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Abstract. Passive physical attacks, like power analysis, pose a serious threat
to the security of digital circuits. In this work, we introduce an efficient side-
channel protected Advanced Encryption Standard (AES) hardware design that is
completely scalable in terms of protection order. Therefore, we revisit the private
circuits scheme of Ishai et al. [13] which is known to be vulnerable to glitches.
We demonstrate how to achieve resistance against multivariate higher-order at-
tacks in the presence of glitches for the same randomness cost as the private cir-
cuits scheme. Although our AES design is scalable, it is smaller, faster, and less
randomness demanding than other side-channel protected AES implementations.
Our first-order secure AES design, for example, requires only 18 bits of random-
ness per S-box operation and 6 kGE of chip area. We demonstrate the flexibility
of our AES implementation by synthesizing it up to the 15th protection order.

Keywords: domain-oriented masking, private circuits, threshold implementa-
tions, ISW, side-channel analysis, DPA, hardware security, AES

1 Introduction

The increasing number of interconnected devices demand security not only on a crypto-
graphic level but also on a physical level. Without countermeasures against physical at-
tacks, devices are defenseless against attackers which have physical access. An attacker
can easily extract device internal secrets by measuring the power consumption [14] or
the electromagnetic emanation [19] of the device during security critical operations.

The most promising approach to achieve resistance against passive physical attacks
is to make sensitive computations independent from the processed data by using so-
called masking schemes. There exist many masking schemes, the scheme of Goubin et
al. [10], or Ishai et al.’s private circuits [13], and the Trichina gate [22]. However, the
aforementioned schemes have been shown to be vulnerable against glitches and thus
rigorous care has to be taken during the implementation to avoid leakage caused by
glitches.

There exist masking schemes that are inherently immune against glitches. The most
popular scheme is the threshold implementation (TI) masking scheme introduced by
Nikova et al. [18]. It has been extensively researched and extended by Bilgin et al. [1,
4] during the last years. There exist many protected hardware implementations that are
based on TI [2, 3, 17].



Recently, Reparaz et al. introduced the Consolidated Masking Scheme [20] (CMS).
One interesting aspect of the CMS scheme is the possibility to reduce the number of
required input shares of TI from td + 1 to d + 1, where d corresponds to the attack
order and t is the algebraic degree of the function that should be protected. At CHES
2016, De Cnudde et al. [7] demonstrated the suitability of using only d+1 shares on an
AES hardware design. The design requires less chip area than related work, but at the
cost of an increased randomness demand compared to td+ 1 TI. More specifically, the
CMS scheme requires (d+ 1)2 random bits for protecting one GF (2n) multiplication
as required multiple times for the AES S-box.

Producing a high amount of random numbers in hardware, however, is not trivial
and goes hand in hand with an increased chip area usage, a higher energy consumption,
and has also a negative influence on the throughput of a design. Therefore, for the
efficiency of masked implementations the randomness demand is crucial.

Our Contribution. In this work 1, we demonstrate how the randomness requirements
for d+1 masking can be lowered from (d+1)2 to only d(d+1)/2. In order to achieve
this, we revisit the private circuits scheme [13] which is known to be vulnerable to
glitches. We perform a similar approach under the premise of glitches, and demonstrate
how to achieve dth-order protection in the presence of glitches for the same random-
ness cost and without losing genericity. We show the suitability of our approach by
implementing a dth-order protected AES-128 encryption-only hardware design. Our
first-order AES implementation requires only 18 fresh random bits per S-box calcula-
tion, which is a third of the random bits of the CMS implementation of De Cnudde et al.
[7]. Our AES design is also very compact in terms of chip area and requires only 6 kGE
of chip area and 246 clock cycles per encryption. Furthermore, our approach is generic
in terms of protection order, allowing our AES design to be synthesized for any desired
protection order. The number of required clock cycles per encryption, however, is inde-
pendent of the protection order. We demonstrate the genericity of our design by stating
post-synthesis hardware results up to the 15th protection order. The VHDL source code
of the generic AES design is published online [11], which we hope will help future
research and make comparisons easier.

