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Topological insulator on honeycomb lattices and ribbons without inversion symmetry
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We study the Kane-Mele-Hubbard model with an additional inversion-symmetry-breaking term. Using the
topological Hamiltonian approach, we calculate the Z2 invariant of the system as function of spin-orbit coupling,
Hubbard interaction U , and inversion-symmetry-breaking onsite potential. The phase diagram calculated in that
way shows that, on the one hand, a large term of the latter kind destroys the topological nontrivial state. On the
other hand, however, this inversion-symmetry-breaking field can enhance the topological state since for moderate
values the transition from the nontrivial topological to the trivial Mott insulator is pushed to larger values of
interaction U . This feature of an enhanced topological state is also found on honeycomb ribbons. With inversion
symmetry, the edge of the zigzag ribbon is magnetic for any value of U . This magnetic moment destroys the
gapless edge mode. Lifting inversion symmetry allows for a finite region in interaction strength U below which
gapless edge modes exist.
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I. INTRODUCTION

Since topological insulators have been theoretically pre-
dicted 10 years ago [1,2], the understanding of topological
phases has progressed enormously. Topological Hamiltonians
are classified by the tenfold way [3–5], various experiments
have been performed showing the practical relevance of the
theoretical considerations [6–13], and several groups already
succeeded in a next step which is predicting and realizing Weyl
semimetals [14–21].

However, the influence of interactions onto the topological
classification is still not fully understood. Just recently, new
phase transitions in strongly correlated topological insulators
have been reported [22,23]. The most used quantity to charac-
terize topological order, namely, theZ2 invariant introduced by
Fu, Kane, and Mele [1,24–26], relies on defined Bloch bands
and is thus not directly applicable for interacting systems.
A generalization is possible using the so-called topological
Hamiltonian [27–29], an artificially noninteracting system
determined by the Green’s function.

The Kane-Mele-Hubbard (KMH) model [1,2,30] combines
a topological model Hamiltonian with strong interactions and
is therefore frequently used to explore correlation effects in
topological insulators [30–44]. Within the framework of the
topological Hamiltonian, the calculation of the Z2 invariant is
straightforward as long as inversion symmetry is obeyed since
only the time-reversal-invariant momenta (TRIMs) have to be
considered [25,27]. In case of the bare KMH model, it can thus
be used since inversion symmetry is respected [35,38,39].

Determining the topological phase becomes more difficult
if an inversion-symmetry-breaking term such as a staggered
onsite potential [1,43], a Rashba coupling [1,39], or site-
dependent hoppings [36,42] are included. A possibility to
analyze topological phases is to calculate the spin Chern
number CS [36,42–46]. This approach requires spin to be
a good quantum number and has the drawback that due
to numerical artifacts a good quantization of CS is not
given close to phase transitions. Another approach is to
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look directly for gapless edge states and use bulk-boundary
correspondence [37,39–41].

In this paper, we calculate the Z2 invariant of the KMH
model with an inversion-symmetry-breaking onsite potential
by combining the topological Hamiltonian with a method
introduced by Soluyanov and Vanderbilt [47,48] that is based
on maximally localized Wannier charge centers [49]. This
enables a precise calculation of invariants without restricting
the systems to certain symmetries. Furthermore, we investigate
bulk-boundary correspondence by calculating the spectral
functions of a zigzag ribbon. We show that bulk-boundary
correspondence has to be treated with care in strongly
interacting systems since time-reversal symmetry might be
lifted locally at the edges due to spontaneous symmetry
breaking. The Green’s functions in our approach are obtained
by a two-site dynamical impurity approximation [50–54].

II. MODEL AND METHODS

A. Kane-Mele-Hubbard model

The Kane-Mele-Hubbard Hamiltonian is used exemplary
since it is a toy model for strongly correlated topological
insulators. The noninteracting part as proposed by Kane and
Mele [1,2] is given by

HKM = −t
∑
〈i,j〉

c
†
i cj + iλSO

∑
〈〈i,j〉〉

νij c
†
i σ

zcj

+ λν

∑
i

ξic
†
i ci (1)

on a honeycomb lattice, where c
†
i is the creation operator

of a spinor (c†i↑,c
†
i↓),〈. . . 〉 denotes nearest neighbors, and

〈〈. . . 〉〉 next-nearest neighbors. The first term is a tight-binding
nearest-neighbor hopping term, which is commonly used to
model the Dirac cones of graphene up to first order. The
second is the intrinsic spin-orbit coupling, leading to the
quantum spin Hall topological insulating state as it opens a
gap [1,2,45]. The third term is a staggered onsite potential,
where ξi = 1 if site i belongs to sublattice A of the honeycomb
lattice, and −1 if it belongs to sublattice B. This distinction
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between the two sublattices breaks inversion symmetry and
has a crucial influence on topology: the KM model with a
sublattice potential is a topological insulator for any finite λSO,
as long as |λν | < 3

√
3λSO. The gap closes for |λν | = 3

√
3λSO

and reopens for |λν | > 3
√

3λSO, but the topology becomes
trivial in that case.

