mot + k1 (V- VoV Mo — VM) wo. (5.24)

Mapping properties

To investigate the properties of the composed boundargiateperatof7, as defined in
(5.23), let us summarize some properties of the bi-layet pegentialsvy,K; which are
similar to the properties of the Bi-Laplace layer potestiasé given in Chapter 3.

Once again, fot € (0,T) let yo- (-,t), ya- (-,t) be the Dirichlet and the Neumann trace
maps, respectively.



5.2 Boundary integral equations 97

Lemma5.1. For w € H“v_%t(Z), there holds

1 -
(GH+K)@ kViw)s — (kTK10,V @)5 = IV TIE q) (5.25)
where
t
Vo)xt) = [ [Ex-yt-Da(yr)dsdr for (x) €Q
and
[0
://0—n (x—y,t—1)w(y,1)ds,dt for (x,t) € Z, (5.26)
0 X
Tro
(K1) (x,t) = /0—n X—=y,T+t—T)w(y,T)dsdr for (xt) € Z. (5.27)
- X

The operators KKi are the adjoint of the operators lKK; with respect to the “time-
twisted” duality, respectively, i.e.,

(kTw,K2)s = (k1zK'w)s, (KTw,K12)5s = (kT2 K10)5. (5.28)

Proof. Consider the following functions fqix,t) € Q

u(x,t):(\7w)(x,t)://S(x—y,t—r)w(y,r)dsydr,
0T

-
://E(X—y,ZT—t—T)w(y,T)dsydT.
0T

The functionau andv solve the heat equation and the adjoint heat equation, ctaaply,
gu(x,t) —Au(x,t) =0, —av(x,t)—Av(x,t)=0 for(xt)eQ,

and there hold
uxT)=v(x,T), u(x,0)=0.

The application of the trace maps gives

Jou(x,t) = (Veo) (x 1), Ul t) = (G4 K@)
WV<X7t) = KT (Vlw) (X7t)7 V1V<X7t) = KT<K£w) (th)'
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The assertion now follows from Green’s second formula
T T
//[v(dt —A)u+u(o; +A)vjdxdt= //[ylv(x,t)you(x,t) — yYiu(x,t) yov(x,t)] dsdt
0 Q 0r
+ / U(x, TIV(X,T) — u(x, 0)v(x, 0)] dx
Q

O

As in the case of the Bi-Laplace operator, see Corollary 8elcan state the following
properties.

Lemma 5.2. For the boundary integral operators, there hold

1 1

KV =VK', DK =KD, VD:ZI —K?, DV:ZI — K", (5.29)

-1 1 1 -1 1
\Yj (§I+K):D+(§I+K)V (§I+K), (5.30)

and

VK] +ViK' = K1V + KV, (5.31)
DK; —D1K =K/D—K'Dy, (5.32)
V1D —-VD;+ KK+ KK =0, (533)
DV; — D1V +K'K{ + KiK' =0, (5.34)

where D is the normal derivative of the bi-double layer heat potairiti;,
o [0
(D12)(x,t) = -2 //—S(x—y,T ttoT)zy.n)dgdr, (xt) eI  (5.35)
ony s/ ony

Proof. The relations of (5.29) for the layer heat potentials ard Wwsbwn, see [15]. The
relation of (5.30) is an alternative representation of tealled Dirichlet to Neumann op-
erator, see Corollary 3.1 for similar properties of the lagel boundary integral operators.
Indeed, by (5.29) we have

D+(%I +K’)V‘1(%I +K) = V_l(%fl —K2)+(%I +K’)V‘1(%I +K)
1 1 1,11
=V 1(§I—K)(§I+K)+(§I+K)V 1(§I+K)
= (%v—l— K’V‘l)(%l +K) +(%I +K’)V‘1(%I +K)
= V*1(1|+K).

2
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Moreover, for the relations (5.31)-(5.34) letc H_%v_%t(Z), ¢ € H%v%(Z) be arbitrary.
We then define functions fdx,t) € Q,

u(x,t) //Sx Y, T+t—T)w(y,T dsydr+//—£x Y, T+t—1)¢(y,7)ds,dr,

v(X,t) //Ex yt—1)w(y, T dsydr—i—//—é’x y,t—1)p(y,7)ds,dr.

These functions solve the heat equation. Their relateddeyrand initial conditions are
given by

you =Viw+K1 9, yiu=Kijw+D19, u(x,0) =v(x,T),
1 1
VOV:V°J+(—§|+K)¢, y1VZ<§|+K/)w_D¢7 V<X7O):O‘

Moreover, byu(x,0) = v(x, T) we can also represent the functiofx,t) for (x,t) € Q, by

u(x,t):O/F/S(x—y,t—T)ylu(y,T)dsydr—o/r/%éf(x—y,t—T)ybu(y,r)dsydr
+/8(x—y,t)v(y,T)dy.

Again, we modify the volume potential as in (5.16) to obtdia tepresentation formula

u(x,t) //5 (X=y,t—1)pu(y, 1 dsydr—//—éf (X—y,t—1)yu(y,7)ds,dr

0
+//5(x—y,T+t—T)ylv(y,r)dsydr—o/r/a—nyé”(x—y,T-i—t—T)yov(y,r)dsydr.

This gives the following traces

you
wu\ _ (31-K V. —Ki Vi) | yu
yiu) —\ D JI+K' -D1 K]/ | wv
v

By inserting the traces of the functionsndyv, we obtain
1
Viw+ K¢ = (él —K)Mw+Ki19] +V[K:/|_(J)+ D1¢]

~KaV @+ (51 +K)9] V(51 + K)o~ DY),
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and

1
Kiw+D1¢ = DMw+Kig] + (51 +K')[Kiw+ D]

~DuV @+ (51 +K)$) +KI[(G1 +K) - D],

for all w e H=2-4(Z), ¢ € H2:2(X) which imply
Vi = (%I —K)V1 +VK; — KV +V1(%I +K"),
Ky = (%I - K)K1+VD1+K1(%I —K)—WiD,
Kf = DVa + (51 +K')Kf — DV + K (31 +K))

1 1
D]_ = DK1+ (él +K,)D1+D1(§| - K) — KiD7

and the assertion follows. O

Note thatv, D, V4, D1 are self-adjoint operators with respect to the "time-tedstduality,
see (5.6) foD, and hence the operatbris self-adjoint with respect to the inner product

(-,)s,l.e.,
Vw,k10)s = (VO,KTW)s, M, kT0)s = M0, KTW)5, (5.36)
(D1¢, kTW)s = (D1W, KT ¢)5, (D¢, W)s = (DW, )3, (5.37)
forall w, 0 € H—%v—%(Z), p,we H%v%(Z).
Lemma 5.3. For the operator
A= <_V|ii _DK11>,

there holds fow € H=24(X), ¢ € H2'4(Z),

(A <;’)> KT <;>))>z = (1w, kT w)5 — (K19, k1 )5 — (K10, KT$)5 + (D19, KT )5 > O.