2 Private Circuits and the ISW Transformation

The original idea of Ishai et al. [13] was to build a so-called private circuit compiler
that can transform arbitrary circuits into circuits that resist passive physical attacks, like
chip probing and side-channel analysis, up to a protection order d. For this purpose,
the circuit’s data signals are first split into a number of shares, which when recombined
through addition over GF (2) result in the original value. The sharing is done based
on uniformly distributed random numbers. A sharing of a signal x can be written as
shown in Equation 1, where the shares are denoted by capital letters with the name of
the shared signal in the subscript index.

1 An earlier version of this work has been published online [12] under the title “Domain-
Oriented Masking: Compact Masked Hardware Implementations with Arbitrary Protection
Order”.
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x = Ax +Bx + Cx + . . .︸ ︷︷ ︸
d+1 shares

(1)

The security of masking schemes is typically shown in the so-called d-probing
model. A masking scheme provides security of order d in this model, if each com-
bination of up to d signals is independent of all unshared intermediate signals. It was
demonstrated by Faust et al. [8] and Rivain et al. [21] that there indeed exists a relation
between the number of probed wires in the d-probing model and the attack order for a
differential power analysis (DPA) attack.

The security of the sharing of x in Equation 1 against a d-probing attacker follows
from the fact that the attacker only gets access to the d+1 shares of x (Ax, Bx, . . .) but
not to x itself. The circuit is secure against d probes, as long as no signal in the circuit
contains a combination of more than one share of x. To keep this share independence,
also all gates of the circuit are required to fulfill this requirement.

The basic idea of the ISW transformation in order to achieve this, is therefore to
transform the original circuit in a way that it only consists of protected NOT and AND
gates. While the protected implementation of the NOT gate is straightforward and only
requires the negation of one share (see Equation 2), the protected implementation of the
AND gate is more difficult and requires the introduction of fresh randomness to fulfill
the independence requirement.

¬x = ¬Ax +Bx + Cx + . . . (2)

AND Gate. For the correct and secure realization of the AND gate in the ISW scheme
(with x and y as the input and q as the output), Equation 3 needs to be expanded,
securely evaluated, and compressed again to d+ 1 output shares.

q = xy =(Ax +Bx + Cx + . . .)(Ay +By + Cy + . . .) (3)

To achieve independence during the compression, some terms need to be first re-
masked by using fresh randomness denoted by Z shares in the following. Equation 4
shows an example for an ISW implementation of an AND gate for d = 2 in our nota-
tion. For a general description of the compression algorithm see [13], for details. The
correctness of the AND gate in Equation 4 is given because all random Z shares appear
exactly twice in additive manner, and the rest of the terms are the one of the expanded
Equation 3.

Aq =AxAy + Z0 + Z1

Bq =BxBy + (Z0 +AxBy +BxAy) + Z2

Cq =CxCy + (Z1 +AxCy + CxAy) + (Z2 +BxCy + CxBy)

(4)

For the security of Equation 4, the order in which the terms are summed up is criti-
cal. While the calculation order can be easily controlled for software implementations,
the order in which the terms are summed up cannot so easily be controlled in the com-
binatorial logic of hardware implementations.
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Like many other masking schemes, the private circuits approach is therefore con-
sidered to be vulnerable to so-called glitches [15]. Glitches are caused in the combi-
natorial path of hardware circuits because the electric signals do not propagate with
unlimited speed. Instead signal arrival times and delays at the logic gates can cause
several changes at the output of a gate before the gate output reaches its final state (for
more details see, e.g. , [16]). Digital designers also have only marginal influence on the
exact placement of the logic gates, the signal timings, and the order in which the signals
are combined. A secure masking scheme thus needs to be inherently immune against
glitches without relying on correct placement of the gates and signal timings.

Since there exist secure ISW implementations in software, a straightforward ap-
proach of its implementation in hardware would be to emulate the behavior of a pro-
cessor running the ISW transformed software. As a result, the output of each AND and
each XOR operation would be first stored in a register before any further processing
is performed. However, this approach is neither very resource friendly nor efficient in
terms of throughput.