Interaction effects can be introduced by a Hubbard interac-
tion Un↑n↓ on each site, leading to the Kane-Mele-Hubbard
Hamiltonian [30]

HKMH = HKM + U
∑

i

ni↑ni↓. (2)

Throughout the paper, the energy scale is defined by t ≡ 1,
and the length scale by the lattice parameter a ≡ 1.

B. Calculation of topological invariants

Topological systems are classified by their dimension and
symmetries, as summarized in the periodic table of topological
matter [3–5]. The important symmetry in case of the KM model
is time reversal, leading to the topological class AII, specified
by a Z2 invariant ν. A possibility to define this invariant is via
time-reversal polarizations of a one-dimensional system that
depends on an additional pumping parameter, as introduced by
Fu and Kane [24]. In case of a noninteracting two-dimensional
system, this definition is applicable if ky is considered as the
pumping parameter. For the actual calculation of ν, inversion-
symmetric and non-inversion-symmetric systems are treated
differently, as discussed in the following.

If inversion symmetry is present, the four TRIMs �i contain
the whole topological information. The Z2 invariant ν can be
obtained by

(−1)ν =
4∏

i=1

δi with δi =
N∏

n=1

ξn(�i), (3)

where ξn(�i) is the eigenvalue of the parity operator at
momentum k = �i of Kramers pair n [25].

If, on the other hand, inversion symmetry is broken,
one needs information on how the Bloch states evolve
continuously between the TRIMs. Soluyanov and Vanderbilt
suggested [47,48] to use hybrid Wannier functions

|Rxkyn〉 = 1

2π

∫ π

−π

dkx e−iRxkx |ψnk〉, (4)

which are maximally localized [49]. The topology is deter-
mined by tracking the maximally localized Wannier charge
centers (WCCs) assigned to the occupied bands along
the pumping parameter ky , which are given by x̄n(ky) =
〈0kyn|x|0kyn〉. This function is defined modulo a lattice
constant that is chosen to be 1, so x̄(ky) has a periodicity
of 2π in ky , and a period of 1 along x̄. The KM model has only
two occupied bands which form a Kramers pair because of
time-reversal invariance, so Kramers degeneracy enforces the
two WCCs to be equal at ky = 0 and π . Tracking the WCCs
continuously from ky = 0 to 2π , the system is trivial if the very
same WCCs intersect at both points, and nontrivial if there is a
shift which is a multiple of the lattice constant. Examples are
given in Fig. 1. If the spin in z direction Sz is conserved, the
continuous tracking is straightforward since each WCC can
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FIG. 1. Examples of WCCs according to the noninteracting KM
model (λSO = 0.5) with nontrivial (top, λν = 2.5λSO) and trivial
(bottom, λν = 5.5λSO) topology. Here, two unit cells are shown along
the abscissa so that at least one WCC is continuously displayed. Thus,
four instead of two WCCs are visible. Sz is conserved, so the WCCs
can be separated in spin up (blue) and spin down (red).

be assigned to a certain spin. If no conserved quantity helps
identifying the respective WCCs, the two cannot be sorted and
some more advanced method has to be applied, as for example
tracking the difference of the WCCs [47].

We now turn to the determination of topological states for
a system with electron-electron interactions. Here, topolog-
ical invariants cannot be defined as described above since
one-electron Bloch functions are not eigenstates. A more
general definition of the first Chern number uses Green’s
functions [55–57]

C = εμνρ

24π2

∫
dk0

∫
d2k Tr[G∂μG−1G∂νG

−1G∂ρG
−1] (5)

with k0 = iω, which gives the integer coefficient of the
quantum Hall effect of a two-dimensional system. If spin
is a good quantum number, the Chern invariant can be
evaluated separately for each spin. C↑ is then evaluated
from the spin-up block of the Green’s function, C↓ from
the spin-down block. This leads to a quantized spin Chern
number CS = (C↑ − C↓)/2, which is integer for time-reversal-
invariant Hamiltonians. Modulo 2, this quantity can be used as
a Z2 invariant. In the general case, a Z2 invariant ν is obtained
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from a dimensional reduction of the second Chern number

C2 = εμνρστ

480π3

∫
dk0

∫
d4k Tr[G∂μG−1G∂νG

−1

×G∂ρG
−1G∂σG−1G∂τG

−1], (6)

which describes the response of a four-dimensional insula-
tor [58,59]. Starting from definitions (5) and (6), Wang et al.
showed that the topological information is already captured in
the Green’s function at zero frequency [27–29]. They conclude
that minus the inverse Green’s function at zero frequency
can be considered as the Bloch Hamiltonian of an artificial
noninteracting system which has the same Chern invariant and
the same Z2 invariant as the interacting one, as long as they
are continuously connected. Thus, this Bloch Hamiltonian is
called topological Hamiltonian [29]

Ht (k) = −G−1(ω = 0,k) (7)

of the interacting system. A main consequence is that methods
devised for noninteracting Hamiltonians are sufficient to
calculate topological numbers related to the more complicated
integrals (5) and (6), as for example CS and ν. A direct
evaluation of (5) or (6) is therefore not necessary.

