
ar
X

iv
:1

61
1.

03
69

8v
1 

 [
q-

bi
o.

N
C

] 
 1

1 
N

ov
 2

01
6

Assembly pointers for variable binding in networks of spiking

neurons

Robert Legenstein1, Christos H. Papadimitriou2, Santosh Vempala3, Wolfgang Maass1

1 Institute for Theoretical Computer Science, Graz University of Technology,

Graz, Austria, {legi,maass}@igi.tugraz.at.
2 EECS, UC Berkeley, CA 94720, USA, christos@cs.berkeley.edu

3 College of Computing, Georgia Tech, Atlanta, GA 30308, USA, vempala@gatech.edu

November 14, 2016

Abstract

We propose a model for binding of variables such as the thematic role of a word in a sentence
or episode (e.g., agent or patient), to concrete fillers (e.g., a word or concept). Our model is based
on recent experimental data about corresponding processes in the human brain. One source of
information are electrode recordings from the human brain, which suggest that concepts are
represented in the medial temporal lobe (MTL) through sparse sets of neurons (assemblies).
Another source of information are fMRI recordings from the human brain, which suggest that
subregions of the temporal cortex are dedicated to the representation of specific roles (e.g.,
subject or object) of concepts in a sentence or visually presented episode. We propose that
quickly recruited assemblies of neurons in these subregions act as pointers to previously created
assemblies that represent concepts. We provide a proof of principle that the resulting model
for binding through assembly pointers can be implemented in networks of spiking neurons, and
supports basic operations of brain computations, such as structured information retrieval and
copying of information. We also show that salient features of fMRI data on neural activity
during structured information retrieval can be reproduced by the proposed model.

1 Introduction

Numerous electrode recordings from the human brain (see [1] for a review) suggest that concepts
are represented through assemblies of „concept cells“, i.e., sparse sets of neurons that fire (more or
less) whenever the corresponding concept is activated. The data confirms earlier hypotheses and
models, going back to [2] about the representation of tokens of cognitive computations through
assemblies of neurons. More recent data [3] also provides also information about the way in which
these assemblies are quickly modified in the human brain when we experience an association between
two concepts. This data suggests that assemblies should not be seen as invariant entities, but as
fluent coalitions of neurons (as proposed by [4]) whose response properties vary fast, even through
a single experience. Furthermore the data of [3] suggests that this process on the level of neurons
underlies the association of concepts or images, that for example supports recall of some image
components (face or landmark) when an associated image component is presented. It is shown in
[3] that some fraction of neurons in the assembly for one image component also starts to respond
to the other image component. In other words, each of the two assemblies expands into the other
assembly, so that the activation of one of them increases the activation probability for the other
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assembly. This mechanism suggests that assemblies can act as pointers to other assemblies. They
are uniquely qualified for this role, because in contrast to a single neuron, an assembly consisting
of hundreds of thousands of neurons can trigger, through its activation, the firing of other neurons,
and thereby also gate their plasticity. In addition, if assemblies are sufficiently large, a fair number
of direct synaptic connections are likely to exist between the neurons of any two assemblies, even if
the connection probability between any pair of neurons is low.

We propose that assemblies of neurons are also instrumental for creating a transient or longer
lasting binding of a variable to a filler. For example, they could bind a variable that represents
a thematic role (e.g., agent or patient in an episode) to a word or concept. Information about
the neural representation of semantic roles is provided through recent fMRI data, where specific
subregions in the temporal cortex were shown to respond to specific semantic (thematic) roles of
individuals in an episode that was communicated through a sentence [5] or a movie [6].

Here we do not assume that semantic roles are represented by fixed assemblies of neurons. Such
a fixed assembly would in general not have sufficient direct synaptic connectivity to the virtually
unlimited repertoire of words or concepts, each represented through assemblies in other brain regions
that could acquire this semantic role in an episode. To achieve such large potential connectivity, the
size of this fixed assembly would have to be so large that its activation would not be consistent with
generic sparse firing activity in each brain region. Rather, we propose that the specific subregions
of the temporal cortex that were shown to be activated differentially in dependence of the specific
semantic role of a concept serve as large pools of neurons (we will refer to them as neural spaces).
In neural spaces, sparse assemblies can quickly be recruited from the subset of neurons that happen
to have direct synaptic connections to a particular assembly in a region where content (concepts)
are encoded, and thereby act as assembly pointers. We propose that this model can reconcile
functional needs, such as being able to recall a concept from its recent thematic role, with data on
the inherently sparse connectivity between brain areas [7]. One can also view this model as a direct
extrapolation of data on the formation of associations between concepts from [3] to associations
between thematic roles (i.e., variables) and concepts.

We propose that one well-known neurophysiological mechanism is essential for the control of
this binding process: disinhibition. At least two different ways how brain areas or specific neural
circuits can be selectively disinhibited have been proposed on the basis of experimental data [8].
One is neuromodulatory control (especially cholinergic), see [9]. Another one is disinhibition via
the activation of VIP cells, i.e., of inhibitory neurons that primarily target other types of inhibitory
neurons [10]. We propose that disinhibition plays a central role for neural computation and learning
by controlling the creation and reactivation of assembly pointers.

