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We study the scaling properties of the ground-state entanglement between finite subsystems of infinite two-
dimensional free lattice models, as measured by the logarithmic negativity. For adjacent regions with a common
boundary, we observe that the negativity follows a strict area law for a lattice of harmonic oscillators, whereas
for fermionic hopping models the numerical results indicate a multiplicative logarithmic correction. In this latter
case we conjecture a formula for the prefactor of the area-law violating term, which is entirely determined by
the geometries of the Fermi surface and the boundary between the subsystems. The conjecture is tested against
numerical results and a good agreement is found.
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I. INTRODUCTION

In recent years, ideas from quantum information theory
have stimulated major developments in the field of strongly
correlated systems. The entanglement properties of many-
body states lies at the center of these studies. An important
insight in this context is that, for ground states of local
Hamiltonians, the entanglement between a subsystem and the
rest of the system obeys an area law with a possible multi-
plicative logarithmic correction [1,2]. Moreover, the details
of the ground-state entanglement scaling carries important
information about the system, e.g., one can determine the
universality class of one-dimensional (1D) critical models
[3,4] or detect topological order [5–7].

While there has been numerous studies on the entanglement
between a subsystem and its complement, much less is known
about the entanglement between two regions that together do
not constitute the entire system. The main reason is that the
von Neumann entropy cannot be applied to study this case,
since it is a measure of entanglement only for bipartite pure
states. In the case of noncomplementary regions, embedded
in a larger system, one needs a different characterization,
because the state reduced to the union of the subsystems is in
general mixed. Among the various entanglement monotones
for mixed states, entanglement negativity turns out to be a
particularly useful measure [8–10]. It is easily computable
for bosonic Gaussian states [11,12], and recently also some
results concerning fermionic Gaussian states have appeared
[13]. Using these Gaussian methods, the tripartite ground-state
entanglement negativity has been recently investigated for
one-dimensional free bosonic [14–16] and fermionic models
[13,17,18].

In this paper we continue these surveys by considering two-
dimensional (2D) lattices. When comparing the entanglement
content of bosonic systems with that of fermionic ones,
the dimensionality plays an important role. For critical one-
dimensional systems, the entanglement between an interval
and the rest of the chain scales logarithmically with the length
of the interval both for fermions and bosons. However, in
higher dimensions, harmonic lattices (which can be viewed
as free boson models) obey a strict area law [19,20], while
free fermions may violate the area law by a multiplicative
logarithmic correction [21–24]. There is an appealing physical

picture that gives an intuitive understanding of this difference
[25]. For fermion models, the occupied and unoccupied modes
in momentum space are separated by the Fermi surface,
characterized by a vanishing excitation gap. In the generic
case, this is a (d−1)-dimensional surface of the d-dimensional
Brillouin zone, around which the dispersion can be linearized.
One can think that each patch of the Fermi surface is
equivalent to a single gapless excitation, described by a
1+1-dimensional conformal field theory (CFT), which then
leads to a multiplicative logarithmic correction to the area law.
Indeed, the above argument implies exactly an entanglement
entropy scaling that was already obtained based on the Widom
conjecture [22]. In contrast, for harmonic lattices, the gapless
bosonic modes are supported only on a single point (or on
a discrete number of points) in the momentum space, which
can give at most an additive logarithmic contribution to the
entanglement entropy.

Here we set out to investigate the validity of the above
intuitive physical picture also for the logarithmic negativity.
We find that again a strict area law holds for harmonic oscillator
systems, while in the case of free fermions our results indicate a
multiplicative logarithmic correction. Moreover, using results
obtained within a 1+1-dimensional CFT framework as an
input [14,15], we formulate a simple conjecture for the
area-law violating term of the entanglement negativity, and
present numerical evidence in its favor.

The paper is structured as follows. In Sec. II we recall the
definition of logarithmic negativity and discuss how the partial
transposition operation acts on bosonic and fermionic Gaus-
sian states. CFT techniques concerning negativity are briefly
reviewed in Sec. III, which are then used to calculate the neg-
ativity scaling for different subsystem geometries. The main
results of the paper on two-dimensional models are presented
in Sec. IV. We conclude in Sec. V with a short discussion of
the results and their possible extensions. Various details of the
analytical calculations are included in the two Appendices.

II. PARTIAL TRANSPOSE AND
LOGARITHMIC NEGATIVITY

We will consider the ground-state ρ of a many-body
system defined on a lattice which is subdivided into three
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FIG. 1. Different tripartitions of a 1D chain.

disjoint subsets A1, A2, and B, such that A = A1 ∪ A2 and
A ∪ B corresponds to the entire lattice. In the case of a
one-dimensional chain, two such tripartitionings are illustrated
in Fig. 1. The reduced density matrix (RDM) of subsystem A

is given by ρA = TrB ρ and its partial transpose with respect
to A2 is defined through its matrix elements as〈

e
(1)
i e

(2)
j

∣∣ρT2
A

∣∣e(1)
k e

(2)
l

〉 = 〈
e

(1)
i e

(2)
l

∣∣ρA

∣∣e(1)
k e

(2)
j

〉
, (1)

where {|e(1)
i 〉} and {|e(2)

j 〉} denote complete bases spanning the
Hilbert spaces pertaining to subsets A1 and A2.