Bl

Proof. Forw € H_%v_%t(z), ¢ c HZ (%), we define functions iIQU Q&

T T
u(x,t)://8(x—y,T+t—T)w(y,r)dsydr—//air]yg(x—y,T+t—T)¢(y,r)d§,dT,
or or

t t

v(x,t)://E(x—y,t—r)w(y,r)dsydr—//%g(x—y,t—r)d)(y,r)dsydr.
or

or
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Here, we define a complementary domain
QF:=Br\Q and Qf:=QfkxlI,

whereBg := {x e RY: |x| < R} is a sufficiently large ball containinig, see [15].
The functionsau, v solve the heat equation @UQg. The related boundary traceswére
given by

u=Viw—Kip, yu=Kijw—D1¢.

For the functiorv, there hold the jump relations acrass

YoVl == W(VIge) = W(ViQ) = —¢, [nV] = W(Vig:) —n(Vlg) = —w.

The above equations allow us to write the bilinear form im®of the traces af andyv,

A (5) e (3= = () e (Chod
= (you, KT Y1(VlQ))z — (You, KTYa(VlQe))z
+ (Yau, KT Y0(Vlge))s — (U, KTYo(VlQ)) =
= (W(ulQ), kTVa(VlQ))s — (¥a(ulQ), kTY(VlQ))>
+ (Ya(ulge), KTyo(Vige))s — (Yo(ulge), KTYa(Vlge))s.

The application of Green’s second formula to the solutiansof the heat equation iQ
andQg gives

(10(Llo)s kT a(VIo))s — ((UlQ). Krio(vi))z = [ u(x Ov(x T)dx= [[u(x0)/2dx

Q Q
(A (Ulee). Kryolvige)) s — (olulee): KT a(vie))s = | 1U(x.0) dx— (v Kroul) opg
Q&

+ (Y1U, KT YOV) 9Brx| -
Thus we obtain
w w 2
<A(¢),KT (¢))z: / [u(x,0)]“dx— / Ktudrvdsdt + / KtVvoruds.dt.
QUQ% 0BRrxI 0BRrx|

We will show that the last two terms tend to zeroRis» . To do this, let us consider
the functionv first. Let us choose & Ry < R such thatQ C Bg,. By the representation
formula for the solutiorv of the heat equation, it follows that outsi@%o, in particular for
IX| > Ry, the functionv coincides with

t t
Vo(X,t) ::/ / S(x—y,t—r)ab(y,r)dsydr—/ / %S(X—y,t—r)%(y,r)dsydr,

0 dBRO 0 BBRO
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where the single and the double layer potentials are nowetefor density functions on
zRo = dBRo x I,

Wy = drv\zRo, do = V\ZRO.
The densitiesw, ¢o, as well as the new boundabg,, are smooth. We can now easily
estimatev, andd,v on the boundargr for R > Ry, using the behaviour of the fundamental
solution&(x,t). From the simple estimates

()] < et HIXPHA) |OE(x,t)] < gyt H|x2H-9-2

and
2

|(9Xi(9Xj
forall u € R;i, j = 1,2, we obtain for finiteT,

kiv=0(RY), dv=0R 91, as [ =R—w.

E(x,1)| < gyt H|x2H-9-2

Similarly, for (x,t) € dBr x I, the kernelé(x—y, T+t —1), (y,7) € Z is smooth. Then
kTuanddyu are bounded ag| = R — «. Hence

— / Ktudvdsdt+ / KTvdrud&dt:O(Rfl)—m as |[x=R— o.
(3BR><| dBR><|

Hence we finally conclude

(A (;)) KT ($)>z :R[[U(X,O)]dez 0.

O

Corollary 5.1. The operators ¥ and D, are positive semi-definite with respect to the
“time-twisted” duality (-,-) = (-,KT")5, i.€.,

)

NI
PN

M@, kT@)s >0, (Di,krd)s >0 forall we H-2-a(3), ¢ € H24(Z).

To close this section, let us recall the mapping propertiebe Newton potentiaMg as
defined in (5.16), see [48, Lemma 7.10]. For the mapping ptpjo¢ Mg in a higher order
Sobolev space, see [37, chapter IV].

Lemma 5.4. LetQ denote any bounded, open subsekth For any fe Lo(Q), let

(Mof)(x,t):/S(X—y,t)f(y)dy, xeRd, t>0.
Q

Then there exists a positive constarif} such that

IMof[ly(q) < CQ)|fllLy0)-
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The functionV f solves the homogeneous heat equation. By [15, Lemma 2hESidrms

of V(Q) andH 13 (Q) on the subspace of functions satisfying the homogeneoushea-
tion are equivalent. Thus we obtain

Mol 3,6, < S@ e

Therefore, the operatdvp : L»(Q) — H%,%(z) is continuous by the trace theorem. Note
that, sinceg(x, T +1) € C*(RY xR, ) for T > 0, the operatoMg is continuous on the
considered Sobolev spaces.

We are now in a position to prove the properties of the bounuidegral operatofy.

Theorem 5.2. The operatof7y : H%ult(Z) — H_%v_%t(Z) as defined irn{5.23),
N -1 1oL
Ta = aD —ktV K1 +ktV V1V (§|+K)

is bounded, self-adjoint with respect to the inner produgcts and H%v%(Z)-eIIiptic, le.,
there exists a constanf‘b> 0 such that

Bl

().