Assembly pointers provide a model for a brain mechanism that replaces the "copy" operation
that moves information in a digital computer. In contrast to a digital computer, the brain uses a
"spatial code" for content, where the firing of a particular set of neurons (possibly widely distributed
throughout the brain) indicates the recall of a content. Obviously, such a spatial code cannot be
easily moved to another brain location. Hence, brain computations are based on a different paradigm
where the copying of bit vectors is avoided altogether. Such alternative paradigms become important
in computer science in efforts to create non-von-Neumann architectures that consume substantially
less energy [11]: it is estimated that at least half of the energy of a current computer is consumed
by shuffling of data between memory and processors. The assembly pointer concept may provide a
biologically inspired basis for alternative computer architectures that are based on different relations
between memory and processors.
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2 Results

2.1 Variable binding through assembly pointers

A specific a word or a concept (referred to more abstractly as "content" in the following) is repre-
sented in our model by a specific assembly of neurons in a content space C. This coding assumption
is consistent with experimental data that arise through simultaneous recording from large sets of
neurons, through multi-electrode arrays or Ca2+ imaging. The neural activity patterns that were
found in this way can be characterized in first approximation as spontaneous and stimulus-evoked
switching between the activations of different (but somewhat overlapping) subsets of neurons (see
e.g. [4, 12, 13]), often referred to as assemblies of neurons.

The results and hypotheses of Frankland and Greene [5] provide the basis for our model for
binding a variable v that represents a syntactic role (agent, verb, patient) to a concrete content
(a word or a concept) in content space C. We will refer to the particular region or set of neurons
that is reserved for this variable as the neural space Nv for variable v. Each such neural space
can be viewed as functioning like a register in a computer [5]. But in contrast to a computer, this
"register" is not used for storing content in it. Rather, assemblies in this register Nv store "handles"
or "pointers" to assemblies that store content information in the separate content space C. The
results of [5] indicate that disjoint subareas of temporal cortex represent different variables. We
therefore represent different variables v1, . . . , vK in our model in separate neural spaces Nv1 , . . . ,NvK

for each of these variables. We refer to the union of the neural spaces for all variables as the variable
space V.

We do not assume specifically designed neural circuits that implement neural spaces and variable
binding. Instead, we assume a rather generic network for each neural space and the content space,
with lateral excitatory connections and lateral inhibition within the space. Further, we assume that
neurons in the content space are sparsely connected to neurons in neural spaces for variables. We
will show that the binding of variables to fillers emerges naturally in such a generic circuit model
from plasticity processes.

In addition our model takes into account that neurons typically do not fire just because they
receive sufficiently strong excitatory input. Experimental data suggest that neurons are typically
prevented from firing by an "inhibitory lock", that balances or even dominates excitatory input [14].
Thus a generic pyramidal cell is likely to fire because two events take place: its inhibitory lock is
temporarily lifted ("disinhibition") and its excitatory input is sufficiently strong. A special type of
inhibitory neuron (VIP cells) has been identified as a likely candidate for triggering disinhibition,
since VIP cells target primarily other types of inhibitory neurons (PV+ and SOM+ positive cells)
that inhibit pyramidal cells, see e.g. [10]. Firing of VIP cells is apparently often caused by top-
down inputs (they are especially frequent in layer 1, where top-down and lateral distal inputs arrive).
Their activation is conjectured to enable neural firing and plasticity within specific patches of the
brain through disinhibition, see e.g. [8, 15, 16, 17, 9]. One recent study also demonstrated that
longterm plasticity in the human brain can be enhanced through disinhibition [18]. We propose that
top-down disinhibitory control plays a central role for neural computation and learning in cortex
by initiating for example the creation and reactivation of assembly pointers.

2.2 Creation of assembly pointers through STDP in disinhibited neural spaces

To test the proposed model of binding through assembly pointers, we performed computer simu-
lations where stochastically spiking neurons were embedded in a corresponding network structure
(see Fig. 1A and Methods for details). The network consisted of a content space C and a single neu-
ral space Nv for a variable v that each contained 1000 recurrently connected neurons (connection
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Figure 1: Neural spaces and assembly pointers. A) Network structure. Rectangles indicate
the content space C (white) and the neural space Nv for variable v (light blue shading). Circles
denote neurons (open: inactive; filled black: active; filled gray: potentially active but inhibited).
Spaces C and Nv also include sparse recurrent connections which are not shown for clarity. Circle on
top right of each space indicates disinhibition (filled black circle: inhibited; open circle: disinhibited).
Gray lines indicate connections between spaces. Concepts are encoded in content space through
neural assemblies. Initially, the neural space Nv is inhibited. Filled gray circles indicate neurons
with connections from active neurons in C. These neurons may become active when the neural space
is disinhibited to constitute an assembly pointer B) Assembly code in content space after induction
of assemblies through STDP in a spiking neural network (SNN) model. Black circles denote neurons
in content space (100 randomly chosen out of 1000 and randomly placed in 2D space). Filling color
indicates assembly identity. Open circles denote neurons which do not belong to any assembly. C)
Assembly formation in content space of SNN. The 100 neurons shown in panel (B) are rearranged
on a circle (black and red dots). Red dots denote neurons of the red assembly in (B) and thick
black (light gray) lines strong (weak) connections between neurons (only connections to or from
these assembly neurons are shown for clarity). Assemblies have strong inter-assembly connectivity
and only weak connectivity to extra-assembly neurons. D) Assembly code in neural space Nv after
a CREATE operation (as in panel B). E) Assembly formation in neural space (as in panel C). F)
Connections from content space C to neural space Nv after a CREATE operation between the red
assemblies from (B) and (D). Shown are all significantly strong connections (weights > 0.05 for a
maximum weight of 0.5) from any shown neuron in content space C to any of the shown assembly
neurons in neural space Nv. Connections from neural space Nv to content space C were similar (not
shown).
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probability 0.1). In each of these spaces, lateral inhibition was implemented in a symbolic manner
to ensure sparse activity. Disinhibition was modeled through a multiplicative effect of an inhibitory
input on the membrane potential of neurons (see Methods). Reciprocal connections between C and
Nv were introduced randomly with a connection probability of 0.1. Neurons in the content space
received in addition connections from 200 input neurons. All synapses between excitatory neurons
in the circuit were subject to spike-timing dependent plasticity (STDP).