If the system obeys inversion symmetry, G−1(ω,k) com-
mutes at the TRIMs k = �i with the parity transformation
matrix P , and as a consequence, there are simultaneous
eigenstates |α(ω,�i)〉 of G−1 and P :

P |α(ω = 0,�i)〉 = ηα|α(ω = 0,�i)〉. (8)

The topological invariant ν can be calculated from these
eigenvalues through [27]

(−1)ν =
∏

R zeros

η1/2
α . (9)

Here, the convention (−1)1/2 = +i is used. In the noninteract-
ing case, this equation reduces to the Fu-Kane formula (3) [27].

The direct evaluation of topological invariants through
Eq. (9) became already a standard procedure in case of
interacting systems with inversion symmetry [22,23,35,38,39].
In this work, we are interested in the topological invariants
of an interacting system without inversion symmetry, where
Eq. (9) cannot be applied. For this case we propose to
use a combination of the topological Hamiltonian with the
Soluyanov-Vanderbilt method of WCCs as described in the
beginning of this section. In practice, we first calculate
the Green’s function at zero frequency using a dynamical
impurity approximation as explained in the next section. The
obtained topological Hamiltonian can then be used just like
a Bloch Hamiltonian to determine the Z2 invariant. This in
turn is done with Wannier charge centers as proposed by
Soluyanov and Vanderbilt [47], just using the eigenstates of
the topological Hamiltonian |α(ω = 0,k)〉 instead of the Bloch
functions |ψnk〉 of the noninteracting case.

C. Variational cluster approach

As described in the previous section, the one-electron
Green’s function is needed to determine the topological
Hamiltonian. Since an exact solution of the full many-body
problem is not possible, an approximative method has to

be chosen. Here, we apply the variational cluster approach
(VCA) [50,52] because the Kane-Mele-Hubbard model is
known to have an antiferromagnetic moment [30–33,35,38,39]
which can efficiently be treated by the VCA with symmetry-
breaking Weiss fields [53,54].

The VCA is based on the self-energy functional approach,
which uses the fact that the grand potential of an arbitrary
interacting system H = H0(t) + H1(U) has to be a stationary
point of the self-energy functional

�t[�] ≡ Tr log
[ − (

G−1
0 − �

)−1] + F [�], (10)

where F [�] denotes the Legendre transform of the Luttinger-
Ward functional �[G] [50,60]. The approximation of this
method is to restrict the space of self-energies �. This subset
S of self-energies is spanned by all �(t′) that are the exact self-
energies of a so-called reference system H ′ = H0(t′) + H1(U).
The interaction parameters U are the same as in the original
system, but H and H ′ can differ in the one-particle parameters.
The one-particle parameters t′ of the reference system H ′ are
chosen such that the self-energy of the reference system can
be calculated exactly. To obtain the approximative physical
self-energy � ∈ S, a stationary point of �t[�(t′)] has to be
found as t′ is varied. The parametrized functional can be
reduced to

�t[�(t′)] = �′(t′) + Tr log
( − [

G−1
0 (t) − �(t′)

]−1)

− Tr log
( − [

G−1
0 (t′) − �(t′)

]−1)
(11)

and can thus be calculated if the Green’s function of the
reference system is known. Quite generally, reference systems
in the VCA are clusters of finite size, which can be treated by
exact diagonalization techniques [50,52,53].

In case of the KMH model, several cluster sizes have already
been analyzed [37–39]. However, the tiling of the lattice into
clusters of finite sizes breaks artificially some symmetries,
which can change the topological phase diagram [61]. That
is why we choose as a reference system for VCA single-
site clusters, which are coupled to one additional bath site
by a hopping V . This rather simple approach, called two-
site dynamical impurity approximation (DIA) [51], has two
advantages. First, despite its simplicity, it gives accurate results
for the transition towards an antiferromagnetic insulator for
two-dimensional Hubbard models [51]. Second, which is even
more important, the lattice symmetries are trivially satisfied. A
drawback of this method is the locality of the self-energy. We
will show below, however, that for known cases we get very
good agreement with existing results obtained by numerically
much more expensive methods.

Since the honeycomb lattice has two distinct sites, the
unit cell is tiled by two clusters, which are coupled by the
noninteracting part of the Hamiltonian, as shown in Fig. 2.
Onsite energies on both impurity and bath site, as well as
the connecting hopping between them, give in total three
variational parameters per cluster. However, in the inversion-
symmetric case (λν = 0), the onsite energies are fixed by
particle-hole symmetry and only one parameter remains.
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FIG. 2. The left plot shows the full system, the right the reference
system. Full symbols denote sublattice A, open symbols sublattice B.
The bath sites (squares) are characterized only by an onsite energy.
The impurity sites (circles), on which the Hubbard U is acting, can
additionally carry the symmetry-breaking Weiss fields.

In order to capture symmetry breaking necessary for the
emerging antiferromagnetic moment, a Weiss field

HAF =
∑

i

c
†
i (hi · σ )ci (12)

has to be added [54]. Without any symmetry considerations,
these fields on both A and B sites give in total six variational
parameters. Due to the inversion-symmetry-breaking onsite
potential λν , a second Weiss field

H� = �
∑

i

ξic
†
i ci (13)

is used to enable unequal electron densities on the two
sublattices. As in Eq. (1), ξi = ±1, depending on the sublattice.
This Weiss field is basically a renormalization of λν in the
reference system, which is caused by the interplay of the
sublattice potential and Hubbard interaction.

