
Neuromorphic Hardware In The Loop:
Training a Deep Spiking Network on the

BrainScaleS Wafer-Scale System
Sebastian Schmitt† Johann Klähn† Guillaume Bellec§ Andreas Grübl† Maurice Güttler†

Andreas Hartel† Stephan Hartmann‡ Dan Husmann† Kai Husmann† Sebastian Jeltsch†

Vitali Karasenko† Mitja Kleider† Christoph Koke† Alexander Kononov† Christian Mauch†

Eric Müller† Paul Müller† Johannes Partzsch‡ Mihai A. Petrovici†‖ Stefan Schiefer‡

Stefan Scholze‡ Vasilis Thanasoulis‡ Bernhard Vogginger‡ Robert Legenstein§

Wolfgang Maass§ Christian Mayr‡ René Schüffny‡ Johannes Schemmel† Karlheinz Meier†

{sschmitt,kljohann,agruebl,gguettle,ahartel,husmann,khusmann,sjeltsch,vkarasen,mkleider,
koke,akononov,cmauch,mueller,pmueller,mpedro,schemmel,meierk}@kip.uni-heidelberg.de

{stephan.hartmann,johannes.partzsch,stefan.schiefer,stefan.scholze,
vasileios.thanasoulis,bernhard.vogginger,christian.mayr,rene.schueffny}@tu-dresden.de

{guillaume,robert.legenstein,maass}@igi.tugraz.at

†Heidelberg University, Kirchhoff-Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg
‡Technische Universität Dresden, Chair for Highly-Parallel VLSI-Systems and Neuromorphic Circuits, D-01062 Dresden

§Graz University of Technology, Institute for Theoretical Computer Science, A-8010 Graz
‖University of Bern, Department of Physiology, Bühlplatz 5, CH-3012 Bern

Abstract—Emulating spiking neural networks on analog neu-
romorphic hardware offers several advantages over simulating
them on conventional computers, particularly in terms of speed
and energy consumption. However, this usually comes at the
cost of reduced control over the dynamics of the emulated
networks. In this paper, we demonstrate how iterative training
of a hardware-emulated network can compensate for anomalies
induced by the analog substrate. We first convert a deep
neural network trained in software to a spiking network on the
BrainScaleS wafer-scale neuromorphic system, thereby enabling
an acceleration factor of 10 000 compared to the biological
time domain. This mapping is followed by the in-the-loop
training, where in each training step, the network activity is first
recorded in hardware and then used to compute the parameter
updates in software via backpropagation. An essential finding
is that the parameter updates do not have to be precise, but
only need to approximately follow the correct gradient, which
simplifies the computation of updates. Using this approach,
after only several tens of iterations, the spiking network shows
an accuracy close to the ideal software-emulated prototype.
The presented techniques show that deep spiking networks
emulated on analog neuromorphic devices can attain good
computational performance despite the inherent variations of
the analog substrate.

I. INTRODUCTION

Recently, artificial neural networks (ANNs) have emerged
as the dominant machine learning paradigm for many pattern
recognition problems [1]. Although ANNs are to some extent
inspired by the architecture of biological neuronal networks,
they differ significantly from their biological counterpart in
many respects. First, while the computation in biological
neurons is performed through analog voltages in continuous
time, ANNs are typically implemented on digital hardware

Fig. 1. The BrainScaleS system as it is currently installed consisting of five
cabinets, each containing four neuromorphic wafer-scale systems. Upstream
connectivity to the control cluster is provided by the prominent red cables,
each communicating at Gigabit speed. This enables fast system configuration
and high-throughput spike in- and output. An additional rack hosts the support
infrastructure comprising power supplies, servers, the control cluster, and
network equipment.

and thus operate in discretized time. Second, while the
communication between neurons in an ANN is based on
high-precision arithmetic and computed in discrete time
steps, communication in biological neuronal networks is
largely based on stereotypically shaped all-or-none voltage

ar
X

iv
:1

70
3.

01
90

9v
1

 [
cs

.N
E

]
 6

 M
ar

 2
01

7

events in continuous time. These events are called action
potentials or spikes. In recent years, several large-scale analog
neuromorphic computing platforms have been developed [2]
that better match these features of biological neural networks.
Due to their low power consumption and speedup compared to
simulations run on conventional architectures, these systems
are promising precursors for computing devices that can rival
the computational capabilities and energy efficiency of the
human brain.