In general, the result of the partial transposition is not a
positive operator and the appearance of negative eigenvalues
signals entanglement [26,27]. Based on this property, a suitable
entanglement measure called logarithmic negativity [9] can be
introduced as

E = ln Tr
∣∣ρT2

A

∣∣. (2)

Despite being known as a computable measure of entangle-
ment, the logarithmic negativity requires the knowledge of the
full spectrum of the partial transpose ρ

T2
A , which, in practice, is

difficult to obtain for large many-body systems. A well-known
exception is the class of Gaussian states. In this section we
will review Gaussian techniques, which will be used later in
Sec. IV.

A. Bosonic Gaussian states

Considering systems that are defined by a set of canonical
coordinates {xn} and momenta {pn} with n = 1, . . . ,N index-
ing the modes (or lattice sites), one can define continuous
variable Gaussian states, also known as bosonic Gaussian
states. Introducing the notation R2n−1 = xn and R2n = pn,
bosonic Gaussian states are uniquely defined via their covari-
ance matrix �kl = 〈{Rk,Rl}〉, with higher order correlation
functions factorizing according to Wick’s theorem.

The reduced density matrix ρA of a Gaussian state is
again Gaussian and characterized by the reduced covariance
matrix �A, where the indices are restricted to the subset
A. Furthermore, the partial transposition has a particularly
simple action on these states, since it can be represented
as a partial time reversal, flipping the sign of the momenta
in the corresponding subsystem while leaving the coordinate
variables unchanged [11]. In turn, the partial transpose ρ

T2
A of

the RDM is a Gaussian operator with covariance matrix [12]

�
T2
A = RA2�ARA2 , (3)

where

RA2 =
⊕
A1

(
1

1

)⊕
A2

(
1

−1

)
(4)

is the diagonal matrix reversing the momenta in A2.
Due to its Gaussianity, one has direct access to the full

spectrum of the partial transpose via the symplectic spectrum

{νj } of �
T2
A . In particular, the formula for the logarithmic

negativity in Eq. (2) can directly be evaluated as

E = −
|A|∑
j=1

ln min(νj ,1). (5)

This formula has been used in the earlier studies of negativity
in various Gaussian many-body states [28–31].

B. Fermionic Gaussian states

Similarly to the bosonic case, the fermionic version of
Gaussian states can also be defined, pertaining to a lattice
system with creation c

†
n and annihilation operators cn sat-

isfying canonical anticommutation relations {c†m,cn} = δm,n.
For a completely analogous treatment with the bosonic case,
one can introduce Majorana operators a2n−1 = cn + c

†
n and

a2n = i(cn − c
†
n) and define the fermionic covariance matrix

as �kl = 〈[ak,al]〉/2. These two-point functions completely
characterize a fermionic Gaussian state, as the higher-order
correlations are given by the fermionic version of Wick’s
theorem.

Identically to its bosonic counterpart, the reduction of a
fermionic Gaussian state to a subsystem A remains Gaussian
with reduced covariance matrix �A. In sharp contrast, however,
the partial transpose operation for fermions does not preserve
Gaussianity. Nonetheless, it has been shown in Ref. [13] that
in a suitable basis the partial transpose of a Gaussian RDM
can be decomposed as the linear combination of two Gaussian
operators. Indeed, the partial transposition with respect to A2

leaves the modes in A1 invariant and acts only on the ones in
A2. Considering a product of n distinct Majorana operators
M = ai1ai2 · · · ain from subsystem A2, the transposition, in a
particular basis, acts as MT2 = (−1)f (n)M where

f (n) =
{

0 if n mod 4 ∈ {0,1},
1 if n mod 4 ∈ {2,3}. (6)

Using this definition, the partial transpose of a Gaussian RDM
can be written in the form [13]

ρ
T2
A = 1 − i

2
O+

A + 1 + i

2
O−

A . (7)

Here O±
A are Gaussian operators with covariance matrices �±

A

that are defined as

�±
A = T ±

A2
�AT ±

A2
, (8)

where

T ±
A2

=
⊕
A1

(
1

1

) ⊕
A2

(±i

±i

)
. (9)

Although the spectra of O±
A can be constructed explicitly,

the two operators do not commute in general and one
has no direct access to the eigenvalues of ρ

T2
A and, as a

consequence, to the logarithmic negativity. Nevertheless, one
can still extract some useful information from this form of
the partial transposed RDM: the traces of its moments, i.e.,
Tr (ρT2

A )n. Indeed, factoring out Eq. (7), one is left with a sum
of traces of products of Gaussian operators, each of which
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can be calculated explicitly. The steps of this procedure are
summarized in Appendix A.

The moments of the partial transpose, despite not being
entanglement measures, are the basic objects that are also
attainable in CFT and were successfully used to characterize
tripartite entanglement in 1D critical systems [13–15]. In this
paper we will also study quantities related to the moments
to obtain an indication of the negativity scaling for 2D free
fermion systems. To understand the role of the subsystem
geometry in the 2D case, we first give a brief overview of
the method employed in CFT to extract the moments of the
partial transpose, and then apply it to simple 1D subsystem
arrangements.