First, we defined five simple rate patterns P1, . . . , P5 that modeled the input to content space
when a given concept or word (such as “truck” or “ball”) is experienced. These patterns were
repeatedly presented as input to the network (see Methods). Due to these pattern presentations,
an assembly C(Pi) emerged in content space for each of the patterns Pi (assembly sizes between 81
and 86 neurons) that showed robust firing activity (> 50 Hz) whenever the corresponding pattern
was presented as input, see Fig. 1B. STDP of recurrent connections led to a strengthening of these
synapses within each assembly, while synapses between assemblies remained weak (see Fig. 1C and
Methods for details).

During the induction of these assemblies in content space, the neural space Nv remained inhib-
ited. We next simulated disinhibition of the neural space Nv while input to content space C excited
an assembly there. Our model for variable binding assumes that such disinhibition enables the cre-
ation of an assembly pointer to the currently active assembly in the content space, whose neurons
have synaptic connections to some neurons in this neural space, see Fig 1A. Such disinhibition of
a neural space allows that some of neurons in it can fire, especially those that receive sufficiently
strong excitatory input from a currently active assembly in the content space. Furthermore, in
line with previously cited experimental reports we assume that this allowed firing of neurons in
the neural space also enables plasticity of these neurons and synapses that are connected to it. In
fact, STDP at the synapses that connected the content space C and the neural space Nv led to
the stable emergence of an assembly Nv(Pi) in neural space within one second when some content
Pi was represented in C during disinhibition of Nv, see Fig. 1D, F. Further, plasticity at recurrent
synapses in neural space Nv induced strengthening of recurrent connections within assemblies there,
see Fig. 1E. Hence, disinhibition led to the rapid and stable creation of an assembly in the neural
space Nv, i.e., an assembly pointer. We denote such creation of an assembly pointer in a neural
space Nv for a specific variable v to content P encoded in content space by CREATE(v, P ).

Fast recruitment of assemblies in a neural space for some variable necessitates rapid forms of
plasticity. We assumed that some (possibly initially transient) plasticity of neurons and/or synapses
occurs instantaneously, even within seconds. Such assumption is usually not included in neural
network models, but it is supported by a number of recent experimental data. In particular, [3]
shows that neurons in higher areas of the human brain change their response to visual stimuli after
few or even a single presentation of a new stimulus where two familiar images are composed into a
single visual scene.

Our model for variable binding based on assembly pointers further assumes that strengthened
synaptic connections between assemblies in neural space Nv for variable v and content space C
enable the recall RECALL(v) of the variables’ content, i.e., the activation of the assembly C(P ) in
content space that was active at the most recent CREATE(v, P ) operation (e.g., representing the
word “truck”). It has been shown that the excitability of pyramidal cells can be changed in a very
fast but transient manner through fast depression of GABA-ergic synapses onto pyramidal cells [19].
This effect is potentially related to the match enhancement or match suppression effect that has
been observed in neural recordings from monkeys, and is commonly used in neural network models
for delayed match-to-sample (DMS) tasks, see e.g. [20]. Using such a mechanism, a RECALL(v)
can be initiated by disinhibition of the neural space Nv while the content space does not receive
any bottom up input, see Fig. 2A. The increased excitability of recently activated neurons in Nv
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Figure 2: Memory recall through assembly pointers. A) Schematic of assembly pointer
recall. After an assembly pointer was created (CREATE) for the word “truck”, the excitability of
assembly neurons in neural space Nv is enhanced (indicated by red color). When the neural space
is disinhibited, these neurons are activated which in turn activate the “truck” assembly in content
space C (RECALL). B) Spike rasters from neural space Nv (top) and content space C (bottom) in
a simulated recall (every 20th neuron shown for clarity). After a CREATE (left, up to 1 s), and a
delay for 5 s, a RECALL is initiated by first disinhibiting the neural space Nv (at time t = 6 s) and
then disinhibiting the content space C (40 ms later).

ensures that the most recently active assembly is activated which in turn activates the corresponding
content through its (previously potentiated) feedback connections to content space C.