While spiking neural networks are in principle able to
emulate any ANN [3], it has been unclear whether neu-
romorphic hardware can be efficiently used to implement
contemporary deep ANNs. One obstacle has been the lack of
adequate training procedures. ANNs are typically trained by
backpropagation, a learning algorithm that propagates high-
precision errors through the layers of the network. Recently the
successful training of neural networks was demonstrated on
the TrueNorth chip, a fully digital spike-based neuromorphic
design [4]. More specifically, performance on machine-
learning benchmarks is not impaired by their hardware
quantization constraints if, at each training step, the errors are
computed with quantized parameters and binarized activations,
before backpropagating with full precision. This advance
however left the question open whether a similar strategy could
be used for analog neuromorphic systems. Since TrueNorth is
fully digital, an exact software model is available. Therefore,
each parameter, neuron activations, and the corresponding
gradients are available or can be appropriately approximated
at any point in time during training. In contrast, the neural
circuits on analog hardware are not as precisely controllable,
making an exact mapping between the hardware and software
domains challenging.

In this work, we demonstrate the successful training of an
analog neuromorphic system configured to implement a deep
neural architecture. The system we used is the BrainScaleS
wafer-scale system, a mixed-signal neuromorphic architecture
that features analog neuromorphic circuits with digital, event-
based communication. We implemented a training procedure
similar to [4], but used only a coarse software model to
approximate its behavior. We show that, nevertheless, the
backpropagation algorithm is capable to adapt the synaptic
parameters of the neuromorphic network quite effectively
when running the training with the hardware in the loop.
Similar approaches have already been used, in the context of
various network architectures, for smaller analog neuromor-
phic platforms, such as the HAGEN [5], [6] and Spikey [7]
chips.

For the parameter updates, we used the recorded activity
of the neuromorphic system, but computed the corresponding
gradients using the parameters of the ANN. This adaptation
was possible in spite of the fact that the algorithm had
no explicit knowledge about exact parameter values of the
neurons and synapses in the BrainScaleS system.

The remainder of the article is structured as follows.
In Section II, we describe the BrainScaleS neuromorphic
platform and discuss the extent of parameter variability in this
system. Starting from a simple approximate software model,

F

GE

I

C
A B

G

D

H

H
H

(a) (b)

Fig. 2. (a) 3D-schematic of a BrainScaleS wafer module (dimensions: 50 cm
× 50 cm × 15 cm) hosting the wafer (A) and 48 FPGAs (B). The positioning
mask (C) is used to align elastomeric connectors that link the wafer to the
large main PCB (D). Support PCBs provide power supply (E & F) for the
on-wafer circuits as well as access (G) to analog dynamic variables such
as neuron membrane voltages. The connectors for inter-wafer (USB slots)
and off-wafer/host connectivity (Gigabit-Ethernet slots) are distributed over
all four edges (H) of the main PCB. Mechanical stability is provided by an
aluminum frame (I). (b) Photograph of a fully assembled wafer module.

Section III-A, we then describe the mapping of the neural
network to the hardware, Section III-B. Subsequently, we
describe the in-the-loop training in detail and demonstrate the
application of this procedure to a handwritten digit recognition
task, Section III-C and Section IV.

II. THE BRAINSCALES WAFER-SCALE SYSTEM

The BrainScaleS system follows the principle of so-called
“physical modeling”, wherein the dynamics of VLSI circuits
are designed to emulate the dynamics of their biological
archetypes instead of numerically computing them as in the
conventional simulation approach of von Neumann archi-
tectures. Neurons and synapses are implemented by analog
circuits that operate in continuous time, governed by time
constants which arise from the properties of the transistors
and capacitors on the microelectronic substrate. In contrast to
real-time neuromorphic devices, see [8], the analog circuits
on our system are designed to operate in a regime where
characteristic time constants (e.g., τ syn, τm) are much smaller
than typical corresponding biological values. This defines our
intrinsic hardware acceleration factor of 10 000 with respect
to biological real-time. The system is based on the ideas
described in [9] but in the meantime it has advanced from
a lab prototype to a larger installation comprising 20 wafer
modules, see fig. 1.