In the next section, we thus introduce a secure construction of a masked AND gate
in hardware and argue its security in the d-probing model for the case that glitches are
taken into account. Our masked AND gate uses the same multiplication terms as the
ISW AND gate, and has the same randomness requirements and a generic structure.
However, in contrast to ISW, the introduced masked AND gate is resistant to glitches
and has a balanced gate distribution which is desirable in order to minimize the delay
of a hardware implementation. We start our construction and security argumentation
for a first-order secure masked AND gate before we generalize the concept to arbitrary
protection orders.

3 A Glitch-Resistant Masked AND Gate

The basic idea behind our glitch-resistant masked AND gate, is to split the calculation
of Equation 3 into independent share domains. Each share of a signal is associated with
one specific domain. This is also reflected in the notation that is used in this paper.
The shares Ax and Bx of a data signal x, for example, are associated with the domains
labeled A and B, respectively.

The AND gate uses d + 1 shares per signal in order to achieve dth-order security
and there are d + 1 domains in this case. The intuition behind this approach is to keep
the shares of all domains independent from shares of other domains. This independence
ensures dth-order security according to the d-probing model when considering glitches.

The critical parts of the circuit, are the parts that need to process inputs from multi-
ple domains. In this case dedicated measures need to be taken before the terms can be
securely served as inputs of a domain. By adding a fresh random share Z to these terms,
the terms can be reassociated to a targeted domain. Furthermore, the usage of a register
in this case prevents that glitches propagate from one domain to the another domain.

We first start with the introduction of the glitch-resistant AND gate for first-order
security before this approach is extended to arbitrary protection orders.
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Fig. 1. First-order secure AND gate

3.1 1st-Order Secure AND Gate

A first-order secure AND gate (see Figure 1) consists of two domains labeled A and
B. The inputs x and y are provided to the AND gate by the shares Ax and Bx, and Ay

and By , respectively. The sharings for x and y are required to be uniformly random and
independent of each other. The AND gate returns the shares Aq and Bq of the output
q. The calculations are performed in three steps in order to map the input shares to the
output shares. We refer to these steps as calculation, resharing and integration.
Calculation: In the first step, the actual calculation of the logic function (expanded
Equation 3) is performed and the terms AxAy , AxBy , BxAy and BxBy are calculated.
The terms that can be directly associated with one domain (inner-domain terms) are the
terms AxAy and BxBy , respectively. These terms are not critical from a security point
of view. Any computation on inner-domain terms associated with one specific domain,
only lead to outputs that again depend only on shares associated with this domain.

In case of terms that contain different domain labels (cross-domain terms), there is
less freedom. In fact these calculations are only secure for independently shared input
signals. If shares of the same signal would be combined for example, the independence
would be trivially broken. For example, the term AxBx would leak information about x.
However, shares associated with different domains that correspond to different signals
of the unprotected circuit can be combined without violating the requirement for dth-
order security. In fact, there is no leakage about x or y when calculating AxBy . This
results from the requirement that x and y are independently shared. There is also no
leakage caused by BxAy for an independent sharing of x and y. Cross-domain terms
of the AND gate that can not directly be associated with one domain are plotted red in
Figure 1.
Resharing: The integration of the cross-domain terms into a specific domain is pre-
pared in the resharing step. By adding a fresh random Z share to these terms, the term
becomes statistically independent from all other shares and can therefore be associated
with any arbitrary domain in the next step. In case of the 1st-order secure AND gate, the
same fresh share Z0 is used for the resharing of the product terms AxBy and BxAy .
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This does not lead to any first-order leakage, because a probing attacker restricted to
one probing needle cannot find a single signal in the AND gate that correlates to the
unshared inputs x and y or the output q.