(Taz,2)s > 7 ||2|2,,  forallze HZ
H2'4(3)

Proof. The proof is similar to the proof of Theorem 3.3. We skip théads. Note that,
for the mapping properties of the layer heat potentials[Egk In particular, we have

Bl

V1:H24(3) 5 H 274(3), K:HZI(Z) > H2a(Z), D:HZI(Z) - H 27 4().

O

Hence we conclude the unique solvability of the variatianafuality (5.22). However,
as stated in Remark 3.3, we will obtain a non-symmetric appration of the self-adjoint
operator7g when using a Galerkin boundary element approximation. khee we re-
quire an additional condition on the discretization to eadihe stability of the discrete
variational inequality. Hence we only consider the symradarmulation in the next sec-
tion.
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5.3 Symmetric boundary integral formulation

In this section, we investigate a symmetric boundary irgfgrmulation by using a second
boundary integral equation for the solution of the adjosdtiboundary value problem. We
ensure unique solvability and we derive a priori error eatams for a Galerkin boundary
element approximation.

In particular, when computing the normal derivative of tepresentation formula (5.17)
of the adjoint variable, this gives

1
krd(xt) = (51 +K)kra(x,t) + (K1) (1) = (D12) (x:t) — (Mit) (x,t) + (M11uo) (x,t)
(5.38)
for all (x,t) € X, where, in addition, we introduce the Newton potentialgfot) €

M) (x0) = - [ £y 0m) dy (Masto) 60) = oo [ £(x—y.T+U)uoly) dy
Q Q

By substituting (5.12) and (5.21) into the right hand sid€088) we obtain the alternative
representation

1 1 1 1
kTq=(5! + KW 1Kz— !+ K’)V_1V1V‘1(§I +K)z+ (51 + KWV =V ~IMoug

+ (%I +KWV IMou— (%I + KWV IMyouo + KiV‘l(%l +K)z—KiV~Mgug
—D1z— MU+ M11Up.
Hence we have to solve the variational inequality to find &l z € U/;q such that
(Taz—9,Ww—2)s >0 forallw e Uyg (5.39)

where

Ta = aD+ kD1 — KTKiV_l(%I +K) — KT(%I + KWK,
+ KT (%l + K’)vlvlvl(%l +K) (5.40)
is the alternative representationff as defined in (5.23) and
KTg = (%I + KWV IMou— M+ (%I + KWV v Moo — (%I + KWV IMyguo
— KV Mgup+Myaup  (5.41)

is the related right hand side.
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Theorem 5.3. The operator7, as given in(5.40) coincides with the operator as defined
in (5.23) In particular, 7 is bounded, self-adjoint with respect to the inner product s

and H%’%(Z)-elliptic, i.e., there holds, for some{"t> 0,

NI
N

)

(2).

Toz.2)s > clo |z forallze H
(Taz,2)s > C1°|| HH:ZL’%(Z)

Proof. The proof is similar to the proof of Theorem 3.5. The selfedijness of7, is
obvious from the symmetric representation (5.40) and (5(8836), (5.37). In particular,
the operatorgy in the symmetric representation (5.40) and in the non-sylmenepre-
sentation (5.23) coincide. Indeed, by using (5.29) andl{(5a% have

~ 1 1 1
Ta =aD+ktD1 — Kt (Ki— (EI -|-K’)V1V1) V*]-(él +K) — KT(El —|—K’)V*1K1

~ 1 1 1
=aD+ktD;—kyV 1t (v Ki — KV — Evl) V*1(§| +K) = k(51 + KWV ~1K;

_ 1 1 1
= aD+ kD —ktV L KV —=ViK' — 2V; | V(21 +K) — k7 (21 + KOV 1K,
2 2 2
1

. 1 1
= aD+krD; — KTV*1K1(§| +K) +KTV*1V1(§| + K’)V*l(il +K)
1
—Kkr(51+ KWV ~IKy.
By using (5.30), (5.29) and (5.33) we further conclude
~ 1, L —1 11
Ta = aD+krDy— K1V Ky (Sl +K) +krV 7V, (V51 +K) - D
1 "N/—1
—Kr (G +KV Ky
N -1 1 1,1 1
= aD+KkTV ™ (VDL — Ky (51 +K) +VaV (51 +K) V1D — (51 +K)Ky
. 1 ~ 1
=aD+k7V 1 (vlvl(él +K)— Kl) —aD— KTV*1K1+KTV*1V1V*1(§| +K)

and we obtain the non-symmetric representation (5.23).
Moreover, the ellipticity estimate can be shown directlyusyng Lemma 5.3. Indeed, for

zeHz(3) andw=V 13l +K)ze H"273(5) we have
_ 1
(Taz,2)s = a(Dz,2)s+ (ktD12,2)s — (kTK{W,2)5 — <KT(§| + KWKz 2)5
1
+HKkr (51 + K'WMiw,2)s

= CI(6Z, Z>z-|— (KT D,z Z>z — <K100, KTZ>Z — <K12, KTOL)>Z + <V10), KT(J))Z
a(Dz,2)s > ac?||Z|>,,  (see Lemma5.3).
H2'4(3)

v



106 5 Parabolic boundary control problems

Hence the variational inequality (5.39) admits a uniqueutsmh. Moreover, in conse-
quence of the alternative representation (5.41) of the hghd sideg as defined in (5.24),
we obtain the following corollary.

Corollary 5.2. For any w,U € L»(Q) there hold the identities

1
MO = (—§|+K’)v—1|v|0u, (5.42)

1 1
MiiUg = KiV’lMouo-i—(él —K’)V’1V1V’1Mouo—(él — KW~ IMygup. (5.43)

Galerkin boundary element approximations

In what follows, we study the numerical solution of the vadaal inequality (5.39) by
a Galerkin boundary element method. The ellipticity of tlea® complement boundary
integral operatof7y will imply the quasi-optimality of Galerkin approximatien Let us
first introduce some finite dimensional trial spaces.

