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1 INTRODUCTION

Partial differential equations and corresponding boundary value problems appear in the
modeling of numerous processes in science and engineering. Many mathematical models
lead to second order, formally symmetric, uniformly elliptic differential expressions of the
form

L=−
n

∑
j,k=1

∂

∂x j
a jk

∂

∂xk
+

n

∑
j=1

(
a j

∂

∂x j
− ∂

∂x j
a j

)
+a (1.1)

with variable coefficients on bounded or unbounded Lipschitz domains Ω ⊂ Rn, n ≥ 2;
particular examples arise from the Schrödinger equation with an electric or magnetic po-
tential. To such a differential expression L one relates the Dirichlet-to-Neumann map,
which acts on the boundary ∂Ω and is defined by

M(λ )uλ |∂Ω =−∂uλ

∂νL

∣∣
∂Ω

.

Here uλ is a solution of the differential equation Luλ = λuλ , uλ |∂Ω is the trace of uλ at
∂Ω, and ∂uλ

∂νL
|∂Ω is the conormal derivative with respect to L; cf. Chapter 2 for further

details. The mapping M(λ ) is well-defined for all λ ∈ (−∞,µ)∪C \R for a proper real
µ and can be regarded as a bounded linear operator between appropriate Sobolev spaces
on ∂Ω. The Dirichlet-to-Neumann map plays a major role in, e.g., electrical impedance
tomography. It can be interpreted as an operator which assigns to a given voltage on the
surface of an inhomogeneous body the corresponding current flux.

The main objective of the present thesis is to investigate the connection between the selfad-
joint operators associated with L in the Hilbert space L2(Ω) and the Dirichlet-to-Neumann
map M(λ ). On the one hand we solve a Calderón type inverse problem. We prove that the
selfadjoint Dirichlet operator

ADu = Lu, domAD =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),u|∂Ω = 0
}
, (1.2)

in L2(Ω) is uniquely determined up to unitary equivalence by the knowledge of M(λ )
on any nonempty, open subset of ∂Ω for a proper set of points λ ; here H1(Ω) is the
L2-based Sobolev space of order one. On the other hand, we give a complete characteri-
zation of the eigenvalues and corresponding eigenfunctions as well as the continuous and
absolutely continuous spectrum of AD in terms of the limiting behavior of the operator
function λ 7→ M(λ ). In addition, we provide analogous results for the operator realiza-
tions of L with Neumann and generalized Robin boundary conditions. Our results require

1



2 1 Introduction

comparatively weak regularity conditions on the differential expression L. We assume that
the coefficients a jk and a j, 1≤ j,k ≤ n, are bounded, Lipschitz continuous functions, and
that a is bounded and measurable.

In the following we discuss the objectives of this thesis in more detail. The first main
objective is the solution of an inverse problem. We show that the partial knowledge of the
Dirichlet-to-Neumann map M(λ ) determines the Dirichlet operator AD in L2(Ω) in (1.2)
uniquely up to unitary equivalence. It is assumed that Ω is either a bounded Lipschitz
domain or its complement, an exterior domain. The result is the following; cf. Theorem 4.4
below.

Theorem 1.1. Let Ω be a connected bounded or exterior Lipschitz domain and let ω ⊂
∂Ω be a nonempty, open set. Let L1,L2 be two formally symmetric, uniformly elliptic
differential expressions of the form (1.1), and let AD,1, AD,2 and M1(λ ), M2(λ ) be the
corresponding Dirichlet operators and Dirichlet-to-Neumann maps, respectively. If

M1(λ )g = M2(λ )g on ω

holds for all g with support in ω and all λ in a set with an accumulation point outside the
spectra of AD,1 and AD,2 then AD,1 and AD,2 are unitarily equivalent.

The result of Theorem 1.1 is closely related to Calderón’s inverse conductivity problem
in electrical impedance tomography: In the special case of the elliptic differential ex-
pression L = −∑

n
j=1

∂

∂x j
γ

∂

∂x j
on a bounded, sufficiently smooth domain Ω the coefficient

γ : Ω→ R corresponds to an isotropic conductivity and it is known that the knowledge of
M(λ ) for, e.g., λ = 0 on all of ∂Ω does even determine the coefficient γ itself uniquely,
see [40,102,105,119] for the space dimension n≥ 3 and [16,103] for the two-dimensional
case; in recent publications this was also shown for the case of partial data, that is, M(0) is
known only on certain, special subsets of ∂Ω, see [39, 77, 82, 83, 104] and [53] for a mag-
netic Schrödinger operator. For unbounded Ω such results exist, to the best of our knowl-
edge, only under the much more restrictive assumption that the coefficient γ is constant
outside some compact subset of Ω; cf. [76, 88, 95]. We remark that Calderón’s problem is
equivalent to the question of determining a bounded potential q in the electric Schrödinger
expression −∆+q on Ω from (partial) boundary data. For general L of the form (1.1) the
single coefficients are not uniquely determined by the knowledge of M(λ ); cf. [80]. In the
anisotropic case L=−∑

n
j,k=1

∂

∂x j
a jk

∂

∂xk
on a bounded domain Ω uniqueness up to diffeo-

morphisms by the knowledge of M(0) was shown for smooth coefficients in [94,118,120];
more general cases were treated in [15, 52, 117], see also [78, 92, 93]. For closely related
problems such as, e.g., the multidimensional Gelfand inverse spectral problem and inverse
problems for the wave equation we refer the reader to [28–30, 79, 80, 89]. For a detailed
review on Calderón’s problem and further references see also [123].
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In addition to Theorem 1.1 we show how the Dirichlet operator can be recovered from
the knowledge of M(λ ) on ω under the assumption that Ω is bounded. In this case the
spectrum of AD consists of isolated eigenvalues with finite multiplicities and, hence, AD
is completely determined by its eigenvalues and the corresponding eigenfunctions. We
indicate how the eigenvalues and eigenfunctions can be recovered from the poles and the
corresponding residues of the operator-valued meromorphic function λ 7→ M(λ ) on ω .
The results of this part of the thesis are complemented by an additional section which
treats the case of selfadjoint elliptic differential operators AΘ in L2(Ω) of the form

AΘu = Lu, domAΘ =

{
u ∈ H1(Ω) : Lu ∈ L2(Ω),

∂u
∂νL

∣∣
∂Ω

+Θu|∂Ω = 0
}
, (1.3)

where the parameter Θ in the boundary condition can be chosen as a (nonlocal) bounded
operator between certain Sobolev spaces on ∂Ω; see Chapter 3 for further details. We show
that the operator AΘ is uniquely determined up to unitary equivalence by the knowledge
of the operator Θ in the boundary condition and of the Dirichlet-to-Neumann map on ∂Ω.
Moreover, we show that uniqueness can even be guaranteed when the boundary data is
only known on an open part ω of ∂Ω in case Θ gives rise to a local (classical Robin)
boundary condition, that is, Θ is the operator of multiplication with a bounded, real-valued
function on the boundary. For further information and recent results on elliptic differential
operators with (generalized) Robin boundary conditions we refer the reader to [10, 11, 43,
57, 58, 91, 106, 125] and the references therein.

The second main objective of the present thesis is a complete description of the spectrum
σ(AD) of the Dirichlet operator AD in terms of the limiting behavior of the analytic op-
erator function λ 7→ M(λ ) when λ approaches the real axis. One of the main results is
the following theorem, which characterizes all eigenvalues and the complete continuous
spectrum of AD; cf. Theorem 5.2 below. Here s-lim denotes the strong limit of an operator-
valued function.

Theorem 1.2. Let Ω be a bounded or exterior Lipschitz domain and let AD be the selfad-
joint Dirichlet operator in (1.2). Then for λ ∈ R the following assertions hold.

(i) λ /∈ σ(AD) if and only if M(·) can be continued analytically into λ .

(ii) λ is an eigenvalue of AD if and only if s-limη↘0 ηM(λ + iη) 6= 0.

(iii) λ is an isolated eigenvalue of AD if and only if λ is a pole of M(·).

(iv) λ belongs to the continuous spectrum of AD if and only if M(·) cannot be continued
analytically into λ and s-limη↘0 ηM(λ + iη) = 0.

We remark that in the case of a bounded domain Ω the spectrum of AD consists only of
isolated eigenvalues, see Chapter 4. Thus in this case only item (iii) in the above theorem
is of interest.



4 1 Introduction

In addition to Theorem 1.2, we provide a characterization of all eigenspaces of AD.
Moreover, we prove that the absolutely continuous spectrum of the Dirichlet operator
AD can also be detected with the help of the function M(·). In the following theorem
clac(χ) = {x ∈ R : |(x− ε,x+ ε)∩ χ| > 0 for all ε > 0} is the absolutely continuous clo-
sure (or essential closure) of a Borel set χ and (·, ·) is an extension of the inner product in
L2(∂Ω); for the details see Theorem 5.4 below.

Theorem 1.3. The absolutely continuous spectrum of AD is given by

σac(AD) =
⋃
g

clac
({

x ∈ R : 0 < Im(M(x+ i0)g,g)<+∞
})

.

We complement these spectral characterizations for the Dirichlet operator by a sufficient
condition for the absence of singular continuous spectrum and sufficient conditions for the
spectrum of AD to be purely absolutely continuous or purely singular continuous, respec-
tively, in some interval.

Theorem 1.2 and Theorem 1.3 are multidimensional analogs of well-known facts from
the Titchmarsh–Weyl theory for ordinary differential operators. The classical Titchmarsh–
Weyl m-function associated with a singular Sturm–Liouville differential expression goes
back to the work [126] by H. Weyl and plays a fundamental role in the direct and in-
verse spectral theory of the corresponding ordinary differential operators. For, e.g., a one-
dimensional Schrödinger differential expression − d2

dx2 + q on the half-axis (0,∞) with a
bounded, real-valued potential q the corresponding Titchmarsh–Weyl coefficient m(λ )∈C
may be defined as

m(λ ) fλ (0) = f ′
λ
(0), λ ∈ C\R,

where fλ is the unique solution in L2(0,∞) of the equation − f ′′+ q f = λ f . It is due
to E. C. Titchmarsh that the function λ 7→ m(λ ) is analytic and is closely related to the
spectrum. The limiting behavior of the function m(·) towards the real axis is in one-to-one
correspondence to the spectra of the selfadjoint realizations of − d2

dx2 +q in L2(0,∞) in the
same way as in the multidimensional theorems Theorem 1.2 and Theorem 1.3 above. For
instance, λ is an eigenvalue of the selfadjoint realization TD subject to a Dirichlet boundary
condition f (0) = 0 if and only if limη↘0 ηm(λ + iη) 6= 0, and the absolutely continuous
spectrum of TD can be represented as

σac(TD) = clac {λ ∈ R : 0 < Imm(λ + i0)<+∞} .

Analogously the spectra of realizations with other boundary conditions can be character-
ized in terms of the function m(·) and the boundary condition; cf. [41, 122]. Because of
this one-to-one correspondence the Titchmarsh–Weyl m-function became an indispensable
tool in the spectral analysis of Sturm–Liouville differential operators as well as more gen-
eral Hamiltonian and canonical systems; for a small selection from the vast number of
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contributions during the last decades see, e.g., [13, 20, 35, 45, 60, 64, 73, 86, 114, 115] for
direct spectral problems and [31,33,38,61–63,90,100,116] for inverse problems. We point
out that in the recent past various attempts were made to carry over several elements of the
classical Titchmarsh–Weyl theory to partial differential operators; for contributions to this
field we refer the reader to [4, 5, 21, 36, 37, 58, 112]. However, to the best of our knowl-
edge no generalizations of the classical spectral characterization via the Titchmarsh–Weyl
m-function to partial differential operators were obtained so far.

Besides Theorem 1.2 and Theorem 1.3 we provide extensions and generalizations of these
results. We show that the spectrum of AD can even be recovered from the partial knowledge
of M(λ ) on any nonempty, open subset of ∂Ω. Furthermore, we provide characterizations
of the spectra of the operators AΘ in (1.3) in terms of the Dirichlet-to-Neumann map M(λ )
and the boundary operator Θ.

The methods which serve us to prove the main results of the present thesis are strongly
inspired by modern approaches to the extension theory of symmetric operators via bound-
ary triples and their generalizations. Given a closed, densely defined, symmetric operator
S with equal defect numbers in a Hilbert space H one fixes an operator T which is dense
in the adjoint operator S∗ with respect to the graph norm and two abstract boundary map-
pings Γ0 and Γ1 which are defined on domT and map into an auxiliary Hilbert space G. It
is assumed that the abstract Green identity

(Tu,v)− (u,T v) = (Γ1u,Γ0v)− (Γ0u,Γ1v), u,v ∈ domT, (1.4)

is satisfied, where (·, ·) stands for both the inner products in H and in G. One defines an
abstract Weyl function via the relation

M(λ )Γ0uλ = Γ1uλ , λ ∈ C\R, (1.5)

where uλ is the unique solution in domT of the equation Tuλ = λuλ . The restriction of T
to the kernel of Γ0 defines a selfadjoint operator A0 inH. It can be shown that the function
M(·) in this abstract setting determines the operator A0 uniquely up to unitary equivalence
and contains the complete spectral information of A0—if and only if the underlying sym-
metric operator S is simple or completely non-selfadjoint, that is, there exists no nontrivial
subspace which reduces S to a selfadjoint operator; cf. Appendix A.2 for more details. In
order to treat elliptic differential operators on Lipschitz domains in such a framework it is
natural to consider the symmetric operator

Su = Lu, domS =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),u|∂Ω =
∂u

∂νL

∣∣
∂Ω

= 0
}
, (1.6)

and the operator

Tu = Lu, domT =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω)
}
,
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in L2(Ω), and the boundary mappings

Γ0u = u|∂Ω and Γ1u =− ∂u
∂νL

∣∣
∂Ω

, u ∈ domT.

For these mappings Γ0 and Γ1 the relation (1.4) is satisfied due to the classical second
Green identity, where the right-hand side must be interpreted in the sense of the dual-
ity between the Sobolev spaces H1/2(∂Ω) and H−1/2(∂Ω) instead of a Hilbert space in-
ner product. Note that in this case the abstract Weyl function in (1.5) coincides with the
Dirichlet-to-Neumann map and the operator A0 = T � kerΓ0 is given by the Dirichlet op-
erator AD. However, in order to obtain a complete picture of the Dirichlet operator and its
spectrum from the knowledge of the Dirichlet-to-Neumann map it is necessary to ensure
the simplicity of the symmetric operator S in (1.6). This problem is solved in the present
thesis for a large class of domains and elliptic differential expressions; cf. Proposition 4.3
and Appendix A.2. This generalizes results on the simplicity of symmetric ordinary dif-
ferential operators from [65].

A more detailed discussion of modern methods in the extension theory of symmetric op-
erators as boundary triples and their generalizations can be found in [21, 46–50, 66, 85,
108, 109, 112]. The treatment of elliptic differential operators with the help of extension
theory goes back to the fundamental works [18, 32, 67, 68, 96, 124]. More recent results
on this topic can be found in, e.g., [1, 21, 36, 37, 59, 97, 107]. For further recent publi-
cations in the field of direct and inverse spectral theory for elliptic differential operators
see [6, 9, 14, 22–24, 58, 70–72, 99].

Let us give a brief outline of this thesis. In the first chapter we shortly provide some basic
facts on bounded and unbounded linear operators and, especially, on the spectra of selfad-
joint operators in Hilbert spaces. Moreover, we recall the definitions and some of the most
important facts concerning Sobolev spaces on Lipschitz domains and on their boundaries.
In Chapter 3 we introduce operator realizations of elliptic differential expressions with
Dirichlet, Neumann, and generalized Robin boundary conditions. We prove their selfad-
jointness and investigate the solvability of related boundary value problems, which finally
allows us to define Dirichlet-to-Neumann and Robin-to-Dirichlet maps. The remaining
two chapters contain the main results of this thesis. Chapter 4 is devoted to the uniqueness
and reconstruction results of Calderón type and in Chapter 5 we develop spectral theory
for selfadjoint elliptic differential operators via the Dirichlet-to-Neumann map as a mul-
tidimensional Titchmarsh–Weyl m-function. The thesis closes with two appendices. The
first one provides facts on the spectra of finite Borel measures that are used in Chapter 5
for the description of the absolutely continuous and singular continuous spectrum. In the
second one we discuss the notion of simplicity of a symmetric operator and point out its
connection to the present work.



2 PRELIMINARIES

In this preliminary chapter we provide basic facts and definitions which play a role in the
main part of the present thesis. We are concerned with linear operators in Banach spaces,
particularly with selfadjoint operators in Hilbert spaces and with their spectra. Moreover,
we recall some elements of the representation theory for semibounded sesquilinear forms
and discuss some of the most important statements concerning Sobolev spaces on Lipschitz
domains and on their boundaries.

2.1 Linear operators and analytic operator functions

In this section we discuss basics on bounded and unbounded linear operators in Banach
spaces and on analytic functions whose values are bounded linear operators. For a more
detailed exposition we refer the reader to the standard works [3, 54, 110].

Let X and Y be complex Banach spaces. For a linear operator T from X to Y we denote by
domT , kerT , and ranT the domain, kernel, and range, respectively, of T . The restriction
of T to a subspace D of domT is denoted by T � D. For a closed operator T from X to X
we denote by

ρ(T ) =
{

λ ∈ C : (T −λ )−1 is bounded and everywhere defined in X
}

the resolvent set of T and by σ(T ) = C\ρ(T ) the spectrum of T . Recall that ρ(T ) is an
open subset of C and that, hence, σ(T ) is closed.

A conjugation on a complex Banach space X is a continuous, antilinear mapping
X 3 u 7→ u∈X with (u) = u; the reader may think of the complex conjugation on a function
space. Assume that X is equipped with a conjugation and let X ′ denote the dual space of X ,
which consists of all bounded, linear functionals v : X → C. We define the dual pairings
between X and X ′ by

(v,u)X ′,X := (u,v)X ,X ′ := v(u), u ∈ X ,v ∈ X ′.

Note that each of the mappings (·, ·)X ′,X : X ′×X → C and (·, ·)X ,X ′ : X ×X ′→ C is linear
in the first and antilinear in the second entry.

7



8 2 Preliminaries

Assume that the Banach spaces X and Y are equipped with conjugations and let T : X→Y
be a bounded, everywhere defined linear operator. The adjoint operator T ∗ : Y ′→ X ′ of T
is defined by the identity

(Tu,v)Y,Y ′ = (u,T ∗v)X ,X ′, u ∈ X ,v ∈ Y ′.

It follows from the closed graph theorem that T ∗ is bounded. Moreover, it is clear from
the definition that (T ∗)∗ = T holds.

Let G ⊂ C be an open, nonempty set and let M(z) : X → Y be a bounded linear operator
for each z ∈ G. The operator function z 7→ M(z) is called holomorphic on G if for each
z0 ∈ G the limit

lim
z→z0

M(z)−M(z0)

z− z0

exists in the space of bounded linear operators from X to Y with respect to the usual
operator topology. Recall that the operator function M(·) is holomorphic on G if and only
if it is analytic on G, that is, M(·) can be represented locally by a power series which
converges with respect to the operator topology.

Let the operator function z 7→ M(z) be analytic on G and assume that λ ∈ C is a pole of
M(·) of order n, that is, there exists an open ball B centered at λ such that B\{λ} ⊂ G,

lim
z→λ

(z−λ )nM(z) exists and is nontrivial, and lim
z→λ

(z−λ )n+1M(z) = 0

in the operator topology. Then the residue Resλ M of M(·) at λ is given by

Resλ M =
1

2πi

∫
Γ

M(z)dz, (2.1)

where Γ is the boundary of the ball B (parametrized in the positive direction). If the order
of the pole is one then the relation

Resλ M = lim
z→λ

(z−λ )M(z)

holds.

2.2 Selfadjoint linear operators and their spectra

In this section we shortly recall some well-known facts on (unbounded) selfadjoint op-
erators and on their spectra. In particular, we discuss the notions of the absolutely con-
tinuous and the singular continuous spectrum. This and more can be found in the text
books [3, 81, 110].
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Let H be a complex Hilbert space with scalar product (·, ·) and corresponding norm ‖ · ‖,
where we comply with the convention that the scalar product (·, ·) is linear in the first and
antilinear in the second entry. Let A be a densely defined linear operator in H. Then the
adjoint A∗ of A inH is defined by A∗v = w, v ∈ domA∗, where

domA∗ =
{

v ∈H : exists w ∈H such that (Au,v) = (u,w) for all u ∈ domA
}
.

Note that in the case domA =H this coincides with the above definition of A∗. Further-
more, note that A∗ always is a closed operator in H. The operator A is called symmet-
ric if (Au,v) = (u,Av) holds for all u,v ∈ domA or, equivalently, if (Au,u) is real for all
u ∈ domA. Moreover, A is called selfadjoint if A = A∗ holds. Clearly each selfadjoint
operator is symmetric, but the converse does not hold.

Let A be a selfadjoint linear operator in H. Then its spectrum σ(A) is contained in R and
it is the union of the disjoint sets σp(A) and σc(A), where the set of eigenvalues

σp(A) =
{

λ ∈ R : ker(A−λ ) 6= {0}
}

of A is called the point spectrum and

σc(A) =
{

λ ∈ R : (A−λ )−1 exists and is unbounded
}

is called the continuous spectrum of A. Recall that the spectrum of A is said to be purely
discrete if σ(A) consists of isolated eigenvalues with finite multiplicities. For instance,
σ(A) is purely discrete if the operator (A− λ )−1 is compact for one (and, hence, all)
λ ∈ ρ(A).

A selfadjoint operator A is called semibounded from below by µ ∈ R if and only if

(Au,u)≥ µ‖u‖2, u ∈ domA.

In this case the spectrum of A is bounded from below by µ , i.e., σ(A)⊂ [µ,+∞).