III. ENTANGLEMENT NEGATIVITY IN CFT

Conformal field theory provides a powerful machinery for
the unraveling of universal properties of negativity scaling.
Using CFT techniques, one could investigate the negativity in
critical ground states [14–18], in low temperature Gibbs states
[32,33], and even in nonequilibrium situations [32,34–36].
Moreover, some recent progress has been made in extending
the technique to massive quantum field theories [37]. In this
section we shortly review the main tools needed for such
calculations, and use them to compare the negativity scaling for
two different subsystem geometries depicted in Fig. 1. These
results also constitute an essential input for our later studies of
2D free fermion models in Sec. IV.

A. The replica trick

The calculation of entanglement negativity in CFT relies
on the path-integral representation of the partial transpose and
on a clever application of the replica trick [14,15]. In the first
step one defines the ratio of the moments of the RDM and its
partial transpose, as well as its logarithm

Rn = Tr
(
ρ

T2
A

)n

Tr ρn
A

, En = ln Rn. (10)

Now, the crucial observation is that the ratio Rn has a strong
parity dependence due to the presence of negative eigenvalues
of ρ

T2
A . In particular, the trace norm in Eq. (2) can be recovered

by considering the series Ene
on even integers ne and taking

the limit

E = lim
ne→1

Ene
. (11)

We note that, instead of the ratio Rn, one could simply
use the moments of the partial transpose and their logarithms
to obtain the entanglement negativity from the same limit
as in (11). However, the definition of Rn turns out to be
more useful in various situations. On one hand, these ratios
were shown to be universal in the case of two nonadjacent
intervals, i.e., Rn depends only on the four-point ratio of the
intervals through a universal scaling function corresponding
to the given CFT [15,38]. On the other hand, while the same
is not true for adjacent intervals, the ratios Rn have a much
clearer interpretation also in this case, as will be shown below.

In order to carry out the limit (11), one needs an explicit
formula for En and thus a method to calculate the traces in

Eq. (10). This can be done by rewriting them as expectation
values of products of twist fields Tn and T n, permuting
cyclically or anticyclically between the replicas. When both
Ai = [ui,vi] with i = 1,2 correspond to a single interval, one
has [15]

Tr ρn
A = 〈Tn(u1)T n(v1)Tn(u2)T n(v2)〉,

Tr
(
ρ

T2
A

)n = 〈Tn(u1)T n(v1)T n(u2)Tn(v2)〉. (12)

In other words, when considering moments of the RDM,
the twist fields Tn and T n have to be inserted at the start
and endpoints of the slits corresponding to A1 and A2. For
the partial transpose, the edges of the slit A2, and thus the
corresponding twist field insertions, have to be interchanged.
Analogously, considering N nonintersecting intervals [ui,vi]
for i = 1, . . . N , with ui < vi and vi � ui+1, we can split
them into two complementary sets I1 and I2 = {1, . . . ,N} \ I1

which define the subsystems Aj = ∪i∈Ij
[ui,vi] for j = 1,2.

The moments are then given by

Tr ρn
A =

〈
N∏

i=1

Tn(ui)T n(vi)

〉
,

Tr
(
ρ

T2
A

)n =
〈

N∏
i=1

S2
[
Tn(ui)T n(vi)

]〉
, (13)

where the partial swap operator S2 acts as

S2[Tn(ui)T n(vi)] =
{
Tn(ui)T n(vi) if i ∈ I1,

T n(ui)Tn(vi) if i ∈ I2.
(14)

It should be mentioned that the general structure of these 2N -
point functions of twist fields becomes rather involved for
N > 2 and analytical results are only available for some special
CFTs [39].

B. Adjacent intervals

We first consider the simplest situation with two adjacent in-
tervals of lengths �1 and �2, within an infinite one-dimensional
critical system [15]. One can then set u1 = −�1, v2 = �2, and
v1 = u2 = 0, hence Rn can be written as

Rn = 〈Tn(−�1)T 2
n(0)Tn(�2)〉

〈Tn(−�1)T n(�2)〉 , (15)

and thus as the ratio of a three-point and a two-point function
on the full complex plane. It is well known that the twist
fields Tn and T n behave like primary operators with scaling
dimension [4]

�n = c

12

(
n − 1

n

)
. (16)

In contrast, the numerator of Eq. (15) contains an insertion of

a squared twist field T 2
n, whose scaling dimension shows a

strong dependence on the number of replicas [15]

�(2)
n =

{
�no

n = no,

2�ne/2 n = ne.
(17)

Indeed, in case of n = ne even, the actions of T 2
n and T 2

n

completely decouple the even and odd layers of replica sheets.
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VIKTOR EISLER AND ZOLTÁN ZIMBORÁS PHYSICAL REVIEW B 93, 115148 (2016)

Finally, one can use the CFT results for the two-point
function

〈Tn(−�1)T n(�2)〉 = cn(�1 + �2)−2�n, (18)

where cn are nonuniversal constants. Similarly, the three-point
function follows from conformal symmetry as

〈Tn(−�1)T 2
n(0)Tn(�2)〉

= c2
nCTnT

2
nTn

(�1 + �2)−2�n

(
�1�2

�1 + �2

)−�
(2)
n

, (19)

where CTnT
2
nTn

are universal structure constants. Substituting

into (15) and taking the logarithm, one arrives at

En = −�(2)
n ln

�1�2

�1 + �2
+ const., (20)

which manifestly depends only on the scaling dimension �(2)
n .