For the approximating subspacesl-bf%v_?lt (%) andH %v%(Z) itis customary to use tensor
products of spaces of functions of the space variables asplaies of functions of the time
variable. We introduce a standard class of tensor prodmmhx’d‘(i) = St(l‘) ® Th‘f‘
which are based on polynomials of degikein time and polynomials of degred in
space, see Section 2.2. We choose an approximation for thm&ken dataw, q which
is piecewise constant both in space and in time. For contimfionctionsz; andz,, we
define the discrete convex set

Un = {Wh € Q#O(Z): z1(Xi,tj)) < Wnh(Xi,tj) <zo(x,tj) forall nodes(x,tj) € Z},

WhereQﬁ’o(Z) is a boundary element space of piecewise linear and contsibasis func-
tions in space and piecewise constant ones in time. Thendleeks discretization of the
variational inequality (5.39) is to seek € U, such that

(TaZn,Wh —Zn)s > (9, Wh — Z)s  for all wy € Uh. (5.44)

Theorem 5.4. Let ze Uyg and # € Uy, be the unique solutions of the variational inequali-
ties(5.39)and(5.44) respectively. Then there holds the error estimate

S3, pied)
<c(hy 2+0 )|z s (5.45)

Izl S

11
24(2)
when assuming, z1,2, € HS3(5) and7qz—g € HS—LS;zl(Z) for some = [%,2].

Proof. The proof is similar to the proof of Theorem 3.1, see [8, 21,48 the general
abstract theory.
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Indeed, similarly to the proof of Theorem 3.1, by the assuomgi,z—g € Hs—le;zl(Z)
we have

Ta 2 2 T- Z
a _ < S

+Cz“HZ ZhH HZ WhH 11

H? 4(2)

for all w € Uyq andwy, € Uy. By using the approximation properties of the trial space
Qﬁ’O(Z), see (2.17) and (2.18), see also [15, 48], we can conclude

Ta 2 1 157\ (S hi 2
_ < s
Tolz-l2yy , <o (h R ) () a2
1 1l 1
+C2 (h)s( 2 _|_ht2(3 2)) ||Z_Zh||H%%(Z)||Z||HS%(Z)

The assertion follows. O

Since the composed boundary integral operd@gceand the right hand as defined in (5.40),
(5.41) do not allow a practical implementation in genenmsgtéad of (5.44) we consider a
perturbed variational inequality to firigl € U4}, such that

(TaZn,Wh—2Zh)s > (G, Wh —2Z)s  for all wy € U, (5.46)

Theorem 5.5. Let Tg : H2: Z(Z) S H" %~ zlt( %) be a bounded andﬁ -elliptic approx-
imation of 74 satisfying

(Tazn, Zn)s > cl" thHZ L for all z, € QF°()

and
~ 11
|]7}ZHH7%77%(Z) < c2 HZH L35 forallze H24(%).
Letge H™ > 4( ) be some approximation of g. For the unique solutire U, of the
perturbed variational inequalitys.46)there holds the error estimate

(2) H24(%) 4(2) )

22,3 3,5, < Callz= 2l 3 5, +2(I(Ta = T2l 4 g +l0=, 3 ,5)
(5.4

7)
where g € Uy is the unique solution of the discrete variational ineqtyalb.44)
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Proof. Since the operatdf, is bounded and}ﬁ’o(Z)-elliptic, the discrete variational in-
equality (5.46) admits a unique solution. From this we fertbbtain

)s+ (0,20 — z)s + (Tazn, 2 — Zn)s — (0,20 — Zn)s
s+ (00,20 —2n)s +(Tazn, Zh— Zn)s
+

;_}1(2)) ||Zh—2h||H%,%(z)-
By using the triangle inequality and the boundednesg,cdnd 7, we have
+11(Ta = Ta)z=20)]| 5 -

I
NI

|
N

™

T

I(Ta =Ta)zll, -3 35 < 1(Ta=Ta)2Zl 44, L-ds)
< H(E—E)ZHH%,?%(Z)JF( To +cff) 2 Zll, 345
The assertion now follows from the triangle inequality
220l 38,5, < 1220033, + 1202003
O

It remains to define the appropriate approximatitf‘as@ which are based on the use of
boundary element methods, see Section 3.5 for the case tidit @roblem.

Forze H %ﬁll(Z), the application offyzreads

1
= + Kl)qZ,

Taz= aDz+ ktD1z— kK] w, — KT(2

whereqy, w, € H—%v—%(Z) are the unique solutions of the boundary integral equations

1
-1+K)z, Vg=Kiz—Viw;,.

sz=(2

Let Qg’O(Z) be another boundary element space of piecewise constasfinastions both
in space and in time. Le&}, € Qﬂ’O(Z) be the unique solution of the Galerkin variational

problem
(Van, Bh)s = (Kiz—Viawyp, B)s  forall 6, € QY(%),

wherew, € QE’O(Z) solves

Ve, Bh)z = (51 +K)z 8)z for all 6 € Q(3).
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We are now in a position to define an approximat?@mf the operatof7y4 by

~ ~ 1
Taz=aDz+ KTDlz—KTKith—KT(EI +K")azh. (5.48)

Lemma 5.5. The approximate operato?a ; H%v%(Z) — H_%v_?lt(Z) as defined in(5.48)
Is bounded, i.e.,

~ 7; 11
1Tazl,, 3 4gy SF 233, foralzeHEd(E),

and there holds the error estimate

Ta—Ta)Z <c; inf — 6y
1(Ta =)l | 19heQ0_o(z)qu I,

h

+Caflor—wanll gy o)

(5.49)

1. 1 1. 1
274(3) 274(3)

where7, was defined irf5.40)

Proof. The boundedness of the operaﬁr follows from the mapping properties of all
boundary integral operators involved. In particular, thedggkin boundary element solu-
tionsw, p, gz in (5.48) satisfy

<
el 3 30 <cild,

leenl,, 33,0 <l

1.1 11 1 11
27 4(2) 24(2) 4(2) 24(2)

For the error estimate (5.49) let H 2 (Z) be arbitrary but fixed. By definition, we have

~ 1
Taz= aDz+k1D1z— KTKjw, — KT(él +K")gy,

where

1
Vw, = <§| +K)z, Vog=Kiz—Viw;,.

By using (5.48), we then obtain
~ 1
Taz—Taz= KrKi(wrh — @7) + k7 (51 +K')(dzn — Ga),
whereq;, € Qﬂ’o(Z) is the unique solution of the Galerkin variational problem

(Vg Oh)s = (Kiz—Viawyp, Br)s  for all 8, € QYO(2),

andw, € Qﬂ’O(Z) solves

V@, Bh)s = ((%I 1K)z 65 forall 6 € QXO(5).
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Moreover we defin@, € Qﬂ’O(Z) as the unique solution of the Galerkin variational prob-
lem