In order to prevent that any glitch propagates through the resharing step, a register
is included as last part of the resharing step. The two registers in grey dotted lines are
optional registers and are only required for pipelining purposes but not for the security
of the AND gate.
Integration: During the integration phase, the reshared cross-domain terms are added
to the inner-domain terms, which concludes the calculation of the AND gate. Please
note that this addition leads to glitches at the XOR gate at the output of the domain.
However, as the resharing step finishes with a register no glitches can occur that depend
on x or y. In terms of correctness, it is important to point out that the fresh share Z0

becomes part of both domains. Hence, it holds that q = Aq +Bq .
In summary, the security against a first-order probing attacker is given because each

domain contains either inner-domain terms that contain only shares that are already
associated with one specific domain, or cross-domain terms that are reshared with a
fresh random Z share which is only used once in each domain. An attacker thus always
needs to combine at least two signals to get one signal that depends on one of the
independently shared inputs x or y.

3.2 Higher-Order Secure AND Gate

The first-order AND gate can be extended to arbitrary protection orders. The general-
ization requires to first extend the calculation step to produce a correct sharing with
d + 1 shares for any given protection order d. In the resharing phase it needs to be
ensured that the fresh random Z shares are distributed over the domains in a way that
(1) each cross-domain term is reshared with a Z share that is unique inside the targeted
domain, and (2) none of the signal combinations created in the integration phase reveals
more than the inner-domain terms or shares of the respective domain.
Calculation: The same rules as for the first-order AND gate apply for the higher-order
generalization. Again, any combination of shares can be safely used inside their asso-
ciated domain without any restrictions. Cross-domain terms, however, require indepen-
dently shared signals to prevent the case that two shares of the same sharing are com-
bined. This ensures that by probing a cross-domain term, the attacker does not learn
more about the inputs x and y then when probing a share of x and y directly.

The calculation step can be generalized for d + 1 input shares as shown in Equa-
tion 5. Each row of this formula stands for one domain with a dedicated label calculating
one share of the output q. The terms in the diagonal (bold) are the inner-domain terms
containing only shares from one specific domain and hence only leak about shares of
this domain. The cross-domain terms do not leak more information on the inputs x and
y then when probing one share of x and one share of y directly. Hence, with this for-
mula the sharing for the calculation step for the AND gate resists a d-probing attacker
for an arbitrary numbers of shares. An example for a second-order AND gate is given
in Figure 2.
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Fig. 2. Second-order secure AND gate

Aq︸︷︷︸
Q0

= AxAy︸ ︷︷ ︸
t0,0

+ (AxBy + Z0)︸ ︷︷ ︸
t0,1

+ (AxCy + Z1)︸ ︷︷ ︸
t0,2

+ (AxDy + Z3)︸ ︷︷ ︸
t0,3

+ (AxEy + Z6)︸ ︷︷ ︸
t0,4

+ . . .

Bq︸︷︷︸
Q1

= (BxAy + Z0)︸ ︷︷ ︸
t1,0

+ BxBy︸ ︷︷ ︸
t1,1

+ (BxCy + Z2)︸ ︷︷ ︸
t1,2

+ (BxDy + Z4)︸ ︷︷ ︸
t1,3

+ (BxEy + Z7)︸ ︷︷ ︸
t1,4

+ . . .

Cq︸︷︷︸
Q2

= (CxAy + Z1)︸ ︷︷ ︸
t2,0

+ (CxBy + Z2)︸ ︷︷ ︸
t2,1

+ CxCy︸ ︷︷ ︸
t2,2

+ (CxDy + Z5)︸ ︷︷ ︸
t2,3

+ (CxEy + Z8)︸ ︷︷ ︸
t2,4

+ . . .

Dq︸︷︷︸
Q3

= (DxAy + Z3)︸ ︷︷ ︸
t3,0

+ (DxBy + Z4)︸ ︷︷ ︸
t3,1

+ (DxCy + Z5)︸ ︷︷ ︸
t3,2

+ DxDy︸ ︷︷ ︸
t3,3

+ (DxEy + Z9)︸ ︷︷ ︸
t3,4

+ . . .

Eq︸︷︷︸
Q4

= (ExAy + Z6)︸ ︷︷ ︸
t4,0

+ (ExBy + Z7)︸ ︷︷ ︸
t4,1

+ (ExCy + Z8)︸ ︷︷ ︸
t4,2

+ (ExDy + Z9)︸ ︷︷ ︸
t4,3

+ ExEy︸ ︷︷ ︸
t4,4

+ . . .