The entanglement negativity follows through the limit (11) as

E = c

4
ln

�1�2

�1 + �2
+ const. (21)

C. Embedded geometry

In the case of an embedded geometry depicted in Fig. 1(b),
one can perform a similar analysis as before. Choosing the
subsystems as A1 = [u1,v1] ∪ [u2,v2] and A2 = [v1,u2], the
moments of the RDM and its partial transpose can be read off
from Eq. (13),

Rn = 〈Tn(u1)T 2
n(v1)T 2

n (u2)T n(v2)〉
〈Tn(u1)T n(v2)〉 . (22)

Due to global conformal invariance, the four-point function
appearing in (22) has the form [33,35]

〈Tn(u1)T 2
n(v1)T 2

n (u2)T n(v2)〉
= cn(v2 − u1)−2�n(u2 − v1)−2�

(2)
n η−�

(2)
n Fn(η), (23)

whereFn is a scaling function depending only on the four-point
ratio η defined as

η = (v1 − u1)(v2 − u2)

(u2 − u1)(v2 − v1)
. (24)

In writing Eq. (23) we have separated a term that becomes
divergent in the limit η → 0, a behavior which can be found
from the operator product expansion (OPE) technique [33,35].
Although the precise form of Fn(η) is not known, such a
definition ensures that it tends to constant values in both limits
η → 0 and η → 1.

We will consider a symmetric embedding, i.e., v2 − u2 =
v1 − u1 = �1 and u2 − v1 = �2, hence the four-point ratio is
given by

η =
(

�1

�1 + �2

)2

. (25)

Dividing (23) by the two-point function, one obtains for the
logarithmic ratio

En = −2�(2)
n ln

�1�2

�1 + �2
+ lnFn(η), (26)

which, for η fixed and �1,�2 � 1, diverges logarithmically with
a doubled prefactor compared to the result (20) for adjacent
intervals. In particular for η → 0, i.e., for large separations
�2 � �1 between the two intervals of A1, one has Fn(0) =
C2
TnT

2
nT n

and thus the subleading term depends only on the

structure constants of the corresponding OPE. Therefore, the
entanglement negativity in the embedded geometry will be
asymptotically twice as large as for adjacent intervals in
Eq. (21), due to the two contact points between A1 and A2.
This is very reminiscent of the behavior of bipartite Rényi
entropies with periodic vs open boundary conditions [4].

IV. ENTANGLEMENT NEGATIVITY IN 2D

In the previous section it was recalled that for critical 1D
systems the area law for negativity is violated logarithmically,
and we also derived how the prefactor of this scaling depends
on the subsystem geometry. In this section the analogous
questions for 2D systems will be studied. In the bipartite case,
the simple general connection between criticality and ground-
state entanglement properties is lost. In fact, when considering
the scaling of entanglement entropy of a subsystem, for many
critical 2D systems, such as the harmonic lattice [23] or the
Heisenberg model [40], a strict area law holds. For other
critical models, e.g., for free fermions [21,22,41] or interacting
Fermi liquids [42,43], multiplicative logarithmic corrections to
the area law can still persist.

The above anomaly for fermionic models has its roots in
the presence of a Fermi surface, and its precursor can be
traced back to 1D systems. Indeed, if the ground state of a
free fermion chain is given by several disconnected Fermi seas
instead of a single one, then the entanglement entropy between
an interval of length � and the rest of the chain gets multiplied
by the number of Fermi points (boundaries of the Fermi seas)
[44–47]. Therefore, each Fermi point and subsystem boundary
lends a 1/12 ln � contribution of an independent chiral CFT to
the entanglement. Hence the overall entropy is proportional
both to the number of momentum-space boundaries of the
Fermi seas and the real-space boundaries of the subsystem.

This argument can now be lifted to d-dimensional systems
as follows [25,48,49]. Consider a ground state defined by the
occupied fermionic modes whose border is given by a (d−1)-
dimensional Fermi surface in momentum space, and suppose
we are interested in the bipartite entanglement of a spatial
region of linear extent �. If each patch of the Fermi surface
is considered as a source of chiral CFT excitations, with the
direction of Fermi velocity given by the normal vector nq, then
its entangling contribution along spatial direction nr should be
proportional to |nqnr|. Summing up the contributions from the
different patches of the Fermi surface ∂F and the real-space
boundaries ∂A, one arrives at

S = 1

12
ln �

�d−1

(2π )d−1

∫
∂F

dSq

∫
∂A

dSr|nqnr|, (27)

where the linear size of region A has been scaled out from the
integral and the proper measure on the Fermi surface has been
taken into account.