Each selfadjoint operator A gives rise to an operator-valued measure E(·) on the Borel
σ -algebra in R whose values are orthogonal projections inH, such that

A =
∫

σ(A)

tdE(t)

holds, where the integral on the right-hand side converges in the strong sense. The measure
E(·) is called the spectral measure of A. For each measurable function f : σ(A)→ R the
operator f (A) is defined as

f (A) =
∫

σ(A)

f (t)dE(t), dom f (A) =
{

u ∈H :
∫

σ(A)

| f (t)|2d(E(t)u,u)< ∞

}
.
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Recall that λ ∈ σp(A) if and only if E({λ}) 6= 0 and that in this case ranE({λ}) =
ker(A−λ ) holds, that is, E({λ}) is the orthogonal projection inH onto the eigenspace of
A corresponding to λ . If the eigenvalue λ is isolated in σ(A) then λ is a pole of order one
of the analytic operator function ρ(A) 3 λ 7→ R(λ ) = (A−λ )−1 and the formula

E({λ}) =−Resλ R =− 1
2πi

∫
Γ

(A− z)−1dz (2.2)

holds, where Γ is the boundary of an open ball B centered at λ with B \ {λ} ⊂ ρ(A);
cf. (2.1). Moreover, λ ∈ σ(A) if and only if E((λ − ε,λ + ε)) 6= 0 holds for each ε > 0.
Note that, in particular, each isolated point in σ(A) is an eigenvalue. For a < b with
a,b /∈ σp(A) the spectral projection E((a,b)) of the interval (a,b) with respect to A can be
expressed via the Stone formula

E((a,b))u = lim
ε↘0

1
2πi

b∫
a

((
A− (t + iε)

)−1u−
(
A− (t− iε)

)−1u
)

dt, u ∈H, (2.3)

where the integral and the limit have to be taken with respect to the topology inH.

With the help of the spectral measure the continuous spectrum of a selfadjoint operator A
can be decomposed into an absolutely continuous and a singular continuous part. For each
u ∈ H let us introduce the scalar measure µu = (E(·)u,u) on the Borel σ -algebra of R.
Recall that the measure µu is called absolutely continuous (with respect to the Lebesgue
measure | · |) if µu(χ) = 0 holds for each Borel set χ ⊂R with |χ|= 0 and singular if there
exists a Borel set χ with |χ|= 0 and µu(R\ χ) = 0. We define the absolutely continuous
part and the singular part ofH with respect to A by

Hac =Hac(A) = {u ∈H : µu is absolutely continuous}

and

Hs =Hs(A) = {u ∈H : µu is singular} ,

respectively. Recall that H =Hac⊕Hs holds. Furthermore, let us denote by Hp =Hp(A)
the closed span of all eigenvectors of A. Then Hp ⊂ Hs and we call Hsc = Hsc(A) =
Hs	Hp the singular continuous part of H with respect to A. It turns out that the Hilbert
spacesHp,Hac,Hsc, andHs are reducing subspaces for the operator A. Let

Aiu = Au, domAi = domA∩Hi

inHi denote the restriction of A toHi, i = ac,sc. Then the absolutely continuous spectrum
σac(A) and the singular continuous spectrum σsc(A) of A are defined by

σac(A) = σ(Aac) and σsc(A) = σ(Asc),

respectively.
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2.3 Sesquilinear forms and representation theorems

In this section we shortly recall some basic facts on semibounded sesquilinear forms and
their representations via selfadjoint operators, as they will be used in Chapter 3 below. The
text of this section is based on [81, Chapter VI].

Let us first introduce the basic notions. In this section H is a complex Hilbert space with
scalar product (·, ·) and corresponding norm ‖ · ‖.

Definition 2.1. Let D⊂H be a linear subspace ofH. A mapping a= a[·, ·] : D×D→C is
called a sesquilinear form (in short: a form) inH if a[·, ·] is linear in the first and antilinear
in the second entry. For the domain D of a we usually write doma. The form a is called
densely defined if doma is dense inH. It is called symmetric if

a[u,v] = a[v,u], u,v ∈ doma.

Moreover, we say that a is semibounded from below if there exists µ ∈ R with

a[u,u]≥ µ‖u‖2, u ∈ doma;

in this case we shortly write a≥ µ .

Note that a form a in H is symmetric if and only if a[u,u] is real for all u ∈ doma. In
particular, if a ≥ µ for some µ ∈ R then a is symmetric and generates a scalar product
(·, ·)a on the linear space doma via

(u,v)a = a[u,v]+ (1−µ)(u,v), u,v ∈ doma; (2.4)

we denote by ‖ · ‖a the norm which is induced by (·, ·)a on doma. Obviously the choice
of µ is not unique, since a≥ µ implies a≥ µ̃ for each µ̃ < µ . Nevertheless, if we replace
µ in (2.4) by µ̃ , we obtain a norm on doma which is equivalent to ‖ · ‖a. Therefore in the
following we do not care about the precise choice of µ .

Furthermore we need the important notion of a closed semibounded form.

Definition 2.2. A semibounded sesquilinear form a in H is called closed if (doma,(·, ·)a)
is a Hilbert space. Moreover, we say that a subspace D′ of doma is a core of a if D′ is
dense in (doma,(·, ·)a).

Alternatively, the notions of a closed form and of a core can be defined via form conver-
gence, see [81, Section VI.1.3], but we will not make use of this concept in the following.

One of the main statements on closed semibounded forms is the following famous repre-
sentation theorem. We remark that it is provided in [81, Chapter VI, Theorem 2.1] in the
more general framework of sectorial forms.
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Theorem 2.1. Let a be a densely defined, closed, symmetric sesquilinear form which is
semibounded from below by some µ ∈ R. Then there exists a unique selfadjoint operator
A inH with domA⊂ doma and

a[u,v] = (Au,v), u ∈ domA,v ∈ doma.

The operator A is semibounded from below by µ . Moreover, if u∈ doma and w∈H satisfy

a[u,v] = (w,v)

for all v belonging to a core of a then u ∈ domA and Au = w.

2.4 Sobolev spaces and trace maps

In this section we define Sobolev spaces on Lipschitz domains and on their boundaries and
provide some basic facts which are connected with them. We mainly follow the account
in [101]; see also [2, 55, 56, 96] for more details.

Let Ω ⊂ Rn, n ≥ 1, be an open set. As usual, we denote by L2(Ω) the Hilbert space of
(equivalence classes of) square-integrable, complex-valued functions on Ω, equipped with
the scalar product

(u,v)L2(Ω) =
∫
Ω

uvdx, u,v ∈ L2(Ω),

and the associated norm ‖ · ‖L2(Ω). In the following we will usually just write (·, ·) and
‖ · ‖ instead of (·, ·)L2(Ω) and ‖ · ‖L2(Ω), respectively, when no confusion can arise. By
C∞

0 (Ω) we denote the space of all functions from Ω to C which are arbitrarily often dif-
ferentiable and have a compact support in Ω. Recall that C∞

0 (Ω) is dense in L2(Ω). For
α = (α1, . . . ,αn)

T ∈ Nn
0 and ϕ ∈C∞

0 (Ω) we set

Dα
ϕ =

∂ α1

∂xα1
1

. . .
∂ αn

∂xαn
n

ϕ.

Moreover, we write suppϕ for the support of ϕ ∈ C∞
0 (Ω). We say that a sequence

(ϕk)k∈N ⊂C∞
0 (Ω) converges to ϕ ∈C∞

0 (Ω) in C∞
0 (Ω) if there exists a compact set K ⊂ Ω

such that suppϕk,supp phi ⊂ K for all k ∈ N and Dαϕk converges to Dαϕ uniformly on
K for each α ∈ Nn

0. A distribution is a linear mapping from C∞
0 (Ω) to C which is sequen-

tially continuous with respect to this convergence in C∞
0 (Ω). We say that a distribution T

belongs to L2(Ω) and write T ∈ L2(Ω) if there exists u ∈ L2(Ω) with

T (ϕ) =
∫
Ω

uϕdx, ϕ ∈C∞
0 (Ω).
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In this sense we can identify each element of L2(Ω) with a distribution. Moreover, we
define the derivative DαT of a distribution T by

(DαT )(ϕ) = (−1)|α|T (Dα
ϕ), ϕ ∈C∞

0 (Ω), (2.5)

where |α|= ∑
n
i=1 αi. Clearly, DαT is again a distribution.

We are now able to introduce the Sobolev spaces of integer order. For every integer k ≥ 0
we set

Hk(Ω) =
{

u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all α ∈ Nn
0 with |α| ≤ k

}
.

Equipped with the scalar product

(u,v)Hk(Ω) = ∑
0≤|α|≤k

(Dαu,Dαv)L2(Ω), u,v ∈ Hk(Ω),

Hk(Ω) is a separable Hilbert space; the corresponding norm is denoted by
‖ · ‖Hk(Ω). We write Hk

0(Ω) for the closure of C∞
0 (Ω) in the Hilbert space Hk(Ω). More-

over, we denote by (·, ·)−k,k the sesquilinear duality between Hk
0(Ω) and its dual H−k(Ω) =

(Hk
0(Ω))′ (with respect to the usual complex conjugation; cf. Section 2.1). It satisfies

(u,v)−k,k =
∫
Ω

uvdx = (u,v)L2(Ω), u ∈ L2(Ω),v ∈ Hk
0(Ω).

Additionally, we define the local Sobolev space Hk
loc(Ω) by

Hk
loc(Ω) =

{
u ∈ L2

loc(Ω) : ϕu ∈ Hk(Ω) for all ϕ ∈C∞
0 (Rn) with suppϕ ⊂Ω

}
,

k≥ 1, where we write u∈ L2
loc(Ω) if and only if u|O ∈ L2(O) holds for each open, bounded

set O with O ⊂Ω.

Recall that the Fourier transformation F : L2(Rn)→ L2(Rn) is the unique unitary operator
in L2(Rn) which satisfies

(Fu)(x) =
1

(2π)
n
2

∫
Rn

eix·yu(y)dy, x ∈ Rn, u ∈ L2(Rn)∩L1(Rn),

where x ·y denotes the scalar product of x and y in Rn. We define the Sobolev space Hs(Rn)
of real order s≥ 0 on Rn by

Hs(Rn) =
{

u ∈ L2(Rn) : (1+ | · |2)
s
2Fu ∈ L2(Rn)

}
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and equip it with the scalar product

(u,v)Hs(Rn) =
∫
Rn

(1+ |x|2)su(x)v(x)dx, u,v ∈ Hs(Rn). (2.6)

Then Hs(Rn) is a separable Hilbert space. We denote the norm associated with (2.6) by
‖ ·‖Hs(Rn). For each positive integer s = k this new definition of Hs(Rn) coincides with the
above one for Ω = Rn with equivalent norms so that we will not distinguish them.

In order to define Sobolev spaces on the boundary of an open set we need additional as-
sumptions. Following the lines of [101, Chapter 3] we say that Ω⊂Rn, n≥ 2, is a Lipschitz
hypograph if there exists a Lipschitz continuous function ζ : Rn−1→ R such that

Ω =
{
(x1, . . . ,xn)

T ∈ Rn : xn < ζ (x1, . . . ,xn−1)
}
. (2.7)

Using this notion a Lipschitz domain is defined in the following way.

Definition 2.3. An open set Ω ⊂ Rn is called a Lipschitz domain if its boundary ∂Ω is
compact and there exist sets W1, . . . ,Wk,Ω1, . . . ,Ωk ⊂ Rn with the following properties.

(i) Wj is open, 1≤ j ≤ k, and ∂Ω⊂
⋃

1≤ j≤k Wj.

(ii) Ω j can be transformed by a rotation and a translation into a Lipschitz hypograph,
1≤ j ≤ k.

(iii) Wj∩Ω =Wj∩Ω j for 1≤ j ≤ k.

We remark that a Lipschitz domain does not have to be bounded; only its boundary is
compact. For instance, if Ω is a bounded Lipschitz domain then also Rn \Ω is a Lipschitz
domain. Moreover, we remark that with this definition a Lipschitz domain does not need
to be connected.

On the boundary of a Lipschitz domain a surface measure and an outer unit normal field
can be defined in the following way. Let first Ω be a Lipschitz hypograph and let the
Lipschitz continuous function ζ be as above. By Rademacher’s theorem ζ is differentiable
almost everywhere on Rn−1 and its gradient ∇ζ is bounded. Thus the integral of a function
g : ∂Ω→ C with respect to the surface measure σ may be defined as∫

∂Ω

gdσ :=
∫

Rn−1

g(x,ζ (x))
√

1+ |∇ζ (x)|2dx

(if the integral on the right-hand side exists). Moreover, the outer unit normal vector field
is given by

ν(s) = (ν1(s), . . . ,νn(s))T :=
(−∇ζ (x),1)T√

1+ |∇ζ (x)|2
, s = (x,ζ (x))T ,x ∈ Rn−1.
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If Ω is a Lipschitz domain as in Definition 2.3 we can choose a partition of unity with
respect to the open cover {Wj} of ∂Ω, that is, functions ϕ j ∈ C∞

0 (Wj), 1 ≤ j ≤ k, with
∑

k
j=1 ϕ j(x) = 1 for all x ∈ ∂Ω. Then we define

∫
∂Ω

gdσ :=
k

∑
j=1

∫
Rn−1

ϕ j(x,ζ j(x))g(x,ζ j(x))
√

1+ |∇ζ j(x)|2dx,

where the ζ j correspond to the Ω j as in (2.7). As usual we denote by L2(∂Ω) the Hilbert
space of (equivalence classes of) complex-valued functions on ∂Ω which are square-
integrable with respect to σ .

In order to define Sobolev spaces on ∂Ω let us first assume that Ω is a Lipschitz hypograph
with ζ as above. For each g ∈ L2(∂Ω) we define a function gζ : Rn−1→ C by

gζ (x) = g(x,ζ (x)), x ∈ Rn−1.

With this notation for real s≥ 0 we put

Hs(∂Ω) =
{

g ∈ L2(∂Ω) : gζ ∈ Hs(Rn−1)
}

and

(g,h)Hs(∂Ω) = (gζ ,hζ )Hs(Rn−1), g,h ∈ Hs(∂Ω).

With this scalar product Hs(∂Ω) is a separable Hilbert space.

Let now Ω be a Lipschitz domain as in Definition 2.3 and let ϕ j, 1≤ j≤ k, form a partition
of unity as above. For real s≥ 0 we define

Hs(∂Ω) =
{

g ∈ L2(∂Ω) : ϕ jg ∈ Hs(∂Ω j),1≤ j ≤ k
}

and

(g,h)Hs(∂Ω) =
k

∑
j=1

(ϕ jg,ϕ jh)Hs(∂Ω j), g,h ∈ Hs(∂Ω),

so that Hs(∂Ω) becomes a separable Hilbert space. Finally we denote by H−s(∂Ω) the
dual of Hs(∂Ω). The sesquilinear duality between Hs(∂Ω) and H−s(∂Ω) is denoted by
(·, ·)−s,s and the norm on H−s(∂Ω) is given by

‖g‖H−s(∂Ω) = sup
h∈Hs(∂Ω)
‖h‖Hs(∂Ω)=1

|(g,h)−s,s|, g ∈ H−s(∂Ω).

In the present thesis we will mainly deal with the case s = 1
2 . We will write (·, ·)∂Ω for

both (·, ·)−1/2,1/2 and (·, ·)1/2,−1/2 when no confusion can arise.
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In our further considerations trace maps will play an important role. We use the notation

C∞
0 (Ω) =

{
u|

Ω
: u ∈C∞

0 (Rn)
}
.

The following proposition allows us to consider boundary values of functions in H1(Ω),
see, e.g., [101, Theorem 3.37].

Proposition 2.2. Let Ω be a Lipschitz domain. Then the trace map C∞
0 (Ω) 3 u 7→ u|∂Ω has

a unique extension to a bounded linear operator γ : H1(Ω)→H1/2(∂Ω) and the operator
γ has a bounded right inverse. In particular, γ is surjective.

In the following we will always write u|∂Ω instead of γu also for u ∈ H1(Ω). We remark
that on each Lipschitz domain the space H1

0 (Ω) defined as above coincides with the kernel
of the trace operator γ , that is,

H1
0 (Ω) =

{
u ∈ H1(Ω) : u|∂Ω = 0

}
. (2.8)

This fact we will use extensively.

Besides the trace we will also make use of the trace of the conormal derivative of u ∈
H1(Ω) with respect to the differential expression

L=−
n

∑
j,k=1

∂

∂x j
a jk

∂

∂xk
+

n

∑
j=1

(
a j

∂

∂x j
− ∂

∂x j
a j

)
+a

on Ω, where a jk,a j : Ω→C are bounded Lipschitz functions and a : Ω→R is measurable
and bounded. In order to make L formally symmetric we additionally assume a jk = ak j,
1 ≤ j,k ≤ n. Note that under these assumptions for each u ∈ H1(Ω) one can calculate
Lu in the sense of distributional derivatives, see above, and the distribution Lu is always
bounded with respect to the norm ‖ · ‖H1(Ω). Indeed, if M denotes a joint upper bound of
all the functions |a jk|, |a j|, and |a|, 1≤ j,k ≤ n, then for v ∈C∞

0 (Ω) we have

|(Lu)v|=
∣∣∣∣∫

Ω

( n

∑
j,k=1

a jk
∂u
∂xk
· ∂v

∂x j
+

n

∑
j=1

(
a j

∂u
∂x j
· v+a ju ·

∂v
∂x j

)
+auv

)
dx
∣∣∣∣

≤M
n

∑
j,k=1

∫
Ω

∣∣∣ ∂u
∂xk

∣∣∣∣∣∣ ∂v
∂x j

∣∣∣dx+M
n

∑
j=1

∫
Ω

∣∣∣ ∂u
∂x j

∣∣∣|v|dx

+M
n

∑
j=1

∫
Ω

∣∣∣ ∂v
∂x j

∣∣∣|u|dx+M
∫
Ω

|u||v|dx

≤M
n

∑
j,k=1

∥∥∥ ∂u
∂xk

∥∥∥
L2(Ω)

∥∥∥ ∂v
∂x j

∥∥∥
L2(Ω)

+M‖v‖L2(Ω)

n

∑
j=1

∥∥∥ ∂u
∂x j

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)

n

∑
j=1

∥∥∥ ∂v
∂x j

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)‖v‖L2(Ω);
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cf. (2.5). Thus Lu can be regarded as an element of H−1(Ω) and we will just write Lu ∈
H−1(Ω). Corresponding to the differential expression L we consider the sesquilinear form
which is given by

a[u,v] =
∫
Ω

( n

∑
j,k=1

a jk
∂u
∂xk
· ∂v

∂x j
+

n

∑
j=1

(
a j

∂u
∂x j
· v+a ju ·

∂v
∂x j

)
+auv

)
dx (2.9)

for u,v ∈ H1(Ω). We will study the properties of this form later on; cf. Lemma 3.1 below.
It can be verified that the following definition makes sense, see, e.g., [101, Lemma 4.3].

Definition 2.4. Let u ∈ H1(Ω) with Lu ∈ L2(Ω). Then the unique g ∈ H−1/2(∂Ω) with

a[u,v] = (Lu,v)+(g,v|∂Ω)∂Ω, v ∈ H1(Ω), (2.10)

is called the conormal derivative of u with respect to L; we write g = ∂u
∂νL
|∂Ω.

Note that for u,v∈C∞
0 (Ω) the duality on the right-hand side of (2.10) turns into an integral

and (2.10) then is simply the first Green identity with

g =
n

∑
j,k=1

a jkν j
∂u
∂xk

∣∣
∂Ω

+
n

∑
j=1

a jν ju|∂Ω.

Moreover, from (2.10) we immediately conclude the second Green identity

(Lu,v)− (u,Lv) =
(

u|∂Ω,
∂v

∂νL

∣∣
∂Ω

)
∂Ω

−
(

∂u
∂νL

∣∣
∂Ω

,v|∂Ω

)
∂Ω

(2.11)

for u,v ∈ H1(Ω) with Lu,Lv ∈ L2(Ω).

We conclude this section with a collection of embedding statements; the first of them is
known as the criterion of Rellich. For proofs we refer the reader to, e.g., [55, 101].

Theorem 2.3. Let Ω⊂ Rn be an open set. Then the following assertions hold.

(i) If Ω is bounded then the embedding of H1
0 (Ω) into L2(Ω) is compact.

(ii) If Ω is a bounded Lipschitz domain then the embedding of H1(Ω) into L2(Ω) is
compact.

(iii) If Ω is a Lipschitz domain then the embedding of H1/2(∂Ω) into H−1/2(∂Ω) is
compact.





3 SELFADJOINT ELLIPTIC DIFFERENTIAL OPERATORS AND
BOUNDARY MAPPINGS

The aim of the present chapter is to introduce the central objects which appear in the main
results of this thesis and to provide some of their basic properties. We consider a second
order, formally symmetric, uniformly elliptic differential expression L on a (bounded or
unbounded) Lipschitz domain Ω ⊂ Rn. We establish a wide class of selfadjoint realiza-
tions of L in the Hilbert space L2(Ω) subject to Dirichlet and nonlocal generalized Robin
boundary conditions; this will be done with the help of the classical theory of representing
operators for semibounded sesquilinear forms in Hilbert spaces; cf. Section 2.3. Moreover,
we introduce the Dirichlet-to-Neumann map and Robin-to-Dirichlet maps on the boundary
∂Ω corresponding to the differential expression L−λ with a spectral parameter λ ∈C.

For more details on selfadjoint elliptic differential operators on bounded and unbounded
domains we refer the reader to the classical works [55, 67, 96, 124] and to the recent pub-
lications [19, 21, 24, 57, 59, 69, 70, 99]. For recent studies of the corresponding boundary
operators and related questions the reader may consult [4, 7, 8, 36, 58].

In this and the following chapters we will make the following assumptions.

Assumption 3.1. The set Ω⊂ Rn, n≥ 2, is a Lipschitz domain, see Definition 2.3. More-
over, L is a second order partial differential expression on Ω of the form

L=−
n

∑
j,k=1

∂

∂x j
a jk

∂

∂xk
+

n

∑
j=1

(
a j

∂

∂x j
− ∂

∂x j
a j

)
+a

with bounded Lipschitz coefficients a jk = ak j,a j : Ω→ C, 1 ≤ j,k ≤ n, and a bounded,
measurable coefficient a : Ω→ R. The expression L is uniformly elliptic on Ω, that is,
there exists E > 0 such that

n

∑
j,k=1

a jk(x)ξ jξk ≥ E
n

∑
k=1

ξ
2
k , x ∈Ω, ξ = (ξ1, . . . ,ξn)

T ∈ Rn. (3.1)

We remark that the condition (3.1) already implies

n

∑
j,k=1

a jk(x)ξ jξk ≥ E
n

∑
k=1
|ξk|2, x ∈Ω, ξ = (ξ1, . . . ,ξn)

T ∈ Cn. (3.2)

We first focus on the selfadjoint realization of L with a Dirichlet boundary condition.