(Vzh, B)s = (Kiz—Viwy, Bn)s  forall 6, € QUO(3).
Then the perturbed Galerkin orthogonality
(V(Gzn— Gzn), Bn)s = (Vi(@on— &7), Br)s  for all 6, € Q2O(%)

follows. This implies the inequality

V-
~ 1 c'
_ < _ < 2 _
1%2n = Genll, 33 5 = g IVi(@zn =)l 3 5 ) < & loen—corll, 54 o)

Therefore, by the boundedness of the operatork : H_%v_%t(Z) — H_%v_?lt(Z) and by
the triangle inequality we conclude

~ K/ /
(Ta~Ta)2l,, 5 35, < llomn =l g g o+ lon—cill, 3,

:/L B K/ _/\ K/ ~ _
<Cllwen =l 5y o 42 [Gen—Genll g 5+ [1Gen—Gell 3 5
The assertion now follows by applying Cea’s lemma. O

By using the approximation property of the trial sp@fﬁo(Z), see (2.17), we conclude an
error estimate from (5.49) when assuming some regularitg ahdcw;,, respectively.

Corollary 5.3. Assume g, € H32(Z) for some <= [0,1]. Then there holds the error
estimate

~ 1 1 s
1(Ta=Ta)2l, 33, < OO+ ) (0 0) (el o5+ @2lhys3 ). (5:50)

1
4(2)

The approximation of the right hand side g
Similarly, the right hand side in (5.41) can be rewritten as

1
g =K1 (5! + K)o + kTKiop — KTM1U+ KT Mialo,

whereqq,y, € H—%v—%(Z) is the unique solution of the boundary integral equation
(VchO)(X?t) - (MOU) (th) - (M].OUO) (th) - (V]_(J.ho)(X,t) for (X7t> € Za
andw,, € H—%v—%(Z) solves

(V) (X,t) = —(Mgup) (x,t) for (x,t) € X.
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Hence we define approximate Galerkin solutiopswy, € Qﬂ’O(Z) of quy, and w,,, and
then we can introduce the approximation

1 . -
~1 + K" Gh + kTK10h — KTM10+ KTM11Ug (5.51)

g=kKr(5

and we obtain the error estimate

1 1 s
190,335, < C(07 + M) 05+ (ol o3 5 + el ) (5:52)

when assumingg,,, wy, € H2(Z) for somes € [0, 1].

Approximate variational inequality
By using the approximations (5.48) and (5.51), the pertir@iational inequality (5.46)
reads to find, € U, such that

1 ~
é' +K')Ag,.h, Wh — Zh)s

1 . ~ -
(§| + K’)qh+ KTKi(;)n — KTM1U+ KTM11Up,Wh — Z)s  for all w, € U,

<C¥5/Z\h + K1D1Zh — KT Ki(;)z\mh — KT(

> (KT
which can be written as

%' + K", Wh — Zn)s > (KTM11Up — KTM10,Wh — Z)s

(5.53)
for all w, € Uh, where we introduce, := g, h+0h € Qﬂ’O(Z) which is the unique solution
of the Galerkin variational problem

(aDZ + K1D12h — KT K{th — K1 (

(Vth, Bn)s = (K1Zh —Vath, Bh)s + (Mol — Miglo, Br)s  for all 6, € Q2°(5),  (5.54)

andawy, := w;, n + Gh € QY°(Z) which solves

1
21 +K)Zy — Molp, 8)s  for all 8, € QX(%), (5.55)

(v an, Bz = (5

(see the corresponding boundary integral equations (53.3)1)).

Let
N—1Np—1 o 0 N— 1No
wh(Xt) = Wik @, (X)W (1), an(X,t) %kd’z Ll’k
2 2 2 2
and
N—1N;—1

Hx) =S Y zZubiult). (xt) ez,
k=0 n=
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whereN; denotes the dimension @X(I‘), I = 0,1 andN is the number of time steps.

Substituting these expansions into (5.54) with the testtians O, (x,t) = ¢2(X) kT L,Ujo(t)
fori=0,1,....No—1;j=0,1,....N—1, we get

N—1Np—1

33 (el 0oul)] o0Kruf)+ andV (0P UR(OL #00KT Y1)z )
N—1N;—1
=3 3 andKUBHOUR] 900K Y1) = (Mo Moo, g2k Y1)
k=0 n=
foralli=0,1,....No—1;j=0,1,.... N— 1.

Since the last equation is indexed by four integers, it regsome ordering or partitioning
of the unknowns. For & k < N — 1 we define vectoray, q_c R"e andz, € R™ by

o[l = wk, K =0k, z[N=zk for £=0,1,..,No—1;n=0,1,...,N;—1

Similarly, Ll denote vectors of lengty whose components are given by
fi] = (Moti— Moo, $2(x)kr (1)), for i=0,1,....No—1;j=0,1,...,N—1

Finally, we define square matriceg, Vjx € RN and matricek, € RN for
0<k, j<N-1hy

VI = (V62 eR(0)], 620 kT gd(t))s,

Vilillel = (V0200w ()], 6 (kTP (t)s,

KL = (Kal@209wd()], 000Kt Wo())s,

fori,/=0,1,....No—1;n=0,1,...,N; — 1.
With these notations, the system (5.54) can be written iridima
N—1
S (vj}(@k+v,-k9k— Kjlkgk> =i for j=01,.,N-1 (5.56)
k=0

In the same way, the system (5.55) reads

N-1 N-1 /9
kzovjkgk— kzo (EMjk—i— K]’k) Z = L.Z, for j=0,1,...N—-1, (5.57)
where the matrice®ljx, Kj, € RN*Nt are defined by

Mililln] = (Ga (), §P(X) kT Y (1),
Ki[iln = (K[oa() (O], o)K7 PP (1))
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and
f2[i] = —(Mouo, p2(X) kT Y ())s.