Remarkably, the very simple argument leading to Eq. (27)
gives the precise asymptotics of the area-law violating term in
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(d)(c)

(a) (b)

FIG. 2. Different choices for subsystems A1 and A2 with their
common boundary ∂A12 shown in red. The blue rectangle corresponds
to the boundary ∂A of subsystem A = A1 ∪ A2.

the entanglement entropy which has been tested numerically
for a number of (2D or 3D) free fermion systems [23,50–52]
and recently even proved rigorously [41]. Moreover, it also
accounts for the observation that the area law in 2D is restored
whenever the Fermi surface degenerates to a number of points
[23,50], since ∂F is of zero measure in the integral (27) of
the anomalous term. In fact, this is the very situation also for
a harmonic lattice with short-ranged interactions, where the
gapless bosonic modes are usually supported only on a finite
number of points in momentum space. As a further proof of
consistency, one should mention that some exotic Bose liquids,
featuring a bosonic analog of a Fermi surface, lead again to
logarithmic violations of the area law [53,54].

Returning to the case of entanglement negativity, we expect
that the same picture should be valid, which is supported by
the numerics presented in this section. For harmonic lattices
we find that a strict area law holds, while for fermionic systems
the results are consistent with a multiplicative logarithmic
correction, given by a formula that extends CFT results in the
spirit of Eq. (27). To test its validity, we will both consider
different subsystem geometries, as shown in Fig. 2, and
different Fermi surfaces tuned by the anisotropy of the lattices.

A. Harmonic lattice

The Hamiltonian of a 2D lattice of coupled harmonic
oscillators is given by

H = 1

2

∑
n

(
p2

n + �2
0x

2
n

) + 1

2

∑
〈m,n〉

km,n(xm − xn)2, (28)

where �0 gives the strength of the harmonic confining potential
at each site, whereas the oscillators are coupled through spring
constants km,n and the sum runs over all pairs 〈m,n〉. Here we
will restrict ourselves to the case of nearest neighbor couplings

km,n =
⎧⎨
⎩

kx if |im − in| = 1 and jm = jn,

ky if |jm − jn| = 1 and im = in,

0 otherwise,
(29)

where the lattice sites are indexed by the pairs of integers Rm =
(im,jm). Introducing the notation q = (qx,qy) for the wave
vectors, the nonzero matrix elements �2m−1,2n−1 = 2Xm,n and

�2m,2n = 2Pm,n of the covariance matrix read

2Xm,n =
∫ π

−π

dqx

2π

∫ π

−π

dqy

2π
eiq(Rm−Rn) 1

�q
, (30)

2Pm,n =
∫ π

−π

dqx

2π

∫ π

−π

dqy

2π
eiq(Rm−Rn)�q, (31)

where the dispersion relation is given by

�q =
√

�2
0 + 2kx(1 − cos qx) + 2ky(1 − cos qy). (32)

The RDM of subsystem A has a reduced covariance matrix
with nonzero elements given by 2XA and 2PA and the partial
transposition acts only on PA → P

T2
A by changing the signs of

the momenta in A2. Due to the vanishing of cross correlations
between positions and momenta, the symplectic spectrum of
the partial transposed covariance matrix is simply obtained by
finding the eigenvalues {νj } of matrix

√
2XA2P

T2
A . In turn, the

logarithmic negativity can be evaluated through Eq. (5).
To be able to compare the results to the 1D case, especially

to those obtained via CFT, we will be interested in a critical
lattice system, i.e., in the limit �0 → 0. Note, however, that
one cannot explicitly set �0 = 0 due to a divergence in the
matrix elements in Eq. (30) caused by the zero mode of the
lattice. We have thus used �0 = 10−3 in the calculations, and
we observed that further decreasing �0 has no visible effect
on the results.

For simplicity we consider only the vertical [Fig. 2(a)] and
horizontal [Fig. 2(b)] partitions of a � × � square into two
halves. The data for E are shown in Fig. 3 for the two different
geometries, for different values of the vertical coupling ky

and setting kx = 1. For the vertical partitioning (Fig. 3 left)
and in the limit of uncoupled chains (ky = 0), one trivially
recovers the c = 1 CFT result E/� ∼ 1/4 ln � + const. for
the logarithmic negativity per area. However, already a small
nonzero ky leads to a saturation of the curves, and thus to a
strict area law of entanglement. This is indeed expected from
the analogous result on the bipartite entanglement entropy
[23], which originates from the fact that there is only a single
gapless mode within the Brillouin zone, i.e., one has �q = 0
only for q = (0,0) for any ky 
= 0. Approaching the isotropic
lattice ky → 1, the entanglement also becomes more evenly
spread out in both directions, leading to a decrease (increase)
of the logarithmic negativity across the vertical (horizontal)
cut, as shown on the left (right) of Fig. 3.

