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Abstract

For a single soilbag filled with a cohesionless granular nedtenalytical and numerical models
based on a continuum approach are used to predict the emlotideformation and stress
under monotonic compression and plane strain conditionsalydical models with different
assumptions for the stress ratio distribution in the fillm@terial, a constant volume and a
frictionless interface between the soil and the wrappirgydra studied. In order to evaluate the
simplifications assumed for the analytical model numerst@lulations are carried out with a
micro-polar hypoplastic model for the soil behavior and Esic-ideally plastic model for the
wrapping material. Particular attention is paid to the ieflce of the interface behavior between
the soil and the bag material on the evolution of the statetifies. Herein the special cases of a
frictionless interface and an interlocked interface avestigated. In contrast to the frictionless
interface, the tensile stress in the wrapping bag materthld case of the interlocked interface is
not homogeneous from the beginning of loading. Furtherptbeeassumed interface behavior
influences the evolution of the state quantities and thetilmtaf zones with intense strain
localization of the granular material. The investigatioitiman initially random distribution of
the void ratio of the granular material only shows an eadieset of strain localization.

Zusammenfassung

Fir eine mit einem Geotextil umschlossene Granulatpackurd)die Entwicklung der Ver-
formungen und Spannungen bei ebener und monotoner Kongpressvohl mit analytischen
wie auch numerischen Kontinuumsmodellen untersucht. Dalyaschen Modellen liegen ver-
schiedene Vereinfachungen zugrunde, wie beispielsw&deastantes Spannungsverhaltnis,
ein konstantes Volumen, sowie Reibungsfreiheit zwischen @eanulat und der Einhdllung.
Zur Bewertung der getroffenen Vereinfachungen werden nisctex Untersuchungen mit ei-
nem mikropolaren hypoplastischen Materialmodell fir daar@lat und einem elastisch-ideal
plastisches Materialmodell fir das Hullmaterial durclidpef. Besonderes Augenmerk wird auf
den Einfluss der Kontakteigenschaften zwischen dem graanuk&drper und der Einhidllung auf
die Entwicklung der Zustandsgré3en gelegt. Die Untersngbn zeigen fur den reibungsbehatf-
teten Kontakt eine inhomogene Verteilung der Membranspagim der Hille vom Beginn der
Belastung. Dariliber hinaus beeinflusst das Interfaceverhalich die Entwicklung der Span-
nungen und das Auftreten von Scherlokalisierungen im daaen Kérper. Die Untersuchung
mit einer anfanglichen Zufallsverteilung der Porenzahiranularen Korper zeigt, dass Deh-
nungslokalisierungen bereits bei einer kleineren Kongoeseintreten kénnen.
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1 INTRODUCTION

A soilbag or sandbag is defined as a sack which is made of barlpplymer materials filled
with granular materials like sand, solil, or recycled coterd he used filling material depends
on the purpose of the structure and the availability of tHeglmaterial. Applications of a
soilbag can either be for temporary or permanent constmsti For temporary constructions
such as flooding barriers (Fig. 1.1(a)), soilbags are madestacked up to several layers
depending on the predicted flood-water level. After beingdu®r certain period of time they
are removed, emptied and disposed of. While the use of sailftagemporary purpose has
been established for a long time, its use in permanent earigins is rather new (Fig. 1.1(b) -
1.1(f)). For instance, soilbags can be used as reinforcefoemcreasing the bearing capacity
of soft soil foundations, as damping layers for the redunctibvibration transmitted from traffic
loads (e.g. Matsuoka & Liu, 2003 [81]), for facings instdlia front of geosynthetic-reinforced
soil retaining walls (e.g. Tatsuoka et al., 1997 [105]; Malsa & Liu, 2006 [82]), for ballast-
foundations of railway tracks (e.g. Schilder, 1983 [99];tMeoka & Liu, 2003 [81]), for access
roads in mountainous areas (e.g. Kimura & Fukubayashi, 2695, and for domes (e.g.
Khalili, 1999 [68]).

The placing of layers of horizontal reinforcements undathe foundation of a construction
(e.g. footing, as shown in Fig. 1.2) is a well known methodifimproving the bearing capacity
of shallow soil foundations. In this case, the reinforcetream take a part of the horizontal
stress acting parallel to the layer of the reinforcemenusT lwith the reinforcement the lateral
motion of soil can also be reduced which leads to smallelese¢ints. The motion of soil at
the surrounding of the reinforcement is influenced by theeliged shear resistance parallel to
the interface between the granular soil and the reinforoéniehe maximum shear resistance
mainly depends on the type and surface structure of theoreiinent and the size of the grains.
The maximum shear resistance is reached when either thietsinength of the reinforcement
is reached or the soil grains slip over the reinforcementigéalippage of the soil particles
over the reinforcement can lead to a heaving of the soil asithes of the footing foundation.
This behavior was demonstrated for instance in experimantglatsuoka & Liu (2003 [81],
2006 [82]) with aluminium rods and a horizontal reinforcerén order to reduce the heaving
a closed form reinforcement as a part of the material undefdbting was used, as sketched
in Fig. 1.3. Using this closed form reinforcement Matsuoka.i& (2003 [81], 2006 [82])
could show that under vertical loading the stiffness of trenglar material inside the wrapping
bag is higher than that outside. Consequently, the soil fatiml can resist higher footing
loads with the closed form reinforcement than with the player reinforcement. Closed form
reinforcements can be produced in an easy way with soilb&fpspe and dimension of the
soilbags depend on their purposes (Fig. 1.4). The failu ©ihgle soilbag is usually related
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Figure 1.1: Soilbags used foa)(temporary flooding barriersb) foundation of building, €)
retaining walls, ) foundation of ballast for railway,ef foundation of road, f}
dome construction.
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Figure 1.4: Typical shapes of soilbags for instance fa):fgundation of buildings and roads,
(b) for dome.

with the tensile rupture of the bag material. Aqil et al. (8D{2] reported that the shear load
capacity is much lower than the vertical load capacity. Besiekperimental results, there are
only few analytical and numerical investigations on the haadcal behavior of soilbags (e.g.
Tatsuoka, 2004 [103]; Matsuoka & Liu, 2006 [82]).

The present doctoral thesis focuses on the evolution ofraeftoon and stress of a vertically
compressed soilbag structure. Analytical and numericastigations are carried out for plane
strain condition. For the analytical study, similar siffipitions are made as proposed by Mat-
suoka & Liu (2006) [82], e.g. the granular material deformsler constant volume, the stress
ratio inside the soilbag is assumed to be constant and theatdretween the soil and the bag is
frictionless. The results obtained from the model by Maksu& Liu (2006) with a rectangular
shape of the section of the soilbag are compared with thatsoflbag with lateral semicircu-
lar boundaries as proposed in this thesis. In order to vigittee analytical results numerical
investigations using the finite element method are alsowcted. In the numerical model, par-
ticular attention is paid to the shear localization depegdin the vertical displacement, the
assumed interface properties and the initially homogem@ounhomogeneous distribution of
the void ratio. Furthermore, different interface behawvibetween the granular material and the
wrapping bag, i.e. a frictionless interface and an intdwakinterface, is taken into account.

In addition, the influence of the interface properties ondb®rmation behavior of granular
soil close to a bounding structure under shearing is alsoenigally studied. To this end, an
infinite granular layer in contact with a rough bounding stane is considered. The influence
of the slide and rotation resistances of the soil grainsairiterface, the initial density of the
granular specimen and the mean grain size on the locatiotharttiickness of the shear band
are investigated. Furthermore, fluctuations of the miwtaspboundary conditions along the
interface are also studied.



Besides an enforced shear localization close to an interéase-called spontaneous develop-
ment of shear bands far from bounding structures was obd€eimeinstance also in a so-called
element tests in the laboratory, e.g. in sand specimens piatee strain conditions (e.g. Oda
et al., 1982 [92]; Desrues et al., 1996 [35]; Oda & KazamaB81[94]; Alshibli & Sture, 2000
[1]; Gudehus, 1994 [50], 1997 [52], 2001 [54]; Oda et al.,2(@8]) and in axisymetric triaxial
tests (e.g. Drescher & Vardoulakis, 1982 [38]; Hettler & dlawmlakis, 1984 [59]; Frost & Jang,
2000 [44]). With the onset of strain localization the defatian becomes inhomogeneous so
that the test is no longer an element test.

Regarding the mathematical modeling of shear bands in tlmigunabody, it is well known that
the numerical results obtained from finite element calootatwith classical continuum models
may show mesh dependencies when shear localization takes (@.g. Neddleman, 1988 [88];
de Borst et al., 1993 [32]; Brinkgreve, 1994 [25]). Mesh demamy is related to the lack of
an internal length in classical continuum descriptionsorder to overcome this shortcoming
of classical continuum models, different enhanced cootimumodels had been proposed, for
example, Cosserat continuum models (e.g. Muhlhaus & Vaatosyl 1987 [86]; Muhlhaus,
1989 [84]; Muhlhaus, 1993 [85]; Tejchman & Gudehus, 2004]1Ehlers, 2002 [39]; Huang
& Bauer, 2003 [61]), non-local continuum theories (e.g. Bagaal., 1987 [17]; Bazant & Lin,
1989 [16]; Bazant & Pijaudier-Cabot, 1989 [18]), and highetesrgradient continuum models
(e.g. Vardoulakis & Aifantis, 1989 [123]; de Borst & Muhlhau992 [31]; Han & Drescher,
1993 [57]; Pamin, 1994 [96]; Vardoulakis, 1999 [122]).

In the present study, a specific micro-polar model by Bauer &rdu(1999) [11] is adopted
to describe the evolution of the non-symmetric stress termsaiple stress tensor and void ra-
tio of the granular material. The evolution equations foess and couple stress are nonlinear
tensor valued functions based on the framework of hypaplgstvhich was originally devel-
oped within a non-polar continuum description (e.g. Kola®p1978 [70], 1985 [71], 1987
[72], 1990 [73], 1991 [74], 2000 [75]; Darve, 1974 [28], 19@B]; Chambon, 1989 [26];
Kolymbas & Wu, 1993 [77]; Bauer & Wu, 1993 [14]; Wu & Bauer, 19924]; Bauer, 1995 [3];
Gudehus, 1996 [51], 2006 [55]; Wu et al., 1996 [125]; Kolymi&aHerle, 1998 [76]; Bauer &
Herle, 1999 [9]; Wu & Kolymbas, 1999 [126]). The micro-polarpoplastic model takes into
account macro-motion and micro-rotations, the currend vatio, the non-symmetric Cauchy
stress tensor, the couple stress tensor and the mean graimiich enters the constitutive
model as the characteristic length. By including the conoéptitical states and with a pres-
sure dependent density factor the model describes thetedggoperties of initially dense and
initially loose granular soil for a wide range of pressured densities with a single set of con-
stitutive constants (e.g. Tejchman & Bauer, 1996 [111]; Amjan & Gudehus, 2001 [114];
Huang & Bauer, 2003 [61]).

Beside a homogeneous distribution of the initial densitytha granular material inside the
soilbag, numerical simulations are also conducted witmdaen distribution of the initial void

ratio. The inhomogeneity of the initial state may be negddor certain geotechnical problem,
such as large scale deformation analysis (e.g. Karcheg)20@wever, as shown by Nubel
(2002) some problems related to the evolution of shear ilcadadn are sensitive against small
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fluctuation of the initial density. In order to take into aoot the inhomogeneity of the ini-
tial void ratio different concepts for generating a randaistribution of the void ratio have
been proposed in the literature, e.g. Mogami (1965) [83gH8tpoor (1981) [100], Bhatia &
Soliman (1990) [22], Nubel (2002) [89], NUbel & Huang (200Huang et al. (2007) [64]. For
example, Shahinpoor (1981) proposed a probability derfigitgtion to describe the random
distribution of the void ratio for granular materials withjual-sized hard spheres, which was
also used by Nubel (2002) [89], NuUbel & Huang (2004). Expenits carried out by Bhatia
& Soliman (1990) [22] showed that the inhomogeneity of thelvatio for granular material
like sand with different angularities and relative dersittan be better represented by a density
function with the so-called-distribution. Huang et al. (2007) used this concept to are@
random distribution of the void ratio for numerical simudaus of granular materials like sand.
In the present work, the same concept is also used for gamgraindom distribution of the
initial void ratio for the modeling of the filling material #nde the soilbags.

For the numerical modeling of the interface properties gighe finite element method, there
are mainly two approaches. In the first approach the zoneseoftanular material close to
the interface surface are modeled using a thin layer of 8eecmterface elements with pecu-
liar properties which are different from the material prdjgs used from granular material (e.g.
Desai et al., 1984 [34]; Sharma & Desai, 1992 [101]). In tipigraach the thickness of the inter-
face element needs to be specified and it is usually approsdrizy the thickness of the shear
band. Experimental results, however, show that the thekmé shear band is not a material
constant and is influenced by the whole boundary value pmobla the second approach, the
contact problem between neighboring structures is soliregarticular, at the interface, kine-
matic discontinuities and tangential and normal displaa@numps (relative displacements)
may take place (e.g. Goodman et al., 1968 [48]; Gens et &8 4/]; Boulon & Nova, 1990
[24]; Day & Potts, 1994 [30]). In the normal direction the leslare assumed to be in contact,
while for the tangential direction Coulomb’s friction lawusually used in classical finite ele-
ment analysis of the interface. In particular, a constatid taetween the shear resistance and
the normal pressure at the interface is assumed duringisgeblowever, this assumption only
provides an approximate shear resistance at the interfatel@es not necessarily reflect the
reality. In fact, according to the experimental resultsghear resistance changes during shear-
ing depending on several factors, such as density and meangize of the granular material,
stress level, boundary conditions of the problem and typgeé@boundary value problem (e.g.
Tejchman & Wu, 1995 [117]; Tejchman, 1997 [107]; Bauer & Huah§99 [11]; Bauer &
Huang, 2004 [12]; Tejchman & Bauer, 2005 [113]). Thereforethe numerical study, the
actions of the soil particles at the interface such as gjidind rotation which are related to
the surface roughness of the bounding structure and the grears size are furnished by the
prescribed micro-polar boundary conditions at the intafaThus, the shear resistance at the
interface, as well as the occurrence and the thickness c$htbar band is obtained as a pre-
diction of the model (e.g. Tejchman & Bauer, 1996 [111]; Huab@l., 2003 [62]; Bauer &
Huang, 2004 [12]).



The present doctoral thesis is structured as follows

e Chapter 1: Introduction and scope of the work.

e Chapter 2: A brief outline of the Cosserat continuum is givensp&cific micro-polar
hypoplastic model by Bauer & Huang (1999) [11] and its implatagon in the finite
element method for plane strain condition is presented.

e Chapter 3: Numerical simulations of shearing of a granuldrcsase to the surface of
a bounding structure are conducted. Particular attentigraid to the influences of the
micro-polar boundary conditions, the initial density oétgranular body and the mean
grain size on the evolution of the shear deformation and hiearsresistance along the
interface.

e Chapter 4: The mechanical properties of a single soilbagruweltical compression is
analytically and numerically studied for different int@ce properties between the filling
granular material and the wrapping bag. The analytical anmderical results are com-
pared. Furthermore, the influence of an initial inhomoggnei the void ratio on the
evolution of the shear band patterns is also numericallgstigated.

e Chapter 5: Summary of the main results is given.
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2 MICRO-POLAR CONTINUUM MODEL

In this chapter, properties of the micro-polar continuung.(eCosserat, 1909 [27]; Eringen
& Suhubi, 1964 [42, 102]; Eringen, 1965 [40]; Besdo, 1985 [Tlipbels, 2000 [37]; Ehlers,

2002 [39]; Bauer, 2004 [7]) are briefly described. A specificnoipolar hypoplastic version by
Bauer & Huang (1999) [11] is presented and its implementatitmthe finite element program
ABAQUS is outlined according to the procedure proposed banti(2000) [60] for plane strain
condition.

2.1 Kinematic variables

The material points of the micro-polar continuum can tratesbnd independently rotate. In
general, each point possesses six degrees of freedonhriee. ttanslation degrees of freedom
and three rotational degrees of freedom. With respect tpdséion vectorX of a material
point of a body in the reference configurati® at timet, and the corresponding position
vectorx in the current configuratiol$ at timet > ¢, (Fig. 2.1), the macromotion of the body
is described by :

x =X, t) or x; =;(X,1). (2.1)

wherezx; (i = 1,2,3) are the coordinates of the Cartesion coordinate system.furfaion
(X, t) is postulated to be continuously differentiable and to bigusmand uniquely invertible
at any time, i.e.

X = N (x,t) or X; =7 (x,1). (2.2)

The transformation of a line elemediX of the body from the reference configuratiBpto the
corresponding line elemerik of the current configuratioB is defined as:

dx = F dX, (2.3)

where the two point tensdf is the so-called deformation gradient:

X o g, = 9% (2.4)

F-
ox ° ax,
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Reference configuration(t,)

Y(X, 1)

/\ Current configuration ()
x(X, E, 1)

Y

Figure 2.1: Macromotion and micromotion of a micro-polantiouum body.