A. The Wafer Module

At the heart of the BrainScaleS wafer module, see fig. 2, is
a silicon wafer with 384 HICANN (High Input Count Analog
Neural Network) chips produced in 180 nm CMOS technology.
It comprises 48 reticles, each containing 8 HICANNs, that
are connected in a post-processing step. Each chip hosts 512
neurons emulating Adaptive exponential integrate-and-fire
(AdEx) dynamics [10], [11] being able to reproduce most of
the firing regimes discussed in [12]. When forming logical
neurons by combining up to 64 neuron circuits, a maximum

TABLE I
HARDWARE UTILIZATION AND POWER RATINGS FOR DIFFERENT NEURAL

NETWORK ARCHITECTURES.

Model L2/3 Model[16] AI Network[16] MaxHW

HICANNs 352 384 384
Neurons 14 375 22 445 196 608
Synapses 3 470 000 4 030 000 43 253 760
Average Rate (Bio) 4.8 Hz 13.6 Hz 40 Hz
Speedup (Bio → HW) 12 000 10 000 10 000
Total Rate (HW) 200 GHz 550 GHz 17.3 THz
Energy/Synaptic Event 10 nJ 3.6 nJ 0.1 nJ

input from 14 080 conductance-based synapses is reached
where each circuit contributes with 220 synapses.

While the synapse and neuron dynamics are emulated by
the analog circuits in continuous time, action potentials are
transported as digital data packets [13]. The action potentials,
or spikes, are injected asynchronously into circuit-switched
routing structures on the chip and can be statically routed
to target synapses and transported off-chip as time-stamped
digital events via a packet-based network [14], [15].

48 Xilinx Kintex-7 FPGAs, one per reticle, provide an I/O
interface for configuration and spike data. The connection
between FPGAs and the control cluster network is established
using standard Gigabit and 10-Gigabit-Ethernet.

Auxiliary PCBs provide the BrainScaleS wafer-scale system
with power, control and analog readout.

The specified maximum design power of a single module
is 2 kW. This operating point (MaxHW) assumes an average
spike rate of 40 Hz applied to all hardware synapses. As
there are currently no power management techniques in
use, all numbers reported in table I are based on the
maximum design power. Table I also provides data regarding
hardware utilization for previously published neural network
architectures [16].

B. Running Neuronal Network Experiments

The BrainScaleS software stack transforms a user-defined
abstract neural network description, i.e., network topology,
model parameters and input stimuli, to a corresponding
hardware-constrained experiment configuration.

Descriptions of spiking neural networks are often formu-
lated using dedicated languages. Most are based on either
declarative syntax, e.g., NineML [17] or NeuroML [18], or
use procedural syntax, e.g., the Python-based API called
PyNN [19]. The current BrainScaleS system uses PyNN to
describe neural network experiments based on experiences
with previous implementations [20]. This design choice
enables the use of the versatile software packages developed in
the PyNN ecosystem, such as the Connection Set Algebra [21],
Elephant [22] or Neo [23].

Starting from the user-defined experiment description in
PyNN, the transformation process maps model neurons to
hardware circuits, routes connections between neurons to
create synapses, and translates the model parameters to
hardware settings. This translation of neuron and synapse

200 300 400 500 600 700 800 900

DAC

0

5

10

15

20

25

sy
na

pt
ic

ti
m

e
co

ns
ta

nt
[m

s]

100 101

synaptic time constant [ms]

0

10

20

30

40

50

60

70

80

90

#

Fig. 3. Example for the calibration of the synaptic time constant. Left:
measured synaptic time constants (y-axis) for different neurons as a function
of the digital parameter (DAC, x-axis) controlling the responsible analog
parameter. Right: measured synaptic time constant with (blue) and without
(white) calibration for all neurons of a HICANN (right).