...
...

...
...

...
. . .

(5)

Resharing: A core property for the generalization of this AND gate implementation is
how the required fresh random Z shares can be efficiently distributed among the cross-
domain terms in a correct manner. From Equation 5 it can be seen that there are exactly
d(d + 1) cross-domain terms which need to be reshared. It is also important to note
that there are exactly two cross-domain terms that combine shares from the same two
domains. For example shares from domain A and B are only combined in the terms
AxBy and BxAy . We use the same fresh Z share for cross-domain terms that combine
shares from the same two domains. Hence, we use d(d+1)/2 fresh shares for a dth-order
AND gate, which is the same amount as in the ISW scheme.

Since no probing of any intermediate signal created in the calculation phase con-
tains more than one share of each input x or y, and in the resharing phase we add fresh
random shares to the cross-domain terms, no advantage to a d-probing attacker is given
during these phases.
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Integration: In the integration phase, the terms associated with each domain are added
up at the output of the AND gate. Because a digital designer has no influence on the
sequence in which these terms are added up (without forcing it through registers), the
higher-order secure AND gate needs to provide probing security for each possible par-
tial sum of these terms. In particular, it has to be taken care of that each of these possible
partial sums an attacker could probe reveals only the shares of the domains she is prob-
ing in. This is ensured by the resharing shown in Equation 5, where each Z share is
only reused for cross-domain terms with the same domain association.

In order to exploit the reuse of Z shares, it would be necessary to probe in the
two domains that use the cross-domain terms with the reused Z share. However, the
two cross-domain terms that use the same Z share contain only the shares of the same
domains. Hence, there is no advantage for the attacker due the reuse.

For example, the share Z0 in Figure 2 is used on the terms AxBy and BxAy and
these two terms only occur in the domains A and B. An attacker that probes any partial
sum of the terms in A learns only about shares in domain A. When probing any partial
sum of the terms in B, there is only information about shares associated with B. A
second-order attacker that learns about partial sums in A and B learns about shares
from the domains A and B in any case. The fact that the cross-domain terms AxBy and
BxAy reuse Z0 does not provide any advantage to an attacker.

Based on Equation 5, the fact that the AND gate fulfills dth-order security can also
be verified visually. In this matrix the diagonal terms are formed by the inner-domain
terms. These inner-domain terms also divide the matrix into an upper and lower tri-
angular matrix in which each of the fresh random Z shares is used exactly once. The
triangle formed by the Z shares is mirrored along the diagonal. The mirroring of the
Z shares ensures that each possible combination of partial sums from any two domains
removes at most one fresh random share, and reveals only the shares associated with
both domains. Because this applies for all combinations of partial sums of all different
domains, an attacker restricted to d probes obtains at most d shares per signal. However,
for this security argumentation to hold it needs to be always ensured that the sharings
of the inputs x and y are independent.

The domain equations of the matrix in Equation 5 can also be written in closed form
as shown in Equation 6.

Qi = ti,i +

d∑
j>i

(ti,j + Z(i+j∗(j−1)/2)) +

d∑
j<i

(ti,j + Z(j+i∗(i−1)/2)) (6)

This equation is also the basis for the scalable AES design in the next section.
Furthermore, we note that the approach can be easily extended to arbitrary finite fields.
Consequently, our glitch-resistant masked AND gate, which equals a multiplication in
GF (2), can be extended to arbitrary large GF (2n) multiplications by replacing the
AND gates in the calculation step by GF multipliers. Operations that are linear over
GF (2n) like XOR or logic negation, on the other hand, can be applied to the shares
without domain crossings. We use this property for an efficient implementation of the
AES S-box in the next section.
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4 dth-order Secure AES Implementation

To compare the efficiency of our approach with existing masked implementations,
we implemented the AES-128 encryption-only design suggested by Moradi and
Poschmann [17]. Moradi’s design was also used and modified by Bilgin et al. [2, 3,
6] and recently by De Cnudde et al. [7] for a d+ 1 share CMS TI.