The method described so far considers bulk properties.
Introducing an edge destroys translational symmetry and
influences therefore local magnetization. As known from field
theoretical investigations, mean-field approximation gives a
finite magnetization on the zigzag edge for every finite
interaction strength [31]. This could lead to a breakdown of
the bulk-boundary correspondence and may cause problems
for calculating topological invariants using the existence of
gapless edge states as a proof for nontrivial topology, which
has so far been used in some cases of interacting systems
without inversion symmetry [37,39,41]. Vice versa, a nontriv-
ial topological invariant in the bulk may not result in gapless
edge states due to locally broken time-reversal symmetry
caused by spontaneous symmetry breaking. Therefore, we
additionally implemented the DIA on the zigzag ribbon in
order to compare the topological invariants defined by the
bulk Green’s function to the existence of gapless edge states.
The ribbon is translationally invariant in the x direction,
whereas the sites along the width of the ribbon are distinct.
If a unit cell contains N pairs of A and B sites, 2N clusters
containing each a bath and an impurity site have to be solved
and effectively coupled by the noninteracting part of the
Hamiltonian (see Fig. 3). In order to keep the number of
parameters manageable, the onsite energies and hybridizations
are chosen to be constant along the ribbon. To allow for edge
magnetization, the antiferromagnetic Weiss fields for each pair
of sites A and B is varied independently, only assuming a
mirror symmetry y 
→ −y.

FIG. 3. Unit cell of the zigzag ribbon and the according reference
system. The respective two-site clusters are identical, except for a
different AF Weiss field.

III. RESULTS

A. Bulk

As mentioned in the methods section, the hopping to
the bath sites, the magnetic Weiss fields, and the sublattice
potential Weiss field have to be determined in the VCA.
For all stationary points, the ferromagnetic part of the Weiss
field vanishes, hence, only an antiferromagnetic ordering
hA = −hB is possible. Without spin-orbit coupling, the system
has full SU(2) symmetry, so only the absolute value of the
Weiss field has to be determined. When spin-orbit coupling
is included, only the xy plane is still degenerate, but the
degeneracy of the z direction is lifted. This means that we
have to deal with two antiferromagnetic Weiss fields, hz and
hx . To analyze the direction of the antiferromagnetic moment,
we calculate a two-dimensional surface of the self-energy
functional �(hz,hx), where all other variational parameters
are optimized for each set of variables (hz,hx). The stationary
points, i.e., extrema and saddle points, of this two-dimensional
surface are physical solutions, where the stable solution is
the one with lowest potential �. Figure 4 shows the value
of the self-energy functional as a function of both in-plane
and out-of-plane AF symmetry-breaking field. Depending on
the KMH model parameters, up to three different stationary
points exist: a saddle point of � if h points in the z direction;
a minimum if it is in the xy plane; the nonmagnetic solution,
which can be both maximum or minimum, depending on the
parameters. This is consistent with the results of other cluster
geometries [37,39]. The local minimum h ‖ ẑ is never the
physically realized solution with the lowest grand potential �

for all sets of parameters considered here. Hence, only one
variational quantity is needed for the AF Weiss field, namely,
the in-plane antiferromagnetic component. As mentioned
above, the onsite energy levels of both impurity and bath
are fixed by particle-hole symmetry and the given chemical
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FIG. 4. Self-energy functional as a function of the antiferromag-
netic Weiss fields hz and hx for λSO = 0.1, λν = 0, and U = 5. The
hybridization of the bath sites has been optimized for each grid point
individually. The global minimum around hx ≈ 1 and hz = 0 can
clearly be seen.

potential. Therefore, in total, three cluster parameters have to
be optimized: the hopping V between impurity and bath, the
in-plane antiferromagnetic Weiss field hx , and the potential
difference between the two sublattices �.

Directly from the two-site DIA one can distinguish two
phases: the antiferromagnetic insulator for large U and the
nonmagnetic insulator for small U . The system reduces to the
ordinary Hubbard model on the honeycomb lattice if λSO = 0
and λν = 0. In this case, the magnetization direction is not
important since SU(2) symmetry is not broken. The mean-field
critical interaction is Uc = 2.23 [30,62], which is lower as
compared to more accurate methods. Quantum Monte Carlo
simulations show that it is actually slightly above 4 [32–35,62].
The two-site DIA considered in this work is expected to give
similar results as other variational methods. VCA gives critical
interactions between 2.4 and 4, depending on the cluster
geometries [37–39], which coincide with our DIA results of
Uc = 3.7, where we observe a second-order phase transition.
With increasing λSO, all methods show that Uc increases as
well. Mean field [30], however, overestimates here the slope in
comparison with the more elaborate methods [32–35,37–39].
The reason for that is analyzed in the Appendix. Our results
show a similar behavior as VCA with different cluster
geometries [39]. To sum up, in the inversion-symmetric case
the two-site DIA is in good agreement with other methods. We
can therefore expect that the method is suitable to explore the
model when inversion symmetry is broken.