In order to fulfil the requirement 2.2 the determinanFahust be a positive value, i.get[F] >
0. The material time derivative of Eq. 2.3 reads:

dx

i x = L dx, (2.5)
with the so-called velocity gradieit, i.e.
. Jox Ou ot; O,
— -1 _ 7t _ Y7 I e A s
L=FF = %~ O or L;; 9, 0, (2.6)

In Eg. 2.6 the velocity vectoi = x can be obtained from the time derivative of the displace-
ment vectom = x — X.

The rotation degrees of freedom of points of a micro-polattiooium is described by directors
= of fixed length building a rigid triad attached to the matipi@int X. The micromotion of the
directorsE from the reference configuratids), into the directorg of the current configuration
B is described by

£=x(X,Et) or &=xi(X,E;1). (2.7)

The directors do not move like a [naterial line elemen_t. That_'rmn of the Qirectors can be
represented by an orthogonal tenBowith the propertie®RR ! = R’ anddet[R] = 1. Tensor
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R rotates the director® of the reference configuratiai, into the directorst of the current
configurations, i.e.

E=RE or =R;E,. (2.8)

The micro-rotation tensdR can be expressed by the micro-rotation veetet v e through the
Euler-Rodrigues formula (e.g. Ehlers, 2002 [39])

R=e®e+(I-e®e)cosy+ (e xI)sinny. (2.9)

The material time derivative of Eq. 2.8 yields

£ =RRT¢=0Q¢. (2.10)

Herein,Q2 = RRT is called micro-polar gyration tensor and is an antisymimégnsor in the
current configuration. The micro-polar gyration tensbcan be represented by the rate of the
Cosserat rotatiot* according to

Q=—w'€ or Qij = —€kjj w,ﬁ (211)

or

1
w’ = 3 e: Q" or Wi = 5 Ekii Qj4, (2.12)

wheree denotes the permutation tensor.

The non-symmetric Cosserat strain rate tensor is defined as:

e€=L-Q=L+u € or & = Lj; + ;05 (2.13)

The velocity gradienL can also be represented as the sum ahdW, i.e.

L=¢4+W or Lij = EZ] -+ Wij, (214)

with the symmetric tensor

ézé(LJrLT) or é; =

and the skew-symmetric tensor

(Lij + Lj) (2.15)

DN | —

1 1
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W is also termed as the macro-spin tensor and it can be repeelsieythe macro-spin vector
w according to the following relations

W=—-w-€ or VVij = —€kij Wy (217)
or
) 1 . 1
w = —56 W or W = —EEkij Wzy (218)

Thene®in Eq. 2.13 can alternatively be represented as

e . . - c .c . . -
EE =€ —w-€+ w-€ or 5ij:5ij—ekijwk+ekijwk. (219)

From Eq. 2.19 it can be seen that the non-symmetric Cosseaat stte tensor can be decom-
posed into the symmetric partand the skew symmetric part

(—w- € + w-€). Only forw® = w the non-symmetric Cosserat strain tens§om Eq. 2.19
reduces to the symmetric strain rate tensof the non-polar continuum.

The rate of gradient of the Cosserat rotation is the so-cadledof curvature tensor, i.e.
Ow® ows

g = or K = —-. 2.20

T ox i Oz, (2.20)

2.2 Balance equations

2.2.1 Balance of mass

The principle of conservation of mass requires that the masd the body does not change
during motion. ThuspPm/Dt = 0 holds independent of the configuration of the body. With
respect to a scalar fielg called mass density, the conservation of mass requires:

m= [ po(X,t0)dVy = [ p(x,t)dV, (2.21)
[ oo

wherep, is the mass density of the body in the reference configuratmap denotes the mass
density in the current configuration.

For the continuously differentiable scalar functiefx, ¢) and using Reynold’s transport theo-
rem the material time derivative of Eq. 2.21 yields the fwilag global form of conservation of
mass (e.g. Fung, 1994 [45])

Dm D Dp .
D: = Dt pdV = / {E + de(U)l dv =0. (2.22)
B B
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Since the equation holds for an arbitrary choice of the vadmwithin the continuous body,
the integrand in Eq. 2.22 must vanish. Hence

D 3
F;)erdiv(u) — 0 or p'—i—pg—Zj —0 or p+pes, =0 (2.23)

holds for each point in the body. Relation 2.23 is the locaifaf conservation of mass in the
spatial description. For the special case of an incomgbiessiaterial or an isochoric deforma-
tion, i.e. a deformation under constant volugje = 0, the mass density remains constant.

2.2.2 Balance of linear momentum

Following Newton’s second law of motion, in an inertial frarof reference, the material time
derivative of the linear momentum of a body in the current configuratidfl is equal to the
resultant forceF to the body

Dp D )
B = pp | pudV =F. (2.24)
B

The forces acting on the body can be obtained by integrafidimeosurface tractiom per unit

area over the surface bounddiand the integration of the body fored per unit volume over
the volume of a body in the current configuratiBnHence

D
Ht/puczvz/tdr+/plodv. (2.25)

B r B

Applying Reynold’s transport theorem to the integral on gfehand side of Eq. 2.25 gives:

%/pudv = / [%(pu) + div(ﬂ)pl’l} dv.

B B

Using the product rule of derivatives for the first term anarranging the terms,

D . Du . (Dp e
B B

By substituting the balance equation of mass (Eq. 2.23) te¢kend term of the above equa-

tion, one obtains:
D ) Du ..

B B B
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Applying Gauss’ theorem to the first term of the right haneedlEq. 2.25
/ tdl' = / o-ndl = / div(e) dV.
r r B

Then, the conservation equation of linear momentum can lieewas

/pﬁdV - / [,Ob + div(a)]dv,

B B
or
/pu,-dv - / {pbi + a"“} dv.
a.’L‘j
B B

For quasi-static problemd)u/Dt = u = 0, so that the conservation of linear momentum
reduces to the equilibrium equation

/[pb—l—div(a)]dV—O or /[pbi+ a"“]dv_o.
B

8xj
B

Since the above equation holds for arbitrary voluvhevithin the body, one obtains the local
form as:

0aij

8l'j

pb + div(e) =0 or pb; + = 0. (2.26)

2.2.3 Balance of moment of momentum

The balance of moment of momentum states that the matemal dierivative of moment of
momentum is equal to the total torque acting on the body.ofaitig e.g. Eringen & Kafadar
(1976) [41], Diebles (2000) [37], Ehlers (2002) [39], thddme of moment of momentum for
the micro-polar continuum can be expressed as

% [x X pa+pOuw|dV = /[XXpb—l—pc]dV—ir/[th—l—m}dF. (2.27)
B

B T

Herein,p © represents the tensor of micro-inertia anid the body couple per unit mass. With
the Gauss’ theorem the second term in the right hand side.a? 2@ can be written as

/[xxt+m]dr - /:xxan—i—un]df - /[div(xxa) —l—div(u)}dv

r Tr B

= / :<grad(x)> x o + x xdiv(e) + div(u)}dv.
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In the following only quasi-static problems are considersaithat the balance of moment of
momentum reduces to

0 = / [x x pb + pc + (grad(x)) X o + x xdiv(e) + div(u)}dV
B

= / [x X (pb + div(a)) + pc + (grad(x)) X o + div(u)}d‘/.
B

With respect tqgrad(x)) x 0 = I x o = € : 67 = —¢ : o and by substituting the balance
equation of linear momentum (Eq. 2.26) to the first term ofright hand side of the above
eguation, one obtains

0= / [pc —ero + div(p)|av. (2.28)
B

The local form of Eq. 2.28 reads

pc —e:o +div(u) =0 or pe; — €p0j% + L — 0. (2.29)

It follows from Eq. 2.29 that the stress tensor in a microapabntinuum is non-symmetric, i.e.
e : o # 0, with the exception of states whedg,;/0x; = 0 andc; = 0 vanishes simultaneously
(Huang & Bauer, 2003 [61]).

2.3 Micro-polar hypoplastic model

2.3.1 Evolution equation for the void ratio

For the numerical modeling of cohesionless granular metetie assumption is made that the
volume of the solid grains does not change during any ariiglaformation of the granular
body. Therefore, a volume change of the body is equal to thene®change of the void space
between the solid grains. Furthermore, if the void spacenigte the massn of the body is
equal to the massi, of the solid grains, i.e.

m = mg Orequivalentto pV = p, Vi,

wherep is the mass density of the granular body apaienotes the mass density of the solid
grains. For a representative volume element of a granuldy,libe total volumé can be
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decomposed into the volumé of the solid grains and the volunig of the void space. With
respect to the definition of the void ratio= V, /V;, the mass density can be expressed as:

:psVs: ps Vs _Ps
Vv V, + V, 1+e

P (2.30)

Substituting the above relation fprto the balance equation of mass (Eq. 2.23), one obtains

D s s .c
( P )+p— ¢ = 0. (2.31)

Dt\1+e 1+e

With the assumption that the volume of the solid grains dasschange and also the mass
densityp, of the grains remains constant, Eq. 2.31 can be rewritten int

—é 1.

Sincep, # 0 the following evolution equation for the void ratias obtained

e=(1+e) &, (2.33)

It is worth noting that with the assumption of an empty void@pandg, = const., the granular
body can be treated as a single-component continuum (Ba@s, [2]).

2.3.2 Constitutive relations for the stress and the coupletiess

The evolution equations for the stresses the couple stressgs; and the void ratie of the
micro-polar hypoplastic model by Bauer & Huang (1999) [11jjadg & Bauer (2003) [61]
read

Gig = fo |02E5 + (Oushy + fuaity) 03 + Jai (3 + 65) VAL T Rk (2.38)
fiij = dso [ |:a3n i+ (Omey + k) fij + 2 fa am flij\/EGET + ’%sz'ﬂ}iz] ,  (2.3%)
¢ = (1+e)és,. (2.36)

Herein,s;; is the objective stress rate given by Jaumann-Zaremba

0ij = 045 + 0 Wij — Wikow;, (2.37)
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andji;; is the objective couple stress rate

fij = fuij + Wi — Wik e (2.38)

The constitutive equations 2.34 and 2.35 use tensor valuetdibns depending on the current
void ratioe, the non-symmetric stress tenseythe couple stress tensgg the non-symmetric
strain rate tensaf® and the rate of curvature tensorwhere the normalized quantitiés;, ¢,
fu; and#;; have the following meaning

~ ~d ~ ~ L % .
Gij = Oij/ Ok, 05 = 0ij — 0ij /3, fij = iz /(dso o), Kij = dso Fij-

Herein,¢;; is the Kronecker delta andi, denotes the mean grain diameter, which enters the
constitutive model as the characteristic length. The séatdors f, and f, are called stiffness
and density factors, respectively. Facto@nda,, are related to the limit stress and limit couple
stress at critical states.

The stiffness factof, and the density factof; in Egs. 2.34 - 2.35 are functions of relative void
ratios which are pressure dependent. In particular, tffeests factorf, is proportional to the
granular hardneds, and depends on the current void ratjaghe maximum void ratie; and the
stressyy, i.e. (Bauer, 1995 [3])

fs:<ﬁ>ﬂ he (1 +€;) (_%)kn, (2.39)

e nhz (6kl &kl) €; h,s

with

i =

8 sin? ¢ +172\/§singp Cio — €do \
(3 + sin )2 3+sing \ew—€i/)

Hereing > 1, h,, n are constitutive constants.

The density factorf, is related to the current void ratig the minimum void ratice; and the
critical void ratioe,

fa= (e_ed>a. (2.40)

€c — €4

Herein,a < 0.5 is a positive constant. In Eq. (2.39) and Eq. (2.40) the vattbse;, ¢; ande,.
are pressure dependent. These limit void ratios decredkeawiincrease of pressusg;, i.e.
(Gudehus, 1996 [51])

Go_ e _ e _ o {_ (_O'kk)"} | (2.41)

€i0 €do €c0 s
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€co 66
€do
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Figure 2.2: &) Pressure dependence of the limit void ratidg,dfitical stress surface by Mat-
suoka Nakai (1977) in deviatoric plane.

where e;o, eq0, €0 are the corresponding values foy. ~ 0 (Fig. 2.2(a)). From Eq. 2.40, it
follows that independent of the magnitude of pressuyge

fore=e. — f;=1,

fore>e. — f;>1,

fore<e. — fy<1.

It was shown by Bauer (1999) [5] that for monotonic shearind An> 1 the non-polar hy-
poplastic model describes contractancy while fipk 1 dilatancy becomes dominant.

In the model by Bauer & Huang (1999) [11], faciay, is assumed to be constant. Facids
adapted to the limit condition by Matsuoka-Nakai (1977)r &dbitrary states reads (Bauer,
2000 [6])

a=

sin @, 8/3 —3( Ukl Ukl + v Ukz Ukl )3/ 008(39) 554 gsd |
3 —sin g, 1+ /3/2 (634 634)1/2 cos(30) KN
(2.42)

In Eq. 2.42¢,. denotes the critical friction anglé;! = (6¢, + 1.)/2 and 6 represents the
so-called Lode angle which is defined as

~sdAasd A

sd
o3dasd G
cos(30) = —\/BM (2.43)
(63 71)°*

When the limit stress condition is met the valueiof a.. Then Eq. 2.42 represents the limit
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condition by Matsuoka-Nakai (1977), as sketch out in theatevic plane in Fig. 2.2(b). It can
be noted that for the special case of purely coaxial and hemegus deformations starting from
an initially symmetric stress tensor or fég, — 0 there are no polar effect, i.@,; = /1;; = 0,
gj; = &y andoy; = 0y, so that the present micro-polar hypoplastic model redteése non-
polar one given by Gudehus (1996) [51] and Bauer (1996) @], i.

Gij = [ [@%¢5 + 64 (Omil) + fa (6354 655) €] - (2.44)

It follows from Eq. 2.44 that the functiong, a andf, are the same for the micro-polar and non-
polar version. Therefore coaxial and homogeneous defoymat sufficient for the adaptation
of the constants involved in this functions as outlined itade by Bauer (1996) [4], Herle &
Gudehus (1999) [58] and Huang & Bauer (2003) [61].

2.3.3 Calibration of the constitutive constants

The micro-polar hypoplastic model includes the followir@constantse.,, hs, n, €0, €40, €cos

«, (3, dsg anda,,. They can be determined from simple index and element tesig34996 [4];
Herle & Gudehus, 1999 [58]). The critical friction angleis defined for a triaxial compression
test in the critical state and, approximately, it corresjsoio the angle of repose. The void ratios
eqo ande.q are related to the minimum and the maximum void ratio in algesiress free state,
respectively. The maximum void ratig, can be approximated by a scaling factoretg, for
instancez;y ~ 1.2 ey (e.g. Herle & Gudehus, 1999 [58]). Parametierandn can be related to
an isotropic compression test starting from a loose spacuui a void ratio of~ e¢;,. « and(
are related to the peak friction angle in triaxial compressests with initially loose and dense
specimens (Bauer, 1996 [4]). The mean grain diam&tecan be estimated from the grain size
distribution. The micro-polar constaay, is related to the rotation resistance of particles and it
can be related to the shear band thickness using back anétysang, 2000 [60]).

The values for the constitutive constants obtained fortgusand (Huang & Bauer, 2003 [61])
are used for numerical simulations in the following chagter

€0 = 120, €do = 051, €0 — 082, Pe = 300, Ay, = 10,
h, =190 MPa, a=0.11, (=105, n=0.4, ds=0.5mm.
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2.4 Implementation into the finite element method

2.4.1 Virtual power equation

For establishing the finite element formulation the virtpalver equation is used. By taking
the product of the virtual variations of the velocity field®. éx; anddwy, with the equilib-
rium equations 2.26 and Eq. 2.29 and integrating over thernvelof the body in the current
configuration leads to the following weak form

8[Ej an
B

Applying the Gauss’ theorem to the first term of Eq. 2.45,

/ 5Uz ao_ij dV = / 5Uz Uij nj dF — / 8(5Ui)0ij d‘/7
&rj 8$j
B r B

and to the third term of Eq. 2.45

/ 0wy, %Mkj dV = / 0wy, fuj ny Al — / a(;;k)ﬂkj dv,
J
B

L
B r

Eq. 2.45 becomes

/ [0u; pb; + oWy, peg] AV + / [0u; o4m; + 0wy, punj] dI
T

]
e 9(0u,) 9 (0wy)
— €ijkOWLT; + —— 0i5 +
/ |: J kY axj J axj

B

%} dv = 0. (2.46)

In the current configuration, the surface tractipr= o,;n; is prescribed on the patt, of the
body surface while the surface couptg, = 1;n; is prescribed oi’,,. The virtual velocity
fields 0u; anddw;, are independent from each other, small and arbitrary, ¢xaethe surface
I', wheret; is prescribed andli; is zero, and on the surfadg, wherews, is prescribed anéLo;,
is zero. In addition],, ', I'; andT’,,, are mutually exclusive, i.el’, UT, =T, Ul,, =T
andI’', NI, =T,.NT,, =0.