The control path of our modified AES design consists of a linear-feedback shift
register (LFSR), the round constant generation module (RCON), and some additional
logic gates to generate the control signals (see [17] for more details). Our LFSR module
has a cycle length of 23. In each round, the first 16 cycles are spent on AddRoundKey
and SubBytes. Then there are four cycles used for MixColumns and to calculate the
first four bytes of the next round key. Then there are two dummy rounds inserted to
bring the state register in correct position for further processing before in the final cycle
the ShiftRows transformation is performed. The datapath mainly consists of the S-box,
the key and state registers which are implemented as shift registers, the MixColumns
module, and some multiplexers.

4.1 AES S-box

The by far most complex and most security critical part of the AES implementation is
the S-box. Figure 3 shows our design of a 1st-order protected variant of Canright’s [5]
AES S-box design. The S-box consists of many linear operations like the linear map-
pings at the input and the output, the square scalers, the sub-field inverters, and the
adders. These are the parts that can be implemented share-wise for both domains in
a straightforward way. The Galois field multipliers with different field order form the
non-linear parts of the S-box. Canright’s S-box makes repeated use of a finite field iso-
morphism to express GF (28) elements as multiple elements in lower subfields—down
to eight elements in GF (2). These GF (2n) multipliers are replaced by the generaliza-
tion of the masked AND gate of Section 3 for GF multipliers. Therefore, the standard-
cell library AND cells used for the calculation step in the masked AND gate are simply
replace by the according GF multipliers.

To maximize the efficiency of the implementation, seven pipelining stages are added
to the S-box. The pipelining registers are marked with circles and appear along the red
and green dotted lines in Figure 3. Red dotted lines indicate multiplier related stages
which are also labeled Stage 1-5 in order to refer to them more easily. The green marked
registers are required to ensure independence in the presence of glitches for the inputs
of the adjacent GF gates. To make the S-box secure and efficient at the same time,
it is necessary to pinpoint all GF gates that have related input sharings. These gates
need to be treated more carefully than the one with independent inputs. We now discuss
the security of each multiplication stage individually which reveals that the additional
pipeline stages (plotted in green) are required at multiplication stages 1, 2, and 3, but
not at 4 and 5.

Stage 1. The GF (24) gate in Stage 1 receives its inputs from the linear mapping at
the S-box input. The linear mapping takes the 8-bit input shares Ax and Bx and lin-
early combines these eight bits inside their respective domain (see [5] for more details).
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Fig. 3. First-order masked AES S-box with seven pipeline stages
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Because of the different signal transition times and gate delays, it is therefore possible
that the output of the linear mapping temporarily consists of bits with related sharing.
Applying these bits directly to the GF gate from Figure 1—while the linear mapping
has not yet settled—would thus violate the independence in the cross-domain terms as-
sociated GF multipliers. To avoid these glitches, registers are inserted after the linear
maps to ensure the signals are settled before the bits are applied to the GF gate.

Stage 2 and 3. The situation is similar at Stage 2 and Stage 3. At these stages, glitches
can occur from the combination of the square scaler outputs with the outputs of the GF
gate. Again these glitches can be avoided by inserting pipelining stages at the marked
positions in Figure 2.

Stage 4. For the GF gates in Stage 4, the inputs are the pipelined S-box inputs and
the output of the GF gates of the previous stage. The output of the GF gate of Stage
3 originate from the inputs of the GF (24) inverter which is remasked in Stage 1 (the
masking is effective at latest at Stage 2). Therefore, the inputs of the Stage 4 GF gates
are clearly independent and so no registers are required here.

Stage 5. The output mapping in this stage is again a linear transformation and uncritical
as long as it is not followed by a nonlinear transformation that is unprepared for related
sharing of its inputs. However, in our design of the AES core the output of the S-box
is either stored in the key or state registers before it is used again, or fed into the S-box
which is also uncritical because the input multiplier of either S-box variant is already
prepared to process related input sharings.