Using the topological Hamiltonian defined in Eq. (7) in
combination with the Soluyanov-Vanderbilt method, infor-
mation on the topological properties can be obtained in
addition to the magnetic ordering. In the noninteracting case, a
topological phase transition occurs at λν = 3

√
3λSO, as known

from the original work by Kane and Mele [1,2]. Including a
Hubbard interaction U , the topological Hamiltonian has the
same structure as the noninteracting Hamiltonian, as long
as the antiferromagnetic moment vanishes. However, both

U
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trivial
insulator
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FIG. 5. Phase diagram of the KMH model obtained from two-site
DIA, as a function of the Hubbard interaction and the sublattice
potential for a spin-orbit coupling of λSO = 0.1.

self-energy and staggered onsite Weiss field renormalize the
energy scales. The interplay of interaction and onsite energy
can be seen as follows: Without interaction, the sublattice with
the lower onsite energy has a higher double occupancy. A
finite Hubbard U punishes double occupancies, and reduces
as a result the double occupancy on the sublattice with lower
onsite energy. Hence, the sublattice potential λν is effectively
lowered in case of a finite U , stabilizing the topological phase,
and shifting the critical λν to higher values. The resulting
phase diagram is shown in Fig. 5. This stabilization effect
is also captured in mean field, although with quantitative
differences [43]. We want to note that we cross-checked the
validity of our WCC approach by calculating the spin Chern
number CS directly from Eq. (5) for the selected value of
U = 1. We found perfect quantitative agreement.

This reasoning for the stabilization of the topological
phase is only valid in case of weak interactions where
the antiferromagnetic Weiss field is zero. In the strongly
interacting regime, the nonvanishing Weiss field causes a
time-reversal symmetry-breaking term proportional to σx ⊗ τz

(σ acts in spin space, τ in sublattice space) in the topological
Hamiltonian. As a consequence, the topological invariant in
the sense of Fu and Kane [25] is not defined. This can also
be seen in the WCC, where the lifted Kramers degeneracy
does not enforce the two WCCs to be identical at half the
period of the pumping parameter. Examples of the WCCs are
shown in Fig. 6. In this regime, not just quantitative, but also
qualitative, differences compared to a standard Hartree-Fock
mean field arise, as discussed in the Appendix. To sum
up, three phases exist for a given spin-orbit coupling: (i) a
topological insulator continuously connected to the quantum
spin Hall phases of the noninteracting KM model if both
λν and U are small enough; (ii) a trivial band insulator if
λν is large; (iii) an antiferromagnetic insulator with in-plane
magnetization for large U . The phase boundaries are shown in
Fig. 5. Interestingly, similar results of an enhanced topological
phase have been reported for the Kane-Mele model including
long-ranged Coulomb interactions [63]. There, the Coulomb

165169-5



ROBERT TRIEBL AND MARKUS AICHHORN PHYSICAL REVIEW B 94, 165169 (2016)

ky/π
0 0.5 1 1.5 2

x̄

0

0.2

0.4

0.6

0.8

1

ky/π
0 0.5 1 1.5 2

x̄

0

0.2

0.4

0.6

0.8

1

FIG. 6. Wannier charge centers of the topological Hamiltonian
for λSO = 0.1, λν = 0.25, and U = 3 (top) and U = 4 (bottom).

interaction induces charge-density-wave fluctuations, while
our model shows static charge ordering through staggered
potentials.

B. Ribbon

In order to analyze the robustness of the topological
phases presented in the last section and to investigate the
bulk-boundary correspondence, we calculate directly the edge
properties on a zigzag ribbon of finite width.

We first consider the inversion-symmetric case λν = 0.
Mean-field results have shown different magnetizations at the
edge than in the middle of the ribbon [31]. This agrees with
our results, and an example of the structure of the Weiss fields
across the ribbon profile is shown in the inset of Fig. 7. The
larger field at the edges decays quickly to the bulk value. The
optimized values of both edge and midpoint antiferromagnetic
fields as a function of U are shown in Fig. 7 for λSO = 0.1. At
the edges, any finite U results in a finite antiferromagnetic field.
Sites that are not at the edges have a Weiss field comparable
to the bulk values. Just below the bulk magnetic transition
at U ≈ 3.8 they become finite, though small, which is a
finite-size effect caused by the increasing correlation length as
the magnetic transition is approached. The main consequence
of the non-vanishing Weiss field is that the finite magnetization
at the edges breaks time-reversal symmetry for any U and gaps

U
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FIG. 7. Antiferromagnetic Weiss field of the first pair of sites A

and B of the ribbon (solid line) and in the middle of the ribbon (dashed
line) as a function of U for λSO = 0.1, λν = 0, and N = 16 pairs of
sites. The inset shows how the moment at the edge decays across the
ribbon to the midpoint for U = 2.

therefore the edge states. As the interaction is below the critical
value for the bulk magnetic transition, topological analysis of
the bulk suggests a topological insulator with gapless edge
states, but a local symmetry breaking at the edges causes
the edge states to gap. This local effect, namely, that local
time-reversal symmetry breaking by a magnetic field causes
states to gap, cannot be captured within a topological invariant
of the two-dimensional (2D) system. However, at what point
in the phase diagram this local symmetry breaking occurs
depends both on the specific model and also on the edge
geometry. For example, for the armchair ribbon there is a
region at small U with vanishing edge magnetization and
therefore gapless edge states, even in the inversion-symmetric
case λν = 0.