Fig. 2B shows the spiking activity in our spiking neural network model for an example recall
5 seconds after the creation of the assembly pointer. A transient increase in neuron excitability
has been included in the stochastic spiking neuron model through an adaptive neuron-specific bias
current that increases slightly for each postsynaptic spike and decays with a time constant of 5
seconds (see Methods for details). We found that the content of the pointer can reliably be recalled.
In general, recall performance was excellent. We considered recall after a 5 seconds delay for a model
with 5 assemblies stored in content space and two neural spaces for variables. Testing separate recalls
of the five patterns from each of these two neural spaces (i.e., 10 recalls), recall was perfect in 9
cases, i.e., assembly neurons in content space were active in the recall phase (firing rate greater or
equal to 50 Hz) if and only if they were active during the creation of the assembly pointer. In one
case, recall was close to perfect (here, only a single assembly neuron was not activated above 50 Hz
during the recall).

2.3 Cognitive computations with assembly pointers

Apart from the creation of assembly pointers and recall of content, two further operations have been
postulated to be essential for many higher cognitive functions [21]. The first is COPY(u, v) that
copies the content of variable u to variable v. In our model, the copy operation creates an assembly
pointer in neural space Nv for variable v to the content to which the assembly pointer in neural space
Nu for variable u refers to. This operation can be implemented in our model simply by disinhibiting
Nu in order to activate the corresponding content in C followed by a disinhibition of Nv in order
to create an assembly pointer there, see Fig. 3A. We simulated this copy operation in our spiking
neural network model with one content space and two neural spaces. The performance was tested
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Figure 3: Assembly pointer copy operation. A) Schematic of assembly pointer copy. Disin-
hibition of neural space Nu recalls its content in content space C (left). A subsequent disinhibition
of neural space Nv creates an assembly pointer for this content there (right). B) Spike rasters from
neural spaces Nv (top), Nu (middle), and content space C (bottom) in a simulated copy operation
from a variable u to a variable v (600 − 840 ms; every 20th neuron shown for clarity). After a 400
ms delay, the content of variable v is tested by a recall at time 1240 ms. The assembly is correctly
recalled in content space.

through a recall from the target assembly pointer 400 ms after the pointer content was copied, see
Fig. 3B. We considered the same setup as described above where 5 assemblies were established in
the content space. After copying each of these contents, recall was again close to perfect: 3 perfect
recalls; 1 recall with one additional neuron activated above 50 Hz (while 81 assembly neurons were
correctly activated); one recall with one assembly neuron activated below 50 Hz (while 86 assembly
neurons were correctly activated).

A final fundamental operation considered in [21] is COMPARE(u, v) which compares whether
the content of u equals the content of v. One possible implementation of this operation in our
model is a readout neuron that receives depressing synaptic connections from the content space.
Then, when the content for Nu and Nv is recalled in sequence, readout synapses will be depressed
for the content of Nv if and only if the content of Nu equals the content of Nv. Such a “change
detecting” readout thus exhibits high activity if the contents of Nu and Nv are different, see Fig. 4A.
Simulation results from our spiking neural network model are shown in Fig. 4B. They indicate that
this simple mechanism is sufficient to compare assembly pointers perfectly simply by thresholding
the activity of the readout after the recall from the second assembly pointer.

2.4 Reproducing experimental data on the binding of words to roles and struc-

tured information retrieval

Two experiments were performed in [5] that provided new insights in how variables may be encoded
in neocortex. Sentences were shown to participants where individual words (like “truck” or “ball”) can
occur as the agent or as the patient. The authors then studied how cortex retrieves the information
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Figure 4: Comparison with assembly pointers. A) Schematic of comparison COMPARE(u, v).
A readout neuron (violet) received depressing synaptic connections from all content space neurons.
The comparison consists of a recall from Nu (left; red neurons in Nv indicate neurons with higher
excitability) followed by a recall from Nv (right). During the first recall, readout weights become
depressed and readout activity decreases (indicated by black trace right to the readout). Second
recall shown for same pattern (right). Readout weights are still depressed and readout response is
therefore weak (black trace at readout). If the content changes (i.e., u 6= v), readout weight from
active neurons in C are not depressed, which leads to strong readout activity (red broken trace
at readout). B) Comparisons in spiking neural network model. Each trace shows the activity of
the readout neuron (arbitrary units) for one comparison operation between two assembly pointer
contents (25 comparisons, one for each possibility how 5 contents can be bound to two neural spaces
for variables u and v). At time 600 ms, the content of neural space Nu was recalled and the readout
reacted in a similar manner to all contents. At time 720 ms, the content of neural space Nv was
recalled. Due to depressed synaptic connections, the readout response was much weaker when the
content of Nv matched the content of Nu (black traces) as compared to different contents in Nu

and Nv (red traces).