500 1000 1500 2000 2500

time [ms]

−50

−40

−30

−20

−10

0

m
em

br
an

e
po

te
nt

ia
l[

m
V

]

BrainScaleS
Simulation

Fig. 4. Comparison of a recorded membrane trace to a neuron simulated with
NEST. The neuron receives an excitatory Poisson stimulus of 20 Hz followed
by inhibitory and then simultaneous excitatory and inhibitory Poisson stimuli
of the same frequency. All calibrations are applied and the hardware response
is converted to the emulated biological domains.

model parameters requires calibration data, see Section II-C,
as well as rules for the conversion between the biological and
the hardware time and voltage domains.

The result of the whole transformation process is a
hardware-compatible, abstract experiment description which
can be converted into low-level configuration data. After
acquiring hardware access using a fair resource scheduling
and queuing system based on SLURM [24], the hardware is
configured and the experiment is ready to run on the system.

Although the BrainScaleS software stack provides a user-
friendly modeling interface and hides hardware specifics, all
low-level settings are available to the expert user. In particular
the experiments presented here make use of this feature,
enabling fast iterative modification of synaptic weights and
input stimuli.

C. Calibration

For each neuron, the calibration provides translation rules
from target parameters, such as the membrane time constant,
to a set of corresponding hardware control parameters.

Thereby it accounts for circuit-to-circuit variations caused by
the transistor mismatch inherent to the wafer manufacturing
process. The data are stored in the hardware domains and
two scaling rules are used for the conversion to the biological
time and voltage domains. All time constants are scaled with
the acceleration factor of 10 000, e.g., 1 µs hardware time
corresponds to 10 ms of emulated biological time. Voltages
are scaled according to

Vhardware = Vbio × α+ s, (1)

where α is a unit-free scaling factor and s is an offset. From
here on, all units are given in the biological domain if not
stated otherwise.

Fig. 3 exemplifies the calibration technique for the particular
case of the synaptic time constant. For every neuron, the
analog parameter controlling the synaptic time constant is
varied and the resulting synaptic time constant is determined
from a recorded post-synaptic potential. A fit to this data
then provides the mapping from the desired synaptic time
constant to the value of the control parameter. Calibration
reduces the neuron-to-neuron variation significantly, but not
perfectly. The remaining variability is mostly caused by the
trial-to-trial variation of the analog parameter storage.

Fig. 4 shows two membrane time courses comparing a
calibrated silicon neuron to a numerical simulation with
NEST [25]. In both cases, the same model parameters and
input spike trains were used. Despite the overall match, it can
be seen that the calibration is not perfect, e.g. for the neuron
used in fig. 4, the inhibitory stimulus is weaker compared to
the expectation from simulation. Due to the analog nature of
the system, variations will always occur to a certain extent,
rendering in-the-loop training essential for networks that are
sensitive to parameter noise, as we discuss in the following.

III. TRAINING A DEEP SPIKING NETWORK

In the following, we describe our network model and
training setup. Since we are using an abstract network of
rectified linear units (ReLUs) and an equivalent spiking
network of leaky integrate-and-fire (LIF) neurons in parallel,
we will first describe the networks structure in abstract terms.

Our network is modeled as a feed-forward directed graph
as shown in fig. 5. The input layer, consisting of 100 units,
is used to represent the input patterns that the network later
learns to classify. Each of these classes is represented by one
label unit. Between the input and label layers are two 15-unit
hidden layers that learn particular features in the input space.
The weights of the directed edges are learned during several
phases of training, as described farther below.

Our network was trained on a modified subset of the MNIST
dataset of handwritten digits [26]. First, we decreased the
resolution from 28× 28 pixels to 10× 10 pixels by bicubic
interpolation. To account for the lower dissimilarity of the
reduced resolution images, we restricted the dataset to the
five digit classes “0”, “1”, “4”, “6” and “7”. This results in a
training set of 30 690 and a test set of 5083 images.

The spiking neural network is then trained in three phases:
A. The software model of the network with rectified linear

units (ReLUs) is trained with classical backpropagation.

1

2

3

N−2

N−1

N

...
...

...
...

input
layer

hidden
layer

hidden
layer

label
layer

100

15 15

5

Fig. 5. Topology of the feed-forward neural network with one input layer,
two hidden layers and one label layer. The dimension of the input layer is
equal to the number of pixels of the input image. The number of label units
is equal to the number of image classes the network is trained to recognize.