The rest of the S-box is implemented according to the original Canright design but
without some of its optimizations that would not be beneficial for our implementation.
Canright’s design, for example, reuses some temporary results in other parts of the S-
box. Storing temporary results would lead to many additional pipelining registers for
our design of the S-box and is therefore not suitable. For the generalization of the S-box
to higher protection orders, the black (or blue) parts in Figure 3 are basically duplicated
and the secure GF gates are generated as described in Section 3.

5 Implementation Results

All stated numbers are post-synthesis results for a 90 nm UMC Low-K process
with 1.0 V power supply and 0.1 MHz clock frequency (in accordance with related
work). Our designs are compiled with the Cadence Encounter RTL compiler version
v08.10-s28 1 and routed with Cadence NanoRoute v08.10-s155. Please note that in
general hardware result for different technologies, compiled and synthesized with dif-
ferent tool chains are difficult to compare. Furthermore, the functionality implemented
by different modules is not always consistent with other implementations. The compar-
ison of chip area results with related work should therefore be seen under this premise.
To make comparison with our generic AES design easier for future work, we therefore
decided on publishing the source code online [11].

Anyway, for a masked hardware design the number required fresh random bits is
even more crucial for the efficiency of an implementation than the stated chip area of
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Table 1. First-order secure AES-128 implementation results

Design/Module Chip Area Randomness Cycles Throughput @0.1 MHz
[%] [kGE] [Bits/S-box] [Kbps.]

Our Implementation (90 nm)
This work 100.0 6.0 18 246 52

S-box 37.3 2.2
State registers 34.0 2.0
Key registers 21.0 1.3
Control, et cetera 7.7 0.5

td+1 Threshold Implementations (180 nm)
Moradi et al. [17] 11.0 / 10.8a 48 266 48
Bilgin et al. [2] 9.1 / 8.2a 44 246 52
Bilgin et al. [3] 8.1 / 7.3a 32 246 52

d+1 Threshold Implementations (45 nm)
De Cnudde et al. [7] 6.7 / 6.3a 54 276 46
a This variant uses the compile ultra flag which is not available in our tool chain.

the designs. The generation of fresh random bits with high entropy requires additional
hardware and involves, e.g., complex analog circuitry or pseudo random number gener-
ators based on symmetric primitives. Both options have a critical influence on the chip
area requirements, the energy budget, and on the delay or throughput.

First-order secure AES. Table 1 compares our first-order secure AES hardware imple-
mentation with existing related work. The d+ 1 share designs of [7] with 6.7 kGE and
our design with 6 kGE are smaller than the td+1 TI designs. The size difference mainly
comes from the fact that td+1 TI requires at least three shares for securely calculating
non-linear functions while the first-order d+ 1 share designs require only two shares.

In comparison with d + 1 TI design [7] which requires 54 random bits per S-box
calculation, our design requires with 18 bits only a third of its random bits. Nevertheless,
our design achieves the same throughput as the td+1 TI design of Bilgin et al. with 52
Kbps for a 100 kHz clock and requires 14 bits less fresh randomness.

Second-order secure AES. In Table 2, a comparison of our second-order AES design
with other second-order secure designs is given. In case of the td+1 TI design the chip
area was estimated by De Cnudde et al. [7]. Again, there is a noticeable gap between
the td + 1 share design with about 14.9 kGE and the d + 1 share designs with about
10 kGE in terms of chip area resulting from the increased amount of shares (five shares
versus three shares). Considering the randomness demand of the designs, our design
requires 54 bits which is more than two times less than the td+1 design with 126 fresh
random bits, and three times less than the d + 1 TI design with 162 bits. In terms of
throughput, our AES design requires 246 cycles instead of 276 cycles per encryption.
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Table 2. Second-order secure AES-128 implementation results

Design/Module Chip Area Randomness Cycles Throughput @0.1 MHz
[%] [kGE] [Bits/S-box] [Kbps.]