contained in a sentence in a structured manner. In a first experiment, the authors aimed to identify
cortical regions that encode the meaning of such sentences. Four example sentences with the words
”truck” and “ball” are “The truck hit the ball” (S1), “The ball was hit by the truck” (S2), “The
truck was hit by the ball” (S3), and “The ball hit the truck” (S4). Here, S1 and S2 (and S3 and
S4 respectively) have the same meaning, which can be distinguished for example by answering the
question “What was the role of the truck?”. Indeed, the authors showed that a linear classifier is able
to classify the meaning of such sentences from the fMRI signal of left mid-superior temporal cortex
(lmSTC). Using our model for assembly pointers, we can model such situations by binding words
either to an agent variable (“who did it”) or to a patient variable (“to whom it was done”). Under
the assumption that lmSTC hosts neural spaces (with assembly pointers) for the role of words, it is
expected that the meaning of a sentence can be decoded from the activity there (Fig. 5; classifier 1),
but not from the activity in content space where the identities are encoded independently of their
role. We performed simulations where the words “truck” and “ball” (represented by some assemblies
in content space) were sequentially bound (the temporal sequence was according to the position of
the word in the sentence) either to neural space Nagent or Npatient, depending on their role. Low-
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Figure 5: Binding of words to roles, according to [5]. The content space (bottom, white)
contained assemblies for five items (such as “truck” and “ball”). Words were presented (bottom) as
they appear in the sentence (top), activating these assemblies. Words were bound to assembly point-
ers in two neural spaces (light blue) that represented the variables “agent” (middle) and “patient”
(top). Spike rasters for the two example sentences “The truck hit the ball” (t1 – t3) and “The ball
hit the truck” (t4 – t6) are shown. A linear classifier trained on the low-pass filtered spike response
(indicated by green gradient) was able to classify sentences by their meaning (i.e., identify the role
of the truck), modelling experiment 1 in [5]. Two additional classifiers were able to determine the
current agent (orange gradient) and patient (magenta gradient) in sentences, modelling experiment
2 in [5].

pass filtered network activity was extracted for each of the sentences S1 to S4. We then trained a
linear classifier to classify for each time point during the sentence presentation the meaning of the
sentence based on a noisy version of filtered network activity. We found that even under severe noise
conditions, the classifier was able to nearly perfectly classify test sentences (i.e., new simulations
with new noisy activity on the same sentences; test classification error 0.5 %). On the other hand,
a classifier based on activity of the content space performed only slightly better than random with
a test classification error of 44 %.

A second experiment in [5] revealed that subregions of lmSTC also contain information about
the current value of the variables for the agent and the patient. More specifically, the authors
showed that one is able to predict from the fMRI signal of one subregion of lmSTC the identity of
the agent and from the signal in another subregion the identity of the patient (generalizing over all
identities of other roles and over different verbs). We expected that this would also be the case in
the proposed model since the assemblies that are formed in the neural spaces Nagent and Npatient are
typically specific to the bound content. We tested this hypothesis by training a multinomial logistic
regression model to classify the content of the variable for each of the two neural spaces (agent and
patient) at times when these spaces were disinhibited (Fig. 5; classifier 2a and classifier 2b). Here,
we presented sentences to the model as above, but we considered all 40 possibilities of how 5 items
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(words) A1, . . . , A5 can be presented in a sentence (for example: A1 is the agent and presented first,
A2 is the patient and presented as second item; we excluded sentences where the agent and patient
is the same word). Low-pass filtered activity of a subset of neurons was sampled at every 10 ms
to obtain the feature vectors to the classifiers (see Methods). Half of the sentences were used for
testing where we made sure that the two items used in a given test sentence have never been shown
in any combination in one of the sentences used for training. Consistent with the results in [5], the
classifier achieved nearly optimal classification performance on test data (classification error < 2 %
for both neural spaces). Note that such classification would fail if each neural space consisted of
only a single assembly that is activated for all possible fillers [21], since in this case no information
about the identity of the role is available in the neural space for the variable.

3 Discussion

It has often been emphasized (see e.g. [22, 23]) that there is a need to understand brain mechanisms
for variable binding. We propose in this article a model for variable binding through “assembly
pointers”. Our model is consistent with recent findings on cortical assemblies and the encoding
of sentence meaning in cortex [5]. This model is not based on the construction of specific neural
circuitry to perform this binding. Instead, it is based on generic sparsely and randomly connected
neural spaces that organize their computation based on fast plasticity mechanisms. The model
provides a direct link between information processing on the computational level of symbols and
sentences and processes on the implementation level of neurons and synapses. The resulting model
for brain computation supports top down structuring of incoming information, thereby laying the
foundation of goal oriented „willful“ information processing rather than just input-driven processing.
The proposed synaptic plasticity that links assemblies in different neural spaces can be transient,
but could also become more permanent if its relevance is underlined through repetition and con-
solidation. This would mean that some neurons in the neural space for a variable are no longer
available to form new pointer assemblies, but this is no problem if the neural space for each variable
is sufficiently large.

Several models for variable binding had been proposed in the literature. In general, these models
fall into one of the general classes of pointer-based binding, binding by synchrony, or convolutional
binding. Pointer-based models (e.g., [21, 24]) assume that pointers are implemented by single
neurons or populations of neurons which are activated as a whole group. In contrast, our model
is based on the assumption that distributed assemblies of neurons are the fundamental tokens for
encoding symbols and content in the brain, and also for pointers. We propose that these assembly
pointers can be created on the fly in some neural spaces for variables and occupy only a sparse
subset of neurons in these spaces. It has been shown in [5] that the filler of a thematic role (e.g.
the actor) can be predicted from the fMRI signal of a subregion in temporal cortex when a person
reads a sentence. As shown above, this finding is consistent with assembly pointers. It is however
inconsistent with models where a variable engages a population of neurons that is independent of
the bound content, such as traditional pointer-based models. In comparison to traditional pointer
models, the assembly pointer model could also give rise to a number of functional advantages. In
a neural space Nv for a variable v, several instantiations of the variable can coexist at the same
time, since they can be represented there by increased excitabilities of different assemblies. These
contents could be recalled as different possibilities in a structured recall and combined in content
space C with the content of other variables to in order to answer more complex questions.