B. Hopping model

The planar fermion hopping model is described by the
Hamiltonian

H = −1

2

∑
〈m,n〉

tm,nc
†
mcn, (33)

where, analogously to Eq. (29), we again consider nearest
neighbor hopping only, with amplitudes tx and ty in the
horizontal and vertical directions, respectively. Since the
Hamiltonian given by Eq. (33) is particle-number conserving,
the problem simplifies considerably. Indeed, the basic quanti-
ties are the correlation functions Cm,n = 〈c†mcn〉 which, in the
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FIG. 3. Logarithmic negativity per surface area for the harmonic lattice, between two halves of a � × � square with vertical (left) and
horizontal (right) partitioning (note the different vertical scales). The couplings ky are varied while the other parameters are fixed as kx = 1
and �0 = 10−3.

ground state, are given by

Cm,n =
∫∫

q∈F

dqx

2π

dqy

2π
eiq(Rm−Rn). (34)

Here the integral goes over the Fermi sea, defined by q ∈ F if
ωq < 0, with the single-particle dispersion

ωq = −tx cos qx − ty cos qy (35)

obtained through diagonalizing Eq. (33) by a Fourier trans-
form.

Comparing to the formalism introduced in Sec. II B, one
observes that the following relations hold for the elements of
the covariance matrix:

�2m−1,2n = iGm,n = i(2Cm,n − δm,n),

�2m,2n−1 = −iGm,n, �2m−1,2n−1 = �2m,2n = 0. (36)

Thus, in the presence of particle-number conservation, the
spectrum of the reduced covariance matrix �A is directly
related to that of the reduced matrix GA = 2CA − 1, which in
turn determines the eigenvalues of the RDM ρA [55,56]. In case
of the partial transpose ρ

T2
A , which can be written as a linear

combination of two noncommuting Gaussian operators O±
A as

in Eq. (7), it suffices to consider, instead of �±
A , the spectra

of matrices G±
A to recover the eigenvalues of O±

A . Moreover,
each moment Tr (ρT2

A )n can be obtained through determinant
formulas involving only G±

A , as shown in Appendix A. Note
that, since their linear size is half of the corresponding
covariance matrices �±

A , their use is essential to reach large
system sizes in our 2D calculations.

To further simplify the setting, we will consider only the
geometries, depicted in Fig. 2, with A being a square of size � ×
� subdivided into rectangular subsystems A1 and A2 that share
a common boundary. Before presenting our numerical results,
and motivated by the results for the entanglement entropy for
2D free fermions in Eq. (27), we put forward a conjecture for
the behavior of the logarithmic ratios

En =
{− σ

12 (no − 1/no)� ln �, if n = no odd,

− σ
12 (ne − 4/ne)� ln �, if n = ne even,

(37)

where the geometric factor σ is given by

σ = 1

4π

∫
∂F

dSq

∫
∂A12

dSr|nqnr|. (38)

Here the momentum and real space integrals have to be carried
out along the Fermi surface ∂F and the common boundary
∂A12 of subsystems A1 and A2, respectively, and the linear size
� has been scaled out such that A becomes a unit square. Note
that the prefactor (38) is chosen such that, in the limit ty = 0
of decoupled 1D chains, one recovers σ = c = 1 the central
charge of the free fermion CFT, and Eq. (37) reproduces the
result (20) for the adjacent intervals. Similarly, the doubling
of the prefactor σ = 2 and hence Eq. (26) is recovered for the
1D embedded geometry. For the particular choices of the 2D
partitions shown in Figs. 2(a) and 2(b), a simple calculation
(see Appendix B) yields

σa = 1, σb = 2

π
arcsin(ty), (39)

whereas for Figs. 2(c) and 2(d) one trivially finds

σc = (σa + σb)/2, σd = 2σc. (40)

The numerical results for En with n = 3 and n = 4, obtained
by evaluating the determinant formulas in Appendix A, are
shown in Figs. 4 and 5. In these figures we plotted −En/� on a
logarithmic scale, to best visualize the expected behavior (37).
The maximal linear size � = 70 reached in our calculations
is unfortunately still rather small to extract the slopes of the
curves through fitting, as they become unstable due to the
presence of subleading corrections. Instead, we simply plot
the conjectured slope of the curves with dashed lines and
compare it to the data sets.

In the case of the vertical partitioning, one expects a slope
which is independent of the vertical hopping amplitude ty . This
is indeed nicely recovered from our data, shown on the left of
Fig. 4, and even the numerical value of the slope fits very well
to our conjecture. Decreasing ty , the area-law contribution
increases and the curves are shifted upwards, which is the
same trend observed for the negativity of the harmonic lattice,
see left of Fig. 3. Additionally, the curves pick up oscillatory
contributions with an increasing frequency.
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FIG. 4. Logarithmic ratios per linear size −En/� for the 2D hopping model with vertical (left) and horizontal (right) partitioning and various
couplings ty . The data is plotted on a logarithmic horizontal scale. The dashed lines have slopes given by 2/9 σa and 2/9 σb for no = 3 (up)
and by 1/4 σa and 1/4 σb for ne = 4 (down), respectively, see Eq. (39).