In the last paragraph it is demonstrated that gapless edge
states are impossible on a zigzag ribbon for any finite U , as
long as λν = 0. This picture changes if inversion symmetry
is broken. From the bulk calculations we know that λν tends
to suppress magnetic ordering, where it increases the critical
value of interaction Uc for the magnetic transition (Fig. 5). The
same principle is observed looking at the edge magnetization
as a function of λν . For given U and λSO, the Weiss field at
the edges changes only marginally as λν is increased, and the
edge is magnetic. However, at a critical value λc

ν , the magnetic
moment drops to 0 in a first-order phase transition. This
critical value λc

ν strongly depends on U . For λSO = 0.1, for
example, we get λc

ν = 0.006 as U = 1, and it raises by an order
of magnitude to λc

ν = 0.07 for U = 2 and to λc
ν = 0.35 for

U = 3.
This argument can of course be turned around. Fixing the

sublattice potential λν and varying the interaction strength U ,
one finds a critical value Uc for the magnetic transition with
finite magnetic moment only for U > Uc. This critical value
Uc raises continuously with increasing sublattice potential λν ,
starting from Uc = 0 at λν = 0.
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FIG. 8. Spectral functions of the KMH zigzag ribbon with
parameters U = 2.5, λSO = 0.1, and N = 16. Top panel: λν = 0.1
leads to a magnetic solution with a Weiss field of about hAFx = 0.4,
gapping the edge states. Bottom panel: λν = 0.2, with a vanishing
Weiss field and gapless edge states.

Exemplary spectral functions are shown in Fig. 8, where
we use spin-orbit coupling strength λSO = 0.1 and interaction
strength U = 2.5. If the sublattice potential λν is below the
critical value, as in the top panel of Fig. 8, the edge is
magnetic and the edge states are gapped. For λν > λc

ν there
is no magnetization at the edge, and gapless states occur. We
want to stress again that gapless edge states do not occur at
any finite U in the inversion-symmetric case. To sum up, an
inversion-symmetry-breaking term can stabilize the gapless
edge state.

IV. CONCLUSION AND DISCUSSION

We have investigated the topological properties of the Kane-
Mele-Hubbard model, comparing cases with and without
inversion symmetry. For the calculation of the topological
invariants we apply a combination of the topological Hamil-
tonian approach and the Wannier charge center method. This
approach allowed to calculate the phase diagram of the KMH
model in the U -λν plane. The inversion-symmetry-breaking
term λν has a twofold effect. First, for large values the
topological order is destroyed and a trivial insulator obtained.

Second, in combination with interactions the topological
order is enhanced, pushing the phase boundaries towards the
antiferromagnetic insulator to larger critical values of U .

This effect can also be seen in the surface properties of the
honeycomb lattice. In agreement with previous studies, our
calculations on the zigzag ribbon geometry have shown that
with inversion symmetry any finite value of U results in a finite
edge magnetization, which in turn produces a finite gap in the
edge states. Introducing an inversion-symmetry-breaking field,
this critical value Uc is shifted to finite values, below which the
whole ribbon including the edge is nonmagnetic, and a gapless
surface state exists. As a result, one can find gapless edge states
on the zigzag ribbon only when inversion symmetry is lifted
and the interaction strength U is small enough, such that no
ordered magnetic moments can form.

Our study is based on the Kane-Mele Hamiltonian, which
was introduced as the low-energy Hamiltonian for graphene.
Since the bulk gap in graphene is minute, the effects that we
propose here are difficult to see in this material. However, there
is increasing interest in artificial honeycomb systems using
heavy atoms, such as bismuthene on SiC substrate [64]. Since
these systems are grown artificially, it might be possible to
modify their structure such that inversion symmetry is broken
and the influence of this symmetry breaking on the topological
properties can be studied.
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APPENDIX: DISCUSSION: COMPARISON TO
MEAN FIELD

As mentioned in Sec. III A, the basic structures of the
topological Hamiltonian could also be found in a mean-field
approximation since the self-energy is diagonal. Usually, the
z axis is chosen as the axis of mean-field decomposition [30].
The resulting matrix is then qualitatively different from the
topological Hamiltonian of the DIA since the mean-field
magnetic moment points in the z direction. In order to respect
that the easy axis is in plane, we did a mean-field decoupling
in the x direction

ni↑ni↓ ≈ (〈ni←〉ni→ + 〈ni→〉ni← − 〈ni←〉〈ni→〉), (A1)

where | →
← 〉 = 1/

√
2(|↑〉 ± |↓〉). Within this framework, the

same phases as in the DIA appear, where the mean-field one-
electron Bloch Hamiltonian corresponds to the topological
Hamiltonian. The phase boundaries, however, will shift since a
bare mean-field approach does not capture quantum dynamics
as the DIA.