0 7 14 21 28
0

7

14

21

28

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6. Examples of the input data used during training. Original MNIST
image of a “0” (upper left) vs. reduced-resolution image (lower left). Middle
and right column: reduced-resolution images from the other four classes (“1”,
“4”, “6”, “7”).

B. The resulting weights are converted to synaptic weights
in an appropriately parametrized LIF network on the
BrainScaleS hardware.

C. The synaptic weights are further trained in a hardware-
software training loop.

A. Software Model

The training of the software model is performed similarly
to [27] using the TensorFlow [28] software with the properties
detailed in the following.

1) Input: The grayscale value of the input image pixels
is transformed to a number between 0 and 1 and set as the
activation of the units in the input layer.

2) Units: The output xk of ReLU unit k is given by

xk = R
(∑

l

Wklxl

)
, R(a) = max(0, a), (2)

TABLE II
NEURON PARAMETERS AND TYPICAL POST-CALIBRATION VARIATIONS.

Parameter Value Relative Variation

Inhibitory Reversal Potential −80 mV 5 %
Reset Potential −64 mV 2 %

Resting Potential −40 mV 10 %
Spike Threshold −37.5 mV 0.5 %

Excitatory Reversal Potential 0 mV 0.5 %
Inh./Exc. Synaptic Time Constant 5 ms 10 %

Membrane Time Constant 20 ms 10 %

where Wkl is the weight of the connection from unit l to unit
k, R : R→ R is the activation function of a ReLU, and the
sum runs over all indices l of units from the previous layer.

3) Weights: The initial weights for layer n containing Nn

units are drawn from a normal distribution with a mean of
zero and standard deviation

σn =
1√
Nn−1

, (3)

where weight magnitudes > 2σn are dropped and re-picked.
4) Training: The network is trained by mini-batch gradient-

descent with momentum [29] minimizing the cost function

C(W) = 1
5

∑
s∈S

(ỹs − ŷs)
2

+
∑
kl

1
2λW

2
kl, (4)

where W is the matrix containing all network weights, ŷs

the one-hot vector for the true digit, ỹ = y
N2nd hidden

the scaled
activity of the label layer and S the samples in the current
batch of 100 samples.

The first term in (4) is the euclidean distance between the
predicted labels ỹ and the true labels ŷ, rewarding correct and
penalizing wrong activity. The second term of (4) regularizes
the weights with λ = 0.001, leading to the suppression of
large weights to prevent overfitting.

Per training step, the weights are updated according to

∆Wkl ← η∇Wkl
C(W) + γ∆Wkl, (5)

Wkl ←Wkl −∆Wkl, (6)

where ∆Wkl is the change in weight, η = 0.05 is learning
rate, and γ = 0.9 the momentum parameter. In foresight of
the hardware implementation, Wkl is clipped to [−1, 1].

B. Neuromorphic Implementation

1) Input: The input image is converted to Poisson spike
trains following [30]:

νp =
cp∑
p cp
· νtot, (7)

where νp is the firing rate of the input corresponding to the
pth pixel, cp the grayscale value of the pth pixel and νtot
is the targeted total firing rate the input layer receives. In
our case, we set νtot = 2500 Hz. Each pattern is presented
for 0.9 s followed by 0.1 s of silence to allow the activity to
decay.

2) Hardware Configuration: The network is mapped to
the BrainScaleS hardware using the software stack detailed
in Section II-B. Neurons of all layers, including the input layer,
are randomly placed on 8 HICANNs. For input and on-wafer
routing, 6 additional chips are used. These 14 HICANNs are
connected to 5 different FPGAs. For each artificial neuron,
four hardware neuron circuits are connected to form one
logical neuron to increase the number of possible inputs.
Except for the stimulus to the input layer, each pair of neurons
in consecutive layers is connected with both an inhibitory
and an excitatory synapse. This allows the weights to change
sign during learning without having to change the configured
topology. Therefore, the hardware-emulated network has a
total of 3700 synapses.