On the other hand, for a horizontal partitioning the
geometric prefactor σb in (39) is a decreasing function of
ty and thus the slope of the curves should tend to zero for
ty → 0, i.e., when the partition becomes disconnected. This
is clearly observed from our numerical data on the right of
Fig. 4. In this case, however, it is somewhat more difficult to
conclude about the correctness of our conjecture, as the data
show significant subleading corrections up to the reachable
system sizes. Nevertheless, for no = 3 one still finds a good
agreement which, however, deteriorates for ne = 4. In fact,
for 1D systems, the presence of unusual corrections whose
magnitude increases with the index is well known for the Rényi
entropies from CFT calculations [57] and was also observed
for the moments of the partial transpose [17].

The data for the corner and the embedded partitionings are
shown on the left and right of Fig. 5, respectively. Due to its
geometric nature, the corner prefactor σc is just the average of
the vertical and horizontal ones, whereas the prefactor for the
embedded geometry σd is the double of the corner prefactor.
This is indeed in very good agreement with the numerical data,
especially for the embedded geometry which seems to be the
least effected by subleading corrections.

V. CONCLUSIONS

We have studied the scaling of entanglement negativity in
ground states of 2D free lattice systems between rectangular
regions having a common boundary. While for harmonic

oscillators a strict area law is obeyed, we found logarithmic
corrections for the moments of the partial transpose in the
fermionic case, which is completely analogous to the result for
bipartite entanglement entropies. Based on this similarity and
on CFT results for 1D systems, we conjectured a geometric
form (38) for the prefactor governing the leading behavior
(37) of the logarithmic ratios for the planar fermionic hopping
model, and a comparison with numerical calculations shows a
good agreement.

It would be interesting to find a strict proof for the form
of the area-law violating term which, in the case of bipartite
entanglement entropies, is related to the Widom conjecture
[22] and has only been proved recently [41]. In contrast, for the
moments of the partial transpose we do not even have an analog
of the method of Ref. [58] for 1D free fermions, where Rényi
entropies are calculated using the asymptotics of Toeplitz
determinants. Although Tr (ρT2

A )n can also be cast as a sum
of determinants, these are not of the Toeplitz type and we have
not yet been able to find their asymptotics analytically. This
would clearly be a necessary first step in order to understand
the 2D results, and thus requires further studies.

There are a number of possible extensions of the setup
presented in our work. First, it would be interesting to
see whether an interacting 2D Fermi liquid would show a
similar negativity scaling as free fermions, which one would
expect from the simple physical picture discussed in Sec. IV.
The recent advances in numerical methods for evaluating
entanglement negativity for interacting systems [59–63] cast
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FIG. 5. Logarithmic ratios per linear size −En/� for the 2D hopping model with corner (left) and embedded (right) partitioning and various
couplings ty . The data is plotted on a logarithmic horizontal scale. The dashed lines have slopes given by 2/9 σc and 2/9 σd for no = 3 (up) and
by 1/4 σc and 1/4 σd for ne = 4 (down), respectively, see Eq. (40).

some hope that this could be answered in the near future.
Second, it would also be natural to investigate how the
logarithmic correction to the negativity area law is rounded
off when the Fermi surface degenerates to a number of
points, and also to study corner effects. Third, the question
how the negativity decays with distance between nonadjacent
subsystems should also be addressed. Finally, the possibility
of detecting topological order via negativity [64,65] for free
fermion systems, using the Gaussian toolbox presented here,
is left for future study.
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APPENDIX A: TRACE FORMULAS

Here we give the necessary formulas to evaluate the
moments Tr (ρT2

A )n of the partial transpose in the ground state
of a particle-number conserving free fermion Hamiltonian.
It will be additionally assumed that the correlation matrix
Cm,n = 〈c†mcn〉 is real, which holds for the models studied
in the paper.

As described in the main text, the partial transpose can be
given as a linear combination of two Gaussian operators, see
Eq. (7). To simplify notation, we shall omit the subscripts A

here and use O±. In terms of the fermionic operators c
†
k and ck

they are given by the quadratic form

Oσ = 1

Zσ

exp

(∑
k,l

(Wσ )k,lc
†
kcl

)
, (A1)

where σ = ± and Zσ ensures normalization, Tr Oσ=1. The
matrices in the exponent satisfy

tanh
Wσ

2
= Gσ , exp(Wσ ) = 1 + Gσ

1 − Gσ

, (A2)

where Gσ is defined through the correlation matrix C as

Gσ =
(

(2C − 1)11 σ i(2C − 1)12

σ i(2C − 1)21 −(2C − 1)22

)
, (A3)

and the subscripts refer to the reduction of matrices (rows and
columns, respectively) to the corresponding subsystems A1

and A2.
To obtain the nth moment, one has to first factor out Eq. (7),

which yields

Tr
(
ρ

T2
A

)n =
∑
{σi }

exp(−i π
4

∑n
i=1 σi)

2n/2
Tr

(
n∏

i=1

Oσi

)
. (A4)