Let us rewrite the linear systems (5.56) and (5.57) as fallofwor theN? matricesAjx,
j,k=0,1,...,N—1, which correspond to one of the layer heat potenfaise.,

Aili][6] = (AP W (V)] P (X kT Y 1))z,

we denote a block matri&, by

Aoo Aor - AoN-1
A1o Air - Ainas
An = . . . .
An—10 An-11 0 An-iN-l

We define a vectaa which is constructed from thid vectorsa, by

.
N-1)

a=(ag a] - a|

With these notations, the inner-product of two vectéka andb can be expressed by the
“time-twisted” duality, i.e.,

(Ah§79> - <Aah7 KTbh>Z7

whereay, b, are trial functions whose coefficients of the expansionsial spaces cor-
respond to the vectorg b. Here the operatoA can be one of the layer heat potentials
V,K,Vy,.... In case of the identity operator, we have a mass mgixas usual.

We now rewrite the linear systems (5.56) and (5.57) in thenfor
Vihw+Vhg— Ky pz= ! (5.58)

and
1
Vheo — (5Mn+Kn)z= 12, (5.59)

respectively.

Discrete variational inequality
Analogously, we can reformulate the perturbed variationafjuality (5.53) to findz €
RMN 5 2, € Uy such that

_ 1
(@Dnz+Dypz—Kipw—(5Mn +Ky )aW—2)> (% w—2) forall we R™" & wh € Uy
(5.60)
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wherew,q € RNoN are the unique solutions of the linear systems (5.59), J5r88pec-
tively. Here, in addition, we define the square matrib%g 5jk € RNi*Nt gnd the vectors
ﬁ’ e RM py

Di[ml[n] = (D1[da(x) Y (D)), dm(KT Y (t))z,

1 1
D ji[m][n] = §<D[¢%(X>w|‘3(t)],¢%](X)w,°(t>>z+ §<D[¢%(X>KT W), dmOKT YL (1)),
f3[m] = (M11up — M1, o () kT Y2(t)) 5
for j,k=0,1,....N—1;,mn=0,1,...,N; — 1. Note that
(Dna,b) = (Dan,bn)s  for alla,be RMN  an, by € QFO(2).
The Galerkin matriXy, of the single layer heat potentigll is symmetric and positive

definite, hence it is invertible. We can solseandq from (5.59), (5.58). Then the discrete
variational inequality (5.60) is equivalent to

(Tanzw—2) > (g,w—2) forallwe R™MN & wy € Uy (5.61)
where
= 1T L Tw-1 Ty-1,1
Tah=0aDh+Dy1ph— (éMh +Kp )V, Kih— K17th (éMh +Kh)

1 ~ 1
+ (EMJJFKJ)vh W1V 1(§Mh+Kh) (5.62)

defines a symmetric Galerkin boundary element approximatithe self-adjoint operator
To and

1
9= f2+KipVy 124 (GMy + K OV H(E = Vet 12) (5.63)

is the related boundary element approximation of the rigindhsideg as defined in
(5.41).

Lemma 5.6. The symmetric matrify n as defined if{5.62)is positive definite, i.e.,

(Tanz.2) > O’C?”Zh”i'%%(a forallze RMN 5 7, € QLO(2).

Proof. While the symmetry offg p, is obvious, the positive definiteness follows by using
Lemma 5.3. Indeed, by using the symmetrygaind withw = Vi, 1 (3Mp +Kp)z we have

(Tanz2) = a(Dpz2)+(D1nz,2) —2(Kinz @) + (Vipw, w),

= a(Dzh,zn)5 + (D12, KTZn)x — 2(K1Zh, KT @h)5 + (V1Gh, KT Gh) 5,

> a(Dzn,zn)s > OIC?HZhHi%%(Z)-



5.3 Symmetric boundary integral formulation 115

Hence we conclude the unique solvability of the variationatuality (5.61) and (5.46) as
well. Moreover, we can derive an error estimate for the axprate control solutioi, by
applying Theorem 5.5 and with the error estimates (5.450(5and (5.52).

Theorem 5.6. Let z andz, be the unique solutions of the variational inequalit{&s39)
and(5.46) respectively. Then there holds the error estimate

= < hs+% %(%%) h% 711 hs %
2=l 3 4 5, < LR 20l o o+ oo+ ) ()3

101 s
+ cah? + 0 ) (0+07) (Ilrlya3 5, + 1 il o3 ) + [ @hollyo3 ) (5:64)
when assuming e HS”?%(Z) and o, wy, Gu.y,, Wy, € HS2(Z) for some s [0,1].

In particular, if there are constantg c, > 0 such that
chf < hy < cohf,

we obtain the estimate

1
l2=2ll,3. 5, < €2 0.w0) 77 forze HSTLZ (3),s¢€ [0, 1. (5.65)

In the case of a non-constrained minimization problemgemdtof the discrete variational
inequality (5.61) we have to solve the linear system

TanZ=9,
which can be written as
Vih Vh —Kih w 11
Vh ~(GMa+Kn) | (g ] = F2]. (5.66)
—Kiph —(3My +Kq) Dip+aDn ) \z f2

Implementation

In what follows, we discuss on the computation of the matnkries for the Galerkin
scheme. For more details, we refer to [15, 48, 60].

We consider the Galerkin matrix of the single layer heat ipidé

]
Vil = (VISP UL, 0 0r w(0)s = [ [ 00T V(9P w(t)) dsct
or

t

.
— [ [8000ufT 1) [ [ x- vt - 0182wl dsdrdsedt
or

or
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By interchanging the order of integration, the enthggi][¢] can be written as follows

Vi / /¢. Ja(x)$9(y) ds ds

where forx,y € RY, ajk(x,y) are denoted by

T t
ajk(X,y) = /(,UJO —t /(,UE E(X—y,t—T1)drdt.
0 0

The basis functionqll?(t) are givenin (2.16) fok=0,1,...,N—1,

0 otherwise

SO0 — {1 if khy <t < (K+1)hy,

Hence, withT = Nh, the time integrals

(N=jht (k+1)h 11
ajk(x,y) = / / E(x—yt—T1)drdt= hf//é’ (x—y,h(d—t' —1'))dr'dt’
(N—j—1)h  kh 00

can be computed explicitly fad .= N— j —k > 1, see, e.g., [15] fod = 2 and [48] for
d = 3. Note thatk(x,y) = 0 for & < 1, soVjx = 0 for & < 1. Obviously,

leklzvjzkz if ji+ki=jo+ko.