3) Neuron parameters: Despite the different input and
output domain, the activation functions of ReLUs and LIF
neurons share features, i.e., both have a threshold below which
the output is zero and a positive gradient for suprathreshold
input. Not all neuron features are required to mimic the ReLU
behavior, therefore we disable the adaptation and exponential
features of the AdEx model. The parameters and the neuron-to-
neuron variation after calibration, see Section II-C, are listed
in table II. To allow a balanced representation of positive and
negative weights, the reversal potentials have been chosen as
symmetric around the resting potential. The refractory period
is set as small as possible to be close to a linear relation of
the input to the output activity. Equation (1) is used to convert
to hardware units with α = 20 and s = 1800 mV, e.g., the
target value of the resting potential on hardware equals 1 V.

4) Weights: The trained weights Wkl of the artificial
network are converted to the 4 bit hardware weights W ′kl
by

W ′kl = round(|Wkl| × 15). (8)

Positive (negative) weights are assigned to excitatory (in-
hibitory) synapses and the corresponding inhibitory (excita-
tory) synapse is turned off.

C. Hardware In The Loop

Section III-B laid out the necessary steps to convert the
artificial network to a network of neurons in analog hardware.
After conversion it was found that the classification accuracy
was significantly reduced compared to the initially trained
ANN. To compensate for the reduced classification accuracy,
training was continued with the hardware in the loop, see fig. 7.
In-the-loop training consists of a series of training steps, each
of which is performed as follows. First, the neuron activity
is recorded for a batch of training samples. These firing rates
are then equated to the ReLU unit response, where we used
the following heuristic for the label layer: ỹ = y

30Hz . The
resulting vector is used to compute the cost function C(W)
defined in (4). The weight updates are then computed using (5)
using the ReLU activation function (2) as an approximation of
the difficult-to-determine activation functions of the hardware-
emulated neurons. For the experiments described here, we
used the parameters η = 0.05, γ = 0 and a batch size of
1200 samples.

backward pass

backpropagation

weight updates

4 bit weight discretization

BrainScaleS

spikes

ReLU activity

MNIST prediction

forward pass

Fig. 7. Illustration of our in-the-loop training procedure. In an antecedent
step (not shown), a software-trained ReLU network, see fig. 5, is mapped to
an equivalent LIF network on the BrainScaleS hardware. Each iteration of
in-the-loop training consists of two passes. In the forward pass, the output
firing rates of the LIF network are measured in hardware. In the backward
pass, these rates are used to update the synaptic weights of the LIF network
by computing the corresponding weight updates in the ReLU network and
mapping them back to the hardware.

IV. RESULTS

An example for the activity on the neuromorphic hardware
during classification after in-the-loop training for one choice
of hardware neurons and initial software parameters can be
found in fig. 10. The figure shows the spike times of all
neurons in the network for five presented samples of every
digit. An image is considered to have been classified correctly
if the neuron associated with the input digit shows the highest
activity of all label neurons. After training, all images are
correctly classified, except for the first example of digit “6”
which was mistaken for a “4”. Comparing the weights before
and after in-the-loop training, see fig. 8, shows that only slight
adjustments are needed to compensate for hardware effects.

The evolution of the accuracy per training batch for both the
software model and the in-the-loop training of the hardware is
shown in fig. 9 for 130 different sets of hardware neurons and
initial weights of the software model. The total classification
accuracy is computed as the sum of correctly classified
patterns divided by the total number of patterns in the test
set. After 15 000 training steps, the accuracy of the software
model is 97 % with a negligible uncertainty arising from the
choice of initial weights. Directly after converting the artificial
network to the network of spiking neurons, the accuracy is
reduced to 72 +12

−10 %. It increases to 95 +1
−2 % at the end of the

in-the-loop training, being close to the performance of the
software model with the uncertainty given by the interquartile
range (IQR).

V. DISCUSSION

For problems involving spatial pattern recognition, deep
neural networks have become state of the art. Almost by
definition, they should lend themselves to implementation in

neuromorphic substrates. However, two non-trivial problems
exist. First, the input-output relationship of the abstract
units used in typical deep networks needs to be mapped to
spiking neuron dynamics. Second, in case of analog hardware,
distortions in these dynamics need to be take into account.
The latter is especially problematic because the performance
of the network usually relies on precise parameter training.