19
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3.1 The Dirichlet operator and the Dirichlet-to-Neumann map

In this section we define the selfadjoint Dirichlet operator corresponding to the differential
expression L in L2(Ω) and the Dirichlet-to-Neumann map associated with L− λ for λ

outside the spectrum of the Dirichlet operator. The results of this section are essentially
known but it is difficult to find references under our precise assumptions. Therefore, for
the convenience of the reader we provide proofs. We make use of the following lemma.

Lemma 3.1. Let Assumption 3.1 be satisfied and let the sesquilinear form a in L2(Ω) be
defined by

a[u,v] =
∫
Ω

( n

∑
j,k=1

a jk
∂u
∂xk
· ∂v

∂x j
+

n

∑
j=1

(
a j

∂u
∂x j
· v+a ju ·

∂v
∂x j

)
+auv

)
dx,

doma= H1(Ω). (3.3)

Then a is densely defined, symmetric, and semibounded from below by some µ ∈R. More-
over, a is bounded in H1(Ω), that is, there exists C > 0 such that

|a[u,v]| ≤C‖u‖H1(Ω)‖v‖H1(Ω), u,v ∈ H1(Ω).

The expression ‖u‖2
a = (a− µ + 1)[u,u], u ∈ H1(Ω), defines a norm on H1(Ω) which is

equivalent to ‖ · ‖H1(Ω); in particular, a is closed.

Proof. Clearly, a is densely defined in L2(Ω). For u,v ∈ H1(Ω) we have

a[v,u] =
∫
Ω

( n

∑
j,k=1

a jk
∂u
∂x j
· ∂v

∂xk
+

n

∑
j=1

(
a j

∂u
∂x j
· v+a ju ·

∂v
∂x j

)
+auv

)
dx

= a[u,v],

see Assumption 3.1; hence a is symmetric. Let us observe next that a is semibounded from
below. Indeed, for u ∈ doma= H1(Ω) we obtain with the help of (3.2)

a[u,u]≥
∫
Ω

( n

∑
j=1

(
E
∣∣∣ ∂u
∂x j

∣∣∣2−2‖a j‖∞|u|
∣∣∣ ∂u
∂x j

∣∣∣)+(infa)|u|2
)

dx

=
E
2

∫
Ω

|∇u|2dx

+
∫
Ω

( n

∑
j=1

((√
E/2

∣∣∣ ∂u
∂x j

∣∣∣− ‖a j‖∞√
E/2
|u|
)2
−

2‖a j‖2
∞

E
|u|2
)
+(infa)|u|2

)
dx

≥ E
2

∫
Ω

|∇u|2dx+
(
− 2

E

n

∑
j=1
‖a j‖2

∞ + infa
)
‖u‖2

L2(Ω) ≥ µ‖u‖2
L2(Ω)
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with µ :=− 2
E ∑

n
j=1 ‖a j‖2

∞+ infa, where ‖a j‖∞ = supx∈Ω |a j(x)|. Hence a is semibounded
from below. Note that for each u ∈ H1(Ω) the above estimate also yields

‖u‖2
a = (a−µ +1)[u,u]≥ E

2

∫
Ω

|∇u|2dx+
∫
Ω

|u|2dx≥min
{E

2
,1
}
‖u‖2

H1(Ω). (3.4)

Moreover, for u,v ∈ H1(Ω) we have

|a[u,v]| ≤M
n

∑
j,k=1

∫
Ω

∣∣∣ ∂u
∂xk

∣∣∣∣∣∣ ∂v
∂x j

∣∣∣dx+M
n

∑
j=1

∫
Ω

∣∣∣ ∂u
∂x j

∣∣∣|v|dx

+M
n

∑
j=1

∫
Ω

∣∣∣ ∂v
∂x j

∣∣∣|u|dx+M
∫
Ω

|u||v|dx

≤M
n

∑
j,k=1

∥∥∥ ∂u
∂xk

∥∥∥
L2(Ω)

∥∥∥ ∂v
∂x j

∥∥∥
L2(Ω)

+M‖v‖L2(Ω)

n

∑
j=1

∥∥∥ ∂u
∂x j

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)

n

∑
j=1

∥∥∥ ∂v
∂x j

∥∥∥
L2(Ω)

+M‖u‖L2(Ω)‖v‖L2(Ω),

where M denotes a joint upper bound of all the functions |a jk|, |a j|, and |a|, 1 ≤ j,k ≤ n.
Hence there exists C > 0 such that

|a[u,v]| ≤C‖u‖H1(Ω)‖v‖H1(Ω), u,v ∈ H1(Ω).

From this it follows together with (3.4) that the norms ‖ · ‖a and ‖ · ‖H1(Ω) are equivalent
on H1(Ω). In particular, (H1(Ω),‖ · ‖a) is complete, i.e., a is closed. This completes the
proof of the lemma.

The Dirichlet operator associated with L in L2(Ω) is defined by

ADu = Lu, domAD =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),u|∂Ω = 0
}
. (3.5)

We prove that it is selfadjoint and summarize some of its properties in the following theo-
rem; cf. also the monographs [44, 55].

Theorem 3.2. Let Assumption 3.1 be satisfied. Then the Dirichlet operator AD in (3.5)
is selfadjoint and semibounded from below in L2(Ω). Moreover, if Ω is bounded then the
spectrum of AD is purely discrete and accumulates to +∞.

Proof. Let us define a sesquilinear form aD in L2(Ω) by

aD[u,v] := a[u,v], domaD = H1
0 (Ω),
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where a is given by (3.3). Clearly, aD is densely defined, and it follows from Lemma 3.1
that aD is symmetric and semibounded from below by some µ ∈ R and that the norm
induced by ‖ · ‖2

aD
:= (aD−µ +1)[·, ·] on H1

0 (Ω) is equivalent to the H1-norm on H1
0 (Ω).

In particular, (domaD,‖ · ‖aD) is a Hilbert space, that is, aD is closed. By Theorem 2.1
there exists a unique selfadjoint operator A in L2(Ω) with domA⊂ domaD = H1

0 (Ω) and

aD[u,v] = (Au,v), u ∈ domA,v ∈ domaD.

We will prove next that A = AD. Let u ∈ domA. Then for each v ∈C∞
0 (Ω) ⊂ domaD we

have

(Au,v) = aD[u,v]

=
∫
Ω

( n

∑
j,k=1

a jk
∂u
∂xk
· ∂v

∂x j
+

n

∑
j=1

(
a j

∂u
∂x j
· v+a ju ·

∂v
∂x j

)
+auv

)
dx

=
∫
Ω

(
−

n

∑
j,k=1

∂

∂x j

(
a jk

∂u
∂xk

)
v+

n

∑
j=1

(
a j

∂u
∂x j
· v− ∂

∂x j

(
a ju
)
· v
)
+auv

)
dx

= (Lu,v)−1,1 (3.6)

by the definition of the distributional derivative (2.5). In particular, Au = Lu in the dis-
tributional sense. Since A is an operator in L2(Ω), it turns out that Lu ∈ L2(Ω), that
is, u ∈ H1

0 (Ω) with Lu ∈ L2(Ω). Hence u belongs to domAD, see (2.8), and satisfies
ADu =Lu = Au. Let, conversely, u belong to domAD, that is, u∈H1

0 (Ω) with Lu∈ L2(Ω).
Then for each v ∈C∞

0 (Ω) we obtain

(ADu,v) = (Lu,v) = aD[u,v] (3.7)

by the definition of the distributional derivative; cf. (3.6). Note that it follows from the
equivalence of the norms ‖ · ‖a and ‖ · ‖H1(Ω), see Lemma 3.1, that C∞

0 (Ω) is a core of aD.
From (3.7) and Theorem 2.1 we obtain u ∈ domA and Au = ADu. Thus AD coincides with
A. In particular, AD is selfadjoint. Moreover, from Theorem 2.1 we obtain that AD is
semibounded from below.

Let now Ω be bounded. Clearly, for each λ ∈ ρ(AD) the operator (AD−λ )−1 is bounded
and everywhere defined in L2(Ω) with ran(AD−λ )−1 = domAD ⊂ H1

0 (Ω), see (2.8). By
the closed graph theorem the operator Rλ : L2(Ω)→ H1

0 (Ω),u 7→ (AD− λ )−1u, is also
bounded. Moreover, by Theorem 2.3 the embedding ι of H1

0 (Ω) into L2(Ω) is compact.
Consequently, also (AD− λ )−1 = ιRλ is compact in L2(Ω). Therefore the spectrum of
AD only consists of isolated eigenvalues with finite multiplicities. Since, as a selfadjoint
operator which is only densely defined, AD is unbounded, the eigenvalues accumulate
to +∞.

In order to define the Dirichlet-to-Neumann map corresponding to the differential expres-
sion L−λ for λ in the resolvent set ρ(AD) of AD we need the following lemma.
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Lemma 3.3. Let Assumption 3.1 be satisfied and let AD be the selfadjoint Dirichlet op-
erator in (3.5). Then for each λ ∈ ρ(AD) and each g ∈ H1/2(∂Ω) the boundary value
problem

Lu = λu, u|∂Ω = g (3.8)

has a unique solution uλ ∈ H1(Ω).

Proof. Let g ∈H1/2(∂Ω) and λ ∈ ρ(AD). By Proposition 2.2 there exists u ∈H1(Ω) with
u|∂Ω = g. Let a be the sesquilinear form in (3.3) with doma= H1(Ω). By Lemma 3.1 a is
bounded in H1(Ω); in particular, the mapping

Fζ : H1
0 (Ω)→ C, v 7→ −(a−ζ +1)[u,v]

is bounded in H1(Ω) and antilinear for each ζ ∈ R; hence Fζ belongs to the antidual of
H1

0 (Ω). Moreover, it follows from Lemma 3.1 that the sesquilinear form

aD[u,v] = a[u,v], domaD = H1
0 (Ω),

is semibounded by some µ ∈ R and closed; cf. the proof of Theorem 3.2. In particular,
H1

0 (Ω) is a Hilbert space when it is equipped with the scalar product aD− µ + 1. By the
Fréchet–Riesz theorem there exists a unique u0 ∈ H1

0 (Ω) with

(aD−µ +1)[u0,v] = Fµ(v) =−(a−µ +1)[u,v], v ∈ H1
0 (Ω).

Consequently, (a−µ +1)[u0+u,v] = 0 for all v∈H1
0 (Ω), which implies (L−µ +1)(u0+

u) = 0; in particular, (L−λ )(u0 +u) = (µ−1−λ )(u0 +u) ∈ L2(Ω). Let us set

uλ = u0 +u− (AD−λ )−1(L−λ )(u0 +u) ∈ H1(Ω).

Then uλ |∂Ω = u|∂Ω = g and (L−λ )uλ = 0. Thus uλ is a solution of (3.8).

In order to prove the uniqueness let vλ ∈ H1(Ω) be a further solution of (3.8). Then we
have

L(uλ − vλ ) = λ (uλ − vλ ) and (uλ − vλ )|∂Ω = 0,

that is, (uλ − vλ ) ∈ ker(AD−λ ). Since λ ∈ ρ(AD), it follows uλ = vλ .

We use the observation of Lemma 3.3 in order to define the Dirichlet-to-Neumann map.

Definition 3.1. Let Assumption 3.1 be satisfied and let AD be the selfadjoint Dirichlet
operator in (3.5). Then for each λ ∈ ρ(AD) the Dirichlet-to-Neumann map is defined by

M(λ ) : H1/2(∂Ω)→ H−1/2(∂Ω), g = uλ |∂Ω 7→ −
∂uλ

∂νL

∣∣
∂Ω

, (3.9)

where uλ is the unique solution in H1(Ω) of (3.8).
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We remark that the minus sign in the definition of M(λ ) is not essential for the validity of
our main results. The sign was chosen in order to obtain an operator-valued Nevanlinna
function in analogy to the Titchmarsh–Weyl m-function for ordinary differential equations;
cf. Remark 4.1 below.

3.2 Generalized Robin operators and Robin-to-Dirichlet maps

In this section we introduce a class of selfadjoint realizations of the differential expression
L with nonlocal boundary conditions of Robin type. We consider the operators AΘ in
L2(Ω) given by

AΘu = Lu, domAΘ =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),
∂u

∂νL

∣∣
∂Ω

+Θu|∂Ω = 0
}
, (3.10)

where we make the following assumption on the operator Θ; cf. [57].

Assumption 3.2. The operator Θ : H1/2(∂Ω)→ H−1/2(∂Ω) is bounded and satisfies the
symmetry condition

(Θg,h)∂Ω = (g,Θh)∂Ω, g,h ∈ H1/2(∂Ω).

Moreover, Θ = Θ1 +Θ2 holds, where Θi : H1/2(∂Ω)→ H−1/2(∂Ω) are bounded opera-
tors, i = 1,2, Θ1 is L2-semibounded from below, i.e., there exists cΘ1 ∈ R with

(Θ1g,g)∂Ω ≥ cΘ1‖g‖
2
L2(∂Ω), g ∈ H1/2(∂Ω), (3.11)

and Θ2 is compact.

Note that, as a special case, Θ may be chosen to be the operator of multiplication with a
bounded, measurable function ϑ : ∂Ω→R. In this case the functions in the domain of AΘ

satisfy the classical Robin boundary condition

∂u
∂νL
|∂Ω +ϑu|∂Ω = 0.

Moreover, for Θ = 0 we obtain the well-known Neumann operator. We are going to prove
that AΘ is selfadjoint. We remark that Assumption 3.2 on Θ is inspired by the recent
publication [57], where selfadjointness of AΘ is shown for L=−∆ on a bounded Lipschitz
domain. Our assumptions on Θ may be slightly weakened following the ideas of [57]. In
order to keep the situation simple we restrict ourselves to the above conditions.

We use the following lemma, which can basically be found in [8, Lemma 2.3] and [57,
Lemma 4.2–Lemma 4.3] in more general versions. We give a short proof in our precise
setting. Recall that (H1(Ω))′ denotes the dual space of H1(Ω).
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Lemma 3.4. Let K : H1(Ω)→ (H1(Ω))′ be a compact linear operator. Then for each
ε > 0 there exists Cε > 0 with

|(Ku,u)1′,1| ≤ ε‖u‖2
H1(Ω)+Cε‖u‖2

L2(Ω), u ∈ H1(Ω),

where (·, ·)1′,1 denotes the duality between H1(Ω) and (H1(Ω))′.

Proof. Assume the converse, that is, there exist ε > 0 and (u j) j∈N ⊂ H1(Ω) with
‖u j‖H1(Ω) = 1, j ∈ N, and

|(Ku j,u j)1′,1|> ε + j‖u j‖2
L2(Ω), j ∈ N . (3.12)

Since H1(Ω) is reflexive, it is no restriction to assume that there exists u ∈ H1(Ω) with
u j → u weakly in H1(Ω). Moreover, since K is compact, it follows Ku j → Ku (strongly)
in (H1(Ω))′ and, hence,

(Ku j,u j)1′,1→ (Ku,u)1′,1 as j→ ∞. (3.13)

Thus (3.12) yields ‖u j‖2
L2(Ω)

→ 0 as j → ∞, hence u = 0. Then (3.13) implies
(Ku j,u j)1′,1→ 0 as j→ ∞ and (3.12) leads to the contradiction ε ≤ 0.

We are now able to prove the selfadjointness of AΘ; we remark that for an arbitrary
bounded, symmetric operator Θ : H1/2(∂Ω)→ H−1/2(∂Ω) the operator AΘ in (3.10) in
general is not selfadjoint, cf. [21,57,67]. Nevertheless, if Θ satisfies the above assumption
then selfadjointness can be guaranteed.

Theorem 3.5. Let Assumption 3.1 and Assumption 3.2 be satisfied. Then AΘ in (3.10) is
selfadjoint and semibounded from below in L2(Ω). Moreover, if Ω is bounded then the
spectrum of AΘ is purely discrete and accumulates to +∞.

Proof. Let us define a sesquilinear form aΘ in L2(Ω) by

aΘ[u,v] = a[u,v]+ (Θu|∂Ω,v|∂Ω)∂Ω, domaΘ = H1(Ω),

where a is given in (3.3). It is clear that aΘ is symmetric and densely defined in L2(Ω);
cf. Lemma 3.1 and Assumption 3.2. Let us show that aΘ is closed and semibounded
from below. For this let us observe two consequences of Lemma 3.4. On the one hand, if
γ : H1(Ω) → H1/2(∂Ω) is the trace operator in Proposition 2.2, we may choose
K = γ∗ιγ in Lemma 3.4, where ι is the compact embedding of H1/2(∂Ω) into H−1/2(∂Ω);
cf. Theorem 2.3 (iii). Then K is compact and we obtain that for each ε > 0 there exists
Cε > 0 with

‖u|∂Ω‖2
L2(∂Ω) = (ιγu,γu)∂Ω = (Ku,u)1′,1

≤ ε‖u‖2
H1(Ω)+Cε‖u‖2

L2(Ω), u ∈ H1(Ω). (3.14)
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On the other hand we may choose K = γ∗Θ2γ . Then by Lemma 3.4 for each ε > 0 there
exists a number C̃ε > 0 with

|(Θ2u|∂Ω,u|∂Ω)∂Ω|= |(γ∗Θ2γu,u)1′,1|= |(Ku,u)1′,1|
≤ ε‖u‖2

H1(Ω)+C̃ε‖u‖2
L2(Ω), u ∈ H1(Ω). (3.15)

Recall from Lemma 3.1 that the norm ‖ · ‖a induced by the scalar product a− µ + 1 on
H1(Ω) for appropriate µ ∈ R is equivalent to ‖ · ‖H1(Ω), that is, there exist c,C > 0 with

c‖u‖2
H1(Ω) ≤ ‖u‖

2
a ≤C‖u‖2

H1(Ω), u ∈ H1(Ω). (3.16)

It is no restriction to assume that cΘ1 in (3.11) is negative. Let ε > 0 be such that
c+ cΘ1ε− ε > 0. Then we obtain from (3.14), (3.15), and (3.16)

aΘ[u,u] = (a−µ +1)[u,u]+ (µ−1)‖u‖2
L2(Ω)

+(Θ1u|∂Ω,u|∂Ω)∂Ω +(Θ2u|∂Ω,u|∂Ω)∂Ω

≥ c‖u‖2
H1(Ω)+(µ−1)‖u‖2

L2(Ω)+ cΘ1ε‖u‖2
H1(Ω)+ cΘ1Cε‖u‖2

L2(Ω)

− ε‖u‖2
H1(Ω)−C̃ε‖u‖2

L2(Ω)

= (c+ cΘ1ε− ε)‖u‖2
H1(Ω)+ µ̃‖u‖2

L2(Ω), u ∈ H1(Ω),

with µ̃ = µ−1+ cΘ1Cε −C̃ε . It follows

aΘ[u,u]≥ µ̃‖u‖2
L2(Ω), u ∈ H1(Ω),

that is, aΘ is bounded from below, and

(aΘ− µ̃ +1)[u,u]≥ (c+ cΘ1ε− ε)‖u‖2
H1(Ω), u ∈ H1(Ω). (3.17)

On the other hand, since the operator Θ : H1/2(∂Ω)→ H−1/2(∂Ω) as well as the trace
map γ : H1(Ω)→ H1/2(∂Ω) are bounded, there exists M > 0 such that

(aΘ− µ̃ +1)[u,u]≤C‖u‖2
H1(Ω)+M‖u‖2

H1(Ω)+ |cΘ1Cε −C̃ε −1|‖u‖2
L2(Ω) (3.18)

holds for all u ∈ H1(Ω). From (3.17) and (3.18) it follows that aΘ− µ̃ +1 induces a norm
on H1(Ω) which is equivalent to ‖ · ‖H1(Ω). In particular, aΘ is closed. By Theorem 2.1
there exists a selfadjoint operator A in L2(Ω) with domA⊂ domaΘ = H1(Ω) and

(Au,v) = aΘ[u,v], u ∈ domA,v ∈ domaΘ.

We are going to show A = AΘ. Let first u ∈ domA. Then for each v ∈C∞
0 (Ω) we have

(Au,v) = aΘ[u,v] = a[u,v] = (Lu,v)−1,1;
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cf. the proof of Theorem 3.2. Hence Lu = Au and, in particular, Lu ∈ L2(Ω). Moreover,
for arbitrary v ∈ H1(Ω) we have(

∂u
∂νL

∣∣
∂Ω

+Θu|∂Ω,v|∂Ω

)
∂Ω

= a[u,v]− (Lu,v)+(Θu|∂Ω,v|∂Ω)∂Ω

= aΘ[u,v]− (Au,v) = 0

by the first Green identity (2.10). Since v|∂Ω runs through all of H1/2(∂Ω) as v runs
through H1(Ω), it follows ∂u

∂νL
|∂Ω +Θu|∂Ω = 0, hence u ∈ domAΘ and AΘu = Lu = Au.

Conversely, if u ∈ domAΘ then

(AΘu,v) = (Lu,v) = aΘ[u,v]−
(

∂u
∂νL

∣∣
∂Ω

+Θu|∂Ω,v|∂Ω

)
∂Ω

= aΘ[u,v]

holds for all v ∈ H1(Ω) and Theorem 2.1 implies u ∈ domA; thus AΘ = A. In particular,
AΘ is selfadjoint. Since aΘ is semibounded from below, by Theorem 2.1 the same holds
for AΘ.