Some data shows that the relation between spiking activity and the phases of underlying oscil-
latory population activity may play a role in hippocampus and for working memory [25], indicating
a possible role of synchrony in the binding process. Still, the reliability and capacity of binding
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by synchrony is currently unclear. We note that, while our model is not based on precise synchro-
nization of spikes in different neural spaces, the synaptic coupling between these spaces together
with lateral inhibition leads to some synchronized oscillations of interacting neural spaces in our
simulations. This is consistent with recent experimental data which suggest that common rhythms
in two brain areas support the flow of excitation between these two areas, and also the potentiation
of synapses between activated neurons in both areas [26].

Convolutional binding (see e.g., [27]) uses mathematical operations on high-dimensional vectors
for variable binding. It had been used in the semantic pointer architecture of Eliasmith [28] where
spiking neural networks were constructed to perform these rather complex operations. Similarly, the
neural blackboard architecture (NBA, see e.g. [29]) relies on a number of neural circuits that were
constructed for example to gate activity or to memorize associations. In contrast to these models,
the assembly pointer model focuses on the emergence of binding operations, using assumptions on
the fundamental level of assembly coding, network connectivity statistics, and plasticity processes.

The validity of the assembly pointer model for variable binding could be tested experimentally,
since it predicts quite unique network dynamics during mental operations. First, binding of a
variable to a concept employs disinhibition of a neural space related to that variable. This could
be implemented by the activation of inhibitory VIP cells which primarily target inhibitory neurons,
or by neuromodulatory input. Similar disinhibition mechanisms would be observed during a recall
of the filler for that variable. Another prediction of the model is that a significant modification of
the assembly that encodes a concept will also modify the pointer assembly to it that emerges in a
neural space for some variable. Further, our model suggests that inactivation of a pointer assembly
to some content A in neural space Nv would not abolish the capability to create a binding of the
associated variable v to this content A: If the trial that usually creates this binding is repeated,
a new pointer assembly in the neural space for v can emerge. Finally, the model predicts that a
mental task that requires to copy (or compare) the filler of one variable u to another variable v
causes sequential activation (disinhibition) of the neural spaces Nu and Nv for these variables.

We have presented a model for variable binding based on assembly pointers. The model is
consistent with recent experimental data on assembly representations [1] in cortex and the repre-
sentation of thematic roles in lmSTC [5]. Assembly pointers can reconcile functional needs, such as
the recall of concepts, with data on the inherently sparse connectivity between brain areas [7] and
sparse network activity.

4 Methods

General network architecture: The network consists of one content space C and (one or several)
neural spaces Nv1 ,Nv2 , . . . for variables v1, v2, . . . . Each space consists of a number of spiking
neurons (N = 1000 for all spaces in our simulations). Within each space, neurons are connected
by sparse recurrent connections with p = 0.1 (i.e., for each pair of neurons, a connection between
them is established with probability p; no self-connections are allowed). Neurons in Nvi receive
sparse excitatory connections (p = 0.1) from neurons in C and vice versa. These connections are
symmetric, but the weights are not necessarily symmetric. Neurons in C additionally receive input
from an input population (Nin = 200 in our simulations). Network dynamics was simulated in
discrete time with a time step of ∆t = 1 ms.

Neuron model: We used a single neuron model for all neurons in our simulations. In this model,
the probability of a spike of neuron i at time t is given by the value of an activation variable ui(t)
that models in an abstract way the membrane potential of the neuron. Once a neuron has spiked,
its activation variable is reset to 0 and it enters a refractory period with a duration that is chosen
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uniformly in {1, . . . , 6} ms. During the refractory period, the activation variable is clamped to 0.
When the neuron is not refractory, the activation variable evolves according to

ui(t) =

(

1−
∆t

τm

)

ui(t−∆t) +

(

∆t

τm

)

G(t) (exp (Ii(t)− IInh(t−∆t))− 1) , (1)

where τm = 10 ms is the membrane time constant, G(t) denotes the inhibition status of the neural
space (0 for fully inhibited, 1 for fully disinhibited), Ii(t) is the input current to the neuron and
IInh(t) is the inhibitory current to the neurons in the neural space. In addition, the activation
variable ui(t) is clipped at 0 and 1 at each time step. The inhibitory current is given by

IInh(t) =

(

1−
∆t

τInh

)

IInh(t−∆t) +

(

∆t

τInh

)

G(t)

[

∑

k

uk(t)−ΘInh

]4

−2

, (2)

where τInh = 25 ms and the sum runs over all neurons in the neural space. ΘInh determines the
average activity in the neural space. It was set to ΘInh = 50/7 in all spaces. The notation [·]4