Note that the sum goes over all the possible assignments of {σi}
and

∑
i σi is just the difference between the numbers of + and
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− terms in the corresponding factor. Using the fact that each
Oσi

is a Gaussian operator given by Eq. (A1), one can apply
determinant formulas for the traces of their products. Indeed,
using the product relation for general Gaussian operators

n∏
i=1

exp

(∑
k,l

(Wσi
)k,lc

†
kcl

)
= exp

(∑
k,l

Vk,lc
†
kcl

)
, (A5)

where exp(V ) = ∏n
i=1 exp(Wσi

), and the trace formula [66]

Tr

(
exp

(∑
k,l

Vk,lc
†
kcl

))
= det[1 + exp(V )], (A6)

one obtains

Tr

(
n∏

i=1

Oσi

)
= det

[
1 + ∏n

i=1 exp
(
Wσi

)]
∏n

i=1 det
[
1 + exp

(
Wσi

)] , (A7)

where the denominator is just the normalization factor∏n
i=1 Zσi

. Hence, the result (A4) is given by a weighted sum
of 2n determinants. In fact, it was recently pointed out that,
for free fermions in 1D, each of these terms can be associated
with partition functions on a higher genus Riemann surface
with different spin structures [18].

Using the property O− = (O+)† and thus the invariance
of the formula under the exchange σi → −σi , the number of
determinants to be evaluated can be reduced. Furthermore,
using the relation (A2) between matrices Wσ and Gσ , each
determinant in (A7) can be rewritten in terms of the latter ones.
In particular, for n = 3 and n = 4 we obtain, after simple but
lengthy algebra, the following expressions:

Tr (O3
+) = det

(
1 + 3G2

+
4

)
, (A8)

Tr (O2
+O−) = det

(
1 + G2

+ + 2G+G−
4

)
, (A9)

Tr (O4
+) = det

(
1 + 6G2

+ + G4
+

8

)
, (A10)

Tr (O2
+O2

−) = det

(
(1 + G2

+)(1 + G2
−) + 4G+G−

8

)
, (A11)

Tr (O+O−O+O−) = det

(
(1 + G+G−)2(1+G2

×)

8

)
, (A12)

where

G× = 1 − (1 − G−)(1 + G+G−)−1(1 − G+) . (A13)

Finally, one should note that very similar formulas can
be applied in the general free fermion case without particle-
number conservation [13]. Then the matrices Gσ should be
exchanged with the modified covariance matrices �σ , given in
Eq. (8), and one has to take the square root of the determinants.
Note, however, that the resulting expressions then involve
a sign ambiguity [67] which has its root in the underlying
Pfaffian structure [68].

APPENDIX B: CALCULATION OF THE
GEOMETRIC PREFACTOR

In this Appendix we show how to calculate the geometric
prefactor σ which determines the slope of the curves in Figs. 4

-π

-π/2

0

π/2

π

-π -π/2 0 π/2 π

qy

qx

ty=1.0
ty=0.7
ty=0.2

FIG. 6. The Fermi surface of the infinite 2D hopping model for
various anisotropies ty and tx = 1.

and 5, using a method very similar to the one presented in
Ref. [52].

According to Eq. (38), the prefactor is given by a double
integral over the Fermi surface ∂F and over the surface ∂A12

separating subsystems A1 and A2. The Fermi surface is defined
through the single-particle dispersion (35) as q ∈ ∂F if ωq = 0
and is depicted in Fig. 6 for various anisotropies. Note that the
Fermi surface is invariant under reflections qx → −qx and
qy → −qy , it is thus enough to treat the first quadrant ∂F1 in
the integral (38) and multiply the result by four. Furthermore,
for the geometries shown in Figs. 2(a) and 2(b), the normal
vector on the entire real-space surface ∂A12 is constant and
given by nr = (1,0) and nr = (0,1), respectively. Thus, in
these cases the real-space integration can be dropped, whereas
for the geometries in Figs. 2(c) and 2(d) the results can be
obtained trivially by combining those of Figs. 2(a) and 2(b).

The normal vector along the Fermi surface is given by

nq = ∇qωq

|∇qωq| , (B1)

and the path of integration can be parametrized as qx(θ ), qy(θ ),
with the line element given by

dSq =
√(

dqx

dθ

)2

+
(

dqy

dθ

)2

dθ. (B2)

Furthermore, we can use the fact that the dispersion is constant
(i.e., zero) along the Fermi surface

∂ωq

∂θ
= ∂ωq

∂qx

dqx

dθ
+ ∂ωq

∂qy

dqy

dθ
= 0, (B3)

which can be used to relate the line element in (B2) to
the denominator of the normal vector in (B1). After proper
cancellations, one finds the simple results

σa =
∫

∂F1

dθ

π

∣∣∣∣dqy

dθ

∣∣∣∣, σb =
∫

∂F1

dθ

π

∣∣∣∣dqx

dθ

∣∣∣∣. (B4)

Thus, the prefactors are simply related to the overall
change in the components of the wave number as one
sweeps along the Fermi surface. Looking at Fig. 6, the
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change in qy within the first quadrant is always given by
π , independent of ty . On the other hand, the extent of the
Fermi surface in the x direction shrinks for larger anisotropies,

with the locations of the endpoints given by qx = π/2 ±
arcsin(ty). Substituting into Eq. (B4), one obtains the results
in (39).
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