With respect o, = o;;n; onI';, m), = p;n; onl,,, 64; = 0only, éw; = 0 onT, and the
definitions of

= 5Lz] — 5@1] = a<5uz> + emkéw,ﬁ and (Sl‘ik]

58 8xj - al'j '

ij
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the weak form of the virtual power equation can be written as

B It T
+ / [01; pb; + Wy, peg] dV. (2.47)
B

2.4.2 Adaptation to plane strain condition

For plane strain condition, a point in a Cosserat continuuss@sses two translational degrees
of freedom, i.eu;, us, and one rotation degree of freedarfi The non-zero stress and couple
stress components for plane strain condition are showngn ZB3. For plane strain the local
equilibrium equations 2.26 and 2.29 become:

Oon 01

by =0
(%1 (9x2 +p ! ’
oo 0oy
by =0 2.48
8.1'1 81'2 +p 2 ) ( )
0 0
a’l;il + al;?: — (0'12 — 0'21) + pPC3s = 0.

With respect to the following matrix representation of tlemegralized quantities

E = (€91, €52, 0, €55, €51, dsofian, dsofisa]”
S = [011,022,033,012,021,M31,/L32]T,
o= [y, U, w§)",

th = [t 2, ms),

7 = [pby, pba, pes],

the corresponding virtual power equation for plane stradty ftme written as

/(5ET.S dV = /5uT.EdF+/5ﬁT.fdv. (2.49)

B r B

The constitutive equations 2.34 and 2.35 can be represantedtrix notations as

S =H.E, (2.50)
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Figure 2.3: Kinematic variables{, us, w$), stress components, 022, 033, 012, 021) and
couple stress componeniss{, u32) in Cosserat continuum for plane strain condi-
tion.

whereH is the constitutive matrix with the dimension k 7) given by

HO’O’ Hap,
H = (2.51)
H/w Huu
H,,, H,,, H,,, H,, are nested matrices of matdk with different dimensions (Huang, 2000
[60]):

Ty + 8, 87 + ’%H (8, +82) E)

H, — /. SU.S§+—(SU+S§).EZ),

Huu = d50 fs

o 2y A
o = ds f <su.s§+fd - Su.EZ>,

where;
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(1000 0]
01000 100
10
L = |oo0100|,.L =010/ L = Dl
00010 00 1
00001

T T
A 011 O22 033 O12 0921 A H31 H32
SO’ = ) ) ’ ) 1 Su = d 7d 1
Okk Okk Okk Okk Okk 500kk 500 kk
1 1 1 r
Sd . 011 022 033 012 021
o T 5> ) ) ) )
Okt 3 Ok 3 Okt 3 Ok Okk
r ¢ sc :c  c 1T ; _ . . 1T
E, = [51175227075127621} ) EH = [d50531,d50532] )
Ok, = 011+ 099 + 033, ||E|| = \/EZ.EU + E/Z;EN

The Jaumann-Zaremba objective stress ratesind couple stress ratgs,; are related to the
time derivative of the corresponding stress componem@sgi;, and to the time derivative of
the corresponding couple stress componentsyj.eas

o611 = o + Wia (012 + 021)
09 = 093 — Wi (012 + 021)
033 = 033

012 = 012 — Wi (011 —022)
021 = 091 — Wi (011 — 02)

(31 = fiz1 + Wia ise
fizz = fizg — Wia us1
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with
G = f.la%es, + Pon + faa (260 —1/3) \/ﬁ},
Gos = fo 265, + Poay + fad (2692 —1/3) \/}_?},
o33 = fs|Pbss + faa (2033 —1/3) \/E],
G1a = fsl|a®éS, + Péig + Qfdd&m\/ﬁ},
Gor = fo a5 + Péay + 2 fai R},
ft31 = dso fs [&En dsoks1 + Plisi + 2 faam fis1 \/E},
fiz2 = dso fs [afn dsofze + P lise + 2 faam flse \/f_f},
where
P = 011€]) + 022€5y + 012655 + 02165, + fis1dso A1 + i3 dso Kaa,
R = &7 + 855 + €55 + 57 + d3 k3, + d3y k-

2.4.3 Element formulation and finite element procedure

Following Huang (2000) [60] a four node quadrilateral is@aetric finite element with two
translational degrees of freedom, i.e;, uy, and one rotational degree of freedom, i,

at each node is used. Thus, the same interpolation for tidadeEmments and the coordinates
is applied. Within the finite element the interpolation f&r = [X;, X5]7, x = |21, 2,]7,
the generalized displacement= [u;, uy,ws]?, the generalized velocityt = [i, 12, ws) 7T, the
generalized strain rale = [£¢,, £5,, 0, £5,, €5, dsofisr, dsofis] T, the generalized virtual velocity
ou = [01, 61y, 6ws]T and the generalized virtual strain raB = [6¢$,, 0€5,, 0, 6£5,, 05,
d50(5l.€31, d50(5:‘%§32]T is given by

4
u=>» NI, (2.52)
a=1

4 4
X =) NLX* x = NIx°, (2.53)
a=1

a=1
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4 4
n=> NIz ou =Y N°I;5u°, (2.54)
a=1 a=1
. 4 . 4
E=> g OB =) Bron, (2.55)
a=1 a=1

where: N is a standard bilinear shape function with respect to thengde. (@ = 1,2, 3,4)
and

- ON© AN 7
0 0 0 0 0
921 ane 9% gy
Bt = 0 0 0 0 0 . (2.56)
61'2 8ZE1 @Na 8]\[0‘
0 0 0 1 -1 d d
I 50 Oz 50 Oy |

In particular, the shape function for the nadeeads

N =2 (1+&76) (1+66), (2.57)

o |

and(&, £5) denotes the local coordinates of nadm the master element as shown for example
in Fig. 2.4.

4 3
ol 1]2 |34 5
§
el 11 1)1 g
ol —1]—1]1] 1
a=1 2

Figure 2.4: Nodes in the master element.

According to Nagtegaal et al. (1974) [87], a selective rediiotegration technique can be used
to avoid volumetric locking. In the selective reduced imgtipn technique, only a one-point

Gauss integration is used to compute the volume change whiler-point Gauss integration is

applied for the stresses and couple stresses. Followingétud 980) [65] the selective reduced
integration technigue can be implemented by changing matrin Eq. 2.56 with the following



26 2 Micro-polar continuum model

matrix 3
[ 1 8Na+6N°“ 1 /ONe QN© 0 1
2\ 0ny 0xy 2 \ Oxy 0z
1 aNa_aNa 1 ONQ+8NQ 0
2\ O0x; 0x; 2\ Oz 0wy
0 0 0
8" = ON 0 1 , (2.58)
81'2
ON“
0 —1
81’1
ON¢
0 0 50 e
ON¢
d
_ 0 0 0 o
where

ON« 1 ON“

(%cl- - W 83@
Ve

dv.

ON®/0x; in 3" and3* needs to be computed based on the following relation
ON® ON® 0§,  ON® 0

8x]~ N 851 827]' 852 8x]~' (259)
ON®/0¢ andoN* /0, can be derived from Eq. 2.57 to
ON® 1 N ON® 1 _, N
6 151 (1+&5¢) and G 452 (14 &761). (2.60)

0&;/0z; is the inverse of the isoparametric transformation fromcilveent configuration of the
finite element to the master element

afz‘ . Ox; -
dr; {3&} ’ (2.61)
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where

g ot 08 0

With respect to the element interpolation f&r (Eq. 2.53) andu (Eq. 2.52) the following
relation can be obtained

4

0r; ~— .. ON° ON
=y Xx¢ ) ur——. 2.62
9¢; ; 9€; ; 9¢; (2:62)

By substituting Egs. 2.52 - 2.55 into the virtual power equat2.49, it follows for the single
finite element

4 4
> ou” / prs =y ou (/(N“Ig)T.tdS + /(No‘Ig)T.de> . (2.63)
a=1 V. a=1

Se Ve

whereV, andS, are the volume and surface area of an element, respectively.

Following the standard procedure in finite element progrargrfe.g. Hinton & Owen, 1977),
the summation of Eqg. 2.63 through all elements of the disétglobal structure can be written
in the terms of the global node sequence as

NNODE
Y RFouf =0 with RF = R¥(ub), (2.64)

K=1

where the upper case lettefiS and L indicate nodes in the global node sequen€&yODFE
is the total node number( L = 1,2,..., NNODE), R¥ is the residual force at nod&
depending on the generalized displacemeanddu” is the generalized virtual velocitiR
is computed from the summation of relevant contributiongh&nodek” from the surrounding
elements of the global system, where the element contoib®i® for R can be computed
according to

RS = /(Nalg)T.Eds+/(Nalg)T.fdv—/mT.SdV. (2.65)

Se Ve Ve

As ju” in Eq. 2.64 are independent variables which can be set toexeept for one degree of
freedom in the system, the equilibrium equation obtaine@&zh node is as follows

R¥(u") = 0. (2.66)
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Due to strong nonlinearity of the equation system, the NaviRaphson iteration method is
adopted. If the equilibrium equation 2.66 is satisfiedujyat timet0, the new equilibrium for
a load increment with respect to the increment of the nodéble Au” = ufy, ,, — uf; can
be written as

RY (ufy + Aut) = 0. (2.67)

With respect to the global tangential stiffnd§S ~ the Newton-Raphson iteration can be written
as

K" Au, = RF, (2.68)
with KKL = (6RX)/(6u*) (u}) andul, = ul + Aul,. Herein, the subscript (i =
0,1,2,...) denotes the number of iterations witlj = uy andR{" = R* (u}).

The initial guess can be computed accordingtpAul = ARX, where ARX can be ob-
tained from Eq. 2.65 with

— —aT
ARY = /(Na13)T-tto+At d5+/(NaI3)T-fto+At dV—/,@ Sy dV.
Se Ve Ve

The global tangential stiffness matr*’ in Eq. 2.68 can be computed from the element
stiffness matrixK ¢ according to the sequence of the degree of freedom in theetiéssystem:

—aT
Kaﬁ_/ﬂ H3 dv+/‘5f_sczv /ﬁ S;Jﬁ%dv
Ve
- [wenyrQias - [vew)Qiav (2.69)
Se Ve

Herein,Q? andQ” denote the load contribution to the global stiffness:

st 1 _6A
6 _ 7 e
U =551t
5? L lgod

s —f—
Q; J sud’

with J = dV/dV, and A, = dS/dS, are the ratio of a volume element and the ratio of a surface
element, respectively.
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2.4.4 Time integration scheme

For a rate independent material behavior, a fictitious ticeescan be introduced for quasi-
static loading process. A loading step is divided into inoeats which corresponds to the
division of the time domain into time increments. For a gaheed displacement increment
computed for a time intervat(, t1 = ¢t0 4+ At], the stresses;;, couple stresses;; and void
ratio e are to be updated by integrating the constitutive equat@r@auss points within each
element. Following Huang (2000) [60] the detail updatinggass with a one-step implicit time
integration method and sub-time stepping scheme can baieggdlas follows:

Providing the void ratice,, at time¢0 is known, the void ratio at time¢l can be computed
according to

en = (1+ ) explAe,] — 1, (2.70)

whereAe, = A€, + A€, is the increment of the volumetric strain.

With respect to the known value of the generalized stfggsit timet0, the generalized stress
at timet1 is updated according to

Sﬂ - StQ + AS (271)

Herein, an iteration procedure for the evaluation of theegarstress incremerS is required.
The (j + 1)th estimation for the generalized stress increment reads

, : AE
AS]+1 = H (Si0+9At’ Ct0+OAL 5 m) AE, (272)

where S/t =Sy + ASTT (2.73)
Sioroar = (1 —6)Sy +0Sy = Sy + 0AS,

ewronr = (1 —0)ew + bey,

with 6 € [0, 1]. According to Buchanan and Turner (1992) the integratiorsehis uncondi-
tionally stable ford > 0.5. The iteration stops if the following condition is fulfilled

b IAST - AST|
T

(2.74)

with a prescribed toleraneg ;. When the total number of iteration is reached, j.es niter,
and the requirement 2.74 is not yet fulfilled, the sub-tinegping is initiated by reducing the
time increment by a half. In order to prevent the infinite Stdpping, a lower bound is defined,
i.e. the integration scheme fails for the sub-time increttess than(z;,,.. * At), with 4, is @
prescribed positive scalar (e.g. Huang, 2000 [60]). Thedlawt of the algorithm is shown in
Fig. 2.5.
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AS, e, ,AE

[

Y

:Qﬁ:m‘

‘dt

tot

dt > At —dt

tot

Y

_ AE AE
AS' —H[Sw,ew, /AE]* L

e = (1"'3,,, )exp{ig” dt}—l

t
S, =S, +AS'
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v
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Figure 2.5: Flowchart of time integration scheme for thermigolar hypoplastic model (after
Huang, 2000 [60]).



3 SOIL STRUCTURE INTERACTION

The mechanical properties of the interface behavior batvged and the bounding structures
under shearing can be of great importance in many geotedhapplications such as shallow
foundations, retaining walls, tunnels and reinforced stilictures (e.g. Gudehus, 1994 [50],
1999 [53]). Therefore, the investigations of the soil-stame interface have attracted great
attentions of many researchers. Field observations, dgyrexperiments and numerical sim-
ulations have been conducted in order to gain insights mtacbmplex phenomena in the soil
body close to the surface of the bounding structure. Expartensuch as direct shear test (e.g.
Potyondy, 1961 [97]; Jewell & Wroth, 1987 [67]; Paikowsky kf 4995 [94]; Tejchman & Wu,
1995 [117]; Frost et al., 2002 [43]; DeJong & Frost, 2002 )33inple shear test (Uesugi &
Kishida, 1986a [119]; Uesugi & Kishida, 1986b [118]; Uesegal., 1988 [120]), pullout test
(e.g. Ingold, 1983 [66]; Bauer & Mowafy, 1988 [15]; Palmiera\illigan, 1989 [95]; Bergado
et al., 1996 [19]) and ring torsional test (e.g. Yoshimi & Kiga, 1981 [127]; Garga & Sedano,
2002 [46]) had been carried out to investigate the defoondiehavior of the soil close to the
interface and the shear resistance between granular alatand bounding structures with dif-
ferent surface roughness. The surface roughness is usigdihed as the difference between
the highest peak and the lowest trough along the surfacdeorofi

Experiments show an evidence of the influence of the mean gizg, the density of the gran-
ular material, the surface roughness and the stiffnessedbdlinding structure (e.g. Potyondy,
1961 [97]; Uesugi & Kishida, 1986a [119]; Boulon, 1989 [23hikowsky et al., 1995 [94];
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Figure 3.1: Shearing of granular materials on thgg§mooth surface and) rough surface
(After DeJong & Frost, 2002 [33]).
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Figure 3.2: Interlocking of soil particles within the cetlsgeogrid reinforcement.

Tejchman & Wu, (1995) [117]; DeJong & Frost, 2002 [33]; Frestal., 2002 [43]) and the
type of the tests (e.g. Uesugi & Kishida, 1986b [118]; Tejamd. Wu, 1995 [117]; Tejchman,
2004 [110]) on the shear resistance at the interface andeorotinesponding displacement field
inside the granular body.

In particular, the influence of the surface roughness of tumting structure on the deformation
behavior of the granular body can be clearly observed in Bd.. In this experiment, the
shear tests were conducted on compacting alternatingslayfedyed/non-dyed sub-rounded
sand which were placed on top of the interchangeable slieglsieeve. After a certain shear
displacement the deformations of the sand specimens avensinoFigs. 3.1(a) - 3.1(b) for
the smooth and the rough surfaces of a steel-alloy sleespectvely. In Fig. 3.1(a) shear
deformations in the sand body cannot be detected. Thusattiespecimen behaves like a rigid
body during shearing. This also means that the slippager®atuhe interface, and the shear
resistance at the interface is lower than in the granulay lfed). Potyondy, 1960 [97]; Jewell
& Wroth, 1987 [67]; Bauer & Mowafy, 1988 [15]; Bergado et al., 8329], 2003 [20]). On the
contrary, when a textured steel-alloy sleeve is shearadstghe granular body, a part of the soil
particles are interlocked by the rough surface of the sadey- sleeve (Fig. 3.1(b)). Therefore,
the displacement of soil particles at the interface is nyadittated by displacement of the
bounding structure. The distribution of the shear defoiomadcross the height of the granular
body is nonlinear (e.g. Garga & Infante Sedano, 2002 [46]iterAarge shearing the shear
deformation is localized within a zone in the granular boldge to the surface of the bounding
structure, as shown in Fig. 3.1(b). This zone is called shead. The granular body outside
of the shear band is almost not affected. Furthermore, tbercence of the interlocking of soil
particles at the interface is mainly related with the intéicn between the surface roughness
of the bounding structure, the grain size and the surfacghmoess of the grains. The shear
resistance at the interface is not constant during sheé&igg Tejchman & Wu (1995) [117]).
With the increase of shearing the shear resistance at thgaoe first increases up to the peak
and then it can decrease toward a stationary value. In adddithe sliding of the soil particles
at the interface, Uesugi et al. (1988) [120] reported thatdil particles at the interface may
also rotate.