In case of the Hubbard model on a honeycomb lattice
λSO = λν = 0, the magnetization direction is not important
since SU(2) symmetry is not broken. The mean-field critical
interaction for any quantization axis is Uc = 2.23 [30,62]. If
λSO �= 0, the difference between the two mean-field methods
is important. Since the in-plane magnetic moment is always
favorable, a restriction of the magnetization direction to be
out of plane requires stronger interactions for the stability of
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FIG. 9. Chern insulator phase of the KMH model in mean-field
approximation with antiferromagnetic moment in the z direction
for U = 3.2, λSO = 0.1, λν = 0.4. The upper graph shows Wannier
charge centers from the bulk calculations. The blue curve is the
WCC of the spin-up band, the red curve the WCC of the spin-down
band, resulting in C↑ = 0 and C↓ = −1. The lower graph shows the
bands of a ribbon (N = 32) with one spin-down but no spin-up edge
state.

the antiferromagnetic solution. This is the case in a conven-
tional mean-field theory [30,43], hence, Uc is overestimated
in comparison with an in-plane mean-field approach (A1).
Consequently, the slope of the Uc-λSO phase boundary is
higher if z is used as a quantization axis.

In addition to the magnetic transition considered so far,
using Wannier charge centers as an analytical tool allows
again to extract topological information. The DIA results

are described in the previous sections, showing the phase
diagram of three different phases in Fig. 5. As mentioned
above, the mean-field decoupling in the x direction gives
qualitatively the same phases since the MF Bloch Hamiltonian
has the same structure as the DIA topological Hamiltonian,
but underestimates Uc. New phases appear, however, in the
standard Hartree-Fock approach where the z axis is the
quantization direction. The Hamiltonian splits into spin-up
and -down parts, which are decoupled if neither Rashba
coupling nor in-plane magnetization are present. Hence, even
though time-reversal symmetry is broken in the presence of an
antiferromagnetic moment, aZ2 invariant can be defined using
the spin Chern number νS = CS mod 2, CS = (C↑ − C↓)/2
as introduced by Sheng et al. [45]. The Chern numbers of
the two spin categories are determined with the Wannier charge
centers: because of the conservation of Sz, the two WCC can be
labeled by their spin. The Chern number CS is then given by the
difference of the WCCs x̄↑ and x̄↓ as they evolve continuously
from 0 to 2π .

In the inversion-symmetric case, the only mean-field
parameter that has to be determined self-consistently is the
antiferromagnetic moment MAF = 〈nA↑〉 − 〈nB↑〉 = 〈nB↓〉 −
〈nA↓〉. A change of both Chern numbers C↑ and C↓ occurs
when the gap closes at a critical moment Mc

AF = 12
√

3/U ,
which follows from diagonalizing the mean-field Bloch Hamil-
tonian. Since MAF rises continuously from 0 as U is increased,
magnetic and topological transition do not coincide, leading
to an antiferromagnetic quantum spin Hall phase between the
two transitions.

If additionally inversion symmetry is broken, both onsite
energy and occupation of A and B sites are different. Together
with the magnetic order, this leads to different Mc

AF for spin-up
and -down electrons. If C↑ = 0 and C↓ = 1 or vice versa, the
total Chern number C = C↑ + C↓ is nontrivial. Hence, for a
certain parameter range, an antiferromagnetic Chern insulator
is realized (see Fig. 9). Both Chern insulator and antiferro-
magnetic quantum spin Hall insulator have also been found
recently for cases where the symmetry breaking is not due to
an onsite potential, but due to a spin-dependent hopping [44].
These phases are stable since for certain parameter regions the
out-of-plane magnetization is energetically favorable.

The topological properties of the Chern insulator are not
bound to time-reversal symmetry but related to the spin
structure only. The number of edge states is directly determined
by the Chern numbers of spin-up and -down electrons. As
an example, the bands of a zigzag ribbon in the Chern
insulator phase with only one edge state are shown in Fig. 9.
Hence, bulk-boundary correspondence is fully satisfied if the
antiferromagnetic moment is in the z direction, but not if it is
in plane.

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[2] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[3] A. Kitaev, in Advances in Theoretical Physics: Landau Memo-

rial Conference, edited by V. Lebedev and M. Feigel’man, AIP
Conf. Proc. No. 1134 (AIP, New York, 2009), p. 22.

[4] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[5] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New
J. Phys. 12, 065010 (2010).

[6] M. Knig, S. Wiedmann, C. Brne, A. Roth, H. Buhmann, L.
W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
(2007).

[7] A. Roth, C. Brne, H. Buhmann, L. W. Molenkamp, J. Maciejko,
X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009).

165169-8

https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1174736
https://doi.org/10.1126/science.1174736
https://doi.org/10.1126/science.1174736
https://doi.org/10.1126/science.1174736


TOPOLOGICAL INSULATOR ON HONEYCOMB LATTICES . . . PHYSICAL REVIEW B 94, 165169 (2016)

[8] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and
M. Z. Hasan, Nature (London) 452, 970 (2008).