The symmetric matrin, is (block) left-upper triangular. Thus only blocks of size
No x N have to be computed and stored. In particular, only one bddskzeNy x N has to
be inverted in order to g@fh‘l.

For the Galerkin matrix of the hypersingular integral operave can reduce the computa-
tion to weakly singular integrals in the two dimensionalesasee [15].

Lemma 5.7. For d = 2, let d, and ¢ denote the derivative with respect to the arc length
onl and the time derivative, respectively. Let n denote theiexteormal vector. Then

2
<DZ7W>Z = <V(aVZ)7dVW>Z+.Z\<alv<zn)7wni>27
2
(Dizw)s = —<V1((9y2),5yW>z—Zi(dtVl(Zﬂ),WMZ,

for all z,w e H%v%(Z).
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Moreover, to implement the right hand sig%we can approximate the Newton potentials
M1U andM11ug by using the identities (5.42) and (5.43) as we did for thatrlgand side
g. In particular, we can write

1 1
M11Up — M1l = K1V ~tMoup + ! - KWV vV~ IMoug + ! - K"V~ [Mol — M1oug]
1
- _Ki%o + (EI - K,)CIU,UO

wherewy, € H—%v—%(Z) is the unique solution of the boundary integral equation
(V) (X,t) = —(Mgup) (x,t) for (x,t) € X,
andqyy, solves
(VOu,u) (X, t) = (Mot (X,t) — (M10up) (X, t) — (Vi) (X, t) for (x,t) € Z.

Then we define an approximatidri as in (5.51)

= (31 Kt~ Ki@

which implies
~3 1
=G

Therefore, instead of the vectgias defined in (5.63) we use an approximation

M — KV (1~ Vo 212) — K v 12

Iy
|

-3 1
[ I\ (éMhT +Ky Vi (= ViV, 1 f?)
= MpVi (= Vany, H2).

Remark 5.1. We have presented the use of a boundary element analysiefsolution of
parabolic Dirichlet boundary control problem. The errortesate(5.65)provides the best
possible order of convergence for boundary element appration of the Dirichlet control
z when considering the lowest order trial spaces. The boynel@ment approach can be
applied to parabolic Neumann boundary control problem a#.wihis will be discussed
in the next section.
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5.4 Parabolic Neumann boundary control problems

In this section, we apply the boundary integral equatiorhmeto a parabolic Neumann
boundary control problem which is based on the idea as usdthdgoarabolic Dirichlet
boundary control problem. This approach results in a smidemulation as those in the
case of a parabolic Dirichlet boundary control problem. té&ewe give here the main
results only.

By using the setting as for the parabolic Dirichlet boundeoytrol problem, we con-
sider the parabolic Neumann boundary control problem to fivedcontrolw € Uyg C

H~2~4(%) which minimizes the functional

J(u, w) = %/[U(X,T) —U(X)]de—l—%(Vw, w)s (5.67)
Q

where the stata solves the initial boundary value problem

gu(xt) —Au(x,t)=0 for (xt) € Q,

%u(x,t) = w(x,t) for (x,t) € Z, (5.68)
u(x,0) = up(X) forxe Q,

andlyq is a closed and convex subseﬂ-d)T%v_%(Z). Heret,up € L»(Q), a € R;..

Analogously, we obtain a variational inequality to be sdlve
(aVw+p,w—w)s >0 forallw € Uy, (5.69)

where 1
V= E(V + KTVKT),

and the adjoint statp(x,t) is the solution of the initial boundary value problem
_dt p<X7t) —Ap(X,t) =0 for (X7t) < Q7

%p(x,t) =0 for (x,t) € 2, (5.70)
p(x,T)=u(x,T)—u(x) forxeQ.

The variational inequality (5.69) can be written as

(Taw—0,W—w)s >0 forallwe Uy, (5.71)

which admits a unique solutic € Uyq. Here the operatdfy : H—%v—?lt(Z) —H %7%(2) is
bounded ancH-I_%v_th(Z)-elliptic, andg € H%v%(Z). By applying the idea as used for the
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parabolic Dirichlet boundary control problem, we can deavwepresentation @ by the
boundary integral heat layer potentials as

. 1 1
Ta = aV +Kk1Vy — KTKlD_l(EI —K') - k(5! - K)D~1K]

1 1
+rr(5l - K)D‘lDlD_l(él —K'). (5.72)
Since the composed operaffy as defined in (5.72) does not allow a practical implemen-
tation, instead of (5.71), we consider a perturbed vamatiegnequality to finday, € U
such that R
(TaGh—0,Wh— Gh)s >0 forallw, € U, (5.73)

where 7, and g are appropriate approximations @§ and g, respectively. Moreover,
we introduce a boundary element spaégeof Uygq which covers piecewise constant basis
functions both in space and in time.

In particular, the operatofy : H*%r*%(Z) — H%ﬁlt(Z) is bounded andgﬂ’o(Z)-elliptic.
Hence the perturbed variational inequality (5.73) admiisigue solutiorty, € U,. More-
over, we can derive the following error estimate.

Theorem 5.7.Let w € Uyg and &y, € Un be the unique solutions of the variational inequal-
ities (5.71)and (5.73) respectively. Then there holds the error estimate

1

loo— @l < c(w, U, U) hy 2 (5.74)

11

274(2)

when assuming some regularity @f @ for whichcw € H%2(5) for some s= [0,1] and
cih? <h <cph? forsomed<c; < Cp.

In particular, we can expect a linear convergence for theem Ly(Z) norm in the case
of smooth data.

5.5 Numerical experiments

In this section we test some numerical examples where thatdnis a circle. For the
boundary element discretization we use a uniform triartgariaf the boundary = 90Q on
several levels bilg = N; = 2-+2 nodes and a uniform decomposition of the inteligall)

by N time steps. We choose the trial spe(@#o(Z) of piecewise linear and continuous
basis functions in the space varialsleand piecewise constant ones in the time variable
to approximate the Dirichlet contral For the fluxesw, g, we use the trial spadeﬂ’o(Z)

of piecewise constant basis functions both in space andig ti
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Numerical example 1:Parabolic Dirichlet boundary control problem
As first numerical example we consider the unconstrainedhudic Dirichlet boundary
control problem (5.1)-(5.2) for the domaih= By 5(0) € R? where

U(X) = (€ +x3)log(x¢ +x3) + 4x1%2, Ug(x)=0, a=0.1, T=05.