The aim of this chapter is to investigate the deformationaledr of a granular soil close to

a bounding structure under shearing. Due to shearing phtalithe bounding structure the
soil grains at the interface between the granular body amtédlunding structure can generally
translate relatively to the surface of the bounding stmgctand they can also rotate. In the



33

present study, only cases where the grains at the interfaceaptured by the rough surface
of the bounding structure are considered. An example fon saagh bounding structures is
a geogrid in a reinforced soil structure. As sketched in B the interlocking of the soll
grains within the geogrid cells are dominant (e.g. Bauer & Mfyw1988 [15]; Konietzky et
al., 2004 [78]). Although the displacement of the grainatihterface is mainly dictated by the
displacement of the bounding structure, the soil graingotate. In this context it is important
to distinguish between rotation of the particles with anthaut a relative displacement of the
center of the mass of the particles (e.g. Bauer & Huang, 202).[TThe rotation resistance
of the grains at the interface is related to some factors aa¢he shape and surface roughness
of the grains and the ratio between the grain size and thamrbughness of the bounding
structure. For instance along the interface of a geogrigd. (Bi2) the rotation resistance of the
grains located within the geogrid cells may be differentresrbtation resistance of grains in
contact with the smooth surface of the members of the geogndlytical investigations (e.g.
Unterreiner et al., 1994 [121]; Bauer, 2005 [8]) and numésgpsaulations (e.g. Tejchman, 1997
[107]; Bauer & Huang, 1999 [11]; Huang & Bauer, 2003 [61]; Baugtd&ang, 2004 [12]) with
a micro-polar continuum model show a strong influence of #seimed boundary conditions on
the deformation within the shear layer. Tejchman (1997y[J0oposed a constitutive model
with a linear relation between the displacement and Cossetation of the soil particle at
the interface. Herein, the assumed factor of the partielestation which is transmitted to the
rotation shows a strong influence on the deformation of thewar soil close to the interface.
The main results obtained from analytical and numericalisgiwith micro-polar hypoplastic
models and a homogeneous distribution of the prescribedate boundary conditions are:

¢ the displacement field is nonlinear from the beginning obsimg (e.g. Tejchman & Wu,
1993 [116]; Tejchman, 1994 [106]; Tejchman, 1997 [108];chepan & Bauer, 1996
[111], 2004 [112], 2005 [113]; Bauer et al., 2006 [13]),

o for an initially dense material shear strain localizatipp@ars before the peak stress ratio
is reached (e.g. Bauer & Huang, 1997 [10]),

o for large shearing the deformation is localized within aroarzone while outside this
localized zone the granular soil behaves rigidly for camburs shearing (e.g. Tejchman
& Gudehus, 2001 [114]; Huang & Bauer, 2003 [61]; Gudehus & N®@04 [56]),

e Cosserat rotations are only pronounced within the localzete (e.g. Tejchman, 1997
[108], [107]; Tejchman, 2000 [109]),

¢ the thickness of the localized zone can be detected fromigiiebdition of the Cosserat
rotation, the void ratio, the gradients of the curvatured e shear strain rate, based on
their pronounced values (e.g. Tejchman & Gudehus, 2001 Hiang et al., 2002 [63];
Nubel, 2002 [89]; Huang & Bauer, 2003 [61]; NUbel & Huang, 2(94]),

e while the distribution of the void ratio reflects the histarydilatancy or contractancy,
the distribution of the shear strain rate is related to theecu active thickness of the
localized zone (e.g. Huang & Bauer, 2003 [61]; Bauer et al.64Q8]),
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o the thickness of the localized zone is almost proportiom#éhé mean grain size and also
influenced by the void ratio, the pressure level and the npolar boundary conditions
(e.g. Tejchman, 1997 [107]; Tejchman et al., 1999 [115]),

e for monotonic shearing the state quantities within loaizones tend towards a station-
ary state for which a coupling between the norm of the dexi@giress and the norm of
the couple stress tensor may exist depending on the typesaghitro-polar model (e.g.
Huang, 2000 [60]; Nubel, 2002 [89]; Huang & Bauer, 2003 [61]).

In particular, for shearing of a granular layer between fravalls with symmetric micro-
polar boundary conditions at the top and the bottom surfdeeshear localization occurs in
the middle of the layer. When non-symmetric micro-polar any conditions are considered
the localization is closer to the surface boundary with bBigbrescribed Cosserat rotation. In
the following section further numerical studies with ditfat interface properties and different
initial states are carried out.

3.1 Shear localization close to a bounding structure

Plane shearing of an infinite extended granular strip inaciwith a rough surface of a bound-
ing structure is simulated using the finite element metha@baamicro-polar hypoplastic model.
The bounding structure is assumed to be rigid and it moveslphio the granular strip. Due to
the symmetry of the problem, only a small section of the itditayer is considered as shown
in Fig. 3.3(a). In particular, a section with an initial hieigpf 7, = 4 cm and a width oft = 10
cm is discretized with finite elements with a sizeld5 mm x 1.25 mm. The finite element
mesh and the boundary conditions are shown in Fig. 3.3(bprder to model the behavior
of a lateral infinite layer constraints to the side nodes efdlements along section | and sec-
tion Il are introduced (e.g. Bauer & Huang, 1999 [11]). In paufar, each node on the left
boundary £; = 0) is controlled to have the same displacements and Cossé¢a#ibroas the
corresponding node with the same vertical co-ordinate emight boundary{, = b):

S

(0, z2) = W5(b, x2),
(0,

1 =0 : ul((), .I’Q) = U,l(b, l’g), UQ(O, l’g) = UQ(b, l’g), ?C)
r1 =0  wuy(b,x2) = u1(0,x2), uz(b, z2) = us(0, x2), WS(b, x2) = ws(0, 7).

S

These prescribed lateral constraints also imply thatranyifield quantitiesb are independent
of the coordinate in the direction of shearing, D& (x1, x2)/0x; = 0.

For the top surface of the granular soil layers the followogindary conditions are assumed:

To9 = h up =0, 099 = —pPo = —100 kPa,w§ =0.
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Figure 3.3: Modeling the interaction between a plane irdigitanular layer under constant
vertical pressurg, and the rough surface of the bounding structure under sigeari
(a) section of the granular layer with the heigh&nd the widthb,
(b) initially undeformed finite element mesh with prescdli®mundary conditions.
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Herein the vertical pressung at the top surface is kept constant. Thus, the height of the
specimen can change as a result of contractancy or dilatittoy the specimen. The Cosserat
rotation of the soil particle at the top boundary is assurodaktzero.

At the bottom surface of the granular soil layer it is assurted the grains are captured by
the rough surface of the rigid bounding structure so thalhatioundary:, = 0 neither rela-
tive displacement nor strain takes place. Therefore, thglatements of the particles along the
interface are equal to the prescribed horizontal sheafadisment:, g of the bounding struc-
ture. In order to study the influence of particle rotatiorhatinterface two different micro-polar
boundary conditions are considered: a homogeneous distniband a periodic fluctuation of
the Cosserat rotation. A periodic fluctuation of the Cossestttion may be motivated for
instance by a different rotation resistance of particlem@lthe interface of a geogrid with a
periodic cell structure as sketched out in Fig. 3.2. It camiagined that the rotation resistance
for particles in contact with the smooth surface of the grehmbers is smaller than the rotation
resistance of particles located within the cells of the grid

The prescribed boundary conditions at the bottom surfatkeogranular soil for the homoge-
neous distribution of the Cosserat rotation reads:

To=0 : u; =up, U :O,ﬂgg(l‘l Gb) =0,

and for the periodic fluctuation of the Cosserat rotation:

2o =0 ! u =up, us =0, wi(xy € by) =0anduss(x; € by) =0,

with b; +b, = b. In addition to the influence of the Cosserat rotation, theierftes of the initial
density of the granular body and the mean grain size on tHetamos of the shear deformation
and the shear resistance at the interface are also investiga

The material properties of the granular material used retha same as those mentioned in
Section 2.3.

3.2 Homogeneous distribution of the micro-polar boundary condition

For the case that the rotation resistance along the ineedar be neglected the couple stresses
are assumed to be zero along the interface,/ig(z> = 0) = 0. In Fig. 3.4 the deformed
granular soil strip together with the contour plot of thedroatio is shown after a horizontal
displacement of the bounding structure«afs /hy = 1.4. It can be seen that the distribution of
the displacement across the height of the layer is non#ingdse deformation localizes within

a zone close to the surface of the bounding structure. Theeligtrip indicates a higher void
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Figure 3.4:. Deformed shape of the granular body and contimirop the void ratio within a
granular layer after a horizontal displacement of the baumdtructure ofu,p =
1.4 hy (homogeneous initial void ratie, = 0.6, mean grain diametef;, = 1 mm
and zero interface couple stresses) - lightest swip e. = 0.76, darkest strip:
e~ ey = 0.6.

ratio which reflects a strong dilatancy within the localizzmhe. The granular soil outside the
shear band remains almost unaffected. Thus, the initi@mipdgeneous distributed void ratio
becomes inhomogeneous with stratified structure as a m@sitain localization. The predicted
thickness of the shear band is ab@wt d5,, which is smaller than the shear band thickness ob-
served in a granular body far from a bounding structure. #&tance, in the biaxial compression
test a shear band thicknesslofx dso up t020 x dsq is reported from the experiments by Het-
tler & Vardoulakis (1984) [59], Oda et al. (2004) [93] andrrahe numerical simulations by
Tejchman & Bauer (1996) [111], Tejchman (1997) [108], Gude&uNibel (2004) [56], Nlbel

& Huang (2004) [90].

3.2.1 Effect of the initial void ratio and the mean grain size

In order to investigate the influence of the initial void cati and the mean grain diametéy,
calculations with the following four combinations are perhed:

e ||10.610.610.55]0.72
dso ||0.511.0] 0.5 | 0.5

A comparison of the normalized horizontal displacementsszcthe height of the layer is shown

in Fig. 3.5(a). It is obvious that the thickness of the |laoadi zone is larger for a higher
initial void ratio and a larger mean grain diameter. The Caegg®tationws is extremal at the
interface, where the amount is larger for a lower initialdvoatio e, and a lower mean grain
diameterds, as shown in Fig. 3.5(b). At the beginning of shearing the radizad quantity

©m = arctan(o12/092) , Which is called mobilized friction angle, increases arattes a peak
state which is higher for an initially denser material (F&6). It can be observed that for the
same initial void ratice, = 0.6 the peak value is not influenced by the mean grain diameter.
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Figure 3.5: Influence of the initial void rati@, and the mean grain diametéy, on the dis-
tribution of (@) the normalized horizontal displacement/h, (b) of the Cosserat
rotationws.

After the peak the mobilized friction angle,, decreases and for large shearing it tends towards
a stationary value which is close to the critical frictiorgénof the granular soil. The deviation
of the stationary value from the critical friction angle mlated to the amount of the shear
deformation and may also be affected by the special verditiregpolar hypoplastic model as
discussed in Appendix B. It is worth mentioning that ando,, are stress components parallel
and perpendicular to the rough rigid bounding structurentthe equilibrium in the vertical
direction it follows thatr1, ando,, are independent on the co-ordinate

3.2.2 Effect of the vertical pressure

The influence of the vertical pressure, i.es = 100, 200 and 400 kPa, on the deformation
behavior of the granular body is shown in Figs. 3.7 - 3.8 feritfitially homogeneous specimen
with e = 0.6 anddsy = 1 mm and the horizontal displacement of the bounding stracofir
uip/ho = 1.4. In particular, the amount ab$ at the interface is higher for a lower vertical
pressure (Figs. 3.7(b)). It can also be observed that theehithe vertical pressurg, the
larger the thickness of the shear band (Figs. 3.7(a)-(lig). 3-8(a) clearly shows that a higher
vertical pressure, leads to a higher horizontal shear stregss However, under large shearing
the mobilized friction angle,,, tends to a stationary value which is independent of thecadrti
pressurep, (Figs. 3.8(b)). This stationary value is close to the caitifriction angle of the
granular soil. The reason of the deviation is related to theunt of the shear deformation and
may also be affected by the special version of the polar higstip model (Appendix B). It can
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Figure 3.6: Influence of the initial void ratig and the mean grain diameté&y, on the evolution
of the mobilized friction anglep,,, .

also be observed from Fig. 3.8(b) that a lower vertical press, leads to higher peak value of
the mobilized friction anglep,,, .

3.3 Periodic fluctuation of the micro-polar boundary condition

In this section the shear resistances due to a fluctuatidreahicro-polar boundary conditions
at the interface is investigated. Two special cases witlriagie change of the Cosserat rotation
or the couple stress within prescribed distances are ceresid The fluctuation is modeled by a
bit-by-bit locking of Cosserat rotatian; along the boundary, = 0 as follows:

- Small bit-by-bit locking:
Zero Cosserat rotation, i.e:; = 0, is prescribed within a distance dimm followed by
zero couple stress, i.e3, = 0, within a distance 020 mm (Fig. 3.9(a)).

- Large bit-by-bit locking:
Zero Cosserat rotation, i.e:; = 0, is prescribed within a distance 92.5 mm followed
by zero couple stress, i.e3; = 0, within a distance of2.5 mm (Fig. 3.9(b)).

The numerical calculations are carried out for an initialdvatio of e, = 0.6, a mean grain
diameter ofd;, = 1 mm and a constant vertical pressurepgf= 100 kPa. For a prescribed
horizontal displacement of the bounding structure.gf = 2 hy the numerical results obtained
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Figure 3.7: Influence of the vertical presspgeon the distribution of4) the normalized hori-
zontal displacement; /i, and ) the Cosserat rotatians.
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Figure 3.9: Fluctuation of the Cosserat rotatiofialong the interface: a small bit-by-bit
locking of the Cosserat rotatiorh)large bit-by-bit locking of the Cosserat rotation.

for the small bit-by-bit locking of the Cosserat rotation an@wn in Figs. 3.9(a) - 3.12(a) while
those for the large bit-by-bit locking of the Cosserat ratatre shown in Figs. 3.9(b) - 3.12(b).

In particular, Figs. 3.9(a) and 3.9(b) show the distribatad assumed-values of the Cosserat
rotationws along an interface section @ cm. The deformed shapes of the granular body as
well as the contour plots of the void ratioare shown for the small and for the large bit-by-
bit locking of the Cosserat rotation in Figs. 3.10(a) and @},0respectively. A comparison
indicates that the location and the thickness of the shaad bxongly depend on the micro-
polar boundary conditions at the interface. It can be sedfign 3.10 that the location of the
shear band is at the bottom in the middle of the granular l&yeboth cases. In particular,
compared to the large bit-by-bit locking of the Cosserattrotethe location of the shear band
is closer to the surface of the bounding structure for thellson@. The thickness of the shear
band is10 x ds, for both cases. The lighter strip shows strong dilatanchélbcalized zone
while the material outside of the shear band remains almusdfected. For the corresponding
stress state a critical void ratio ef = 0.76 can be calculated via Eq. 2.41. Figs. 3.11(a) and
3.11(b) show the distribution of the Cosserat rotation actios height of specimen for the small
and the large bit-by-bit locking of the Cosserat rotatiospestively. Figs. 3.12(a) and 3.12(b)
show that a fluctuation of the rotation resistance leads taciuation of the mobilized friction
angley,,. However, under large shearing the average value of thelixedbiriction anglep,, is
independent of the assumed fluctuation of the micro-polantary conditions and it is almost
equal to the critical friction angle of the granular soil fdane shearing. The small deviation is
again related to the amount of the applied shear deformatidrmay also be influenced by the
specific polar hypoplastic version (Appendix B).
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Figure 3.10: Deformed shape of the granular body and comtlmairof a granular layer after
a horizontal displacement &éf, 5 = 2k, with (a) Small bit-by-bit locking of the
Cosserat rotationpf Large bit-by-bit locking of the Cosserat rotation (homoge-
neous initial void ratiee, = 0.6, mean grain diametek, = 1mm) - lightest strip:
e~e.=0.76.

3.4 Effect of a stratified soil

While in the foregoing investigations the granular specima&h a homogeneous distributed
initial void ratio is investigated the influence of a thin éaywith a slightly different initial void
ratio is considered in this section. In particular, an aliyi rather high void ratio o, = 0.62
within the layer0.375 < z, < 0.5 cm is assumed. Along the bottom surface of the granular
soil a small bit-by-bit locking of the Cosserat rotation isgeribed.