Let now Ω be bounded. Then the embedding ι of H1(Ω) into L2(Ω) is compact, see
Theorem 2.3. Moreover, by the closed graph theorem the operator Rλ : L2(Ω)→ H1(Ω),
u 7→ (AΘ−λ )−1u is bounded for all λ ∈ ρ(AΘ). Therefore (AΘ−λ )−1 = ιRλ is compact.
From this it follows that the spectrum of AΘ is purely discrete. Since AΘ is selfadjoint but
not everywhere defined, AΘ is unbounded. Thus its eigenvalues accumulate to +∞.

In order to define a Robin-to-Dirichlet map we make use of the following lemma.

Lemma 3.6. Let Assumption 3.1 and Assumption 3.2 hold. Then for each λ ∈ ρ(AΘ) and
each g ∈ H−1/2(∂Ω) the boundary value problem

Lu = λu,
∂u

∂νL

∣∣
∂Ω

+Θu|∂Ω = g (3.19)

has a unique solution uλ ∈ H1(Ω).

Proof. As we have seen in the proof of Theorem 3.5 the form

aΘ[u,v] = a[u,v]+ (Θu|∂Ω,v|∂Ω)∂Ω, domaΘ = H1(Ω),

in L2(Ω) is semibounded from below by some µ ∈R and (H1(Ω),aΘ−µ +1) is a Hilbert
space. Let us first prove that for each g ∈ H−1/2(∂Ω) the boundary value problem

(L−µ +1)u = 0,
∂u

∂νL

∣∣
∂Ω

+Θu|∂Ω = g
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has a solution u in H1(Ω). Let g ∈ H−1/2(∂Ω). Indeed, by the continuity of the trace
H1(Ω) 3 u 7→ u|∂Ω ∈ H1/2(∂Ω) the mapping H1(Ω) 3 v 7→ (g,v|∂Ω)∂Ω is bounded and,
hence, belongs to the antidual of H1(Ω). By the Fréchet–Riesz theorem there exists a
unique u ∈ H1(Ω) with

(aΘ−µ +1)[u,v] = (g,v|∂Ω)∂Ω, v ∈ H1(Ω). (3.20)

In particular, (a− µ +1)[u,v] = 0 for all v ∈C∞
0 (Ω), which implies (L− µ +1)u = 0; in

particular, Lu = (µ−1)u ∈ L2(Ω). Then (3.20) yields

a[u,v]− (Lu,v) = (g−Θu|∂Ω,v|∂Ω)∂Ω, v ∈ H1(Ω),

hence ∂u
∂νL
|∂Ω +Θu|∂Ω = g; cf. Definition 2.4.

Let now λ ∈ ρ(AΘ) and u as above. Then (L−λ )u = (µ − 1− λ )u ∈ L2(Ω) and there
exists uΘ ∈ domAΘ with (AΘ−λ )uΘ = (L−λ )u. Let us set uλ = u−uΘ. Then

∂uλ

∂νL

∣∣
∂Ω

+Θuλ |∂Ω =
∂u

∂νL

∣∣
∂Ω

+Θu|∂Ω = g

and, clearly, (L−λ )uλ = 0, that is, uλ ∈ H1(Ω) solves (3.19).

In order to prove uniqueness, let vλ ∈H1(Ω) be a further solution of (3.19). Then uλ −vλ

satisfies

L(uλ − vλ ) = λ (uλ − vλ ),
∂ (uλ − vλ )

∂νL

∣∣
∂Ω

+Θ(uλ − vλ )|∂Ω = 0,

in particular, uλ − vλ ∈ domAΘ and (AΘ−λ )(uλ − vλ ) = 0. From λ ∈ ρ(AΘ) it follows
uλ − vλ = 0. Thus we have proved the uniqueness of the solution.

Lemma 3.6 allows us to make the following definition.

Definition 3.2. Let Assumption 3.1 and Assumption 3.2 hold. For λ ∈ ρ(AΘ) we define
the Robin-to-Dirichlet map

MΘ(λ ) : H−1/2(∂Ω)→ H1/2(∂Ω), g =
∂uλ

∂νL

∣∣
∂Ω

+Θuλ |∂Ω 7→ uλ |∂Ω, (3.21)

where uλ is the unique solution in H1(Ω) of (3.19).

We remark that for λ ∈ ρ(AΘ)∩ρ(AD) the Robin-to-Dirichlet map can be written more
explicitly as

MΘ(λ ) = (Θ−M(λ ))−1, (3.22)
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where M(λ ) is the Dirichlet-to-Neumann map in (3.9). Indeed, let λ ∈ ρ(AΘ)∩ρ(AD) and
let g∈H1/2(∂Ω) with (Θ−M(λ ))g = 0. By Lemma 3.3 there exists a unique uλ ∈H1(Ω)

with Luλ = λuλ and uλ |∂Ω = g. Then Θuλ |∂Ω + ∂uλ

∂νL
|∂Ω = 0, thus uλ ∈ domAΘ and

AΘuλ −λuλ = 0. Now λ ∈ ρ(AΘ) implies uλ = 0 and, hence, g = uλ |∂Ω = 0. Therefore
Θ−M(λ ) is injective. Moreover, if uλ ∈ H1(Ω) satisfies Luλ = λuλ , then

(Θ−M(λ ))uλ |∂Ω = Θuλ |∂Ω +
∂uλ

∂νL

∣∣
∂Ω

,

which leads to the representation (3.22).





4 INVERSE PROBLEMS OF CALDERÓN TYPE

The present chapter contains some of the main results of this thesis. We are concerned with
inverse problems of Calderón type with partial data for a uniformly elliptic differential
expression

L=−
n

∑
j,k=1

∂

∂x j
a jk

∂

∂xk
+

n

∑
j=1

(
a j

∂

∂x j
− ∂

∂x j
a j

)
+a

on a connected (not necessarily bounded) Lipschitz domain Ω. We prove that the knowl-
edge of the Dirichlet-to-Neumann map

M(λ )uλ |∂Ω =−∂uλ

∂νL

∣∣
∂Ω

, Luλ = λuλ ,

see (3.9), on an arbitrarily small nonempty, open subset ω of the boundary ∂Ω for a certain
collection of points λ determines the selfadjoint Dirichlet operator

ADu = Lu, domAD =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),u|∂Ω = 0
}

associated with L in L2(Ω), see (3.5), uniquely up to unitary equivalence. In addition, we
prove a reconstruction formula for AD from the knowledge of M(λ ) on ω in the case that
the domain Ω is bounded. Moreover, we provide analogous results for selfadjoint elliptic
differential operators with Robin boundary conditions. The results of this chapter were
partly published in [26].

In the whole chapter we assume that the domain Ω and the differential expression L on Ω

satisfy Assumption 3.1 above, that is, Ω is a Lipschitz domain and the differential expres-
sionL is uniformly elliptic on Ω with bounded Lipschitz coefficients a jk = ak j,a j : Ω→C,
1≤ j,k ≤ n, and a bounded, measurable coefficient a : Ω→ R. Moreover, ω ⊂ ∂Ω is as-
sumed to be a nonempty, relatively open set.

4.1 Preliminaries

In this section we provide some preliminary material. As an important tool in the proofs
of our main results we introduce the Poisson operator

γ(λ ) : H1/2(∂Ω)→ L2(Ω), g 7→ uλ (4.1)

31
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for λ ∈ ρ(AD), where uλ ∈H1(Ω) is the unique solution of the boundary value problem

Lu = λu, u|∂Ω = g

for a given g ∈ H1/2(∂Ω); cf. Lemma 3.3 in Chapter 3 above. We will make use of a
couple of statements and formulas for the Poisson operator and the Dirichlet-to-Neumann
map, which are collected in the following lemma. Its proof is based on the second Green
identity (2.11). Similar statements in an abstract setting of extension theory of symmetric
operators in Hilbert spaces and associated Weyl functions were proved in, e.g., [21,49].

Lemma 4.1. Let Ω and L be as in Assumption 3.1 and let AD be the Dirichlet operator as-
sociated with L in L2(Ω) in (3.5). Then for λ ,µ ∈ ρ(AD) the Dirichlet-to-Neumann maps
M(λ ),M(µ) in (3.9) and the Poisson operators γ(λ ),γ(µ) in (4.1) satisfy the following
assertions.

(i) γ(λ ) is a bounded operator and its adjoint γ(λ )∗ : L2(Ω)→H−1/2(∂Ω) is given by

γ(λ )∗u =− ∂

∂νL

(
(AD−λ )−1u

)∣∣
∂Ω

, u ∈ L2(Ω).

(ii) The identity

γ(λ ) =
(
I +(λ −µ)(AD−λ )−1)

γ(µ)

holds.

(iii) The Poisson operators and the Dirichlet-to-Neumann maps satisfy

(λ −µ)γ(µ)∗γ(λ ) = M(λ )−M(µ),

and (M(λ )g,h)∂Ω = (g,M(λ )h)∂Ω holds for all g,h ∈ H1/2(∂Ω).

(iv) M(λ ) is a bounded operator from H1/2(∂Ω) to H−1/2(∂Ω), which satisfies

M(λ ) = M(µ)+(λ −µ)γ(µ)∗
(
I +(λ −µ)(AD−λ )−1)

γ(µ). (4.2)

In particular, λ 7→M(λ ) is analytic on ρ(AD).

Proof. (i) Let us fix λ ∈ ρ(AD). In order to calculate γ(λ )∗ we choose g ∈ H1/2(∂Ω) and
u ∈ L2(Ω). Moreover, we set v = (AD−λ )−1u and uλ = γ(λ )g, that is, Luλ = λuλ and
uλ |∂Ω = g. Then the second Green identity (2.11) yields

(γ(λ )g,u) =
(

uλ ,(AD−λ )v
)
= (uλ ,Lv)− (Luλ ,v)

=
(

uλ |∂Ω,−
∂v

∂νL

∣∣
∂Ω

)
∂Ω

−
(
− ∂uλ

∂νL

∣∣
∂Ω

,v|∂Ω

)
∂Ω

.
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Since v = (AD−λ )−1u ∈ domAD implies v|∂Ω = 0, it follows

(γ(λ )g,u) =
(

g,− ∂

∂νL

(
(AD−λ )−1u

)∣∣
∂Ω

)
∂Ω

,

from which we conclude with the help of the closed graph theorem that γ(λ ) is bounded
and that γ(λ )∗u =− ∂

∂νL
((AD−λ )−1u)|∂Ω holds.

(ii) For λ ,µ ∈ ρ(AD), g ∈ H1/2(∂Ω), and u ∈ L2(Ω) we obtain from (i)

(γ(λ )g,u)− (γ(µ)g,u)

=
(

g,− ∂

∂νL

(
(AD−λ )−1u

)
|∂Ω

)
∂Ω

−
(

g,− ∂

∂νL

(
(AD−µ)−1u

)
|∂Ω

)
∂Ω

=
(

g,− ∂

∂νL

(
(AD−µ)−1(λ −µ)(AD−λ )−1u

)∣∣
∂Ω

)
∂Ω

=
(

γ(µ)g,(λ −µ)(AD−λ )−1u
)
= (λ −µ)

(
(AD−λ )−1

γ(µ)g,u
)
,

which implies γ(λ )− γ(µ) = (λ −µ)(AD−λ )−1γ(µ) and leads to the assertion.

(iii) Let λ ,µ ∈ ρ(AD) and choose g,h ∈ H1/2(∂Ω). Moreover, define uλ = γ(λ )g and
vµ = γ(µ)h. Then the second Green identity (2.11) yields

(λ −µ)(γ(λ )g,γ(µ)h) =
(
Luλ ,vµ

)
−
(
uλ ,Lvµ

)
= (M(λ )g,h)

∂Ω
− (g,M(µ)h)

∂Ω
(4.3)

and the special choice µ = λ implies the second statement in (iii). The first statement now
follows immediately from (4.3).

(iv) From (M(λ )g,h)∂Ω = (g,M(λ )h)∂Ω for λ ∈ ρ(AD) and g,h ∈ H1/2(∂Ω) it follows
with the closed graph theorem that M(λ ) : H1/2(∂Ω)→ H−1/2(∂Ω) is bounded. Further-
more, by (ii) and (iii) we have

M(λ ) = M(µ)+(λ −µ)γ(µ)∗γ(λ )

= M(µ)+(λ −µ)γ(µ)∗
(
I +(λ −µ)(AD−λ )−1)

γ(µ).

Since λ 7→ (AD−λ )−1 is an analytic mapping on ρ(AD), it follows from (4.2) that λ 7→
M(λ ) is analytic, too.

Remark 4.1. It follows from Lemma 4.1 (iii) and (iv) that the mapping λ 7→ M(λ ) can
be viewed as an operator-valued Nevanlinna function since M(·) is analytic on C \R,
M(λ )∗ = M(λ ) holds for all λ ∈ C\R (after an identification of H1/2(∂Ω) with the dual
space of H−1/2(∂Ω)), and

Im(M(λ )g,g)∂Ω

Imλ
= (γ(λ )g,γ(λ )g)≥ 0, λ ∈ C\R,g ∈ H1/2(∂Ω).
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Recall that ω is an open, nonempty subset of ∂Ω. For λ ∈ ρ(AD) we define

Nλ =
{

u ∈ H1(Ω) : Lu = λu, supp(u|∂Ω)⊂ ω
}

=
{

γ(λ )g : g ∈ H1/2(∂Ω), suppg⊂ ω

}
, (4.4)

the space of solutions of the differential equation Lu = λu whose trace is supported in ω ,
where we define suppg to be the smallest closed set such that g vanishes almost everywhere
on its complement.

The following proposition serves as a further preparation and will be crucial for the proofs
of our main results. Its proof is partially inspired by an idea from [17]: Starting from a
certain L2-function on Ω⊂Rn we construct a solution of a time-dependent elliptic equation
via introducing a semigroup and, afterwards, apply a unique continuation theorem to this
solution. Unique continuation theorems for second order elliptic differential operators are
due to [12,42,74,75] and others. In the following formulation such a theorem can be found
in [127].

Theorem 4.2. Let G ⊂ RN , N ≥ 2, be an open, connected set and let α jk : G→ C be
bounded Lipschitz functions, 1≤ j,k ≤ N, such that

N

∑
j,k=1

α jk(x)ξ jξk ≥ E
N

∑
k=1

ξ
2
k , x ∈ G, ξ = (ξ1, . . . ,ξN)

T ∈ RN ,

for some E > 0. Let f ∈ H2
loc(G) and assume that there exist A,B ∈ R with∣∣∣ N

∑
j,k=1

α jk
∂ 2 f

∂x j∂xk

∣∣∣≤ A| f |+B
N

∑
j=1

∣∣∣ ∂ f
∂x j

∣∣∣
almost everywhere on G. If f vanishes almost everywhere in an open, nonempty subset of
G then f = 0 identically on G.

Proposition 4.3. Let Assumption 3.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω be
open and nonempty. Then

span{Nλ : λ ∈ C\R}

is dense in L2(Ω).

Proof. Let Ω̃ be a Lipschitz domain such that Ω̃ ⊃ Ω, ∂Ω \ω ⊂ ∂ Ω̃, and there exists an
open ball O ⊂ Ω̃ \Ω. Let ã jk, ã j be bounded Lipschitz functions on Ω̃ which extend a jk

and a j, respectively, 1 ≤ j,k ≤ n, and let ã : Ω̃→ R be a bounded, measurable extension
of a to Ω̃ such that the differential expression

L̃=−
n

∑
j,k=1

∂

∂x j
ã jk

∂

∂xk
+

n

∑
j=1

(
ã j

∂

∂x j
− ∂

∂x j
ã j

)
+ ã
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is uniformly elliptic on Ω̃; cf. Assumption 3.1. Let ÃD denote the selfadjoint Dirichlet
operator associated with L̃ in L2(Ω̃), i.e.,

ÃDũ = L̃ũ, dom ÃD =
{

ũ ∈ H1(Ω̃) : L̃ũ ∈ L2(Ω̃), ũ|
∂ Ω̃

= 0
}
.

Since ÃD is semibounded from below, see Theorem 3.2, it is no restriction to assume that
this operator has a lower bound µ > 0. Let ṽ ∈ L2(Ω̃) be such that ṽ vanishes on Ω, and
define

ũλ ,ṽ = (ÃD−λ )−1ṽ, λ ∈ C\R.

Moreover, denote by uλ ,ṽ the restriction of ũλ ,ṽ to Ω. Then Luλ ,ṽ = λuλ ,ṽ holds and
supp(uλ ,ṽ|∂Ω)⊂ω , since ∂Ω\ω ⊂ ∂ Ω̃ and ũλ ,ṽ|∂ Ω̃

= 0. Hence uλ ,ṽ ∈Nλ for all λ ∈C\R
and all ṽ ∈ L2(Ω̃) with ṽ|Ω = 0.

Let us choose u ∈ L2(Ω) such that u is orthogonal to Nλ for each λ ∈ C \R. Then, in
particular,

0 = (u,u
λ ,ṽ) =

(
ũ,(ÃD−λ )−1ṽ

)
L2(Ω̃)

=
(
(ÃD−λ )−1ũ, ṽ

)
L2(Ω̃)

for all λ ∈ C \R, where ũ denotes the extension of u by zero to Ω̃. Since ṽ ∈ L2(Ω̃) was
chosen arbitrarily such that ṽ|Ω = 0, it follows(

(ÃD−λ )−1ũ
)∣∣∣

Ω̃\Ω
= 0, λ ∈ C\R. (4.5)

Following an idea from [17, Section 3] we consider the semigroup T (t) = e−t
√

ÃD , t ≥ 0,
which is generated by the square root of the uniformly positive operator ÃD. Then
t 7→ T (t)ũ ∈ L2(Ω̃) is twice differentiable with

d2

dt2 T (t)ũ = ÃDT (t)ũ, t > 0,

which implies (
− ∂ 2

∂ t2 + L̃
)

T (t)ũ(x) = 0, x ∈ Ω̃, t > 0, (4.6)

in the distributional sense. Furthermore, from (4.6) it follows(
− ∂ 2

∂ t2 −
n

∑
j,k=1

ã jk
∂ 2

∂x j∂xk

)
T (t)ũ(x) =

( n

∑
j=1

∂

∂x j
ã j− ã

)
T (t)ũ(x)

+
n

∑
k=1

( n

∑
j=1

∂

∂x j
ã jk− ãk + ãk

)(
∂

∂xk
T (t)ũ(x)

)
.
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Since the functions ã jk and ã j and their derivatives of first order as well as ã are bounded,
there exist A,B ∈ R with∣∣∣(− ∂ 2

∂ t2 −
n

∑
j,k=1

ã jk
∂ 2

∂x j∂xk

)
T (t)ũ(x)

∣∣∣
≤ A|T (t)ũ(x)|+B

(∣∣∣ ∂

∂ t
T (t)ũ(x)

∣∣∣+ n

∑
j=1

∣∣∣ ∂

∂x j
T (t)ũ(x)

∣∣∣), (4.7)

x ∈ Ω̃, t > 0. Note that (x, t) 7→ T (t)ũ(x) belongs to L2(Ω̃× (0,∞)), since
∞∫

0

∫
Ω̃

∣∣∣∣(e−t
√

ÃD ũ
)
(x)
∣∣∣∣2 dxdt =

∞∫
0

∥∥∥e−t
√

ÃD ũ
∥∥∥2

dt

=

∞∫
0

∞∫
µ

∣∣∣e−t
√

λ

∣∣∣2 d(E(λ )ũ, ũ)dt =
∞∫

µ

1

2
√

λ
d(E(λ )ũ, ũ)< ∞,

where E(·) denotes the spectral measure of ÃD. Now the uniform ellipticity of the differ-
ential expression − ∂ 2

∂ t2 + L̃ and standard regularity theory imply that (x, t) 7→ T (t)ũ(x) is
locally in H2 on Ω̃×(0,∞), see, e.g., [101, Theorem 4.16]. Moreover, for any real numbers
a,b /∈ σp(ÃD), a < b, the Stone formula

E((a,b))ũ = lim
ε↘0

1
2πi

b∫
a

((
ÃD− (y+ iε)

)−1ũ−
(
ÃD− (y− iε)

)−1ũ
)

dy

together with (4.5) implies (E((a,b))ũ)|
Ω̃\Ω = 0. Thus for each t ≥ 0 we have

(
T (t)ũ

)∣∣
Ω̃\Ω =

( ∞∫
µ

e−t
√

λ dE(λ )ũ
)∣∣∣

Ω̃\Ω
= 0,

in particular, (x, t) 7→ T (t)ũ(x) vanishes on the nonempty, open subset O × (0,∞) of
Ω̃× (0,∞). Now (4.7) and Theorem 4.2 yield T (t)ũ(x) = 0 for all x ∈ Ω̃, t ∈ (0,∞),
i.e., T (t)ũ vanishes identically on Ω̃ for all t > 0. Thus, taking the limit t ↘ 0, we find
ũ = 0 and, hence, u = 0. This completes the proof.

Remark 4.2. We point out that the statement of Proposition 4.3 can be improved in the
following way. With the help of the identity theorem for holomorphic functions one can
deduce that

span{Nλ : λ ∈ D}

is dense in L2(Ω) for any subset D of ρ(AD) which has both an accumulation point in the
upper and the lower open complex half-plane. We do not elaborate on the details, since
we will not make use of this fact in the following.
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Remark 4.3. The statement of Proposition 4.3 is equivalent to the fact that the symmetric
restriction

Su = Lu, domS =
{

u ∈ domAD,
∂u

∂νL

∣∣
ω
= 0
}
,

of the Dirichlet operator in L2(Ω) is simple or completely non-selfadjoint; cf. [3, Chap-
ter VII-81] and [87]. A more detailed discussion of this can be found in Appendix A.2.

4.2 An inverse problem for the Dirichlet operator with partial data

Let us now turn to the main results of this chapter. In order to consider the Dirichlet-to-
Neumann map only on an arbitrary open, nonempty subset ω of ∂Ω we set

H1/2
ω =

{
g ∈ H1/2(∂Ω) : suppg⊂ ω

}
.

We first prove that the partial knowledge of the Dirichlet-to-Neumann map on ω de-
termines the Dirichlet operator AD associated with the elliptic differential expression L
in (3.5) on a bounded or unbounded Lipschitz domain Ω uniquely up to unitary equiva-
lence. The proof of the following theorem uses arguments which are known in abstract
contexts; cf., e.g., [84].