[9] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang,
Nat. Phys. 5, 438 (2009).

[10] D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J. H. Dil, J.
Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor,
R. J. Cava, and M. Z. Hasan, Science 323, 919 (2009).

[11] A. Nishide, A. A. Taskin, Y. Takeichi, T. Okuda, A. Kakizaki,
T. Hirahara, K. Nakatsuji, F. Komori, Y. Ando, and I. Matsuda,
Phys. Rev. B 81, 041309 (2010).

[12] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5,
398 (2009).

[13] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[14] Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu,
T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K.
Terakura, Science 302, 92 (2003).

[15] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys.
Rev. B 83, 205101 (2011).

[16] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.
107, 186806 (2011).

[17] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.
Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia,
A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373
(2015).

[18] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang,
B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z.
Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen, Nat.
Phys. 11, 728 (2015).

[19] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R.
Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C.
Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B.
Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin,
S. Jia, and M. Zahid Hasan, Nat. Phys. 11, 748 (2015).

[20] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys.
Rev. X 5, 011029 (2015).

[21] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P.
Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai,
T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[22] A. Amaricci, J. C. Budich, M. Capone, B. Trauzettel, and G.
Sangiovanni, Phys. Rev. Lett. 114, 185701 (2015).

[23] A. Amaricci, J. C. Budich, M. Capone, B. Trauzettel, and G.
Sangiovanni, Phys. Rev. B 93, 235112 (2016).

[24] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
[25] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[26] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803

(2007).
[27] Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 85, 165126

(2012).
[28] Z. Wang and S.-C. Zhang, Phys. Rev. X 2, 031008 (2012).
[29] Z. Wang and B. Yan, J. Phys.: Condens. Matter 25, 155601

(2013).
[30] S. Rachel and K. Le Hur, Phys. Rev. B 82, 075106 (2010).
[31] D.-H. Lee, Phys. Rev. Lett. 107, 166806 (2011).
[32] M. Hohenadler, T. C. Lang, and F. F. Assaad, Phys. Rev. Lett.

106, 100403 (2011).

[33] M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel, A.
Muramatsu, and F. F. Assaad, Phys. Rev. B 85, 115132 (2012).

[34] F. F. Assaad, M. Bercx, and M. Hohenadler, Phys. Rev. X 3,
011015 (2013).

[35] M. Hohenadler and F. F. Assaad, J. Phys.: Condens. Matter 25,
143201 (2013).

[36] H.-H. Hung, V. Chua, L. Wang, and G. A. Fiete, Phys. Rev. B
89, 235104 (2014).

[37] S.-L. Yu, X. C. Xie, and J.-X. Li, Phys. Rev. Lett. 107, 010401
(2011).

[38] J. C. Budich, R. Thomale, G. Li, M. Laubach, and S.-C. Zhang,
Phys. Rev. B 86, 201407 (2012).

[39] M. Laubach, J. Reuther, R. Thomale, and S. Rachel, Phys. Rev.
B 90, 165136 (2014).

[40] W. Wu, S. Rachel, W.-M. Liu, and K. Le Hur, Phys. Rev. B 85,
205102 (2012).

[41] F. Grandi, F. Manghi, O. Corradini, C. M. Bertoni, and A. Bonini,
New J. Phys. 17, 023004 (2015).

[42] Y.-H. Chen, H.-H. Hung, G. Su, G. A. Fiete, and C. S. Ting,
Phys. Rev. B 91, 045122 (2015).

[43] H.-H. Lai and H.-H. Hung, Phys. Rev. B 89, 165135 (2014).
[44] S. Miyakoshi and Y. Ohta, J. Phys.: Conf. Ser. 592, 012129

(2015).
[45] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Phys.

Rev. Lett. 97, 036808 (2006).
[46] T. Yoshida, S. Fujimoto, and N. Kawakami, Phys. Rev. B 85,

125113 (2012).
[47] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401

(2011).
[48] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 035108

(2011).
[49] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[50] M. Potthoff, Eur. Phys. J. B 32, 429 (2003).
[51] M. Potthoff, Eur. Phys. J. B 36, 335 (2003).
[52] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91,

206402 (2003).
[53] M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke, Phys.

Rev. B 74, 235117 (2006).
[54] C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and M.

Potthoff, Phys. Rev. B 70, 245110 (2004).
[55] V. Gurarie, Phys. Rev. B 83, 085426 (2011).
[56] G. E. Volovik, The Universe in a Helium Droplet (Oxford

University Press, Oxford, 2003), pp. 305–373.
[57] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372

(1985).
[58] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[59] Z. Wang, X.-L. Qi, and S.-C. Zhang, Phys. Rev. Lett. 105,

256803 (2010).
[60] J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).
[61] C. N. Varney, K. Sun, M. Rigol, and V. Galitski, Phys. Rev. B

84, 241105 (2011).
[62] S. Sorella and E. Tosatti, Europhys. Lett. 19, 699 (1992).
[63] M. Hohenadler, F. Parisen Toldin, I. F. Herbut, and F. F. Assaad,

Phys. Rev. B 90, 085146 (2014).
[64] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R.
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