The resulting displacement field and Cosserat rotation adhas specimen’s height are com-
pared to that obtained for a homogeneous initial void ratie,o= 0.6 afteru;g = 2h, as
shown in Fig. 3.13. In particular, the location of shear lzedion shifts closer to the layer with
the initially higher void ratio, as shown by the dashed cumfeig. 3.13(a). The same tendency
can be observed for the distribution of the Cosserat rotgian 3.13(b)).
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Figure 3.11: Distribution of the Cosserat rotatiofi across the height of the granular layer
with: (a) small and ) large bit-by-bit locking of the Cosserat rotation along the
interface after a horizontal displacement of the boundtngctureu, z = 2h,.
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Figure 3.12: Fluctuation of the mobilized friction anglg, (solid curve) and its average value
(dotted line) for a granular layer witha) small and ) large bit-by-bit locking
of the Cosserat rotation along the interface after a horaafisplacement of the
bounding structure, g = 2h,.
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Figure 3.13: Influence of the distribution of the initial daiatio e, for a mean grain diameter
dso = 1 mm, and a fluctuation of the micro-polar interface boundanyditions:
(a) normalized horizontal displacement/ h,
(b) Cosserat rotatiows across the height of the layer.

3.5 Comparison of the numerical results

From the numerical results obtained for the particular grbed micro-polar boundary condi-
tions along the interface:

e zero couple stress (Case 1),

o small bit-by-bit locking of Cosserat rotation (Case 2),

¢ large bit-by-bit locking of Cosserat rotation (Case 3),

the following main conclusions can be drawn:

The location of the shear band is:

e for Case 1: close to the interface,
e for Case 2: farther from the interface,

e for Case 3: close to the middle of the granular layer.
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The predicted thickness of the shear band is:

e for Case 17 x dxo,
e for Case 2:10 x ds,

e for Case 3:10 x dxp.

Furthermore, the shear band is located closer to a layerskghtly higher initial void ratio
when a stratified soil is considered.
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4 MECHANICAL BEHAVIOR OF A SOILBAG UNDER VERTICAL
COMPRESSION

In this chapter, the mechanical behavior of a single soilbatger vertical compression is inves-
tigated using analytical and numerical approaches. Foarlaéytical approach, several simpli-
fications are assumed. In particular, it is assumed that thenbeginning of compression the
stress ratio in the soil material is constant and the volufimée soil does not change during
deformation. Depending on the assumed shape of the seitt@stress in the granular material
inside the soilbag is assumed to be either piecewise orgntiomogeneous distributed. For
the soilbag structure a plane strain condition and a fidéiss interface behavior between the
soil and the bag are considered. Thereby, the tensile sifébs bag is uniformly distributed
along the circumference of the soilbag. In addition to thalyical model by Matsuoka & Liu
(2006) (in the following called M&L) where a rectangular 8en is assumed, also a soilbag
model with lateral semicircular boundaries is investigaten contrast to the model by M&L
the local equilibrium in the soilbag is generally fulfilledtivthe proposed soilbag model.

In order to validate the assumptions made for the analyticadel the corresponding numer-
ical investigations using the finite element method are atswlucted. Particular attention is
paid on the shear localization depending on the verticadlatement, the assumed interface
properties and the initially homogeneous or heterogendaisgbution of the void ratio. As
already discussed in Chapter 3, the interface behavior fatdit by the slide and the rotation
resistances of soil particles in contact with the wrappiag.brhe following interface properties
are investigated: a frictionless interface (no slide andtron resistance) and a fully interlocked
interface (translation and rotation of the soil particletha interface coincides with the motion
of the bag).

4.1 Analytical approach

4.1.1 Soilbag model by Matsuoka - Liu

The mechanical behavior of a single soilbag under monotegritcal compression (Fig. 4.1)
is investigated based on a simplified analytical model pseddy M&L (2006). In this model
the following assumptions are made:

e The soilbag with a rectangular cross section, i.e. with tidttwB and the heightd,

a7
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Top platen Us

H @ — I%] +— oy Soilbag
()
L T > T | v,
Bottom platen
| B J
| 1

Figure 4.1: Section of a vertically compressed single sgjlb

is completely filled with a cohesionless granular matenmal gertically compressed be-
tween parallel rigid platens. In the M&L model, a constantiantal pressure is pre-

scribed at the lateral plane boundaries of the soilbag wisictot taken into account in

the present study. In this context, it can be noted that atanh#ateral pressure does
not guarantee that the lateral boundaries remain planeglaompression. Thus, an al-
ternative shape of the soilbag section with lateral secutar boundaries is discussed in
Subsection 4.1.2.

The weight of the granular material inside the bag is negtéctThus, for the initially
uncompressed soilbag a stress free state is assumed forththrapping bag and the
granular materials.

Plane strain condition (with the unity deptperpendicular to the plane) is considered.

The surfaces of the top and bottom platens are frictionledsfze normal pressugg in
the contact zone is homogeneously distributed over theacbateab x .

The material behavior of the wrapping bag is linear elask&zlly plastic, where the used
elastic modulug” and the limit tensile stress;,,;; is defined for a tensile test under plane
strain condition. The change of the thickness of the mengodithe bag is neglected.

The interface between the granular material and the bagcitofiless. As relative dis-
placements between the granular material and the bag arestoctted, the tensile stress
in the membrane is uniformly mobilized. Although a rectdagsection is considered,
the edges are smoothed out as shown in Fig. 4.1.

The vertical stress, and horizontal stress, of the granular material is homogeneously
distributed. Independent of the amount of the compressierstress ratio, /o), is as-
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sumed to be constant and equal to the limit stress ratio ajrdveular material. Thus, the
limit stress ratio can be related to the critical frictiorgénof the granular material. In
this context, it is worth noting that during vertical comgs®n the soilbag system is not
in the so-called critical state. Although the volume chaisgessumed to be zero and the
limit stress ratio is reached, the magnitude of the stresgpoments in the soil can still
increase.

In the following, it will also be assumed that the soilbag hbmost a rectangular section with
initial dimension of By x Hj) so that the initial quantities can be approximated as

initial perimeter : Lo = 2(By + Hy),

(4.2)
initial volume : Vy = By Hy L.
For a vertical compressiom, the initial heightH, of the soilbag reduces to:
H= HO — U2. (42)
As the volume of the soilbag is assumed to be constant duangpression, thus
V=BHI|=V,=ByHyl. (4.3)

With respect to Eq. 4.2 and Eqg. 4.3 one obtains the witittepending on the initial dimensions
and the vertical displacement as

HyB
B:%i;. (4.4)
Then the current perimetér= 2(B + H) can be represented as a function:gfi.e.
L:2(Hm—m+j§fﬁg, (4.5)
and the change of perimet& = L — L, is defined as
AL:QUQ(BO_HO+U2)_ (4.6)
Hy — uy
The normalized quantity\ L/ Ly, reads:
AL _ g (Bo — Ho + us) 4.7)

L_() (HO —Ug) (B[)‘I—H())7
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Figure 4.2: Relation between the normalized change of péeinté the soilbag and the nor-
malized prescribed vertical displacement fay & higher range ofi,, (b) a lower
range ofus.

with the following extreme values:

AL

— — o0 foruy — Hjp
0

AL L . _

7= 0 for the initial state withu, = 0 and foru, = Hy — By > 0.
0

The latter only has physical meaning for vertically oriehseilbags with the initial dimension
Hy > By. In this case the change of perimeter is negative at the begjrof vertical compres-
sion, i.e. AL < 0 for uy < 5 S0 that no tensile stress is activated in the wrapping nazhten
the following only soilbags with the initial dimensids, > H, are considered. As an example
for By/Hy, = 4, the nonlinear increase of the normalized quantity/ L, with the normal-
ized prescribed vertical displacement/ H, is shown in Fig. 4.2. From Fig. 4.2(b) it can be
observed thaf\ ./ L, is also nonlinear for the small compression range.

With the assumption that the influence of the transverseracinbn for plane strain condition
is taken into account with the value of the elastic modulusaith respect to the definition of
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engineering strain, the tensile stregg, and the consequently tensile forfeof the bag read

AL AL
v = E== T = E=tl, 4.8
O g LO LO ( )
whereFE andt are elastic modulus and the thickness of the bag, resphctitzshould be noted
that the elastic modulus in Eq. 4.8 already takes into account the influence of thestranrse
contraction for plane strain condition. With respect to dedinition of engineering strain and
the real elasticity modulug,...;, the relation betweel and F,..,; can be obtained as:

Ereal

E—
1—0?’

(4.9)

wherev denotes the Poisson’s ratio. When the limit str@%“ in the wrapping material is
reached the corresponding quantitiésl /L) fio,, @nd1};,,;; are:

ALg Uéin;it Limi
_ a szz — limit tl. 410
( Lo ) fow B timit = Ttag (+10)

Substituting Eq.4.10 into Eq. 4.7,
U2 By U2
= — -1 + | =
<H0>flow (HO (H(])flow)

(AL) ofimit

Lo ) jiow B B

” () -G
HO HO flow

leads to a quadratic equation for the normalized verticgpldcementus/ Hy) fi0- EQ. 4.11
has the following real and only positive solution:

2 — 1 1_%_ 1+& ﬂ
H, Flow 2 E

(4.11)

Hy Hy
(4.12)
1 BO 2 BO 2 O'Il)imit O.ll)imit
Z 11— = 14+ = 24 %99 ) %49
a|y(-7) (7)) )
Then, the corresponding dimension of the soilbag reads:
Hpiow = Hy— U2 fiow,
(4.13)

HyBy

B _.
Jlow HO — U2 flow
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Figure 4.3: Free-body diagram d)(the left part of the soilbag 'cut’ at cross sectibii, (b)
the upper part of soilbag 'cut’ at cross secti; B is the current width andf is
the current height of the soilbag, is the applied vertical pressurg;is the tensile
force of the bagy, ando, are the horizontal and vertical stresses of the granular
material, respectively.

In order to analyze the stress state developed in the soilbadree-body diagrams of a soilbag
with the unity depth perpendicular to the plane in Fig. 4.3 are considered. Végpect to Fig.
4.3(a) the equilibrium for the horizontal forces requires:

on H1—2T = 0. (4.14)

With respect to Fig. 4.3(b) the equilibrium for the vertitalces reads:

oy Bl—p,Bl—2T =0. (4.15)
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From Eq. 4.14 and Eq. 4.15 the horizontal stregssand the vertical stress, of granular
material inside the soilbag can be represented as

2T 2T

== = = 4.1
Oh Hla v pv+Bl ( 6)

With the tensile force of the bdfj = 04, ¢! EQ. 4.16 can be re-written:

2t 2t
oy = Ea'bag, Oy = Py + EO'bag. (417)

As long as the wrapping material is in an elastic state and mespect of Eq. 4.7 and Eq. 4.8
one obtains for;, ando,:

ug (By — Ho + u2)
(Bo + Ho) (Ho — uz)”’

op =26t (4.18)

U2 (B() — H(] -+ UQ)

o+ 2Bt .
v = Pt SR T (Bo + Hy)

(4.19)

From Eqg. 4.19 it can be concluded that for the analytical rhbgeM&L (2006) the local
equilibrium close to the top and bottom is not fulfilled besathe vertical stress, in the soil
material is not equal to the vertical compression presgure

In the relations 4.18 and 4.19 the only unknown is the vdrpoassurep, acting on the contact
surface. Thus, an additional constitutive relation is meelad@hich has to be related to the mate-
rial property of the filling material. To this end, it is comient to consider in the following the

stress ratidy, i.e.
Oy

K="
Oh

It can be noted that for an incompressible (the Poissonis rat— 0.5) and linear elastic
material the stress rati is independent of the elastic modulus:

o,  vep+ (1 —v)e,
on  ve,+ (1 —v)g,

Moreover, with ' = 1 the stress ratio of an isotropic stress state is represetegeneral,
however, the stress rati@ is not constant and it strongly depends on the loading lyidier
cause the material behavior of granular material is nogalirand inelastic. Only for special
boundary conditions, simplified material properties anecsgd states, an analytical relation for
K can be derived. For example, under monotonic oedometrigpoession, i.e. one dimen-
sional compression under zero lateral strain, the stregsisaalmost constant and it can be
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Figure 4.4: Different stress states in the Mohr-Coulomb @diagfor triaxial compression under
an axisymmetric lateral stresg < o,,.

approximated using Jaky’s formuld;/ K’ = 1 — sin ¢, wherey is the friction angle of the
cohesionless granular material. s ¢ < 1, the horizontal stress, is lower than the vertical
stressy,, under oedometric compression. Another element test igidnaal compression of a
granular material under a lateral constant axisymmetrgsst In the Mohr diagram an increase
of the vertical stress, can be demonstrated with an increase of the diameter of the dicle
from circle A to B to C as illustrated in Fig. 4.4. By using thagent to the circle passing the
origin of the diagram the stress ratio can be expressed agtidn of the so-called mobilized
friction angleyp,, as:

L +sing,
1 —siny,’

K (4.20)

wheresin ¢, is the ratio between the radius of the Mohr circle, which isrfed by the major
stresss,, and minor stress;,, and the abscissa of the center of the corresponding Motiecir
ie.

(0p—on)/2 K—1

(o, +o4n)/2 K+1

sin @,, =

The increase of the mobilized friction angle, is limited by the so-called failure state (Mohr
circle C in Fig. 4.4). In the case that the failure state coi@s with the critical stress state the
corresponding mobilized friction angle is called critiéattion angley.. For such states the
stress ratids can be expressed as a functionmof

L +sine,

K = - :
1 —sin ¢,

(4.21)
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It is worth mentioning that in the homogeneous triaxial coesgion test there is no interme-
diate principle stress, the vertical stress and horizattaks are the major principle stress and
the minor principle stress, respectively. For more gengraks states, when the intermediate
principle stress is not the same as the minor principle stitesre exists three different Mohr
circles. In the present model the assumption is made thatithes ratio is related to the critical
friction angle as defined in Eq. 4.21. According to Eq. 4.2Wdr values of" are related to
lower critical friction anglesy. as demonstrated in the following table

K 1 2 3 4 )
@, (degree) 0.00 | 19.50 | 30.00 | 36.87 | 41.81

With the definition of the stress rati® = o, /o), the following relation for the vertical pressure
p, can be deduced from the representation of the vertical anddmbal stresses in Eq. 4.16:

2T | B

As an alternative, Eq. 4.22 can also be represented as adiniocthe vertical compressian:

UQ(BO_H0+U2>|: By Hy (1+Siﬂ¢c)_1}

L =2Et :
P By Ho (Bo+ Ho) [(Ho — up)* \1 —sing,

(4.23)

With respect of Eq. 4.22 the resulting vertical folcge= p, B [ acting on the soilbag reads:

EﬁszzzzT{ng4} (4.24)

For different stress ratio&” the ratioF, /7" linearly increases with the increase of the size ratio
B/ H of the soilbag (Fig. 4.5(a)). It can be observed that for tammtd<” the ratioF, /7" is higher

for the rectangular shape of the soilbag, .H > 1, than for the square shape of the soilbag,
i.e. B/H = 1.

In addition, Fig. 4.5(b) shows that for constant size r&tja the ratioF’, /T linearly increases
with the increase of the stress rafia

When the limit stress in the wrapping bag is reached, the sporeding vertical pressufg ..
can be calculated as

limi
Do g1 o 2o-l)zargymt |:Bflow
v flow —

K—1|, 4.25
Bflow :| ( )

and the corresponding vertical compression fdrgg,,, reads

F, flow = Pu flow Bflow L. (426)
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Figure 4.5: Evolution of the normalized compression foF¢¢7" depending on the:aj stress
ratio coefficient/<, (b) size ratioB/H.

Herein, By, andH,,, are the corresponding dimension of the soilbag accordigtct.13.
For continuing loading:

20?’;}“15 B
5, = —tas U2 gl 4.27
po= Tt | -] (@.27)
and
F,=p, Bl (4.28)

From Eq. 4.27 and Eq. 4.28, it follows that for continuing @ession the resulting reaction
force can increase.