Theorem 4.4. Let Ω be a connected Lipschitz domain, let ω ⊂ ∂Ω be open and nonempty,
and let L1,L2 be two differential expressions as in Assumption 3.1. Moreover, let M1(λ ),
M2(λ ) be the corresponding Dirichlet-to-Neumann maps and let A1

D,A
2
D be the corre-

sponding Dirichlet operators as in (3.5). Assume that D ⊂ ρ(A1
D)∩ρ(A2

D) is a set with an
accumulation point in ρ(A1

D)∩ρ(A2
D) and that

(M1(λ )g,h)∂Ω = (M2(λ )g,h)∂Ω, g,h ∈ H1/2
ω ,

holds for all λ ∈ D. Then A1
D and A2

D are unitarily equivalent.

Proof. Note first that by Lemma 4.1 (iv) the functions

ρ(Ai
D) 3 λ 7→ (Mi(λ )g,h)∂Ω, i = 1,2,

are holomorphic for all g,h ∈ H1/2
ω . Thus, it follows from the assumption of the theorem,

that these functions do not only coincide on the setD but on the whole set ρ(A1
D)∩ρ(A2

D),
i.e.,

(M1(λ )g,h)∂Ω = (M2(λ )g,h)∂Ω, g,h ∈ H1/2
ω ,
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holds for all λ ∈ ρ(A1
D)∩ ρ(A2

D) and, in particular, for all λ ∈ C \R. Let γ1(λ ) and
γ2(λ ) be the Poisson operators associated with L1 and L2, respectively, as in (4.1). For
λ ,µ ∈ C\R,λ 6= µ , it follows from Lemma 4.1 (iii) that

(γ1(λ )g,γ1(µ)h) =
(M1(λ )g,h)∂Ω− (M1(µ)g,h)∂Ω

λ −µ

=
(M2(λ )g,h)∂Ω− (M2(µ)g,h)∂Ω

λ −µ
= (γ2(λ )g,γ2(µ)h) (4.8)

holds for all g,h ∈ H1/2
ω . Let us define a linear mapping V in L2(Ω) on

domV = span
{

γ1(λ )g : g ∈ H1/2
ω ,λ ∈ C\R

}
by

V
( k

∑
j=1

γ1(λ j)g j

)
:=

k

∑
j=1

γ2(λ j)g j, λ j ∈ C\R, g j ∈ H1/2
ω , 1≤ j ≤ k.

It follows from the identity (4.8) that V is a well-defined, isometric operator in L2(Ω).
Moreover, by Proposition 4.3 the set

span
{

γi(λ )g : λ ∈ C\R,g ∈ H1/2
ω

}
(4.9)

is dense in L2(Ω), i = 1,2, that is, V is densely defined and has a dense range in L2(Ω).
Hence V extends by continuity to a unitary operator U in L2(Ω), which, clearly, satisfies
Uγ1(λ )g = γ2(λ )g for all g ∈ H1/2

ω and all λ ∈ C\R. Let µ ∈ R∩ρ(A1
D)∩ρ(A2

D). Then
Lemma 4.1 (ii) yields

U(A1
D−µ)−1

γ1(λ )g =
Uγ1(µ)g−Uγ1(λ )g

µ−λ

=
γ2(µ)g− γ2(λ )g

µ−λ
= (A2

D−µ)−1Uγ1(λ )g

for all λ ∈ C\R and all g ∈ H1/2
ω . Using again the density of (4.9) in L2(Ω) we conclude

U(A1
D−µ)−1 = (A2

D−µ)−1U,

thus U(domA1
D) = domA2

D and UA1
Du = A2

DUu for all u ∈ domA1
D. Therefore A1

D and A2
D

are unitarily equivalent.

Let us now discuss how the Dirichlet operator AD can be recovered from the knowledge of
the corresponding Dirichlet-to-Neumann map M(λ ) on ω ⊂ ∂Ω. Here we will assume that
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Ω is bounded. Recall that in this case the spectrum of AD consists of isolated eigenvalues
with finite multiplicities only, see Theorem 3.2; in particular, the resolvent of AD is a
meromorphic operator-valued function, whose poles are of order one, and it follows from
Lemma 4.1 (iv) that the same holds for the function M(·). We define the residue Resω

λ
M :

H1/2
ω → (H1/2

ω )′ of M(·) on ω at some point λ ∈ R by

(Resω

λ
Mg,h)ω := (Resλ Mg,h)∂Ω, g,h ∈ H1/2

ω ,

where Resλ M : H1/2(∂Ω)→H−1/2(∂Ω) is the usual residue of the operator-valued func-
tion M(·) at λ and (·, ·)ω denotes the duality between H1/2

ω and its dual space (H1/2
ω )′; for

more details on the residue of a meromorphic operator function see Section 2.1. Moreover,
we say that M(·) has a pole on ω at λ if the operator Resω

λ
M is nontrivial. Let us finally

define the restriction of some h ∈ H−1/2(∂Ω) to ω as an element of (H1/2
ω )′ by

(h|ω ,g)ω := (h,g)∂Ω, g ∈ H1/2
ω .

The Dirichlet operator AD can be recovered from the partial knowledge of M(λ ) on ω as
follows.

Theorem 4.5. Let Assumption 3.1 be satisfied, let Ω be bounded and connected, and let
ω ⊂ ∂Ω be an open, nonempty set. Moreover, let AD be the Dirichlet operator in (3.5) and
let M(λ ) be the Dirichlet-to-Neumann map in (3.9), λ ∈ ρ(AD). Then the eigenvalues of
AD coincide with the poles of M(·) on ω . For each eigenvalue λk of AD the mapping

τk : ker(AD−λk)→ ranResω

λk
M, u 7→ ∂u

∂νL

∣∣
ω

is an isomorphism. In particular, there exist g(k)1 , . . . ,g(k)n(k) ∈ H1/2
ω such that

e(k)i := τ
−1
k

(
Resω

λk
M
)

g(k)i , i = 1, . . . ,n(k),

form an orthonormal basis of ker(AD−λk) and the identity

ADu =
∞

∑
k=1

λk

n(k)

∑
i=1

(u,e(k)i )e(k)i , u ∈ domAD,

holds.

Proof. Step 1. Let λk, k ∈ N, be the distinct eigenvalues of AD as in the theorem. In this
first step of the proof we show that for each k ∈ N the mapping

τk : ker(AD−λk)→ ranResω

λk
M, u 7→ ∂u

∂νL

∣∣
ω
,
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is an isomorphism. First we observe that τk is injective. Indeed, assume u ∈ ker(AD−λk)
satisfies τku = 0, that is ∂u

∂νL
|ω = 0. Moreover, let µ ∈ C \R, and let vµ ∈ Nµ , i.e.,

Lvµ = µvµ and supp(vµ |∂Ω)⊂ ω; cf. (4.4). Then the second Green identity (2.11) yields

(λk−µ)(u,vµ) = (ADu,vµ)− (u,Lvµ)

=
(

u|∂Ω,
∂vµ

∂νL

∣∣
∂Ω

)
∂Ω

−
(

∂u
∂νL

∣∣
∂Ω

,vµ |∂Ω

)
∂Ω

= 0,

since u|∂Ω = 0, supp(vµ |∂Ω)⊂ ω , and ∂u
∂νL
|ω = 0. Thus with the help of Proposition 4.3 it

follows u = 0, that is, τk is injective.

In order to prove the surjectivity let us fix some µ ∈ R ∩ ρ(AD) and note that for
u ∈ ker(AD−λk) Lemma 4.1 (i) yields

τku = τk
(
(AD−µ)−1ADu− (AD−µ)−1

µu
)

= (λk−µ)
∂

∂νL

(
(AD−µ)−1u

)∣∣
ω
= (µ−λk)(γ(µ)

∗u)|ω ,

where γ(µ) is the Poisson operator in (4.1). Consequently, for the surjectivity of τk it is
sufficient to ensure

ranResω

λk
M =

{(
γ(µ)∗u

)
|ω : u ∈ ker(AD−λk)

}
. (4.10)

For the inclusion ⊂ in (4.10) denote by P the orthogonal projection in L2(Ω) onto
ker(AD− λk). Let us choose η ∈ C \R and an open ball O centered in λk such that η

and µ do not belong to O and such that σ(AD)∩O = {λk}. If Γ denotes the boundary of
O then with the help of the identity (2.2) and of Lemma 4.1 (ii) and (iii) we obtain

(Pγ(η)g,γ(µ)h) =− 1
2πi

∫
Γ

(
(AD−ζ )−1

γ(η)g,γ(µ)h
)

dζ

=− 1
2πi

∫
Γ

(
1

ζ −η
(γ(ζ )g,γ(µ)h)− 1

ζ −η
(γ(η)g,γ(µ)h)

)
dζ

=
1

2πi

∫
Γ

(
(M(ζ )g,h)∂Ω

(η−ζ )(ζ −µ)
+

(M(µ)g,h)∂Ω

(µ−ζ )(η−µ)
+

(M(η)g,h)∂Ω

(ζ −η)(η−µ)

)
dζ

for g,h ∈ H1/2
ω ; cf. the formulas in [51, §I.1]. The second and third fraction under the

integral on the right-hand side are holomorphic in a neighborhood of O as functions of ζ

and, hence, their integrals vanish. Note that by Lemma 4.1 (iv) the function M(·) is either
analytic in O or has a pole of order one at λk. Together with the fact that ζ 7→ 1

(η−ζ )(ζ−µ)

is holomorphic in O we obtain

(Pγ(η)g,γ(µ)h) =
(Resλk

Mg,h)∂Ω

(η−λk)(λk−µ)
;
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cf. (2.1). It follows

(Resλk
Mg,h)∂Ω = (η−λk)(λk−µ)(Pγ(η)g,γ(µ)h), g,h ∈ H1/2

ω ,

and, in particular,

Resω

λk
Mg = (η−λk)(λk−µ)

(
γ(µ)∗Pγ(η)g

)
|ω , g ∈ H1/2

ω . (4.11)

This implies the inclusion ⊂ in (4.10).

For the proof of the second inclusion in (4.10) let u ∈ ker(AD−λk) and let ε > 0. Since
γ(µ)∗P is a bounded operator from L2(Ω) to H−1/2(∂Ω), there exists δ > 0 such that
‖u− v‖L2(Ω) < δ implies ‖γ(µ)∗Pu− γ(µ)∗Pv‖H−1/2(∂Ω) < ε . According to Proposi-
tion 4.3 the set

span
{

γ(η)g : η ∈ C\R,g ∈ H1/2
ω

}
is dense in L2(Ω), hence there exist l ∈ N, η j ∈ C\R and g j ∈ H1/2

ω , 1≤ j ≤ l, such that∥∥∥u−
l

∑
j=1

γ(η j)g j

∥∥∥
L2(Ω)

< δ

and, consequently, ∥∥∥γ(µ)∗Pu− γ(µ)∗P
l

∑
j=1

γ(η j)g j

∥∥∥
H−1/2(∂Ω)

< ε.

Since u∈ ker(AD−λk), we have Pu = u. Moreover, the mapping H−1/2(∂Ω)3 h 7→ h|ω ∈
(H1/2

ω )′ is continuous with norm less than one, and with the help of the identity (4.11) it
follows ∥∥∥∥(γ(µ)∗u)|ω − l

∑
j=1

Resω

λk
Mg j

(η j−λk)(λk−µ)

∥∥∥∥
(H1/2

ω )′
< ε,

hence, (γ(µ)∗u)|ω belongs to the closure of ranResω

λk
M. Since ker(AD− λk) is finite-

dimensional, the inclusion ⊂ in (4.10) implies that also the dimension of ranResω

λk
M is

finite. Thus
(γ(µ)∗u)|ω ∈ ranResω

λk
M

and we have proved the equality (4.10). Therefore τk is a bijective linear mapping between
finite-dimensional spaces, and, hence, an isomorphism. From this it follows immediately
that each eigenvalue of AD is a pole of M(·) on ω . On the other hand it follows from
Lemma 4.1 (iv) that M(·) is holomorphic on ρ(AD). Hence σ(AD) coincides with the set
of poles of M(·) on ω .
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Step 2. In this step we prove the statement on the representation of AD. Since τk is an
isomorphism for each k ∈ N, there exist g(k)1 , . . . ,g(k)n(k) ∈ H1/2

ω , n(k) = dimker(AD− λk),

such that the functions e(k)i , i = 1, . . . ,n(k), defined as in the theorem, form an orthonormal
basis of ker(AD−λk). Since the spectrum of AD consist only of the isolated eigenvalues
λk, it follows that

ADu =
∞

∑
k=1

λk

n(k)

∑
i=1

(u,e(k)i )e(k)i , u ∈ domAD,

holds. This completes the proof of the theorem.

Remark 4.4. The connectedness assumption on Ω in the theorems of this section can be
slightly relaxed. The same proofs show that it suffices to require that ω ∩∂O is nonempty
for each connected component O of Ω.

4.3 Inverse problems for generalized Robin operators

In this section we carry over the results of the previous section to realizations AΘ in L2(Ω)
of the uniformly elliptic differential expression L subject to generalized Robin boundary
conditions,

AΘu = Lu, domAΘ =

{
u ∈ H1(Ω),Lu ∈ L2(Ω),

∂u
∂νL

∣∣
∂Ω

+Θu|∂Ω = 0
}
,

see (3.10). Here Θ : H1/2(∂Ω)→ H−1/2(∂Ω) is an operator which satisfies Assump-
tion 3.2 from Chapter 3 above, that is, Θ = Θ1 +Θ2, where Θi : H1/2(∂Ω)→ H−1/2(∂Ω)
are bounded operators with

(Θig,h)∂Ω = (g,Θih)∂Ω, g,h ∈ H1/2(∂Ω),

i = 1,2, such that Θ1 is L2-semibounded, i.e.,

(Θ1g,g)∂Ω ≥ cΘ1‖g‖
2
L2(∂Ω), g ∈ H1/2(∂Ω),

for some cΘ1 ∈ R, and Θ2 is compact. By Theorem 3.5 AΘ is a selfadjoint operator in
L2(Ω). Moreover, by Lemma 3.6 the Robin-to-Dirichlet map

MΘ

(
∂uλ

∂νL

∣∣
∂Ω

+Θuλ |∂Ω

)
= uλ |∂Ω, Luλ = λuλ ,

is well-defined for each λ ∈ ρ(AΘ), and it can alternatively be expressed as

MΘ(λ ) = (Θ−M(λ ))−1, λ ∈ ρ(AΘ)∩ρ(AD),
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see (3.22). In this section we show that the knowledge of the mapping MΘ(λ ) for an
appropriate set of points λ determines the operator AΘ uniquely up to unitary equivalence.
Additionally we provide a reconstruction result in the case that the domain Ω is bounded.
We first restrict ourselves to the case that the Robin-to-Dirichlet map MΘ(λ ) is given on
the whole boundary ∂Ω. Afterwards we show that under additional conditions on Θ this
assumption can be relaxed. We provide a uniqueness result under local knowledge of the
Robin-to-Dirichlet map in the case that Θ is a multiplication operator, i.e., the functions in
the domain of AΘ satisfy a local, classical Robin boundary condition.

In order to develop an analog of Lemma 4.1 for AΘ and MΘ(λ ) instead of AD and M(λ ),
respectively, we introduce the Poisson operator for the Robin problem

γΘ(λ ) : H−1/2(∂Ω)→ L2(Ω), g 7→ uλ , (4.12)

where uλ is the unique solution of the boundary value problem

Lu = λu,
∂u

∂νL

∣∣
∂Ω

+Θu|∂Ω = g

for a given g ∈ H−1/2(∂Ω); cf. Lemma 3.6. Then the following holds.

Lemma 4.6. Let Assumption 3.1 and Assumption 3.2 be satisfied. Moreover, let λ ,µ ∈
ρ(AΘ), let MΘ(λ ),MΘ(µ) be the Robin-to-Dirichlet maps in (3.21) and let γΘ(λ ),γΘ(µ)
be given in (4.12). Then the following assertions hold.

(i) γΘ(λ ) is a bounded operator and its adjoint γΘ(λ )
∗ : L2(Ω)→ H1/2(∂Ω) is given

by

γΘ(λ )
∗u =

(
(AΘ−λ )−1u

)
|∂Ω, u ∈ L2(Ω).

(ii) The identity

γΘ(λ ) =
(
I +(λ −µ)(AΘ−λ )−1)

γΘ(µ)

holds.

(iii) We have

(λ −µ)γΘ(µ)
∗
γΘ(λ ) = MΘ(λ )−MΘ(µ),

and (MΘ(λ )g,h)∂Ω = (g,MΘ(λ )h)∂Ω holds for all g,h ∈ H−1/2(∂Ω).

(iv) MΘ(λ ) is a bounded operator from H−1/2(∂Ω) to H1/2(∂Ω), which satisfies

MΘ(λ ) = MΘ(µ)+(λ −µ)γΘ(µ)
∗ (I +(λ −µ)(AΘ−λ )−1)

γΘ(µ). (4.13)

In particular, λ 7→MΘ(λ ) is analytic on ρ(AΘ).
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Proof. (i) Let λ ∈ ρ(AΘ), let g ∈ H−1/2(∂Ω), and let u ∈ L2(Ω). Moreover, let
uλ = γΘ(λ )g, that is, Luλ = λuλ and ∂uλ

∂νL
|∂Ω +Θuλ |∂Ω = g, and let v = (AΘ− λ )−1u.

Then the second Green identity (2.11) yields

(γΘ(λ )g,u) = (uλ ,(AΘ−λ )v) = (uλ ,Lv)− (Luλ ,v)

=
(

∂uλ

∂νL

∣∣
∂Ω

,v|∂Ω

)
∂Ω

−
(

uλ |∂Ω,
∂v

∂νL

∣∣
∂Ω

)
∂Ω

=
(

∂uλ

∂νL

∣∣
∂Ω

+Θuλ |∂Ω,v|∂Ω

)
∂Ω

−
(

uλ |∂Ω,
∂v

∂νL

∣∣
∂Ω

+Θv|∂Ω

)
∂Ω

= (g,v|∂Ω)∂Ω =
(
g,
(
(AΘ−λ )−1u

)
|∂Ω

)
∂Ω

.

From this it follows with the closed graph theorem that γΘ(λ ) is bounded and satisfies
γΘ(λ )

∗u = ((AΘ−λ )−1u)|∂Ω.

The proof of item (ii) is analogous to the proof of Lemma 4.1 (ii) and will be omitted.

(iii) Let λ ,µ ∈ ρ(AΘ), let g,h ∈H−1/2(∂Ω), and let uλ = γΘ(λ )g and vµ = γΘ(µ)h. Then
we have

(λ −µ)(γΘ(λ )g,γΘ(µ)h) = (Luλ ,vµ)− (uλ ,Lvµ)

=
(

uλ |∂Ω,
∂vµ

∂νL

∣∣
∂Ω

)
∂Ω

−
(

∂uλ

∂νL

∣∣
∂Ω

,vµ |∂Ω

)
∂Ω

=
(

uλ |∂Ω,
∂vµ

∂νL

∣∣
∂Ω

+Θvµ |∂Ω

)
∂Ω

−
(

∂uλ

∂νL

∣∣
∂Ω

+Θuλ |∂Ω,vµ |∂Ω

)
∂Ω

= (uλ |∂Ω,h)∂Ω− (g,vµ |∂Ω)∂Ω

= (MΘ(λ )g,h)∂Ω− (g,MΘ(µ)h)∂Ω. (4.14)

With µ = λ it follows (MΘ(λ )g,h)∂Ω = (g,MΘ(λ )h)∂Ω. From this and (4.14) we obtain
the remaining statement of (iii).

The assertions of item (iv) follow from (ii) and (iii) analogously to the proof of
Lemma 4.1 (iv).

The following two theorems show that the knowledge of the Robin-to-Dirichlet map de-
termines the operator AΘ in (3.10) uniquely up to unitary equivalence and that AΘ can be
recovered from the knowledge of MΘ(λ ) in the case that Ω is bounded. We do not carry
out the proofs of these theorems. They are analogous to the proofs of Theorem 4.4 and
Theorem 4.5 in the previous section in the case ω = ∂Ω, where one has to replace the use
of Lemma 4.1 by the application of Lemma 4.6. Moreover, in order to admit Lipschitz
domains Ω which are not necessarily connected we replace Proposition 4.3 (with ω = ∂Ω)
by the following slightly generalized variant.
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Proposition 4.7. Let Assumption 3.1 be satisfied and let

Nλ =
{

u ∈ H1(Ω) : Lu = λu
}
, λ ∈ ρ(AD). (4.15)

Then the space

span{Nλ : λ ∈ C\R}

is dense in L2(Ω).

Proof. Let u ∈ L2(Ω) be orthogonal to Nλ for all λ ∈ C \R and let O be a connected
component of Ω. Let λ ∈ C\R and set

NO
λ

=
{

v ∈ H1(O) : Lv = λv
}
.

For each vλ ∈NO
λ

we define

ṽλ =

{
vλ on O,
0 on Ω\O.

Then ṽλ belongs to H1(Ω) and satisfies Lṽλ = λ ṽλ , that is, ṽλ ∈Nλ . In particular,

0 = (u, ṽλ ) = (u|O,vλ )L2(O),

hence u|O is orthogonal toNO
λ

for all λ ∈C\R and Proposition 4.3 yields u|O = 0. Since
the connected component O was chosen arbitrarily, it follows u = 0.

With the help of this proposition the following uniqueness result for AΘ can be proved.

Theorem 4.8. Let Ω be a Lipschitz domain, let L1,L2 be two differential expressions as
in Assumption 3.1, and let Θ satisfy Assumption 3.2. Moreover, let M1

Θ
(λ ),M2

Θ
(λ ) be the

corresponding Robin-to-Dirichlet maps as in (3.21) and let A1
Θ
,A2

Θ
be the corresponding

Robin operators as in (3.10). Assume that D ⊂ ρ(A1
Θ
)∩ρ(A2

Θ
) is a set with an accumula-

tion point in ρ(A1
Θ
)∩ρ(A2

Θ
) and that

(M1
Θ(λ )g,h)∂Ω = (M2

Θ(λ )g,h)∂Ω, g,h ∈ H−1/2(∂Ω),

holds for all λ ∈ D. Then A1
Θ

and A2
Θ

are unitarily equivalent.