Our Implementation (90 nm)
This work 100.0 10.0 54 246 52

S-box 45.1 4.5
State registers 30.3 3.0
Key registers 18.7 1.9
Control, et cetera 5.9 0.6

td+1 Threshold Implementation (estimated [7] , 45 nm)
De Cnudde et al. [6] 18.6 / 14.9a 126 276 46

d+1 Threshold Implementation (45 nm)
De Cnudde et al. [7] 10.5 / 10.3a 162 276 46
a This variant uses the compile ultra flag which is not available in our tool chain.
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Fig. 4. Area requirements absolute (left) and in percent (right) per protection order

5.1 dth-Order AES Implementation Results

The generic construction of our AES implementation not only allows the calculation of
the number of required fresh random bits of 9d(d + 1), but furthermore it is possible
to synthesize the AES implementation for arbitrary protection orders by just changing
one input parameter of our hardware design.

Figure 4 shows the post-synthesis area results for the different components in re-
lation to the protection order. It can be observed that the state key and control logic
requirements grow linearly with the protection order. The S-box and the contained GF
gates grow quadratically. For the S-box, the size increases from 37.4% for the first-
order implementation to about 78.5% for the 15th-order. The relative size of the state
and key register decrease from 34% and 21% to around 12.2% and 7.5%, respectively.
The smallest amount of chip area is spent on the control logic which stays almost con-
stant.
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Fig. 5. First-order t-test (left) and second-order t-test (right) for first-order secure AES design

6 Side-Channel Evaluation

To show the resistance of our AES design against side-channel analysis attacks, dif-
ferent instances of the Welch’s t-test are used (see Goodwill et al. [9] for details).
The intention of this test is that for a side-channel secure implementation, a set of ran-
domly picked (unshared) inputs should not show any statistically differences in the
power traces for a set with constant inputs. For these two sets the so-called t value is
calculated. If the t value is outside the confidence interval of ±4.5 the null-hypothesis
is rejected with confidence greater than 99.999% for large sizes of N .

Our evaluation approach is quite similar to what is checked in the d-probing model.
Instead of using power trace values of, e.g., an FPGA implementation of our design,
the t values of each individual signal are recorded for a post-synthesis netlist of our
AES design during simulation. In comparison to an FPGA based validation this ap-
proach has three advantages: (1) the signals are completely noise free, (2) if any sta-
tistical differences are found, the violating signals can be directly pin-pointed, (3) if
ASIC implementations are targeted, the synthesized netlist is closer to the final ASIC
implementation than an FPGA implementation.

First-order AES design. The results of the first-order t-test for our first-order secure
design are shown in Figure 5 (left) for up to one million traces. The t-value stays below
the ±4.5 border as required by the t-test to succeed. To demonstrate the soundness of
our evaluation setup we also performed a second-order t-test. However, for the second-
order t-test in a bivariate attack setting, performing individual t-tests for each signal
separately is no longer feasible. The evaluation of each signal combined with every
other signal for different points in time would take too long. Therefore, one single trace
is calculated that sums up all signal transitions together. We then combine in each case
two trace points over centered product pre-processing for all points in time within an
eight clock cycles period (the delay of the S-box). As expected the t-tests fail with great
confidence with t values clearly above the ±4.5 border even for just a hundred traces.

Second-order AES design. The t-tests for the second-order AES design are illustrated
in Figure 6. In both cases the t-tests do not indicate any leakage. We thus conclude that

14



0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−6

−4

−2

0

2

4

6

+ 4.5

- 4.5

number of traces

t-
va

lu
e

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
−6

−4

−2

0

2

4

6

+ 4.5

- 4.5

number of traces

t-
va

lu
e

Fig. 6. First-order t-test (left) and second-order t-test (right) for second-order secure AES design

our implementation seems to be correct and secure in a bivariate second-order attack
scenario.

7 Conclusions

In this work we introduced a generic hardware design of the AES. In contrast to existing
implementations, our design is freely scalable in terms of resistance to side-channel
analysis attacks. Because of its d + 1 share design principle it is also very efficient.
With only 6 kGE of chip area, our design is the smallest published first-order (and
beyond) masked AES implementation to this date.

Since the generation of random numbers with high entropy is a very demanding task
for hardware implementations, we consider the randomness requirements to be even
more decisive for the efficiency of a masked hardware implementation. In comparison
with the recently published d+ 1 share AES design [7], our design requires just d(d+
1)/2 fresh random shares instead of (d+ 1)2.
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