For an initial perimeter of., = 100 cm, a constant stress ratio &f = 3, a limit stress of the
wrapping material of;é@“;it = 70 MPa, a thickness of the wrapping materialtof 0.3 mm,
an elastic modulus of the wrapping materiallot= 533 MPa, and for the initial size ratios of
By/Hy = 1, 3, 4 and5, the following specific values can be obtained:
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% By | Ho | (42) fiow | Hiow | Bfiow | Pv fiow | Fo fiow
cm | cm cm cm | cm | kPa | kN

5 [41.7| 8.3 1.3 7 49.6 | 1714 | 849

4 40 10 1.7 8.3 | 48.3 | 1434 692

3 | 375|125 2.4 10.1 | 46.5 | 1159 538

1 20 | 25 6.4 18.7 38 565 214

Figs. 4.6(a) - 4.6(d) show the evolution of the normalizedrade of perimeterAL/Lg, the
normalized tensile stress of the bag,,/ aéfl’;”t, the normalized vertical pressugg,/p, fi0w, and
the normalized vertical compressive forég/ F, s, for different initial size ratios3,/ Hy. It
can be seen that for the same normalized vertical displatemgéH, the increases ah L/ Ly,
abag/agg”;“, Pu/ Do fiow @NAF, [ F), 110, @re higher for a higher initial size ratig, / Hy. While the
increase ofA L with u, is unlimited (Fig. 4.6(a)) the increase of the stregg in the wrapping
material is limited byo}.»** (Fig. 4.6(b)). In particularAL/L, can still increase even though
the limit tensile force in the wrapping material is reachedgshown in Fig. 4.7(a). From Fig.
4.6(b) it can be observed that the limit tensile stress intregping material is reached earlier
for a higher initial size ratids,/ Hy. A continuous increase of the vertical displacemerieads
to a further increase of the vertical presspreand, consequently, also to a further increase of
the resulting vertical forcé’, (Figs. 4.6(c) - 4.6(d)). The increase @f and F;,, however, is
much smaller than in the linear elastic range of the soilbatenal. This behavior was also
observed in experiments by Lohani et al. (2006) [80].

From relations 4.22 and 4.24 it follows that fey — H, or equivalent forH — 0 the vertical
pressurep, and the resulting vertical forcg, tend to infinite. However, for real soilbag mate-
rials p, and F;, are restricted either by the maximum flow strain of the wragpnaterial or the
destruction of the wrapping material caused by the penetraf grains with sharp edges, at
which the soilbag breaks.

4.1.2 Soilbag model with lateral semicircular boundaries

In this section, the soilbag with lateral semicircular bdares is considered as sketched out
in Fig. 4.8. The same assumption as mentioned in the pregectson are considered except
for the shape of the lateral soilbag boundaries and theilwisisn of the stress ratio of the
granular material. In particular, in the middle part of tledlzag a stress ratio ok = 3, and in

the semicircle area a stress ratiofof= 1 is assumed. The latter is required for semicircular
boundaries and it means thaf, = o; in these areas (Fig. 4.9(b)). For the present model the
stressoy,,, in the wrapping material, the stress componerjtaindo;, in the soil material and
the vertical pressurg!, can be derived in a similar manner as shown in the forgoiniasedn
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Figure 4.6: Evolution of&) the normalized change of perimetad./L,, (b) the normalized

tensile stress of the bag,, /ag’f;g“, (c) the normalized vertical pressupe/p., fiow,
(d) the normalized vertical forc&, / F,, s, for different ratiosB,/Hy = 1, 3, 4, 5,
K =3, Ly, =100cm,t = 0.3 mm, ¢ =70 MPa, E = 533 MPa.

bag
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Figure 4.7: Evolution ofg) the normalized tensile forcg/T;;,.;; of the bag, 6) the normalized
vertical pressure, /p, i Of the soilbag with regards to the normalized change of
perimeterA L/ L, of the soilbag for,/Hy = 0.2 and B,/ Hy = 4.

particular, the following relations can be obtained:

initial perimeter : L{ = 2B; + mH,,
H0>2 (4.29)
L.

initial volume @ V) =By Hyl + (7

For the vertical displacement, the corresponding quantities read:

H = Hy— us, (4.30)

B* = 4BSH°4J<F;:?Z§ — T (4.31)

7 ABGH, — Q;T(I;T;)Ouizj)wlig + ng’ (4.32)
AL =L~ I} = “22(?]32 fiig), (4.33)
AL* _ ug(mug + 4B) (4.34)
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Bottom platen
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Figure 4.8: Section of a vertically compressed soilbag s&imicircular boundaries and differ-
ent stress ratiof.

The equilibrium of the horizontal forces for the left parttbé soilbag (Fig. 4.9(a)) requires:

o, Hl — 20p,,t1 = 0, (4.35)

and for the upper part of the soilbag (Fig. 4.9(b)) the elyuim of the vertical forces reads:

* * * * * H *
p, Bl — o, B l—20v25l+20ba9tl20. (4.36)

By substituting Eq. 4.35 into Eq. 4.36 and with respectfp= o7, it follows
o, = D (4.37)

A comparison of Eq. 4.19 with Eq. 4.37 shows that in contraghé model by M&L (2006)
also the local equilibrium in the vertical direction is flld for the present model, i.e;: = p:.

Foroy,, = E(AL*/Lg), EQ. 4.35 can be written as:

2t K U2(7TU2 +4B§)
(HO — UQ) 2<H0 — UQ)(QBS -+ 7THO)

*

Jh -

(4.38)
2t Euy(muy + 4Bg)
(HO — U/Q)Q(QBS + 7THO) '
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Figure 4.9: Free-body diagram @)(the left part of the soilbag with lateral semicircular bdun
aries 'cut’ at cross sectiolt1, (b) the upper part of soilbag with lateral semicircular
boundaries 'cut’ at cross secti@r.

With respect to the stress ratlo = o /o, the vertical pressurg’ reads:
p, = Koy
(4.39)

[ 1+sing, Etug(mug + 4B5)
— \1—sinp. ) (Hy—u2)2(2Bg + 7Hy)'

In order to compare the present model with the model propbged&L (2006) the following
three different initial states are assumed:

A: the initial volumeVj is the same as the initial volumg for the M&L model, i.e. V" =
Vo = BoHyl,

B : the initial perimeterL; is the same as the initial perimetég for the M&L model, i.e.
La - LO — Q(BO + Ho),
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Figure 4.10: Evolution ofg) the normalized tensile stresgag/a{,fjg”“ of the bag, ) the nor-
malized vertical pressune, /p, s, Of the soilbag for different analytical models,
BO/HO == 4, t = 03 mm,O'limit = 70 MPa,E == 533 |\/|Pa

bag

C : the initial total width, i.e. B; + H,), is the same as the initial widtB, for the M&L
model, i.e.Bj = By — H,.

Figs. 4.10(a) - Fig. 4.10(b) show the evolutions of the ndized stresss,,, /0" of the
wrapping material and the normalized vertical presguye, f..., for different analytical mod-
els. From both figures, it can be seen that for the same viecboapression:; the stress in the
soilbag and also the vertical pressure is slightly highemfodel B than for model A and C.
These small differences between models A, B and C are refatiéa differences in the mag-
nitude of the perimetef*. The values offbag/a};";” andp, /py 10w Obtained from the models
A, B and C are significant higher than that from the M&L modéhisican be explained by the

different assumptions made for the distribution of thesstratio .

4.2 Numerical simulations

For the following numerical simulations with the finite elemt method, it is assumed that
the soilbag is completely filled with a cohesionless granmlaterial and compressed between
parallel stiff and frictionless platens which are widentltlae final deformed width of the soilbag

(Fig. 4.11). The vertical compression is applied on the tbthe soilbag by the prescribed

vertical displacemeni,. For the soilbag structure, a plane strain condition is@mssl The
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Top platen

Bottom platen

Figure 4.11: Master surfaces and slave surfaces for sironlef the interface.

weight of the soilbag is neglected. Particular attentiopasl to the influence of the interface
behavior between the granular soil and the bag on the ewalofistress and strain.

The mechanical behavior of the granular material is desdnkith the micro-polar hypoplastic
model outlined in Section 2.3. A four nodes quadrilateratpsirametric element with bilinear
shape function and rotational degree of freedom is useddoepstrain conditions as proposed
by Huang (2000) [60]. The wrapping bag is discretized witiedir truss elements and for the
mechanical behavior the same elastic-ideally plastic n@t@odel is used as for the analytical
investigations in Section 4.1. The incapability of the bagesist compression is taken into ac-
count. In contrast to the analytical approach, an updatesk@ection area of the truss elements
is taken into account by assuming an incompressible méteria

The contact between the granular material and the bag ancbtitact between the bag and
the top and bottom platens are described with the use of theepd of master surface and

slave surface, which allows to model relative displacemastwell as a separation or closing
of the contact between two bodies. In particular, for therfisice between the bag and the top
and bottom platens, the master surface is attached to ffer giements of the top and the

bottom platens while the slave surface is attached to thmezies of the bag (Fig. 4.11). The

same frictionless interface behavior, i.e. the frictiorfficient is zero, is assumed as for the
analytical investigation.

For the interface between the bag and the granular matdre@master surface is attached to
the elements of the wrapping bag while the slave surfacetasletd to the elements of the

granular soil (Fig. 4.11). The following two different imtace behaviors between the bag and
the granular material are investigated:

1. Frictionless interface: the outer nodes of the boundinigefisoil elements and the bag
nodes are allowed to have relative displacements and gogati These properties are
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Figure 4.12: Undeformed shape of the soilbag.

achieved with a friction coefficient of zero and zero couplesses prescribed at the
interface.

2. Interlocked interface: the outer nodes of the boundinigefsoil elements are connected
with the nodes of the bag elements, thus, no relative dispteats and Cosserat rotations
between soil nodes and bag nodes take place.

In the following, a soilbag with a dimension &f, = 40 cm andH, = 10 cm is considered. In
contrast to the analytical approach, the perimeter of thibasp can be computed without any
restriction of the shape of the deformed soilbag. In paldicthe current perimeter is computed
from the summation of the lengths of the individual bag eletseFor the undeformed shape
(Fig. 4.12), the initial perimeter i&, = 96.6 cm. The initial size of an element 52 cm x
0.2 cm with the exception of elements in the area close to theeclipoundaries. For the filling
material, the constitutive constants for quartz sand adioreed in Section 2.3 is used with an
initial void ratio of e, = 0.60. The following elastic properties are used for the thin vpiag
bag with a thickness af= 0.3 mm (Liu, 2006 [79]):

elastic modulus E = 533 MPa,
tensile limit stress o} = 70 MPa.

As the vertical pressure at the top and bottom surface of theutpr soil is not uniformly
distributed and the volume change is not homogeneous, ie@n values are taken for the
representation of the numerical results shown in the fotigvgections.
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Figure 4.13: Frictionless interface: distribution of té&astresss,,, in the wrapping material
for different vertical displacements.

4.2.1 Frictionless interface behavior

For the frictionless interface the tensile stress in theppmag bag uniformly increases along
the circumference of the soilbag with the increase of théicadrdisplacement:,, where the
limit stress is reached far, = 1.9 cm (Fig. 4.13). Figs. 4.14(a) - 4.14(b) show the evolution
of the normalized perimeter of the bdy./L, and the tensile stress in the wrapping lbag,
respectively. It can be observed thiaL /L, as well asr,,, nonlinearly increases with,. The
evolution of the mean value of the volume strain is shown o F.15(a). After an overall
compaction small dilatancy can be observed-at= 1.0 cm. However, foru,; = 1.9 cm the
soilbag generally experiences compression where< 0.01 x V4. The local volume change,
however, significantly varies as discussed in more details lon. A similar small volume
change was also reported by Matsuako & Liu (2006) [82] foriheonfined compression test
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Figure 4.14: Frictionless interface: evolution of th@ (ormalized change of perimeter
AL/ Ly, (b) tensile stress,,, in the wrapping material.

of soilbags with different granular materials. Fig. 4.15¢hows the nonlinear increase of the
vertical pressure, with an increase of the prescribed vertical displacement

In the following the distribution of the state variables bétgranular soil across sections 0-0,
1-1 and 4-4 are shown in Figs. 4.16 - 4.19 for the vertical ldsgments ofu, = 0.2, 0.5
and1.9 cm. In particular, Fig. 4.16(a) shows the distribution o tfoid ratioe at section 0-0
(in the middle of the soilbag), section 1-1 and section 4t4Ha side of the soilbag). For the
small prescribed vertical displacementsugf= 0.2 cm andu, = 0.5 cm the distribution of
the void ratioe are almost the same across sections 0-0 and 1-1 while a streagation can
be observed for section 4-4. The maximum void ratio is okt the middle of section 4-4.
When the bag material reaches the limit stress,at 1.9 cm a higher value of the void ratio
is also observed in the middle of section 0-0 and at the togedtian 1-1. The strong local
variation ofe indicates strain localization in the zones with a highewith an increase of the
prescribed vertical displacement the location of the higjalue ofe shifts from the middle to
the bottom in the middle of section 4-4. Thus, the locatiosltgar strain localization changes
with continuous compression (Fig. 4.16(c)).

Fig. 4.16(b) shows the distribution of the Cosserat rotatigrAt the beginning of compression,
i.e. foruy; = 0.2 cm anduy, = 0.5 cm, w$ is very small in all sections. For the vertical
displacement:; = 1.9 cm, wg is pronounced at the middle of section 0-0, at the top part of
section 1-1 and at the bottom in the middle of section 4-4. [dbation of the extremal values
of w§ is similar as that for the extremal values of the void ratig(#.16(a)) and the deviatoric
strain rate (Fig. 4.16(c)).



4.2 Numerical simulations 67

0
-1600
0.2
1200
0.4
05 -800
08 400 |-
1.0 ol1.1 . [ ' [ ' | | [
04 -08 -12 -16 -20
U9 [cm]
@ (b)

Figure 4.15: Frictionless interface: evolution aj {he average value of the normalized volume
changeAV/V;, (b) the average value of the vertical stregs

Fig. 4.17 shows the distribution @f;; and i3, in different sections. Fot, = 1.9 cm the
micro-curvature rates;3; andfs,, are pronounced at the middle part of section 0-0, at the top
part of section 1-1 and at the bottom of the middle part ofisact-4.

The distribution of the normal stress components and tharsdteess and couple stress com-
ponents are shown in Fig. 4.18 and Fig. 4.19, respectively. skall prescribed vertical
displacements, the normal stress, the shear stress anduple stress components are almost
constant across the sections of the soilbag. o 1.9 cm the values of5,, 015 andos,
varies little stronger. A nonlinear distributions @f; andu3; can be detected in Figs. 4.19(c) -
4.19(d).

For different states, the deformed mesh is shown in Fig. .4&though there is no friction
resistance in the contact zones between the soilbag andatesp the deformation is not ho-
mogeneous. In particular, the lateral sides of the soilleamgpime more curved with an advanced
vertical displacement. Furthermore, fey = 1.9 cm a zig-zag pattern of zones with intense
localization of the deformation is clearly seen. Figs. 4.2123 show the contour plots of the
void ratio e, the volumetric strain raté,; and the norm of the deviatoric strain rafe’|| for
different vertical compression. It can be seen that thershaad becomes more pronounced
with an increase ofi,. In particular, at the beginning of the compression, i.a. #p = 0.2
cm, the granular material in the middle part of the soilbageglences compression, i.e. the
volumetric strain ratéy; is negative (Fig. 4.22), and it is almost uniformly distriéd within
the soilbag (Fig. 4.21). At the left and right sides of thdlsag dilatancy, i.e. the volumetric
strain rate is positive, already develops for small vettitisplacements. In the filling material
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Figure 4.16: Frictionless interface: distribution of tlag ¥oid ratioe, (b) Cosserat rotatiows
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curve),us = 0.5 cm (long dashed curve) and = 1.9 cm (short dashed curve)
across sections 0-0, 1-1 and 4-4.
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the localizations of the volumetric strain ratg (Fig. 4.22) and the deviatoric strain rgte” ||
(Fig. 4.23) are clearly seen from the beginning of loadingpwigver, the shear band is not
clearly observed in the contour plot of the void rati@~ig. 4.21). Foru, = 0.5 cm two zig-zag
patterns of shear bands develop (Figs. 4.22 - 4.23). Withéucompression, only one zig-zag
pattern becomes dominant (Fig. 4.20).

From the distributions ofy;. (Fig. 4.22) and|&“|| (Fig. 4.23), the inclination angles of the shear
bands can be estimated. In particular, the line which passeagh the middle points of the
shear band at the top and the bottom surfaces is taken agenede It shows that far, = 0.2

cm the inclination angle to the horizontal surface is atiddt- 52°. It increases for, = 0.5
cm up to57° - 59°. Then, with further increase of the vertical displacembatinclination angle
decreases and it beconie® - 53° for uy, = 1.9 cm.