In case Ω is bounded, AΘ can be recovered from the knowledge of MΘ(λ ) as follows.
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Theorem 4.9. Let Ω and L be as in Assumption 3.1 and let, additionally, Ω be bounded.
Moreover, let Θ satisfy Assumption 3.2, let AΘ be the selfadjoint operator in (3.5), and let
MΘ(λ ) be the Robin-to-Dirichlet map in (3.21), λ ∈ ρ(AΘ). Then the eigenvalues of AΘ

coincide with the poles of MΘ(·). For each eigenvalue λk of AΘ the mapping

τk : ker(AΘ−λk)→ ranResλk
MΘ, u 7→ u|∂Ω

is an isomorphism. In particular, there exist g(k)1 , . . . ,g(k)n(k) ∈ H−1/2(∂Ω) such that

e(k)i := τ
−1
k

(
Resλk

MΘ

)
g(k)i , i = 1, . . . ,n(k),

form an orthonormal basis of ker(AΘ−λk) and the identity

AΘu =
∞

∑
k=1

λk

n(k)

∑
i=1

(u,e(k)i )e(k)i , u ∈ domAΘ,

holds.

Let us finally come to the case of partial data. We now assume additionally that the operator
Θ in the boundary condition has the form

Θg = ϑg, g ∈ H1/2(∂Ω), (4.16)

where ϑ : ∂Ω→R is a bounded, measurable function. Then Θ : H1/2(∂Ω)→H−1/2(∂Ω)
is a bounded operator with

(Θg,g)∂Ω ≥ infϑ‖g‖2
L2(∂Ω), g ∈ H1/2(∂Ω),

and, hence, satisfies Assumption 3.2. Therefore AΘ in (3.10) is selfadjoint by Theorem 3.5,
the Robin-to-Dirichlet-map MΘ(λ ) in (3.21) is well-defined, and Lemma 4.6 is applicable.
In order to prove that AΘ is determined uniquely by the partial knowledge of MΘ(λ ) we
need the following analog of Proposition 4.3.

Let again ω ⊂ ∂Ω be a nonempty, relatively open set. For λ ∈ ρ(AΘ) let

NΘ

λ
=
{

u ∈ H1(Ω) : Lu = λu, supp
(

∂u
∂νL

∣∣
∂Ω

+Θu|∂Ω

)
⊂ ω

}
,

where the support of some h ∈ H−1/2(∂Ω) is the smallest closed set ω̃ such that
(h,g)∂Ω = 0 for all g ∈ H1/2(∂Ω) with suppg⊂ ∂Ω\ ω̃ .

Proposition 4.10. Let Assumption 3.1 be satisfied and let Θ be given in (4.16). Then

span
{
NΘ

λ
: λ ∈ C\R

}
is dense in L2(Ω).
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Proof. Let Ω̃ and L̃ be defined as in the proof of Proposition 4.3 above. Let us define a
function ϑ̃ : ∂ Ω̃→ R by

ϑ̃ =

{
ϑ on ∂Ω\ω,

0 otherwise.

Then ϑ̃ is measurable and bounded. If we set Θ̃g = ϑ̃g, g ∈ H1/2(∂ Ω̃) then by Theo-
rem 3.5 the operator

Ã
Θ̃

ũ = L̃ũ, dom Ã
Θ̃
=

{
ũ ∈ H1(Ω̃) : L̃ũ ∈ L2(Ω̃),

∂ ũ
∂νL̃

∣∣
∂ Ω̃

+ Θ̃ũ|
∂ Ω̃

= 0
}
,

in L2(Ω̃) is selfadjoint and semibounded from below. Let ṽ∈ L2(Ω̃) be such that ṽ vanishes
on Ω, and define

ũλ ,ṽ = (Ã
Θ̃
−λ )−1ṽ, λ ∈ C\R.

Moreover, denote by uλ ,ṽ the restriction of ũλ ,ṽ to Ω. Then, clearly, Luλ ,ṽ = λuλ ,ṽ. We

check that the distribution ∂uλ ,ṽ
∂νL

∣∣
∂Ω

+ Θuλ ,ṽ|∂Ω vanishes on ∂Ω \ ω . Indeed, let

g ∈ H1/2(∂Ω) with suppg ⊂ ∂Ω \ω . By Proposition 2.2 there exists v ∈ H1(Ω) with
v|∂Ω = g. Let ṽ denote the extension of v by zero to Ω̃. Since v|∂Ω is identically zero on ω ,
we have ṽ ∈ H1(Ω̃) and supp(ṽ|

∂ Ω̃
) ⊂ ∂Ω \ω . Moreover, by the definition (2.10) of the

conormal derivative we have(∂uλ ,ṽ

∂νL

∣∣
∂Ω

+Θuλ ,ṽ|∂Ω,g
)

∂Ω

=−(Luλ ,ṽ,v)L2(Ω)+a[uλ ,ṽ,v]+ (ϑuλ ,ṽ|∂Ω,v|∂Ω)L2(∂Ω)

=−(L̃ũλ ,ṽ, ṽ)L2(Ω̃)
+ ã[ũλ ,ṽ, ṽ]+

∫
∂Ω\ω

ϑuλ ,ṽ|∂Ωv|∂Ωdσ

=
(∂ ũλ ,ṽ

∂νL̃

∣∣
∂ Ω̃

+ Θ̃ũλ ,ṽ|∂ Ω̃
, ṽ|

∂ Ω̃

)
∂ Ω̃

= 0,

where we denoted by ã the sesquilinear form corresponding to the differential expression L̃
on Ω̃ as in (2.9); hence supp(∂uλ ,ṽ

∂νL

∣∣
∂Ω

+Θuλ ,ṽ|∂Ω)⊂ω , that is, uλ ,ṽ ∈NΘ

λ
for all λ ∈C\R

and all ṽ ∈ L2(Ω̃) with ṽ|Ω = 0.

If we choose u ∈ L2(Ω) being orthogonal to NΘ

λ
for all λ ∈ C \R and denote by ũ the

extension of u by zero to Ω̃ then we obtain

0 = (u,u
λ ,ṽ)L2(Ω) =

(
ũ,(Ã

Θ̃
−λ )−1ṽ

)
L2(Ω̃)

=
(
(Ã

Θ̃
−λ )−1ũ, ṽ

)
L2(Ω̃)
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for all λ ∈ C\R and all ṽ ∈ L2(Ω̃) which vanish on Ω, that is,(
(Ã

Θ̃
−λ )−1ũ

)
|
Ω̃\Ω = 0

for all λ ∈C\R. Proceeding further as in the proof of Proposition 4.3 we conclude u = 0,
which leads to the statement of the proposition.

The following theorem can be proved analogously to the proof of Theorem 4.4 with Propo-
sition 4.10 and Lemma 4.6 instead of Proposition 4.3 and Lemma 4.1, respectively.

Theorem 4.11. Let Ω be a connected Lipschitz domain, let ω ⊂ ∂Ω be an open, nonempty
set, let L1,L2 be two differential expressions as in Assumption 3.1, and let Θ be given
in (4.16). Moreover, let M1

Θ
(λ ),M2

Θ
(λ ) be the corresponding Robin-to-Dirichlet maps and

let A1
Θ
,A2

Θ
be the corresponding Robin operators as in (3.10). Assume that

D ⊂ ρ(A1
Θ
)∩ρ(A2

Θ
) is a set with an accumulation point in ρ(A1

Θ
)∩ρ(A2

Θ
) and that

(M1
Θ(λ )g,h)∂Ω = (M2

Θ(λ )g,h)∂Ω, g,h ∈ H−1/2(∂Ω), suppg,h⊂ ω,

holds for all λ ∈ D. Then A1
Θ

and A2
Θ

are unitarily equivalent.

Note that Remark 4.4 also applies to Theorem 4.11.



5 TITCHMARSH–WEYL THEORY FOR ELLIPTIC
DIFFERENTIAL OPERATORS

In this chapter we turn to the second main objective of the present thesis. We develop an
approach to the spectral theory of selfadjoint elliptic differential operators which gener-
alizes results of the classical Titchmarsh–Weyl theory for selfadjoint ordinary differential
operators. It is a well-known fact, see [41, 122], that the spectra of the selfadjoint real-
izations of singular Sturm–Liouville differential expressions can be recovered from the
limiting behavior of the Titchmarsh–Weyl m-function towards the real axis. In the present
chapter we generalize these results to selfadjoint partial, elliptic differential operators. We
consider a uniformly elliptic, formally symmetric differential expression

L=−
n

∑
j,k=1

∂

∂x j
a jk

∂

∂xk
+

n

∑
j=1

(
a j

∂

∂x j
− ∂

∂x j
a j

)
+a

on a (bounded or unbounded) Lipschitz domain Ω as in Assumption 3.1. The function
λ 7→M(λ ), where M(λ ) is the Dirichlet-to-Neumann map

M(λ )uλ |∂Ω =−∂uλ

∂νL

∣∣
∂Ω

, Luλ = λuλ ,

in (3.9), is the natural multidimensional analog of the Titchmarsh–Weyl m-function. In
the main theorems of this section we prove that the whole spectral data of the selfadjoint
Dirichlet operator

ADu = Lu, domAD =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),u|∂Ω = 0
}
,

in L2(Ω), see (3.5), is encoded in the function M(·). Particularly, we give a complete
description of all isolated and embedded eigenvalues and of the absolutely continuous
spectrum of AD in terms of the limiting behavior of M(·) towards the real line, and we
prove a sufficient criterion for the absence of singular continuous spectrum. In the second
part of this chapter we provide generalizations of these results to the case that the Dirichlet-
to-Neumann map is known only partially and to further selfadjoint realizations of L with
(in general) nonlocal boundary conditions of Robin type. Parts of the results of the present
chapter were published in [27].
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5.1 A characterization of the Dirichlet spectrum

In this section we describe the complete spectrum of the Dirichlet operator AD by means
of the behavior of the Dirichlet-to-Neumann map M(λ ) for λ close to the real axis. In
particular, we characterize the isolated and embedded eigenvalues of AD together with the
corresponding eigenspaces and the absolutely continuous spectrum and give a sufficient
condition for the absence of singular continuous spectrum within some interval. In order to
keep the results and proofs simple we first consider the case that the Dirichlet-to-Neumann
map M(λ ) is known on the whole boundary ∂Ω.

In view of the characterization of the eigenvalues of the Dirichlet operator in the first
theorem of this section we state the following simple lemma.

Lemma 5.1. Let Assumption 3.1 be satisfied and let M(λ + iη) be the Dirichlet-to-
Neumann map in (3.9). Then for all λ ∈ R the strong limit

s-lim
η↘0

ηM(λ + iη) (5.1)

exists, that is, limη↘0 ηM(λ + iη)g exists in H−1/2(∂Ω) for all g ∈ H1/2(∂Ω).

Proof. Let λ ∈ R and g ∈ H1/2(∂Ω). For an arbitrary µ ∈ ρ(AD) Lemma 4.1 (iv) leads to

M(λ+iη)g = M(µ)g

+(λ + iη−µ)γ(µ)∗
(
I +(λ + iη−µ)(AD− (λ + iη))−1)

γ(µ)g (5.2)

for all η > 0. Moreover, when E(·) denotes the spectral measure of AD, we have∥∥η(AD−(λ + iη))−1
γ(µ)g− iE({λ})γ(µ)g

∥∥2

=
∫
R

∣∣∣∣ η

t−λ − iη
− i1{λ}

∣∣∣∣2 d (E(t)γ(µ)g,γ(µ)g)→ 0 as η ↘ 0 (5.3)

by the dominated convergence theorem, that is, η(AD− (λ + iη))−1γ(µ)g converges to
iE({λ})γ(µ)g as η ↘ 0. From this and (5.2) we obtain

lim
η↘0

ηM(λ + iη)g = lim
η↘0

η(λ + iη−µ)γ(µ)∗(λ + iη−µ)(AD− (λ + iη))−1
γ(µ)g

= (λ −µ)γ(µ)∗(λ −µ)iE({λ})γ(µ)g;

in particular, the strong limit (5.1) exists.



5.1 A characterization of the Dirichlet spectrum 51

The following theorem is one of the main results of this thesis. It shows that the whole
spectral data of AD can be recovered from the knowledge of the function M(·). Partic-
ularly, we provide a complete characterization of all eigenvalues and the corresponding
eigenspaces. We point out that this result is the multidimensional analog of the main the-
orem in [41], where the spectra of selfadjoint singular Sturm–Liouville operators were
characterized by means of the limiting behavior of the associated Titchmarsh–Weyl m-
function; cf. also [73] for analogous statements for Hamiltonian systems. For similar
results in the abstract framework of Q-functions associated with selfadjoint operators in
Hilbert spaces see [25,98]. For the idea of the proof of item (i) we refer the reader to [51].
Recall that ρ(AD), σp(AD), and σc(AD) denote the resolvent set, the point spectrum, and
the continuous spectrum, respectively, of AD and that Resλ M is the residue of the operator
function M(·) at λ .

Theorem 5.2. Let Assumption 3.1 be satisfied, let AD be the selfadjoint Dirichlet operator
in (3.5) and let M(λ ) be the Dirichlet-to-Neumann map in (3.9). For λ ∈ R the following
assertions hold.

(i) λ ∈ ρ(AD) if and only if M(·) can be continued analytically to λ .

(ii) λ ∈ σp(AD) if and only if s-limη↘0 ηM(λ + iη) 6= 0. If λ is an eigenvalue with finite
multiplicity then the mapping

τ :ker(AD−λ )→
{

lim
η↘0

ηM(λ + iη)g : g ∈ H1/2(∂Ω)
}
,

u 7→ ∂u
∂νL

∣∣
∂Ω

, (5.4)

is bijective; if λ is an eigenvalue with infinite multiplicity then the mapping

τ :ker(AD−λ )→ clτ
{

lim
η↘0

ηM(λ + iη)g : g ∈ H1/2(∂Ω)
}
,

u 7→ ∂u
∂νL

∣∣
∂Ω

, (5.5)

is bijective, where clτ denotes the closure in the normed space ranτ .

(iii) λ is an isolated eigenvalue of AD if and only if λ is a pole of M(·). If λ is an isolated
eigenvalue with finite multiplicity then the mapping

τ : ker(AD−λ )→ ranResλ M, u 7→ ∂u
∂νL

∣∣
∂Ω

, (5.6)

is bijective; if λ is an isolated eigenvalue with infinite multiplicity then the mapping

τ : ker(AD−λ )→ clτ(ranResλ M), u 7→ ∂u
∂νL

∣∣
∂Ω

, (5.7)

is bijective with clτ as in (ii).
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(iv) λ ∈ σc(AD) if and only if s-limη↘0 ηM(λ + iη) = 0 and M(·) cannot be continued
analytically to λ .

Proof. (i) It follows from Lemma 4.1 (iv) that M(·) is analytic on ρ(AD). In order to
verify the other implication, let us assume that M(·) can be continued analytically to some
λ ∈ R. Let us choose a,b ∈ R \σp(AD) with a < b such that λ ∈ (a,b) and such that
[a,b] is contained in the maximal domain of analyticity of the function M(·). The spectral
projection E((a,b)) of AD corresponding to the interval (a,b) is given by Stone’s formula

E((a,b)) = s-lim
δ↘0

1
2πi

b∫
a

(
(AD− (t + iδ ))−1− (AD− (t− iδ ))−1)dt, (5.8)

see (2.3), where the integral on the right-hand side converges in the strong sense. Let γ(µ)
denote the Poisson operator in (4.1). Combining (5.8) with the identity (4.2) in Lemma 4.1
we obtain

γ(µ)∗E((a,b))γ(µ) = s-lim
δ↘0

1
2πi

b∫
a

(
M(t + iδ )−M(µ)

(t + iδ −µ)(t + iδ −µ)
− γ(µ)∗γ(µ)

t + iδ −µ

+
γ(µ)∗γ(µ)

t− iδ −µ
− M(t− iδ )−M(µ)

(t− iδ −µ)(t− iδ −µ)

)
dt = 0

for each µ ∈ C \R, since M(·) is holomorphic in an open neighborhood of the interval
[a,b] in C. In particular,(

E((a,b))γ(µ)g,γ(µ)g
)
= 0, g ∈ H1/2(∂Ω), µ ∈ C\R. (5.9)

Recall next that by Proposition 4.7

span
{

γ(µ)g : µ ∈ C\R,g ∈ H1/2(∂Ω)
}

is dense in L2(Ω). Hence (5.9) yields E((a,b)) = 0. Now λ ∈ (a,b) implies λ ∈ ρ(AD).

(ii) We prove that the operator τ in (5.5) is bijective for all λ ∈ R; from this it follows
immediately that λ is an eigenvalue of AD if and only if s-limη↘0 ηM(λ + iη) 6= 0. Let
λ ∈ R. We verify first that the operator τ is injective. Indeed, assume u ∈ ker(AD− λ )
satisfies τu = 0, let µ ∈ C \R, and let vµ ∈ Nµ , see (4.15), that is, vµ ∈ H1(Ω) and
Lvµ = µvµ . Then the second Green identity (2.11) yields

(λ −µ)(u,vµ) = (ADu,vµ)− (u,Lvµ)

=
(

u|∂Ω,
∂vµ

∂νL

∣∣
∂Ω

)
∂Ω

−
(

∂u
∂νL

∣∣
∂Ω

,vµ |∂Ω

)
∂Ω

= 0,
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since u|∂Ω = 0 and ∂u
∂νL
|∂Ω = τu = 0. Since

span{Nλ : λ ∈ C\R}

is dense in L2(Ω) by Proposition 4.7, it follows u = 0, that is, τ is injective.

Let us set

Fλ =
{

lim
η↘0

ηM(λ + iη)g : g ∈ H1/2(∂Ω)
}
.

In order to prove the surjectivity of τ we will verify the identity

Fλ ⊂ ranτ ⊂Fλ . (5.10)

Since AD is semibounded from below, see Theorem 3.2, we can fix some µ ∈ R∩ρ(AD).
Note that for each u ∈ ker(AD−λ ) the identity

τu =
∂u

∂νL

∣∣
∂Ω

=
∂

∂νL

(
(AD−µ)−1(AD−µ)u

)∣∣
∂Ω

= (λ −µ)
∂

∂νL

(
(AD−µ)−1u

)∣∣
∂Ω

= (µ−λ )γ(µ)∗u

holds by Lemma 4.1 (i), where γ(µ) is the Poisson operator in (4.1); in particular,

ranτ = ran(γ(µ)∗ � ker(AD−λ )) .

Thus, in order to verify (5.10) it is sufficient to show

Fλ ⊂ ran
(
γ(µ)∗ � ker(AD−λ )

)
⊂Fλ . (5.11)

Indeed, if we denote by E(·) the spectral measure of AD and by P= E({λ}) the orthogonal
projection in L2(Ω) onto ker(AD−λ ) then

lim
η↘0

η(AD− (λ + iη))−1
γ(ν)g = iPγ(ν)g (5.12)

holds for all g ∈H1/2(∂Ω) and all ν ∈C\R, see (5.3). Furthermore, note that the identity

γ(µ)∗(AD−z)−1
γ(ν)

=
M(z)

(z−ν)(z−µ)
+

M(µ)

(µ− z)(µ−ν)
+

M(ν)

(ν− z)(ν−µ)
(5.13)

holds for ν ,z ∈ C \R satisfying z 6= ν . Indeed, by Lemma 4.1 (ii) and the first statement
in Lemma 4.1 (iii) we have

γ(µ)∗(AD− z)−1
γ(ν) = γ(µ)∗

(
γ(z)− γ(ν)

z−ν

)
=

1
z−ν

(
M(z)−M(µ)

z−µ
−M(ν)−M(µ)

ν−µ

)
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and an easy computation yields (5.13). The formulas (5.12) and (5.13) and the continuity
of γ(µ)∗ imply

limη↘0 ηM(λ + iη)g
(λ −ν)(λ −µ)

= lim
η↘0

ηγ(µ)∗(AD− (λ + iη))−1
γ(ν)g

= iγ(µ)∗Pγ(ν)g (5.14)

for all g ∈ H1/2(∂Ω) and all ν ∈ C \R. From this we obtain the first inclusion in (5.11).
Moreover, it follows from Proposition 4.7 that

span
{

Pγ(ν)g : ν ∈ C\R,g ∈ H1/2(∂Ω)
}

is dense in ker(A−λ ). Thus (5.14) also leads to the second inclusion in (5.11) and, con-
sequently, we obtain (5.10). In particular, we have Fλ ⊂ ranτ and

clτ(Fλ ) = Fλ ∩ ranτ = ranτ.

Therefore τ in (5.5) is surjective and, hence, bijective. Clearly, if dimker(AD−λ ) is finite
then equality holds in (5.10), which leads to the bijectivity of (5.4) and completes the proof
of (ii).

(iii) Let λ be an isolated eigenvalue of AD. Then there exists an open neighborhoodO of λ

such that z 7→ (AD−z)−1 is holomorphic onO\{λ}. Thus, by (i), M(·) is holomorphic on
O\{λ}. Moreover, by (ii), there exists g∈H1/2(∂Ω) such that limη↘0 iηM(λ + iη)g 6= 0.
Hence λ is a pole of M(·) and it follows from the formula (4.2) in Lemma 4.1 that the order
of the pole is one. Moreover, the limit

lim
z→λ

(z−λ )M(z)g = Resλ M(·)g

exists for all g ∈ H1/2(∂Ω) and, clearly, it coincides with limη↘0 iηM(λ + iη)g. There-
fore (5.7) is a consequence of (5.5). Analogously, the identity (5.6) follows immediately
from (5.4). If, conversely, λ is a pole of M(·) then clearly there exists g ∈ H1/2(∂Ω)
such that limη↘0 ηM(λ + iη)g 6= 0 and it follows from (ii) that λ is an eigenvalue of AD.
Since M(·) is holomorphic on a punctured neighborhood of λ , by (i) the same holds for
the function z 7→ (AD− z)−1. Therefore λ is isolated in σ(AD) and, hence, λ is an isolated
eigenvalue of AD.