In particular, we have to solve the linear system (5.66)c&the minimizer of (5.1) is not
known, we use the boundary element solutigas, wes WhereNg = Ny =512, N =512
as reference solutions.

In Table 5.1, we present the errors for the contrahd the estimated order of convergence
(eoc). The errors of the fluso in theL,(Z) norm are also given. Since the data are smooth
in this case, we can expect the optimal order of convergericéot the controlz in the

energy spacel 23 (2) which agrees with the theoretical results, see (5.65).

M| N |1z Zerlle | €0C | IZ0-zerll 33 | €0C | lltn— il | €OC
32 | 4 0.155637 0.733535

- 1.061380 - -

64 | 16 0.054384 | 1.517 0.562186 | 0.917| 0.322231 | 1.187
128 | 64 0.012916 | 2.074 0.213010 | 1.400| 0.185283 | 0.798
256 | 256| 0.003017 | 2.098 0.071749 | 1.570| 0.063744 | 1.539
expected 2.000 1.500 1.000

Table 5.1: The results of the unconstrained parabolic Bligidboundary control problem.

In Figure 5.1 we compare the final optimal solutign, T) with the target functiom where
the relative error is

Ju(-,T) = Ul 0.034505
— = = 0.416079
||U|||_2(Q) 0.082929
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Cellsu # Cells target !
[0.153 [0.153

—-0.0498 o —-0.0498
—-0.151 —-0.151
—-0.253 ; —-0.253

—-0.354 % —-0.354

—-0.455 —-0.455
—-0.557 —-0.557
—-0.658 ) —-0.658 :
[0.759 [0.759

-0.861 -0.861

Figure 5.1: Comparison of final optimal solution (left) amdget function (right).

For box constrained problem, we add the control constraint z< 0.11. The results are
given in Table 5.2.

M N | Iz0—2Zetll,s) | €0OC H?h*ZrefHH%,%(z) €0C | [|ah— wretllL,s) | €0C
32 4 0.154249 - 1.050200 0.727606 -

64 | 16 0.054260 | 1.507 0.561425 | 0.903| 0.321477 | 1.178
128 | 64 0.012887 | 2.074 0.212840 | 1.399| 0.187099 | 0.781
256 | 256 | 0.003018 | 2.094 0.071736 | 1.569| 0.064487 | 1.537
expected 2.000 1.500 1.000

Table 5.2: The results of the parabolic Dirichlet boundasgtool problem with the con-
straints—1 <z< 0.11.

Numerical example 2:Parabolic Neumann boundary control problem

In this example, we give numerical results for the uncomséparabolic Neumann bound-
ary control problem (5.67)-(5.68) for the dom&n= By 5(0) C R?. The data are the same
as in numerical example 1,

U(X) = ¢ +x3)log(xe +x3) +4x1%o, Up(X) =0, a=0.1, T=05.

Here, we use the boundary element solutiops, zet whereNg = Ny = 512, andN =
1024 as reference solutions.

In Table 5.3, we present the errors for the contiol We present also the errors of the
Dirichlet datazin theL,(X) norm. These errors correspond to the estimate (5.74).
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M N | [|&h—retlliys | €0C | [1Z0—Zetll,) | €OC
32 | 4 0.772516 - 0.169835 -
64 | 16 0.313851 | 1.299| 0.057649 | 1.559
128 | 64 0.190589 | 0.720| 0.015202 | 1.923
256 | 256| 0.055004 | 1.793| 0.003354 | 2.180
expected 1.000 2.000

Table 5.3: The results of the unconstrained parabolic Nembaundary control problem.

In Figure 5.2 we compare the final optimal solutign, T) with the target functiom where
the relative error is

Ju(-.T) =Tl 0.032212
— = =0.388429
Ul 0.082929

Cells u
0.153
[0.0523
—-0.0485
—-0.149
—-0.25
-0.351 =
-0.451

- -0.552

-0.653 -0.653
-0.754 -0.754
-0.854 -0.854

Figure 5.2: Comparison of final optimal solution (left) aadget function (right).

- -0.552




6 CONCLUSIONS

In this work, boundary control problems governed by boupdatue problems of linear
second order elliptic/parabolic partial differential etjons have been studied. The con-
trols are considered in the energy spaces. The differentteetcnore common approach
when considerindi>(I") or L»(X) as control spaces is in the optimality condition. Espe-
cially, it shows the proper mapping properties which ling& Birichlet and Neumann data.
This results in a higher regularity of the controls. In partar, when considering, as
the control spaces, for polygonal or polyhedral domainsctntrols are zero at all corner
points and along edged & 3).

In this thesis, we have applied the boundary element arsdigsthe solution of boundary
control problems. We have presented here the model prolflemtise Poisson equation
and for the heat equation. However, the approach can besddpli any linear elliptic par-
tial differential equation if a fundamental solution is ko For the nonhomogeneous heat
equations we need to compute additional related Newtompate. The advantage of us-
ing boundary element methods is in the fact that only a boyrdiacretization is required.
This allows to deal with the boundary control problems scitije partial differential equa-
tions in unbounded exterior domains, analogously. Whigertbn-symmetric variational
formulation which is based on the first boundary integralegigun only requires to use the
appropriate boundary element spaces, the use of the hggelar operator in a symmetric
formulation is stable for all standard boundary elementspa Moreover, the Galerkin
approximation results in a symmetric system. Hence the sstmorformulation seems to
be the method of choice.

We have derived a priori error estimates of the Galerkin lbamy element methods for
general Lipschitz domair@. In the case of smooth data, we can prove the ofdlé¥) of
the errors irLy(I") norm for the Dirichlet control and linear order for the Neumaontrol.
Whereas for the finite element approximation, a reducedrati®(h%?) can be proved
only, see [51] and see [19] for the setting.

This work is on the stability and error analysis of bounddgmeent methods. Moreover,
boundary element methods result in densely populatedraysigrices. Further work can
be on studies of an efficient solution method to solve thereisovariational inequalities.
In particular, further research is on the construction @itient preconditioners and the
use of fast boundary element methods as well. In additias,irteresting to answer the
open guestions which appear in the thesis, e.g., the reégyubdrthe control in parabolic

boundary control problems.
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