Due to the zigzag patterns it is not reliable to measure tlokriess of the shear band from
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Figure 4.20: Frictionless interface: deformed shape ofsthitbag for different vertical dis-
placementsi,.

the section profile of the distributions of the void ratiog fosserat rotation, the strain rates or
the micro-curvature rates. Therefore, it is convenient &asure the shear band thickness for
instance from the contour plots of the void ratio or the strates. From Fig. 4.21 one can
obtained at thickness of aboll.5 x ds to 16 x dsg. It should be mentioned that the thickness
of localized zones is also influenced by the initial densitgt the mean pressure (e.g. Tatsuoka
et al., 1986 [104]). The experimental results by Mokni (19828d Hammad (1991) showed
that the thickness of the localized zone under shearingedses as the confining pressure and
the initial density increase (Desrues & Viggiani 2004 [36])he mean pressure increases in
the filling material with an increase of the vertical disgaentu,. At the beginning of the
compression the mean pressure at the left and the right efdée soilbag, e.g. in EL.C, is
lower than those at the middle part, e.g. in EL.A and EL.B (Bi@4(a)). At the left and right
sides of the soilbag, e.g. in EL.C in Fig. 4.24(b), dilatanppears almost from the beginning
of loading. It can be observed that strain localizationtstirom the area at the sides of the
soilbag (Fig. 4.21, Fig. 4.22 and Fig. 4.23).

Fig. 4.24(b) shows the evolution of the void ratio at EL.A,.BLEL.C, EL.D and EL.E with
the vertical displacement,. It can be seen that at the beginning of loading only compress
occurs. It is followed by dilatancy shown at EL.B, EL.C and Elwhile at EL.A and EL.D
only compression occurs. However, for larger vertical ldispments dilatancy also occurs at
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Figure 4.22: Frictionless interface: contour plot of théuwoetric strain rate, for different
vertical displacements,.



4.2 Numerical simulations 75

. SoDV21
Uy = 02 cm (Ave. Crit.: 75%)

=
oo
b
i

oDooooooo
il

uy = 2.0 cm

Figure 4.23: Frictionless interface: contour plot of themaf the deviatoric strain ratg?||
for different vertical displacements.



76 4 Mechanical behavior of a soilbag under vertical compogssi

1200 — 5 5 5 0.70

065 |

800

0.60

400

0.55

0 0.50
0 -0.5 -1.0 -1.5 -2.0
Uo [cm]
@ (b)
Figure 4.24: Frictionless interface: evolution of tl&@ (hean pressurge = —oy/3 at EL.A,

EL.B and EL.C. b) void ratioe at EL.A, EL.B, EL.C, EL.D and EL.E.

EL.B. The elements EL.B, EL.C and EL.E are inside a localizetzaehile the elements EL.A
and EL.D are located outside the localized zone (Fig. 4.20).

4.2.2 Comparison with the analytical results

Figs. 4.25(a) - 4.25(b) and Figs. 4.26(a) - 4.26(b) show timeparison between the results from
the finite element calculation and from the analytical mdtfow the evolutions of the quantities
AL/ Ly, T/Timit, p» aNd K, respectively.

In particular, the nonlinear increase&f./ L, andT'/T};,,;; with an increase of the normalized
prescribed vertical displacement,/ Hy, are shown in Figs. 4.25(a) - 4.25(b), where the in-
crease ofAL/L, andT /T, obtained from the analytical model is higher than that fa th
finite element calculation. These can be explained by th&lrdompaction of the granular
soil predicted with the hypoplastic material model, whileamstant volume is assumed in the
analytical model. The tensile stress of the bag increases tige limit value of 7’/ T} = 1
which is reached for a smaller vertical compression withahalytical method than with the
finite element method (Fig. 4.25(b)). The correspondingicarpressure predicted with the
numerical model shows a good agreement with the analyticalein(Fig. 4.26(a)). When the
limit tensile stress in the wrapping material is reachednii®@an value of the vertical pressure
p, can further increase with an increaseugf

From Fig. 4.26(b) it can be seen that in contrast to the aicalynodel, the predicted stress ratio
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Figure 4.25: Comparison between the analytical and the #tet@ent model for the evolution
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K obtained from the hypoplastic material model is not cortstaring the compression and it is
not homogeneously distributed. For example the stress kain the middle of the soilbag, e.g.
in elements EL.A, EL.B, EL.C, is higher than that close to thert boundaries, e.g. EL.G.
In EL.A, EL.B and EL.C the stress ratio increases from thaalty isotropic condition up to
the peak value which is higher in EL.C than in EL.A and EL.B.ekfthe peak, the stress ratio
decreases and it tends towards a stationary value ef 3. The asymptotic value, however, is
not clearly detected. Close to the lateral part of the boyndath an initially circular shape,
the stress ratio is close to one, e.g.at EL.G (Fig. 4.12)s Trdicates that for the analytical
model proposed in Section 4.1.2 the assumptioA’of 1 is rather realistic for the part of the
soilbag close to a boundary with the circular shape. For Ethleh is located in the middle of
the soilbag close to the lateral boundary with a small cuneatthe stress ratio decreases to a
value of less than one.

Furthermore, the numerical simulation shows that the velwmange during compression is
rather small, e.g. it is about% for the vertical compression @ cm (Fig. 4.15(a)). Thus, the
assumption of a constant volume for the analytical modehsede be reasonable.

From the above comparisons it can be concluded that for time sertical compression the
predictedA L/ L, andT via the analytical model is slightly higher than that for themerical
model. The differences are due to the simplifications asduoreghe analytical model.
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Figure 4.27: Interlocked interface: evolution @j (he normalized change of perimet&y./ L,
and ) the tensile stress,,, at Bag.0, Bag.3 and Bag.4.
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Figure 4.28: Interlocked interface: distribution of tdasstress in the wrapping material for
different vertical displacements.

4.2.3 Interlocked interface behavior

In the following the evolution of the stress and strain iseistigated for the case that no relative
displacements and Cosserat rotations along the interfaeesée the soil and the wrapping
bag take place. Fig. 4.27(a) shows that for an increase oVartecal displacement, the
normalized perimeter of the soilbag.L/ L, as well as the tensile stresg,, in the wrapping
material nonlinearly increases. The distribution of thestke stress in the wrapping material is
not uniform, as shown in Fig. 4.28. In particular for the sgmescribed vertical displacement
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Figure 4.29: Interlocked interface: evolution of tl3 §verage value of the normalized volume
changeAV/V;, (b) average value of the vertical presspre

us the tensile stress in the middle of the soilbag is higher tivathe sides. Fai; = 1.4 cm the
limit tensile stress is reached in the middle of the soild3ag(0 in Fig. 4.27(b)). Fig. 4.29(a)
and Fig. 4.29(b) show the evolutions&#’/V; and ofp,, respectively. The soilbag experiences
only compression up to about = 1.0 cm (Fig. 4.29(a)), with a maximum volume change of
less thanl % of V;,. The mean vertical pressupg nonlinearly increases with the increase.gf

as shown in Fig. 4.29(b).

Fig. 4.30, Fig. 4.31, Fig. 4.32 and Fig. 4.33 show the digtidns of the void ratice,
the Cosserat rotations, the norm of the deviatoric strain ratgs?||, the normalized micro-
curvature ratesdbgrsi, dsofiz2), the normal stresses(, 099, 033), the shear stresses§, os1)
and couple stresseg, j:32) in different sections and for the prescribed vertical fispments

of u, = 0.2, 0.5 and1.4 cm. The state variables across sections 0-0 and 1-1 for thieale
displacements ofi, = 0.2, 0.5 cm are rather homogeneously distributed while state viesab
across section 4-4 are nonlinearly distributed for a highestical displacements. While in
section 0-0 and section 1-1 the void ratio decreases, ieasas in section 4-4 and shows the
maximum value in the middle. Fig. 4.30(b) shows that Cosgetations,ws, are only signif-
icant in section 4-4, where the particles rotate clockwige,w$ > 0, in the upper part and
anti-clockwise, i.ew§ < 0, in the lower part of the soilbag. In Fig. 4.30(c), the disition of
the norm of the deviatoric strain ratgs?||, across section 4-4 is heterogeneous while its dis-
tributions across the sections 0-0 and 1-1 are rather honeoges. The micro-curvature rates,
k32, are only pronounced in section 4-4 (Fig. 4.31). From Fi§04nd Fig. 4.31 it can be con-
cluded that strain localization accompanied with dilayamaicro-curvature rates and Cosserat
rotation is only significant in the lateral parts of the sadb In contrast to the frictionless inter-
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Figure 4.30: Interlocked interface: distribution @) ¢he void ratioe, (b) the Cosserat rotation
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curve),us = 0.5 cm (long dashed curve) and = 1.4 cm (short dashed curve)
across sections 0-0, 1-1 and 4-4.



82 4 Mechanical behavior of a soilbag under vertical compogssi

Section 0-0 Section 1-1 Section 4-4
10 10 10 -
8 8 8 !
g 6 6 6 } )
m 4 4 4
\
2 2 2 >
_},
0 0 0 >
2x10* 0 2x10* 2x10% 0 2x10% 2x10% 0 210
@) ds0F31 ds0k31 ds0fi31
10 10 10
..
8 8 8 7/
= 4 4 4 f&(/
1\
2 2 2
R
0 0 0 Z=1
2x10* 0 210 2x10% 0 210 2x10% 0 210
(b) ds0k32 ds0ki32 dsoki32

Figure 4.31: Interlocked interface: distribution of thermalized micro-curvature ratesy)(
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face, the deformation in the middle part of the soilbag iseahhomogeneous, also for higher
vertical compressions.

Fig. 4.32 shows a homogeneous distributionsQf 092 andos; across sections 0-0, 1-1 and
4-4 foruy, = 0.2 cm and also fou, = 0.5 cm. Foru, = 1.4 cm the distributions becomes
heterogeneous across section 4-4. Across section 0-0 atidns#-1 the distributions of -,
091 and uzy, u3o are very close to zero (Figs. 4.33). Across section 4-4, arbgéneous
distribution of the state quantities becomes more pronedihar higher vertical compression.

For the vertical displacements @of = 0.2, 0.5 andl.4 cm the deformed mesh, the contour plot
of the void ratio and the contour plot of the deviatoric strate are shown in Figs. 4.34, 4.35
and 4.36, respectively. With an increase:gthe area of intense shear strain rate expands to the
middle part of the soilbag. It is obvious that also for highertical compressions no discrete
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Figure 4.34: Interlocked interface: deformed shape of thitbag for different vertical dis-
placementsi,.
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Figure 4.35: Interlocked interface: contour plot of thedvoatio e for different vertical dis-
placementsi,.
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shear band occurs. While in the middle part densification midant dilatancy can only be
detected at the sides part of the soilbag (Fig. 4.35 and Fig7(d)). For the same vertical
displacement:, the mean pressugein the filling material at EL.C is lower than at EL.A and
EL.B (Fig. 4.37(b)).

4.2.4 Influence of random distribution of the initial void ratio

In this section the influence of a random distribution of thiéal void ratio on the soil defor-
mation inside the soilbag is investigated. For generatimgnalom distribution of the initial
void ratio a density functiorf(e) with the so-calleds-distribution is used (e.g. Grimmett &
Stirzaker, 1992 [49]). From basics of statistics a prolighilensity functionf(e) of the void
ratio e must fulfil the following requirements:

fle) =0, (4.40)
and
/ f(e)de = 1. (4.412)
The density function witl-distribution for the void ratie reads:
fle) = ! (e—a)’ " (b—e)?" for a<e<hb,

B (pv Q) (b - a)PJFQ*l
(4.42)

fle)=0 for e<aore>b.

Herein,a is the lower bound oé which can be related to the minimum void ratio anid the
upper bound ot which can be related to the maximum void ratio. In contragh&pressure
dependent relation 2.41 for the limit void ratios, the cep@nding values are assumed here to
be constant, i.ea = ey, b = ¢;o. The parametergandq are defined as:

em —a [(em —a)(b—en) b—em [(em —a)(b—en)

-1 — —1]. (443
b—a s 4 b—a s ( )

p:

In Eq. 4.43¢,, is a given mean value of the void ratio ands a given variance, which is the
square of the standard deviatidni.e. s = d?. With the magnitude of the range of random
void ratios can be chosen. In order to fulfil the requirements 0 andq > 0 the value ofs

is restricted bys < (e, — a)(b — e,,). The constanB(p, q) in Eq. 4.42 is obtained from the
so-called3-function: (e.g. Grimmett & Stirzaker, 1992 [49])

B(p,q) = /6”1 (1—e)™" de. (4.44)
0
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(@ )

Figure 4.38: &) Frequency distributiorf (e) of the void ratioe, (b) cumulative frequency dis-
tribution F'(e) of the void ratioe

It is worth mentioning that the requirement in Eq. 4.41 wél folfilled with B(p, ¢) defined in
EqQ. 4.44 as shown in detail in Appendix C.

The cumulative probability distributiof'(e) can be obtained by integration of the density func-
tion f(e), i.e.

F(e):/f(e)de. (4.45)

The cumulative probability distribution lies in the rangetweenf'(e = a) = 0 and F'(e =
b) = 1, as shown in Fig. 4.38(b).

A uniform random number generator, i.e. a random numberrg&srewhich generates random
numbers of uniform deviation (e.g. Press et al., 1992 [98]ised to generate random values
between0, 1]. In order to relate the random valueo the desired void ratie the cumulative
frequency density’(e) is used, i.e.

z(e) = F(e). (4.46)
This means that the random variahléhas probability density(e). Eq. 4.46 allows an im-

mediate geometric interpretation as sketched in Fig. 4A38hosen random value is related
to the corresponding void ratiovia the shaded ared, in Fig. 4.38(a). The value ofl, is
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s5DV1S
(Ave. Crit.: 75%)

Figure 4.39: Contour plot of the initial random distributiofithe void ratio.

equal toF'(e) as shown by the dashed line in Fig. 4.38(b). In Eq. 4.46 tharpatere is
unknown. It can be computed with the so-called transforomatnethod (e.g. Press et al., 1992
[98]) according to

e=FYz), (4.47)

where,FF~!(z) denotes the inverse @f(e).

For the following numerical simulation a stochastic dgsiton of the initial void ratio with
respect to a initial mean void ratio ef,, = 0.6 and a standard deviation ©f3% is assumed.
The distribution of the initial void ratio varies betweefn = 0.5812 — 0.6205 as shown in
Fig. 4.39. In the following the results obtained for theially homogeneous void ratio are
compared with that of the initially heterogeneous for bdth frictionless interface and the
interlocked interface.

For the frictionless interface Fig. 4.40 and Fig. 4.41 shieg¢ontour plots of the void rati©

and the norm of the deviatoric strain rdf&’|| of granular soil after the vertical displacements
of us = 0.2, 0.5 and1.9 cm, respectively. From Fig. 4.40 zig-zag patterns of theashand can

be observed after the vertical displacementpf= 0.5 cm for the initially heterogeneous void
ratio. For the initially homogeneous void ratio, shear lsaack observed for longer compres-
sion. Furthermore, fot, = 1.9 cm only one pattern of the shear band is pronounced for the
initially heterogeneous void ratio while additional 'smed’ shear band patterns are observed
for the initially homogeneous void ratio (Fig. 4.40). Howevthe contour plot fofi?|| shows
that the pattern of the shear band for the case of initialtgfogeneous void ratio is similar to
that obtained for the initially homogeneous void ratio (Fg41).

For the case of interlocked interface, it can clearly be gkahneither initially homogeneous
void ratio nor initially heterogeneous void ratio shows edlization in the granular soil. More-
over, both, the initially homogeneous void ratio and th&éally heterogeneous void ratio show
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Figure 4.40: Frictionless interface: contour plot of thédvatio e resulting from &, c, €) the
initially homogeneous void ratiob( d, f) the initially heterogeneous void ratio for
different vertical displacemenis.
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Figure 4.41: Frictionless interface: contour plot of themaf the deviatoric strain ratg?||
resulting from &, c, €) the initially homogeneous void ratiop(d, f) the initially
heterogeneous void ratio for different vertical displaeetsu..
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Figure 4.42: Interlocked interface: contour plot of thedsaatio e resulting from &, c, €) the
initially homogeneous void ratiob( d, f) the initially heterogeneous void ratio for
different vertical displacemenis.
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Figure 4.43: Interlocked interface: contour plot of themanf the deviatoric strain ratge?||

resulting from &, c, €) the initially homogeneous void ratioh(d, f) the initially
heterogeneous void ratio for different vertical displaeetsus,.
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Figure 4.44: Comparison between the frictionless interéamethe interlocked interface for the
evolution of @ AL/ Ly, (b) o4,, at Bag.O.

similar distribution for the void ratie (Fig. 4.42) and for the deviatoric strain rate?|| (Fig.
4.43).

4.2.5 Interpretation of the numerical results

In the following the numerical results obtained for the tinaless interface is compared with
the interlocked interface for the vertical displacementof= 0.2 cm and0.5 cm and for the
state when the bag reaches the limit sti@ss = ot 1.€. uz = 1.9 cm for the frictionless
interface and:,;, = 1.4 cm for the interlocked interface.