(iv) Since σc(AD) = R \ (ρ(AD)∪ σp(AD)), the statement of (iv) follows immediately
from (i) and (ii).

In the special case that Ω is bounded the spectrum of AD is purely discrete, see Theorem 3.2
above, that is, σ(AD) consists of isolated eigenvalues with finite multiplicities. In this case
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Theorem 5.2 can be regarded as a special case of Theorem 4.5 in Chapter 4 above with
ω = ∂Ω.

In our next main result we characterize the absolutely continuous spectrum of AD by means
of the limits of M(λ ) when λ approaches the real axis. In order to do so we define the
absolutely continuous closure of a Borel set χ ⊂ R by

clac(χ) :=
{

x ∈ R : |(x− ε,x+ ε)∩χ|> 0for allε > 0
}
, (5.15)

where | · | denotes the Lebesgue measure on R; sometimes clac(χ) is also called the essen-
tial closure of χ . The proofs of the next two theorems require the following lemma from
measure theory. For a proof of the lemma see Lemma A.1 in Appendix A.1. Recall that
each σ -finite Borel measure µ on R admits a unique decomposition µ = µac + µs, where
µac is absolutely continuous (with respect to the Lebesgue measure) and µs is singular, and
that the singular part µs can be decomposed further into the singular continuous part µsc
and the pure point part; cf. Appendix A.1. For a Borel measure µ on R we define

supp µ := {x ∈ R : µ((x− ε,x+ ε))> 0 for all ε > 0} ,

the set of all growth points of µ .

Lemma 5.3. Let µ be a finite Borel measure on R and denote by F(·) its Borel transform,
i.e.,

F(λ ) =
∫
R

1
t−λ

dµ(t), λ ∈ C\R.

Then the limit ImF(x+ i0) = limy↘0 ImF(x+ iy) exists and is finite for Lebesgue almost
all x ∈ R. Moreover, for the absolutely continuous part µac and the singular continuous
part µsc of µ the following assertions hold.

(i) supp µac = clac({x ∈ R : 0 < ImF(x+ i0)<+∞}).

(ii) The set Msc = {x ∈ R : ImF(x+ i0) = +∞, limy↘0 yF(x+ iy) = 0} is a support for
µsc, that is, µsc(R\Msc) = 0.

The following result is the multidimensional analog of a well-known and widely used
statement from singular Sturm–Liouville theory; cf., e.g., [13, 64, 122]. It states that the
absolutely continuous spectrum of AD can be detected by the limits of the imaginary part
of the Dirichlet-to-Neumann map towards the real line. For similar results in an abstract
framework see, e.g., [34].
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Theorem 5.4. Let Assumption 3.1 be satisfied, let AD be the selfadjoint Dirichlet operator
in (3.5), and let M(λ ) be the Dirichlet-to-Neumann map in (3.9). Then the absolutely
continuous spectrum of AD is given by

σac(AD) =
⋃

g∈H1/2(∂Ω)

clac
({

x ∈ R : 0 < Im(M(x+ i0)g,g)∂Ω <+∞
})

. (5.16)

In particular, if a,b ∈ R with a < b then (a,b) ∩ σac(AD) = /0 if and only if
Im(M(x+ i0)g,g)∂Ω = 0 holds for all g ∈ H1/2(∂Ω) and for almost all x ∈ (a,b).

Proof. Step 1. Recall that γ(ζ ) denotes the Poisson operator for ζ ∈ ρ(AD), see (4.1). In
this first step our aim is to verify that the absolutely continuous spectrum of AD is given by

σac(AD) =
⋃

ζ∈C\R,
g∈H1/2(∂Ω)

supp µγ(ζ )g,ac, (5.17)

where µu = (E(·)u,u), u ∈ L2(Ω), and E(·) denotes the spectral measure of AD. Let Hac
denote the absolutely continuous subspace of L2(Ω) with respect to AD and let AD,ac be the
absolutely continuous part of AD. Let λ /∈ σac(AD) = σ(AD,ac). Then there exists ε > 0
such that E((λ −ε,λ +ε)) �Hac = 0, in particular, µu((λ −ε,λ +ε)) = 0 for all u ∈Hac.
For arbitrary ζ ∈ C\R and g ∈ H1/2(∂Ω) we have

µγ(ζ )g,ac((λ − ε,λ + ε)) = µPacγ(ζ )g((λ − ε,λ + ε)) = 0,

where Pac denotes the orthogonal projection in L2(Ω) ontoHac. Hence we have

λ /∈
⋃

ζ∈C\R,
g∈H1/2(∂Ω)

supp µγ(ζ )g,ac.

Since σac(AD) is closed, we have proved the inclusion ⊃ in (5.17). In order to verify the
converse inclusion assume that λ does not belong to the right-hand side of (5.17). Then
there exists ε > 0 such that (λ − ε,λ + ε) ⊂ R \ supp µγ(ζ )g,ac = R \ supp µPacγ(ζ )g for all
ζ ∈ C\R, g ∈ H1/2(∂Ω), that is,

‖E((λ − ε,λ + ε))Pacγ(ζ )g‖2 = (E((λ − ε,λ + ε))Pacγ(ζ )g,Pacγ(ζ )g) = 0

for all ζ ∈ C\R,g ∈ H1/2(∂Ω). Since it follows from Proposition 4.7 that

span
{

Pacγ(ζ )g : ζ ∈ C\R,g ∈ H1/2(∂Ω)
}

is dense in Hac, we obtain E((λ − ε,λ + ε)) �Hac = 0, that is, λ /∈ σ(AD,ac) = σac(AD).
Thus we have proved (5.17).
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Step 2. In this step we observe that for each ζ ∈ C\R and each g ∈ H1/2(∂Ω) we have

suppµγ(ζ )g,ac = clac
({

x ∈ R : 0 < Im
(
(AD− (x+ i0))−1

γ(ζ )g,γ(ζ )g
)
<+∞

})
. (5.18)

Indeed, for each ζ ∈ C\R and each g ∈ H1/2(∂Ω) the Borel transform of the finite Borel
measure µγ(ζ )g = (E(·)γ(ζ )g,γ(ζ )g) is given by

Fγ(ζ )g(x+ iy) =
∫
R

1
t− (x+ iy)

d(E(t)γ(ζ )g,γ(ζ )g)

=
(
(AD− (x+ iy))−1

γ(ζ )g,γ(ζ )g
)
, x ∈ R, y > 0.

Hence Lemma 5.3 (i) implies (5.18).

Step 3. In this third step we verify that

0 < Im
(
(AD− (x+ i0))−1

γ(ζ )g,γ(ζ )g
)
<+∞

⇐⇒ 0 < Im(M(x+ i0)g,g)∂Ω <+∞ (5.19)

is true for all x∈R, all g∈H1/2(∂Ω), and all ζ ∈C\R. We make use of the formula (4.2)
and obtain for y > 0, ζ ∈ C\R, and g ∈ H1/2(∂Ω)

Im(M(x+ iy)g,g)∂Ω

= y‖γ(ζ )g‖2
L2(Ω)+

(
|x−ζ |2− y2) Im

(
(AD− (x+ iy))−1

γ(ζ )g,γ(ζ )g
)

+2(x−Reζ )yRe
(
(AD− (x+ iy))−1

γ(ζ )g,γ(ζ )g
)
.

Moreover, for y > 0 we have

yRe
(
(AD− (x+ iy))−1

γ(ζ )g,γ(ζ )g
)
=
∫
R

y(t− x)
(t− x)2 + y2 d(E(t)γ(ζ )g,γ(ζ )g),

which converges to zero for y↘ 0 by the dominated convergence theorem as the integrand
is bounded by 1/2. Hence

Im(M(x+ i0)g,g)∂Ω = |x−ζ |2 Im
(
(AD− (x+ i0))−1

γ(ζ )g,γ(ζ )g
)
. (5.20)

Since |x−ζ |2 > 0, (5.20) yields (5.19).

From Step 1–Step 3 the representation (5.16) follows.

Step 4. In this last step we prove the remaining assertion of the theorem. Let a < b and
assume (a,b)∩σac(AD) = /0. Then (5.16) implies

/0 = (a,b)∩ clac ({x ∈ R : 0 < Im(M(x+ i0)g,g)∂Ω <+∞})
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for each g ∈ H1/2(∂Ω). Consequently, for each g ∈ H1/2(∂Ω) and each x̃ ∈ (a,b) there
exists ε > 0 with∣∣(x̃− ε, x̃+ ε)∩{x ∈ R : 0 < Im(M(x+ i0)g,g)∂Ω <+∞}

∣∣= 0. (5.21)

Since by (5.20) and Lemma 5.3

Im(M(x+ i0)g,g)∂Ω = |x−ζ | ImFγ(ζ )g(x+ i0), ζ ∈ C\R,

exists and is finite for Lebesgue almost all x ∈ R, it follows from (5.21) that Im(M(x+
i0)g,g)∂Ω = 0 for all g ∈ H1/2(∂Ω) and almost all x ∈ (a,b). If, conversely, Im(M(x+
i0)g,g)∂Ω = 0 holds for all g ∈ H1/2(∂Ω) and almost all x ∈ (a,b), then clearly the in-
tersection of (a,b) with the right-hand side in (5.16) is empty and, hence, we obtain
σac(AD)∩ (a,b) = /0.

In the next theorem a sufficient criterion for the absence of singular continuous spectrum
of AD within some interval by means of the limiting behavior of M(·) is given; cf. [34] for
an abstract approach.

Theorem 5.5. Let Assumption 3.1 be satisfied, let AD be the Dirichlet operator in (3.5),
and let M(λ ) be the Dirichlet-to-Neumann map in (3.9). Moreover, let a,b ∈R with a < b.
If for each g ∈ H1/2(∂Ω) there exist at most countably many x ∈ (a,b) such that

Im(M(x+ iy)g,g)∂Ω→+∞ and y(M(x+ iy)g,g)∂Ω→ 0, y↘ 0, (5.22)

then (a,b)∩σsc(AD) = /0.

Proof. Analogously to Step 1 in the proof of Theorem 5.4 it can be seen that the singular
continuous spectrum of AD is given by

σsc(AD) =
⋃

ζ∈C\R,
g∈H1/2(∂Ω)

supp µγ(ζ )g,sc. (5.23)

From (5.22) it follows with the help of (5.20) and (5.14) that for each g ∈ H1/2(∂Ω) and
each fixed ζ ∈ C\R there exist at most countably many x ∈ (a,b) such that

Im
(
(AD− (x+ iy))−1

γ(ζ )g,γ(ζ )g
)
→+∞

and

y
(
(AD− (x+ iy))−1

γ(ζ )g,γ(ζ )g
)
→ 0

as y↘ 0. With Lemma 5.3 (ii) it follows that µγ(ζ )g,sc has a countable support within
the interval (a,b) for each g ∈ H1/2(∂Ω) and each ζ ∈ C\R. Since a singular continuous
measure does not possess any point masses, we conclude that µγ(ζ )g,sc is trivial on (a,b) for
all ζ ∈C\R and all g∈H1/2(∂Ω). Finally, from (5.23) it follows σsc(AD)∩(a,b)= /0.
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Finally, we state the following corollary of the theorems of this section. It provides suffi-
cient criteria for the spectrum of AD to be purely absolutely continuous or purely singular
continuous, respectively, in some interval.

Corollary 5.6. Assume that Assumption 3.1 is satisfied. Let AD be the Dirichlet operator
in (3.5), let M(λ ) be the Dirichlet-to-Neumann map in (3.9), and let a,b ∈ R with a < b.
Moreover, for all g ∈ H1/2(∂Ω) and all x ∈ (a,b) let

lim
y↘0

yM(x+ iy)g = 0.

Then the following assertions hold.

(i) If Im(M(x+ i0)g,g)∂Ω = 0 holds for all g ∈H1/2(∂Ω) and almost all x ∈ (a,b) then
σ(AD)∩ (a,b) = σsc(AD)∩ (a,b).

(ii) If for each g ∈ H1/2(∂Ω) there exist at most countably many x ∈ (a,b) such that
Im(M(x+ i0)g,g)∂Ω =+∞ then σ(AD)∩ (a,b) = σac(AD)∩ (a,b).

5.2 Generalizations and extensions

In this section we provide extensions and generalizations of the results of the previous
section. On the one hand we show that the spectrum of the selfadjoint Dirichlet operator
can be described completely from the knowledge of the function M(·) on an open subset ω

of ∂Ω instead of the whole boundary; this complements the results of Chapter 4 with partial
boundary data. On the other hand we provide a spectral characterization for operators
with generalized Robin boundary conditions as in (3.10). We show that the results of the
previous section remain valid for such generalized Robin operators when the Dirichlet-to-
Neumann map is replaced by a corresponding Robin-to-Dirichlet map.

5.2.1 A characterization of the Dirichlet spectrum from partial data

Our aim in this subsection is to characterize the spectrum of the Dirichlet operator AD by
the partial knowledge of the Dirichlet-to-Neumann map. The following theorem can be
considered to be a local variant of Theorem 5.2. For the sake of completeness we provide
a short proof, which is of a similar nature as the proof of Theorem 5.2. Let ω ⊂ ∂Ω

be a nonempty, relatively open set. Recall from Chapter 4 that the space of functions in
H1/2(∂Ω) with support in ω is called H1/2

ω , that is,

H1/2
ω =

{
g ∈ H1/2(∂Ω) : suppg⊂ ω

}
.
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We say that M(·) can be continued analytically to λ ∈R on ω if there exists an open neigh-
borhood O of λ in C such that the function (M(·)g,g)∂Ω can be continued analytically to
O for all g ∈ H1/2

ω .

Theorem 5.7. Let Assumption 3.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω be
open and nonempty. Moreover, let AD be the selfadjoint Dirichlet operator in (3.5) and let
M(λ ) be the Dirichlet-to-Neumann map in (3.9). Then for λ ∈ R the following assertions
hold.

(i) λ ∈ ρ(AD) if and only if M(·) can be continued analytically to λ on ω .

(ii) λ ∈ σp(AD) if and only if limη↘0 η(M(λ + iη)g,g)∂Ω 6= 0 for some g ∈ H1/2
ω .

(iii) λ is an isolated eigenvalue of AD if and only if λ is a pole of (M(·)g,g)∂Ω for some
g ∈ H1/2

ω .

(iv) λ ∈ σc(AD) if and only if M(·) cannot be continued analytically to λ on ω and
limη↘0 η(M(λ + iη)g,g)∂Ω = 0 for all g ∈ H1/2

ω .

Proof. (i) The proof of (i) follows precisely the lines of the proof of Theorem 5.2 (i), where
one has to replace H1/2(∂Ω) by H1/2

ω and use Proposition 4.3 instead of Proposition 4.7.

(ii) Let E(·) denote the spectral measure of AD. Making use of Lemma 4.1 (iv) and the
calculation (5.3) we obtain

lim
η↘0

η(M(λ + iη)g,g)∂Ω

= lim
η↘0

η(λ + iη−µ)(λ + iη−µ)
(
(AD− (λ + iη))−1

γ(µ)g,γ(µ)g
)

= (λ −µ)(λ −µ)‖E({λ})γ(µ)g‖2 (5.24)

for all µ ∈ C\R and all g ∈ H1/2
ω . If limη↘0 η(M(λ + iη)g,g)∂Ω 6= 0 for some g ∈ H1/2

ω

then (5.24) implies E({λ})γ(µ)g 6= 0, that is, λ is an eigenvalue of AD. For the converse
implication note that, as a consequence of Proposition 4.3, the linear space

span
{

E({λ})γ(µ)g : µ ∈ C\R,g ∈ H1/2
ω

}
is dense in ker(AD− λ ). Thus, if λ belongs to σp(AD) then there exist µ ∈ C \R and
g ∈ H1/2

ω with E({λ})γ(µ)g 6= 0. From this and (5.24) we conclude limη↘0 η(M(λ +
iη)g,g)∂Ω 6= 0.

(iii) This statement is an easy consequence of (i) and (ii); cf. the proof of Theorem 5.2 (iii).

(iv) Since σc(AD) =C\(ρ(AD)∪σp(AD)), the claim follows immediately from (i) and (ii).
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In the following two theorems we indicate how the absolutely continuous and singular
continuous spectrum of the selfadjoint Dirichlet operator can be detected from the partial
knowledge of the Dirichlet-to-Neumann map. Their proofs follow the lines of Theorem 5.4
and Theorem 5.5 with H1/2

ω instead of H1/2(∂Ω) and Proposition 4.3 instead of Proposi-
tion 4.7.

A characterization of the absolutely continuous spectrum of AD by means of the limits of
the partial Dirichlet-to-Neumann map on ω looks as follows. This is a local version of
Theorem 5.4 above.

Theorem 5.8. Let Assumption 3.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω be
open and nonempty. Moreover, let AD be the selfadjoint Dirichlet operator in (3.5), and let
M(λ ) be the Dirichlet-to-Neumann map in (3.9). Then the absolutely continuous spectrum
of AD is given by

σac(AD) =
⋃

g∈H1/2
ω

clac
({

x ∈ R : 0 < Im(M(x+ i0)g,g)∂Ω <+∞
})

.

In particular, if a,b ∈ R with a < b then (a,b) ∩ σac(AD) = /0 if and only if
Im(M(x+ i0)g,g)∂Ω = 0 holds for all g ∈ H1/2

ω and for almost all x ∈ (a,b).

Furthermore, the following criterion for the absence of singular continuous spectrum of
AD in some interval can be proved. It is the local variant of Theorem 5.5 above.

Theorem 5.9. Let Assumption 3.1 be satisfied, let Ω be connected, and let ω ⊂ ∂Ω be
open and nonempty. Moreover, let AD be the selfadjoint Dirichlet operator in (3.5), let
M(λ ) be the Dirichlet-to-Neumann map in (3.9), and let a,b ∈ R with a < b. If for each
g ∈ H1/2

ω there exist at most countably many x ∈ (a,b) such that

Im(M(x+ iy)g,g)∂Ω→+∞ and y(M(x+ iy)g,g)∂Ω→ 0, y↘ 0,

then (a,b)∩σsc(AD) = /0.

As an immediate consequence of the theorems of this section we obtain the following
corollary. It contains sufficient criteria for the spectrum of AD to be purely absolutely con-
tinuous or purely singular continuous, respectively, in some interval, and is the counterpart
of Corollary 5.6 for partial boundary data.

Corollary 5.10. Assume that Assumption 3.1 is satisfied, that Ω is connected, and that ω

is an open, nonempty subset of ∂Ω. Let AD be the selfadjoint Dirichlet operator in (3.5),
let M(λ ) be the Dirichlet-to-Neumann map in (3.9), and let a,b ∈R with a < b. Moreover,
for all g ∈ H1/2

ω and all x ∈ (a,b) let

lim
y↘0

y(M(x+ iy)g,g)∂Ω = 0.

Then the following assertions hold.
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(i) If Im(M(x + i0)g,g)∂Ω = 0 holds for all g ∈ H1/2
ω and almost all x ∈ (a,b) then

σ(AD)∩ (a,b) = σsc(AD)∩ (a,b).

(ii) If for each g ∈ H1/2
ω there exist at most countably many x ∈ (a,b) such that

Im(M(x+ i0)g,g)∂Ω =+∞ then σ(AD)∩ (a,b) = σac(AD)∩ (a,b).

Remark 5.1. In all results of this subsection the assumption that Ω is connected can be
weakened. It suffices to require that ω ∩ ∂O is nonempty for each connected component
O of Ω, and the proofs remain the same.

5.2.2 A characterization of the spectra of generalized Robin operators

In this section we focus on the operator

AΘu = Lu, domAΘ =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω),
∂u

∂νL

∣∣
∂Ω

+Θu|∂Ω = 0
}
,

in L2(Ω), cf. (3.10), where Θ : H1/2(∂Ω)→ H−1/2(∂Ω) is an operator which satisfies
Assumption 3.2 from Chapter 3 above, that is, Θ = Θ1 +Θ2, where Θi : H1/2(∂Ω)→
H−1/2(∂Ω) are bounded operators with

(Θig,h)∂Ω = (g,Θih)∂Ω, g,h ∈ H1/2(∂Ω),

i = 1,2, such that Θ1 is L2-semibounded, i.e.,

(Θ1g,g)∂Ω ≥ cΘ1‖g‖
2
L2(∂Ω), g ∈ H1/2(∂Ω),

for some cΘ1 ∈ R, and Θ2 is compact. We provide analogs of the theorems in the previous
section, where the Dirichlet operator AD is replaced by the operator AΘ and the Dirichlet-
to-Neumann map M(λ ) is replaced by the Robin-to-Dirichlet map MΘ(λ ) which is given
by

MΘ(λ ) = (Θ−M(λ ))−1, λ ∈ ρ(AΘ)∩ρ(AD),

see (3.21) and (3.22).

The following lemma is a consequence of the formula (4.13) in Lemma 4.6; cf. the proof
of Lemma 5.1.

Lemma 5.11. Let Assumption 3.1 and Assumption 3.2 be satisfied and let
MΘ(λ + iη) be the Robin-to-Dirichlet map in (3.21). Then for all λ ∈ R the strong limit

s-lim
η↘0

ηMΘ(λ + iη)

exists, that is, limη↘0 ηMΘ(λ + iη)g exists in H1/2(∂Ω) for all g ∈ H−1/2(∂Ω).
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The following theorem is an analog of Theorem 5.2 for the operator AΘ instead of the
Dirichlet operator. We denote by Resλ MΘ the residue of the analytic function MΘ(·) at
some pole λ .

Theorem 5.12. Let Assumption 3.1 hold and let Θ satisfy Assumption 3.2. Moreover, let
AΘ be the selfadjoint operator given in (3.10) and let MΘ(λ ) be the Robin-to-Dirichlet
map in (3.21). For λ ∈ R the following assertions hold.

(i) λ ∈ ρ(AΘ) if and only if MΘ(·) can be continued analytically to λ .