−2

denotes that the argument (change of inhibition) was clipped at −2 and 4 to avoid instabilities.
The input current Ii to neuron i is given by

Ii(t) =
∑

j∈SFF
i

wijzj(t) +
∑

k∈SFB
i

wikzk(t−∆t) +
∑

l∈SREC
i

wilzl(t−∆t) + bi(t), (3)

where zj(t) ∈ {0, 1} denotes the spike output of neuron j at time t, wij denotes the synaptic weight
from neuron j to neuron i, and bi(t) denotes the value of the adaptive excitability of neuron i at
time t. SFF

i , SFB
i , and SREC

i denote the sets of neurons that connect to neuron i in a feed-forward
way (from inputs or from C to Nv), as feedback (from some Nv to C), or recurrently (within the
neural space) respectively. To avoid instabilities, the input current was clipped at a value of 8. The
excitability bi(t) ∈ [0, 1] decays exponentially with a factor τb = 5 s and is increased with every
spike of neuron i by 0.05(1 − bi(t)).

Plasticity equations: A simple model for STDP was used for all excitatory connections. In this
model, the weight change at synapse ij for a post-synaptic spike at time t is given by

∆wij(t) = η
∑

k:t
(k)
j <t

(

exp

(

t− t
(k)
j

τ+

)

−A−

)

, (4)

where η is a learning rate, the sum runs over recent presynaptic spikes, τ+ = 20 ms is the time
constant of the positive STDP window, and A− = 0.35 is a negative offset that determines the
amount of depression (A− = 0.35 for feed-forward and recurrent connections and 0.1 for feedback
connections). This rule is similar to [30], but without a weight dependency. The learning rate
in C was set to 10−3 (feed-forward weights), 2.5 · 10−4 (recurrent weights), and 5 · 10−3 (feedback
weights). In Nv, the learning rate was 5 · 10−3 for all weights. All weights were constrained to be
non-negative. Feed-forward weights in C were clipped at 0.8, those in Vi at 0.5. Recurrent weights
were clipped at 0.25 in C and at 0.2 in Nv. Feedback weights were clipped at 0.25.

Plasticity was enabled in excitatory recurrent connections of the content space and input con-
nections to content space during the initial formation of content assemblies (see below). Excitatory
recurrent connections in the neural spaces for variables, input connections from content space to
neural spaces for variables, and feedback connections from neural spaces for variables to the content
space were plastic during CREATE and reload epochs (see below for the definition of reload epochs).
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Change-detector readout: The output zCD(t) of the change detector neuron at time t is given
by zCD(t) = αCDzCD(t−∆t)+(1−αCD)

∑

i w
CD
i (t)zi(t), where the sum runs over all neurons in the

content space. αCD = 0.9 is a filtering constant (time constant of 10 ms). The weights wCD
i (t) are

short-term depressing: wCD
i (t) = wCD

i (t−∆t) + ηCD(1−wCD
i (t−∆t)− 10zi(t)), with ηCD = 0.01.

Initial formation of content assemblies: First, the content space learned to represent 5 very
simple patterns presented at 200 input neurons. Each pattern consisted of 25 active input neurons
that produced Poisson spike trains at 100 Hz while other neurons were silent, and each input neuron
was active in at most one pattern. This initial learning phase consisted of 200 pattern presentations,
where in each presentation, one pattern was chosen randomly from the set of five patterns. It was
presented for 200 ms, followed by a 200 ms blank period where all input neurons were firing at 12.5
Hz, another pattern presentation, and so on.

For Fig. 1B, we presented each input pattern Pi separately to the network for 600 ms after the
initial learning period. We then measured the firing rate of each neuron from t = 100 ms to t = 600
ms. A neuron was classified to belong to assembly Ai (for input Pi), if its firing rate during that
time was above 50 Hz. In Fig. 1C, all potential connections from or to neurons in the depicted
assembly (i.e., those neurons indicated by red dots) were drawn as gray lines. Thick black lines
indicate weights that are larger than 0.05 (where the maximum weight was 0.25).

After these assemblies have been formed, plasticity of recurrent synaptic connections and those
from input neurons was disabled.

Creation of assembly pointers (CREATE-operation): We next added two neural spaces
Nu and Nv for two variables u, v with N = 1000 neurons per space. To induce stable assembly
configurations in the neural spaces, we presented each input pattern for 1 s while the content space
and one neural space were disinhibited. Each pattern was presented twice, with either Nu or Nv

disinhibited. Neural assemblies in neural spaces for variables for Fig. 1D were defined as in content
space, see above. Recurrent connection weights in Fig. 1E were drawn as in Fig. 1C.

Recall of content space assemblies (RECALL-operation): We next tested whether RECALL
operations can reliably be performed by this circuit. For this test, a pattern was first presented
to the network for 200 ms with one of the neural spaces Nu or Nv disinhibited. This corresponds
to a brief (i.e. 200 ms) CREATE operation. Note that because assemblies in these spaces were
already created previously (see above), previously potentiated synapses were still strong. Hence,
the shorter presentation period was sufficient to activate the assembly in the neural space for the
variable. We refer to such a brief CREATE in the following as a loading operation. After this
loading epoch, a delay epoch of 5 s followed (no input presented). In order to make sure that no
memory was kept in the recurrent activity, all spaces were inhibited in this period. After the delay,
a recall-epoch followed. The recall epoch lasted for 140 ms during which the neural space Nu (or
Nv) was disinhibited. During the first 40 ms of this epoch, the content space stayed inhibited.