While the change of the perimet&rL with u, is almost independent of the assumed interface
behavior (Fig. 4.44(a)), the evolution of the tensile stiemot (Fig. 4.44(b)). In particular, for
the interlocked interface, the limit stresgs,,;; in the wrapping material is already reached for a
lower vertical displacement than that for the frictionl@s®rface. Moreover, Fig. 4.45 shows
that in contrast to the frictionless interface, the disttibn of the tensile stress in the wrapping
material along the circumference of the soilbag is not uniféor the case of the interlocked
interface. The limit stress is first reached at the middl¢ pfthe soilbag. Fig. 4.46(a) shows
that for both, the frictionless interface and the interledknterface AV/V; is less thanl %.
The mean vertical stregs for the interlocked interface is higher than that for thetfdnless
interface(Figs. 4.46(b)).
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Figure 4.45: Comparison between the frictionless intertae the interlocked interface for
the contour plot of the tensile stress in the wrapping maiteti @, b) the vertical
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Figure 4.46: Comparison between the frictionless interéamethe interlocked interface for the
evolution of @) AV/Vj, (b) p,.

For the small vertical displacement the distribution ofibal ratio for the interlocked interface
is more homogeneous than that for frictionless interfacg. (#.47(a)). Furthermore, when the
wrapping material reaches the limit stress, higher valdiéseovoid ratio are concentrated in a
zig-zag pattern for the case of frictionless interface (Big 7(b)). For the interlocked interface,
mainly the granular soil at the left and right sides of thélsg experience dilatancy. With an
inhomogeneous distribution of the void ratio the onset efshear band is more pronounced
for the case of frictionless interface, as outlined in Setd.2.4.
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Figure 4.47: Comparison between the frictionless interéamethe interlocked interface for the
contour plot of the void ratie at (a, b) the vertical displacement af, = 0.5 cm,
(c, d) the state when,,; = 0yimr-
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5 CONCLUSIONS

Analytical and numerical investigations on the mechanedlavior of a soilbag under verti-
cal compression and plane strain condition have been ctedlu®articular attention is paid
to the influence of the interface behavior between the gearsdil and the wrapping bag on
the stress-strain behavior of the soilbag structure. Tviferéint interface behaviors are in-
vestigated: a frictionless interface (no slide and rotatesistance along the interface) and an
interlocked interface (motion of the soil particles at theerface coincides with the motion of
the bag). For the analytical study several simplificatioressraade, e.g. the granular material
inside the soilbag is assumed to be in the limit state anddhtact between the soil and the bag
is frictionless. In order to evaluate the simplified analgtimodel numerical simulations with
a more sophisticated description for the soil behavior aedrterface are carried out. Further-
more, the soil behavior close to the interface is separatalyied for the case of shearing of an
infinite granular soil strip under constant vertical pressun this study, the attention is paid
to the influences of the initial density of the granular sthie mean grains size and the rotation
resistance of the particles at the interface on the evaiuwiahe mobilized friction angle and
the occurrence of strain localization in form of shear bands

In particular, for the soil behavior closed to the interfaceler shearing the following results
are obtained:

e Shear strain localization takes place from the beginninghefaring where the location
and the thickness of shear band strongly depends on theripexsboundary conditions,
the mean grain size, the initial void ratio and the verticasgure. The results are in
agreement with the numerical simulations of other authors.

e For a lower rotation resistance at the interface the shead alocated closer to the
surface of the bounding structure.

e The predicted thickness of the shear band is higher for dialigilooser material, a
higher vertical pressure, a larger mean grain size and foglaehrotation resistance of
the soil grains along the interface area. The results argreeanent with the numerical
simulation other authors.

¢ In accordance with experimental observations the peakevadithe mobilized friction
angle is higher for initially dense granular soil. With adead shearing the mobilized
friction angle decreases and it tends towards a statiorengwvhich is close to the crit-
ical friction angle of the granular soil. The deviation frahe critical friction angle de-
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pends on the specific formulation of the constitutive moidel,on the described coupling
between the stress and the couple stress at stationary state

e For the case of a fluctuation of the Cosserat rotation at tleefatde the mobilized friction

angle also varies. However, the mean value is almost eqtia teritical friction angle of
the granular soill.

For the vertically compressed soilbag under plane strandition, the following results are
obtained:

(a) for the simplified analytical models

— The tensile stress in the wrapping material and the verticedsure on the top of
the soilbag are a function of the prescribed vertical disgahaent, the initial width-

to-height ratio, the elasto-plastic properties of the wrag material and the limit
stress ratio of the filling material.

— With the increase of the prescribed vertical displacememiperimeter of the soil-

bag, the tensile stress in the wrapping material, and thenmedical pressure on
the top of the soilbag nonlinearly increase.

— The tensile stress in the wrapping material reaches thetiemsile stress earlier for
a higher initial width-to-height ratio of the soilbag. Thertical pressure on the top
of the soilbag is also higher for higher initial width-totgket ratio.

— While for the model by Matsuoka & Liu only the global equilibnn in the section of

the soilbag is fulfilled, also the local equilibrium is fuléd in the proposed extended
model.

(b) for the numerical model with frictionless interfaceween the granular soil and the wrap-
ping bag

— The tensile stress in the wrapping material uniformly iases while the stress ratio
of the granular soil inside the bag inhomogeneously degelop

— Dilatancy of the granular soil firstly appears at the sidespaf the soilbag.

— The pattern of zones with intense shear strain which is teflieby the soilbag
boundaries can be detected with the advance of the compmnessi

— With an inhomogeneous distribution of the initial void mtithe onset of the strain
localization in the granular body appears for a lower vatttompression.

(c) for the numerical model with interlocked interface beém the granular soil and the wrap-
ping bag

— The distribution of the tensile stress in the wrapping membris not uniform as it
is for the frictionless interface. The tensile stress inkinapping material is higher
in the middle of the soilbag than at the sides of the soilbag.
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— The filling material in the middle of the soilbag mainly exjgeices compression.
Dilatancy occurs at the sides of the soilbag.

— No significant strain localization is observed up to the listress reached in the
wrapping material.

— The mean vertical pressure on the top of the soilbag is hidpaerthat obtained with
the frictionless interface.

(d) for the comparison between the analytical and numengalel with the frictionless in-
terface

— The tensile stress in the wrapping material obtained froenaihalytical model is
slightly higher than that from the numerical one.

— The mean vertical pressure on the top of the soilbag showberrgood agreement.

In general it can be concluded that the soilbag can resist tignpression provided that the
volume change of the granular body is small. The verticall lcapacity depends on the type
of wrapping material, the critical friction angle of graaumaterial and the interface properties
between the filling material and the wrapping bag. With thegdified analytical model the
vertical pressure on the top of the soilbag can be well ptedias far as the assumed critical
friction angle of the filling material is closed to the realu@and the interface is frictionless.
With an increase of the interface friction between the glansoil and the wrapping bag, the
vertical pressure increases for the same vertical compregddowever, the vertical load capac-
ity is smaller if friction between the soil and the wrappin@terial appears. This is because
the limit stress in the wrapping material is reached for aglovertical compression. Finally, it
should be noted that the present conclusions are only defatihe case of a vertical compres-
sion of the soilbag. Thus, more general load conditionsigtiolg shear loads applied on the top
of the soilbags need additional investigations.
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A SYMBOLS

Throughout this thesis, symbolic notations are used fotore@nd tensors with bold lower and
bold upper case letters, respectively. For vector and teswmoponents, indical notation with

respect to a rectangular Cartesian bas{@ = 1, 2, 3). Herein, the summation convention over
repeated indices is used. Operations are defined as:

a-b = a;b;,
a®b = abe ®e,
Ab = A;bje,
AB = Ay DBjjei ®e,
A:B = A, B,
C:B = CijuBre e,

Oa
grad(a) = e
div(a) = grad(a)- I,
lall = Vva.a= aa;,

Al = VA : A= /A4;A;

All notations and symbols are defined where they first appe#ra text. For easy reference,
the most frequently used symbols and their meaning are miextéere.

103



104 A Symbols
e; base vector
€ . permutation tensor
I : second order unit tensor
d;; - Kronecker delta
b'e position vector in the current configuration
X : position vector in the reference configuration
u . displacement vector
u : velocity vector
F deformation gradient
L : velocity gradient
g . symmetric part of velocity gradient
\%% macro-spin tensor, the skew symmetric part of velocitydgrat
w  macro rotation vector
w rate of the macro rotation vector
Q micro-polar gyration tensor
w® : Cosserat rotation vector
w® : rate of the Cosserat rotation vector
g’ . Cosserat strain rate tensor
€%, . volumetric strain rate
gl deviatoric part of strain rate tensor,
K rate of curvature
o : Cauchy stress tensor
t surface traction vector
o : time derivative of the stress tensor

=T BE T @

objective stress rate tensor

couple stress tensor

surface couple vector

time derivative of the couple stress tensor

objective couple stress rate tensor
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€c0

€d

€do

Obag

oty
BO! HO
B, H
Lo, L
Vo, Vo

current void ratio

rate of void ratio

maximum void ratio, at which the grains are still in contact
maximum void ratio at nearly stress free state

critical void ratio

critical void ratio at nearly stress free state

minimum void ratio

minimum void ratio at nearly stress free state
positive hypoplastic constitutive constant

hypoplastic constitutive constant,> 1

hypoplastic constitutive constant

hypoplastic constitutive constant

mean grain diameter

critical friction angle

mobilized friction angle

stress ratio in the granular material inside the soilbag
mean value of resulting vertical pressure on top of a sgilba
tensile force in the wrapping material

tensile stress in the wrapping material

limit tensile stress in the wrapping material

elastic modulus of the wrapping material

initial width and initial height of the soilbag

current width and current height of the soilbag

initial and current perimeter of the soilbag

initial and current volume of the soilbag
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B MICRO-POLAR HYPOPLASTIC MODELING OF STATIONARY
STATES

Concerning stationary states the following four differestsions of polar hypoplastic constitu-
tive models are discussed:

e \ersion A (Tejchman & Gudehus, 2001 [114]; Tejchman, 20@D]1Tejchman & Bauer,
2005 [113]):

Gij = [s [dQ &5+ (Omesy + ki) 64 + fad (645 + 67) \/H%H2 + H/'QZHP] ,  (B.1)

fij = dso fs [d2 Fogy + (Omi€ly + fafiry) 6% flij + fa 0® am ﬂz‘j\/HéEzHQ + ||'%Zz||2} ,  (B.2)

with
a,d ~d 5.d
7 = e [of o 1+ cos(30)] cos(3) = —VG LT
pq ~pq
3 (3 —sing,) 3 (31 sinpo)
A=\ ana PP TR sing.

8  siny. 8  siny,

e \ersion B (Huang et al., 2002 [63]):
Gij = [s [dg €55 + (Omesy + fisiiey) 64 + fa (65 + 635) \/dzﬂéizﬂ2 + G%@H/%ZzHQ} , (B.3)

f1ij = dso f |:a%1 Rij + (Ol + fwakyy) fig + fd2/l¢j\/d2Héle? + G%H%z”Q] , (B4

with
5 sin‘goC 8/3 — 3¢+ \/3/2 32 cos(30) _ Ve L e—sien,
3 —sin g, 14 1/3/2c'/2 cos(30)
~sd asd Asd ~d ~d
_ Ol O1m P mk vsd (Ot 00)
cos(30) = _\/ET O =
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e \Version C (Bauer & Huang, 1999 [11]; Huang & Bauer, 2003 [61]):

=fs [ + (Ouily + firkiyy) 60 + fad (645 + Uz] \/||5kl||2 + ”Kkl||2:| (B.5)
fiij = dso fs {Cbm Foij + (Omely + M) fij + fa2 amfli; \/HéizH2 + H/%ZzHZ] ,  (B.6)
with
ing. [ [8/3—3c+ /3232 cos(30
o= ¥ [3= 3t VIR CsE)  pl g
3 — sin ¢, 1+ +/3/2c'/2 cos(30)
G3d55d Grsd ~s (o + i)
cos(30) = _\/g% , o = M . k)

e \ersion D (Bauer, 2005 [8]):

= f,[a%&5, + (6mefy) 6 + fad (64 +65) 11EL] (B.7)
ftij = dso fs (a5, 55 + (fuaken) Py + fa2amfis |[RRl] (B.8)
with
R 8 sin? Ve
a=\ ——5—.
9(3 + sin’ p.)

A stationary states is defined as a state in which there is aoges ofo;;, 1,; ande for a
constant rate of deformatiaij; and or a constant rate of curvatug, i.e.

With the assumption of incompressible grains, the requareié = 0 is equivalent to the van-
ishing of the volumetric strain, i.ef, = 0. Thereby, the following relations at the stationary
state can be drawn

g =0, ged — ge
Applying the criterion for stationary states, i.e. Eq. B®the evolution equations of the stress

and the couple stress leads to the following relations fenttrmalized deviatoric streésj and
the normalized couple stregs;:
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e \ersion A
6l — a5y fi; = Y
1 B N ) 1] B N )
T faER + 1R (am — @) far/lEqI? + lip12
and
N 2
el Al ™ _ = 1
a Aa, ’ A (am - &) ’
with:
o JlEEE A
leall® + 11457 a(am — a)
e \ersion B
~d —a? 620] N —CL?n K’z]
0,5 = — - ) Hij = — - )
Y fa ARyl + a2 llRg P fa/a2lIEG |12 + a2, [|&, 12
and
~ 2
I\ (sl _
a A, ’
with:
Iy = a?|[Egll® + af lAgll* 1
a?||eqll® + a2, || £y l2
e \ersion C
5l _ —défj P —am “w
(3 N N Y 1) " 9
T faVE? + 1R (2am — @) fa /G112 + 15512
and
lleg 1l 211\ _ 1 N Om
a \a,, ’ 2, —a’
with:
f, = [ef I + A&7, 17 y = Gm_ Gm

€51 + Nl >

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)
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e \ersion D

A 2 ook
d —a ey . — Ky
o5 = - = - B.19
VSRR M T e+ fean Rl (8:19)
and
2 S
~d ~ ~ U ||K’kl||
ol =a Gl = y - B.20
” Zjl ) ”MUH ﬂkl/{zl + 2am||ﬁzl”7 ( )
with:

fo = o Gl (B.21)
alléql?

Herein the relations fo&fj, f;; and f,; are derived in a similar way as first shown by Huang et
al. (2002) [63]. From Eq. B.11, Eq. B.14 and Eq. B.17, it followattfor stationary states
|6¢; ]l and ||z;;|| are coupled while it is not in Eq. B.20. Furthermore, unlikesien A and
Version C, for Version B and Version D factay, can be unique related tgi;; || for ||o|| = 0.
From Eq. B.15 and Eqg. B.21, it can be concluded that the dersitpiff; generally fulfils the
requirement for the void ratio in critical state only for t¥ersion B and the Version D, i.e. for
fa = 1 the void ratioe is equal to the critical void ratie. according to Eq. 2.40. For these
versions, the critical void ratie, is reached at stationary state independent of the inité st
and the value of,,,. On the other hand, from Eq. B.12 and Eq. B.18 it follows thatan be
higher than one, thus, the void ratio can also be higher theuritical void ratio. For Version
A and Version C, the relation 2.41 between the void ratio indtaionary state and the mean
pressure can only be fulfilled for special cases. In padicune of the following conditions
should be fulfilled to obtairf, = 1 at the stationary state:

() 751l =0,

(i) |l&5] # 0 andA = 1.
With the condition (i), the parameter,, has no influence orf,. Moreover, from Eqg. B.10
and Eq. B.16 the couple stress becomes zero and the norm afiimalized deviatoric stress

|64 |l = a. The latter is also obtained for the non-polar version otiyygoplastic model (Bauer,
2000a [6]).

For the condition (ii), one can conclude that for

A

VersionA : a,, =a+ 1/a,

VersionC : a,, = a.

It should also be noted that for the condition (ii), couplimg;ween&;lj and ji;; still exist in
Version A, Version B and Version C. Therefore, at stationsayes the influence of couple stress
may exist, and, consequently, the mobilized friction angle may deviate from the critical
friction angle defined from the limit condition by Matsuokkakai.



C REQUIREMENT FOR THE PROBABILITY DENSITY FUNCTION

In order to proof the requirement 4.41, i.e.

/ f(e)de =1 (C.1)

for the chosen density functiof(e) in 4.42, i.e.

1 p—1 —e q—1
1) = g o = 0= (C.2)

the integral in Eq.C.1 can be represented as

7]‘(6)616 = /af(e)d€+/bf(€)d€+7f(€)d€

a

! P~y — )7 e
_/19(19,61)(6—a)p+q_1 ema et

With the substitutiony = e — a — de = du, e = u + a,

a

[ ey - y”w:b_i;ﬂqlmh
0

a
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112 C Requirement for the probability density function

With the substitution: Yy Sdu=(b—a)dy,
—a

(b—u—a)yi ' = (1 - )ql (b—a),

B S 4 ) G L i e Gl LR
/7@”6"3@4%/ (b—apiet !

a

B S SN (R (e Gl O P
) :/ S Ve R
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