(ii) λ ∈ σp(AΘ) if and only if s-limη↘0 ηMΘ(λ + iη) 6= 0. If λ is an eigenvalue with
finite multiplicity then the mapping

τ : ker(AΘ−λ )→
{

lim
η↘0

ηMΘ(λ + iη)g : g ∈ H−1/2(∂Ω)
}
, u 7→ u|∂Ω

is bijective; if λ is an eigenvalue with infinite multiplicity then the mapping

τ : ker(AΘ−λ )→ clτ
{

lim
η↘0

ηMΘ(λ + iη)g : g ∈ H−1/2(∂Ω)
}
, u 7→ u|∂Ω

is bijective, where clτ denotes the closure in the normed space ranτ .

(iii) λ is an isolated eigenvalue of AΘ if and only if λ is a pole of MΘ(·). If λ is an
isolated eigenvalue with finite multiplicity then the mapping

τ : ker(AΘ−λ )→ ranResλ MΘ, u 7→ u|∂Ω

is bijective; if λ is an isolated eigenvalue with infinite multiplicity then the mapping

τ : ker(AΘ−λ )→ clτ(ranResλ MΘ), u 7→ u|∂Ω

is bijective with clτ as in (ii).

(iv) λ ∈ σc(AΘ) if and only if MΘ(·) cannot be continued analytically to λ and
s-limη↘0 ηMΘ(λ + iη) = 0.

The proof of Theorem 5.12 will not be carried out. It is analogous to the proof of Theo-
rem 5.2, where Lemma 4.1 must be replaced by Lemma 4.6.

If Ω is bounded then the spectrum of AΘ is purely discrete, see Chapter 3, that is, σ(AΘ)
consists of isolated eigenvalues with finite multiplicities. In this case Theorem 5.12 re-
duces to Theorem 4.9.

The next theorem shows how the absolutely continuous spectrum of the operator AΘ

in (3.10) can be expressed in terms of the limits of the Robin-to-Dirichlet map at real
points. Recall the definition of the absolutely continuous closure clac in (5.15).
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Theorem 5.13. Let Assumption 3.1 hold and let Θ satisfy Assumption 3.2. Moreover, let
AΘ be the selfadjoint operator given in (3.10) and let MΘ(λ ) be the Robin-to-Dirichlet
map in (3.21). Then the absolutely continuous spectrum of AΘ is given by

σac(AΘ) =
⋃

g∈H−1/2(∂Ω)

clac
({

x ∈ R : 0 < Im(MΘ(x+ i0)g,g)∂Ω <+∞
})

.

In particular, if a,b ∈ R with a < b then (a,b) ∩ σac(AΘ) = /0 if and only if
Im(MΘ(x+ i0)g,g)∂Ω = 0 holds for all g ∈ H−1/2(∂Ω) and for almost all x ∈ (a,b).

A sufficient criterion for the absence of singular continuous spectrum within some interval
in terms of the limiting behavior of the function MΘ(·) can be formulated as follows.

Theorem 5.14. Let Assumption 3.1 hold and let Θ satisfy Assumption 3.2. Moreover, let
AΘ be the selfadjoint operator given in (3.10), let MΘ(λ ) be the Robin-to-Dirichlet map
in (3.21), and let a,b ∈ R with a < b. If for each g ∈ H−1/2(∂Ω) there exist at most
countably many x ∈ (a,b) such that

Im(MΘ(x+ iy)g,g)∂Ω→+∞ and y(MΘ(x+ iy)g,g)∂Ω→ 0, y↘ 0,

then (a,b)∩σsc(AΘ) = /0.

The proofs of Theorem 5.13 and Theorem 5.14 will be omitted. They are analogs of the
proofs of Theorem 5.4 and Theorem 5.5, respectively, with a use of Lemma 4.6 instead of
Lemma 4.1.

We conclude this chapter with the following immediate corollary of the theorems of this
section. It provides sufficient criteria for the spectrum of AΘ to be purely absolutely con-
tinuous or purely singular continuous in terms of the limiting behavior of the Robin-to-
Dirichlet map MΘ(λ ) when λ approaches the real line.

Corollary 5.15. Let Assumption 3.1 be satisfied, let Θ satisfy Assumption 3.2, let AΘ be
the selfadjoint operator in (3.10), and let MΘ(λ ) be the Robin-to-Dirichlet map in (3.21).
Let a,b ∈ R with a < b. Moreover, for all g ∈ H−1/2(∂Ω) and all x ∈ (a,b) let

lim
y↘0

yMΘ(x+ iy)g = 0.

Then the following assertions hold.

(i) If Im(MΘ(x+ i0)g,g)∂Ω = 0 holds for all g ∈ H−1/2(∂Ω) and almost all x ∈ (a,b)
then σ(AΘ)∩ (a,b) = σsc(AΘ)∩ (a,b).

(ii) If for each g ∈ H−1/2(∂Ω) there exist at most countably many x ∈ (a,b) such that
Im(MΘ(x+ i0)g,g)∂Ω =+∞ then σ(AΘ)∩ (a,b) = σac(AΘ)∩ (a,b).



A APPENDIX

A.1 Spectral properties of Borel measures

In this appendix we provide some basic statements on the Borel transform of a finite Borel
measure. We point out its connection to the absolutely continuous and singular continuous
parts of the measure as they are used in the main part of this thesis in order to describe the
spectral parts of selfadjoint elliptic differential operators. The results presented in this ap-
pendix are known; our presentation is mainly based on [121, Chapter 3 and Appendix A.8]
and [111, Chapter 7]; cf. also [113, Chapter IV] for the derivatives of measures.

Let µ be a finite Borel measure on R. Recall that µ admits a unique decomposition
µ = µac + µs, where µac is absolutely continuous and µs is singular (both with respect
to the Lebesgue measure), and that, moreover, the singular part µs of µ can be decom-
posed uniquely into µs = µpp+µsc, where µpp is supported on a countable set and µsc does
not possess any point masses, that is, µsc({x}) = 0 for all x ∈ R. Let us denote the set of
all growth points of µ by supp µ , that is,

supp µ = {x ∈ R : µ((x− ε,x+ ε))> 0 for all ε > 0} ;

sometimes this set is also called the spectrum of µ; cf. [121]. Note that supp µ is a support
of µ , that is, µ(R\ supp µ) = 0. In order to characterize supp µac we define the absolutely
continuous closure (or essential closure) of a Borel set χ ⊂ R by

clac(χ) =
{

x ∈ R : |(x− ε,x+ ε)∩χ|> 0 for all ε > 0
}
,

where | · | denotes the Lebesgue measure on R. It is the aim of this appendix to provide a
proof of the following lemma.

Lemma A.1. Let µ be a finite Borel measure on R and denote by F(·) its Borel transform,
i.e.,

F(λ ) =
∫
R

1
t−λ

dµ(t), λ ∈ C\R.

Then the limit ImF(x+ i0) = limy↘0 ImF(x+ iy) exists and is finite for Lebesgue almost
all x ∈ R. Moreover, for the absolutely continuous part µac and the singular continuous
part µsc of µ the following assertions hold.

65
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(i) supp µac = clac({x ∈ R : 0 < ImF(x+ i0)<+∞}).

(ii) The set Msc = {x ∈ R : ImF(x+ i0) = +∞, limy↘0 yF(x+ iy) = 0} is a support for
µsc, that is, µsc(R\Msc) = 0.

Proof. Let us introduce the derivative

(Dµ)(x) := lim
ε↘0

µ((x− ε,x+ ε))

2ε

of µ at x for all x∈R where the limit exists in R∪{+∞}. It is well known that (Dµ)(x) ex-
ists in R∪{+∞} for Lebesgue almost all x∈R and coincides Lebesgue almost everywhere
with the Radon–Nikodym derivative of µac, i.e., for each Borel set χ ⊂ R we have

µac(χ) =
∫
χ

(Dµ)(x)dx, (A.1)

see, e.g., [121, Theorem A.37]. In particular, (Dµ)(x) is finite for almost all x ∈ R. In
order to prove the items (i) and (ii) we will verify the following

Claim. If (Dµ)(x) exists in R∪{+∞} then the limit ImF(x+ i0) exists in R∪{+∞} and
coincides with π(Dµ)(x).

Proof of the claim. Assume first that x ∈ R is chosen such that (Dµ)(x) exists in R. Note
that

ImF(x+ iy) =
∫
R

Ky(t− x)dµ(t)

holds for y > 0 with Ky(s) := y
s2+y2 , s∈R. We have to show that limy↘0 ImF(x+ iy) exists

and equals π(Dµ)(x). Let us choose c,C ∈ R with c < (Dµ)(x) < C. Then there exists
δ > 0 such that

c≤ µ((x− s,x+ s))
2s

≤C (A.2)

holds for all s ∈ (0,δ ]. As an abbreviation we write Iδ := (x−δ ,x+δ ). Then, clearly,

ImF(x+ iy) =
∫
Iδ

Ky(t− x)dµ(t)+
∫

R\Iδ

Ky(t− x)dµ(t) (A.3)

for all y > 0 and the second integral on the right-hand side satisfies

0≤
∫

R\Iδ

Ky(t− x)dµ(t)≤ Ky(δ )µ(R)→ 0, y↘ 0. (A.4)
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In order to estimate the first integral in (A.3) we integrate K′y(s) with respect to dsdµ(t)
over the triangle

{(s, t) : 0 < s < δ ,x− s < t < x+ s}
= {(s, t) : x−δ < t < x,−t + x < s < δ}
∪{(s, t) : x≤ t < x+δ , t− x < s < δ} .

This yields
δ∫

0

x+s∫
x−s

K′y(s)dµ(t)ds =
δ∫

0

K′y(s)µ(Is)ds

and
x∫

x−δ

δ∫
−t+x

K′y(s)dsdµ(t)+
x+δ∫
x

δ∫
t−x

K′y(s)dsdµ(t)

=

x∫
x−δ

(
Ky(δ )−Ky(−t + x)

)
dµ(t)+

x+δ∫
x

(
Ky(δ )−Ky(t− x)

)
dµ(t)

= µ(Iδ )Ky(δ )−
x+δ∫

x−δ

Ky(t− x)dµ(t),

hence
δ∫

0

K′y(s)µ(Is)ds = µ(Iδ )Ky(δ )−
∫
Iδ

Ky(t− x)dµ(t). (A.5)

Note further that

δKy(δ )+

δ∫
0

(−sK′y(s))ds =
δ∫

0

Ky(s)ds = arctan(δ/y).

From this together with (A.2) and (A.5) it follows

2carctan(δ/y) = 2cδKy(δ )+2c
δ∫

0

s(−K′y(s))ds

≤ µ(Iδ )Ky(δ )−
δ∫

0

K′y(s)µ(Is)ds

=
∫
Iδ

Ky(t− x)dµ(t)
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and analogously ∫
Iδ

Ky(t− x)dµ(t)≤ 2C arctan(δ/y).

Thus we have proved

2carctan(δ/y)≤
∫
Iδ

Ky(t− x)dµ(t)≤ 2C arctan(δ/y);

taking (A.3) and (A.4) into account we obtain

πc≤ liminf
y↘0

ImF(x+ iy)≤ limsup
y↘0

ImF(x+ iy)≤ πC. (A.6)

Since c and C were chosen arbitrarily with c < (Dµ)(x) < C, it follows that the limit
limy↘0 ImF(x+ iy) exists and equals π(Dµ)(x).

If (Dµ)(x) = +∞ then for an arbitrary c ∈ R the above reasoning yields

πc≤ liminf
y↘0

ImF(x+ iy)

instead of (A.6), which implies limy↘0 ImF(x+ iy) = +∞ and completes the proof of the
claim. �

Now we are able to verify the assertions (i) and (ii) of the lemma.

(i) With the definition

Mac := {x ∈ R : 0 < ImF(x+ i0)<+∞}

we have to prove

supp µac = clac(Mac). (A.7)

Assume first that x /∈ clac(Mac), that is, there exists ε > 0 such that |(x−ε,x+ε)∩Mac|= 0
and thus µac((x− ε,x+ ε)∩Mac) = 0. With

M̃ac := {x ∈ R : 0 < (Dµ)(x)<+∞}

we have M̃ac ⊂Mac by the above claim and it follows

µac((x− ε,x+ ε)) = µac((x− ε,x+ ε)\Mac)≤ µac
(
(x− ε,x+ ε)\ M̃ac

)
=

∫
(x−ε,x+ε)\M̃ac

(Dµ)(x)dx = 0,
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see (A.1); hence x /∈ supp µac. Let now x /∈ supp µac. Then there exists ε > 0 with

0 = µac((x− ε,x+ ε)) =
∫

(x−ε,x+ε)

(Dµ)(x)dx

=
1
π

∫
(x−ε,x+ε)

ImF(x+ i0)dx =
1
π

∫
(x−ε,x+ε)∩Mac

ImF(x+ i0)dx

by the claim. This implies |(x− ε,x+ ε)∩Mac| = 0, that is, x /∈ clac(Mac). Thus we have
shown (A.7).

(ii) In order to verify the statement of item (ii) we first prove that the singular part µs of µ

does not act on the set of points x with (Dµ)(x)<+∞, that is,

µs
(
{x ∈ R : (Dµ)(x)<+∞}

)
= 0. (A.8)

Let us assume the converse; then there exists a Borel set E with (Dµ)(x) < +∞ for all
x ∈ E, |E|= 0, and µ(E)> 0. Let us set

En = {x ∈ E : (Dµ)(x)< n} , n ∈ N .

Then, clearly, E =
⋃

n∈N En; in particular, there exists n∈N, which we fix, with µ(En)> 0.
Let us further define

A j =
{

x ∈ En : µ((x−δ ,x+δ ))< n2δ for all δ <
1
j

}
, j ∈ N . (A.9)

We have En =
⋃

j∈N A j, hence there exists some j ∈ N with µ(A j) > 0. By the regularity
of µ there exists a compact set K ⊂ A j with µ(K) > 0. Moreover, as a subset of E, K
satisfies |K|= 0. Thus for each ε > 0 there exists an open set V ⊃ K with |V |< ε

3n . With
r := dist(∂V,K) > 0 we choose a sequence of disjoint, non-degenerate intervals Il ⊂ V ,
l = 1, . . . ,N ≤∞, with |Il|< min{ r

3 ,
2
3 j} for all l and

⋃
l Il =V . Let Ilm be precisely those of

these intervals which have a nonempty intersection with K. Moreover, let us extend each
Ilm to an open interval Ĩlm centered in K with |Ĩlm| ≤ 3|Ilm|. Then the Ĩlm satisfy

Ĩlm = (xm−δm,xm +δm)

for appropriate xm ∈ K and δm > 0 with δm < 1
j . In particular, µ(Ĩlm) < n2δm = n|Ĩlm | for

all m by (A.9). From K ⊂
⋃

m Ĩlm we obtain

µ(K)≤∑
m

µ(Ĩlm)< n∑
m
|Ĩlm| ≤ 3n∑

m
|Ilm| ≤ 3n|V |< ε.

Since ε > 0 was chosen arbitrarily, it follows µ(K) = 0, a contradiction. Thus we have
proved (A.8). From this and the fact that (Dµ)(x) exists in R∪{+∞} for µ-almost every
x ∈ R, see [113, Chapter IV-(9.6)], it follows that

{x ∈ R : (Dµ)(x) = +∞}
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is a support for µs. Moreover, (Dµ)(x) = +∞ implies ImF(x+ i0) = +∞ by the above
claim. Thus also {x ∈ R : ImF(x+ i0) = +∞} is a support for µs. Furthermore,

|yF(x+ iy)− iµ({x})| ≤
∫
R

∣∣∣∣ y
t− (x+ iy)

− i1{x}(t)
∣∣∣∣dµ(t)→ 0, y↘ 0,

by the dominated convergence theorem; in particular, µ({x}) = 0 if and only if
limy↘0 yF(x+ iy) = 0. This yields that

Msc =
{

x ∈ R : ImF(x+ i0) = +∞, lim
y↘0

yF(x+ iy) = 0
}

is a support for µsc, which completes the proof of the lemma.

A.2 Simplicity of symmetric elliptic differential operators

In this short appendix we point out that the result of Proposition 4.3 in the main part of this
thesis is equivalent to the fact that the symmetric differential operator

Su = Lu, domS =

{
u ∈ H1(Ω) : Lu ∈ L2(Ω),u|∂Ω = 0,

∂u
∂νL

∣∣
ω
= 0
}
, (A.10)

in L2(Ω) is simple (or completely non-selfadjoint), see Definition A.1 below. Here L is a
uniformly elliptic differential expression as in Assumption 3.1 on a connected (bounded
or unbounded) Lipschitz domain Ω and ω ⊂ ∂Ω is a nonempty, relatively open set. Theo-
rem A.2 below generalizes the main result in [65], where R. Gilbert proved the simplicity
of certain symmetric ordinary differential operators which are in the limit-point case at one
endpoint. We remark that in the special case ω = ∂Ω the operator S is called the minimal
symmetric operator associated with L in L2(Ω).

Let us first recall the definition of a simple symmetric operator as it can be found in,
e.g., [3, Chapter VII].

Definition A.1. Let S be a closed, densely defined, symmetric operator in a Hilbert space
H. Assume that there does not exists a nontrivial, S-invariant, closed subspace H1 of H
such that the restriction of S to H1 defines a selfadjoint operator in H1. Then S is called
simple.

Sometimes such an operator is also called completely non-selfadjoint.

The proof of the following theorem uses arguments similar to the proof of [26, Lemma 2.6].
The idea of Step 2 is due to M. G. Krein, see [87].
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Theorem A.2. Let the differential expression L satisfy Assumption 3.1, let Ω be a con-
nected Lipschitz domain, and let ω be a nonempty, open subset of ∂Ω. Then the operator
S in (A.10) is closed, densely defined, symmetric, and simple.

Proof. Step 1. As a restriction of the selfadjoint Dirichlet operator the operator S is sym-
metric. Moreover, domS contains C∞

0 (Ω), hence S is densely defined in L2(Ω). We verify
next that S coincides with the adjoint of the operator T in L2(Ω) which is defined as

Tu = Lu, domT =
{

u ∈ H1(Ω) : Lu ∈ L2(Ω), supp(u|∂Ω)⊂ ω
}
.

Let first u ∈ domS. Then for all v ∈ domT the second Green identity (2.11) yields

(T v,u) = (v,Lu)+
(

v|∂Ω,
∂u

∂νL

∣∣
∂Ω

)
∂Ω

−
(

∂v
∂νL

∣∣
∂Ω

,u|∂Ω

)
∂Ω

= (v,Su),

since u|∂Ω = 0, ∂u
∂νL
|ω = 0, and supp(v|∂Ω) ⊂ ω . Hence u ∈ domT ∗ and T ∗u = Su. Let,

conversely, u ∈ domT ∗. Since the selfadjoint Dirichlet operator AD in (3.5) is a restriction
of T , we have T ∗⊂ AD, hence u∈ domAD and T ∗u = ADu =Lu; in particular Lu∈ L2(Ω).
It remains to show ∂u

∂νL
|ω = 0. Indeed, let g ∈ H1/2(∂Ω) with suppg⊂ ω . It follows from

Lemma 3.3 that there exists v ∈ H1(Ω) with Lv ∈ L2(Ω) and v|∂Ω = g; in particular,
v ∈ domT . From the second Green identity (2.11) we obtain(

∂u
∂νL

∣∣
∂Ω

,g
)

∂Ω

=
(

∂u
∂νL

∣∣
∂Ω

,v|∂Ω

)
∂Ω

= (u,T v)− (T ∗u,v)+
(

u|∂Ω,
∂v

∂νL

∣∣
∂Ω

)
∂Ω

= 0,

since u|∂Ω = 0. Hence ∂u
∂νL
|ω = 0, that is, u ∈ domS. Thus we have shown T ∗ = S and it

follows that S is closed.

Step 2. In this step we verify that S is simple. Let us first prove that the subspace

M :=
⋂

ν∈C\R
ran(S−ν)

is S-invariant and that the restriction SM of S to M is selfadjoint in M. Indeed, let
u ∈ domS∩M. Then for each ν ∈ C \R there exist uν ∈ domS with (S− ν)uν = u.
Hence, for each ν ∈ C\R we have

Su = S(S−ν)uν = (S−ν)Suν ∈ ran(S−ν),

that is, Su belongs toM. As a restriction of S, the operator SM is symmetric. In order to
show that SM is selfadjoint, we fix λ ∈ C\R and prove that

ran(SM−λ ) =M (A.11)
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holds. Let u ∈M and define v := (S−λ )−1u. Then, clearly, v ∈ domS, and we will verify
that even v ∈M holds, that is, v ∈ ran(S− ν) for all ν ∈ C \R. For ν 6= λ one can see
immediately that the element

vν :=
1

ν−λ

(
(S−ν)−1− (S−λ )−1)u

in domS satisfies (S− ν)vν = v. It remains to show v ∈ ran(S− λ ). Let us choose
a sequence (λk)k∈N ⊂ C \R, λk 6= λ , with λk → λ , k → ∞. As above one gets that
(S−λk)

−1u ∈ ran(S−λ ) for all k ∈ N. Since S is a closed, symmetric operator, the esti-
mates ‖(S−λ )−1‖ ≤ | Imλ |−1 and ‖(S−λk)

−1‖ ≤ | Imλk|−1 hold, which together with

v− (S−λk)
−1u = (S−λ )−1u− (S−λk)

−1u = (λ −λk)(S−λ )−1(S−λk)
−1u

imply (S− λk)
−1u → v, k → ∞. Since (S− λk)

−1u belongs to the closed subspace
ran(S− λ ) for each k ∈ N, it follows v ∈ ran(S− λ ). This proves (A.11) and thus we
have shown that SM is a selfadjoint operator in the Hilbert spaceM.

Assume now that S is not simple. Then there exists a nontrivial, S-invariant subspaceM′

of L2(Ω) such that the restriction SM′ of S to M′ is selfadjoint in M′. It follows that
for each ν ∈ C \R we have ran(SM′ − ν) =M′, in particular, M′ ⊂M, so that M is
nontrivial. On the other hand, since T ∗ = S, the orthogonal complement M⊥ of M in
L2(Ω) coincides with the closure of

span{ker(T −ν) : ν ∈ C\R} ,

and it follows from Proposition 4.3 thatM⊥ = L2(Ω), so thatM must be trivial, which is
a contradiction. Thus S is simple.
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