Copying of assembly pointers (COPY-operation): After a content was loaded into Nu and
a brief delay epoch (400 ms), a RECALL operation was performed from Nu (140 ms as above).
Then, in addition Nv was disinhibited for 100 ms. To test performance, a RECALL was initiated
from Nv 400 ms later.

Comparison of assembly pointers (COMPARE-operation): Finally, we tested COMPARE
operations in the circuit. We added a single linear neuron with depressing synapses as a change-
detector readout from content space. The neuron received synapses from all neurons in content
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space with uniform weights. Synaptic connections were subject to simple short-term depression
(see above). To test the COMPARE operation, we first loaded a content A into neural space Nu

and after a short delay a content B into neural space Nv. After another delay of 200 ms, the
pointers were compared. The COMPARE operation was implemented by two consecutive RECALL
operations from Nu and Nv. We performed comparisons between all 25 pairs of the 5 stored patterns.

Details to the binding of words to roles: These experiments modeled the findings in [5] about
the binding of agents to roles in temporal cortex. We used again the network described above with
one content space C and two neural spaces to which we refer in the following as Nagent and Npatient.
Input patterns to the network were interpreted as words in sentences. We used the network described
above with 5 assemblies in C that represented 5 items (words) A1, . . . , A5 and 5 assembly pointers
in each neural space (created as described above). We defined that A1 represents “truck” and A2

represents “ball”. We considered the four sentences “The truck hit the ball” (S1), “The ball was hit
by the truck” (S2), “The truck was hit by the ball” (S3), and “The ball hit the truck” (S4). The
processing of a sentence was modeled as follows. The words “truck” and “ball” were presented to the
network (i.e., the corresponding input patterns) in the order of appearance in the sentence, each for
200 ms without a pause in between. During the presentation of a word, the activated assembly in C
was bound to Nagent if it served the role of the agent and to Npatient if its role was the patient. For
example, for the sentence “The truck hit the ball”, first “truck” was presented and bound to Nagent

(the “agent” variable), then “ball” was presented and bound to Npatient (the “patient” variable). The
sequence of sentences S1 to S4 was presented twice to the network. The classifier described in the
following was trained on the first sequence and tested on the second sequence.

Spiking activity was recorded in all neural spaces. Spiking activity was low-pass filtered with a
filter time constant of 20 ms. Hence, for each neuron i we obtained its filtered activity ri by

ri(t) =

∫ 100 ms

0
e−

s
20 msSi(t− s) ds, (5)

where Si represents the spike train of neuron i in the form of a sum of Dirac delta pulses at spike
times. Note that time was discretized with ∆t = 1 ms. Independent zero-mean Gaussian noise
of unit variance was added to each filtered activity at each time point. We denote by ragent(t),
rpatient(t), rV(t), and rC(t) the vector of filtered activities at time t from all neurons in neural space
Nagent, in neural space Npatient, in both neural spaces, and in content space respectively.

The task for the first classifier (“role of truck”) was to classify at each time point t the meaning
of the current sentence (this is equivalent to determining the role of the truck). Hence, the sentences
S1 and S2 constituted class C0 and sentences S3 and S4 the class C1. The classification was based on
the current filtered network activity rV(t) from the neural spaces (where neurons that were never
active during any sentence were discarded). We used a simple linear model that was trained by
linear regression with targets −2 for class C0 and 2 for class C1. An input vector was classified as
belonging to class C1 if the output of the linear model was larger or equal than zero. For comparison,
a classifier was also trained in the same manner on filtered network activity rC(t) from content space.

To model the second experiment in [5], we considered sentences that were formed by tuples from
the set of all five items A1, . . . , A5, see Results. Then, the task for a second classifier (“who is the
agent”) was to classify from subsampled filtered network activity r̂agent(t) the identity of the current
agent during those times when Nagent was disinhibited. Here, r̂agent(t) consisted of a subsample
of the activities in ragent(t) (these contained Gaussian noise as described above). To arrive at this
subsample, we first discarded neurons that had an average activity below 10 Hz in the reload phases
averaged over all sentences (mean activities during these phases were between 0 and 18 Hz with
a strong peak close to 0 and a second mode at around 15 Hz). From the remaining neurons, we
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selected every 4th neuron to contribute to r̂agent(t). This procedure reduced the dimensionality of
the feature vectors to 142 which significantly speeded up the fitting process of the model. Samples
of the filtered activity were taken every 10 ms to arrive at the data set. The data set was divided
into a training set and a test set as described in Results. We then fitted a nominal multinomial
logistic regression model to the training set using the function mnrfit in MATLAB 8.5 and tested
the model on the test set. Finally, the task for a third classifier (“who is the patient”) was to classify
from subsampled filtered network activity r̂patient(t) the identity of the current patient during those
times when Npatient was disinhibited. The procedure was analogous to the procedure for the second
classifier.
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