Here, we have addressed these problems in the context of
the BrainScaleS wafer-scale system, an accelerated analog
neuromorphic platform that emulates biologically inspired
neuron models. For mapping activities from the abstract
domain to spikes, we have used a rate-coding scheme. The
translation of the network topology, including connectivity
structure and parameters, was described in Section III-B.
Following this mapping of a pretrained network to the
hardware substrate, the resulting distortions in dynamics and
parameters have been compensated by in-the-loop training,
as described in Section III-C.

This two-stage approach was evaluated for a small network
trained on handwritten digits. In this exemplary scenario, it
was possible to almost completely restore the performance
of the software-simulated abstract model in hardware. An
implicit, but essential component of our methodology is the
fact that the backpropagation of errors needs not be precise:
computing the cost function gradients using a ReLU activation
function is sufficient for adapting the weights in the spiking
network. This circumvents the difficulty of otherwise having
to determine an exact derivative of the cost function with
respect to the LIF activation function, which would be further
exacerbated by the diversity of neuronal activation functions
on the analog substrate.

Here, the mapping-induced distortions in network dynamics
and configuration parameters have been compensated by
additional training. A complementary approach would be
to modify the network in a way that makes it more robust
to hardware-induced distortions, as discussed, e.g., in [16].
While rate-based approaches such as ours are inherently robust
against jitter in the timing of spikes, robust architectures
become particularly important in single-spike coding schemes,
as discussed in [31].

The proof-of-principle experiments presented here were
part of the commissioning phase of the BrainScaleS system
and lay the groundwork for more extensive studies. The
most interesting question to be addressed next is whether
the results achieved here also hold for larger networks that
can deal with more complex datasets. Once fully functional,
our system will be able to accomodate such large networks
without any scaling-induced reduction in processing time due
to its inherently parallel nature.

In the long run, the potentially most rewarding challenge
will be to fully port the training to the hardware as well.
To this end, an integrated plasticity processor [32] has been
designed that will allow the emulation of different learning
rules at runtime [33]. Learning can then also profit from the
acceleration that, for now, only benefits the operation of the
fully trained network. The use of analog spiking hardware
might then not only allow accelerated data processing with

-15 0 15
after in-the-loop

-15

0

15
be

fo
re

in
-t

he
-l

oo
p

-15 0 15
after in-the-loop

-15 0 15
after in-the-loop

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 8. Correlation of hardware weights before and after in-the-loop training for the projections to the first (left) and second hidden layer (center) and
the label layer (right). Weights that are zero before and after training are omitted. The relative frequency is encoded by both grayscale and area of the
corresponding square.

0 101 102 103 104

training step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ac
cu

ra
cy

on
tr

ai
ni

ng
ba

tc
h

software model
median, IQR

0 5 10 15 20 25 30 35

in-the-loop iteration

BrainScaleS
median, IQR

Fig. 9. Classification accuracy per batch as a function of the training step for the software model (left) and the in-the-loop iteration for the hardware
implementation (right) for 130 runs. The uncertainty, given by the interquartile range (IQR), expresses the variations when repeating the software model
with different initial weights and the in-the-loop training using different initial weights for the ReLU training and different sets of hardware neurons.

pre-specified networks, but also facilitate fast training of
biologically inspired architectures that can, in certain contexts,
even outperform classical machine learning algorithms [34].

ACKNOWLEDGMENT

This work has received funding from the European Union
Sixth Framework Programme ([FP6/2002-2006]) under grant
agreement no 15879 (FACETS), the European Union Seventh
Framework Programme ([FP7/2007-2013]) under grant agree-
ment no 604102 (HBP), 269921 (BrainScaleS) and 243914
(Brain-i-Nets) and the Horizon 2020 Framework Programme
([H2020/2014-2020]) under grant agreement no 720270 (HBP)
as well as the Manfred Stärk Foundation.

The authors wish to thank Simon Friedmann, Matthias
Hock, Ioannis Kokkinos, Tobias Nonnenmacher, Lukas Pilz,
Moritz Schilling, Dominik Schmidt, Sven Schrader, Simon
Ziegler, and Holger Zoglauer for their contributions to the
development and commissioning of the system, Würth Elek-
tronik GmbH & Co. KG in Schopfheim for the development
and manufacturing of the special wafer-carrier PCB used in the
BrainScaleS wafer-scale system, and Fraunhofer-Institut für
Zuverlässigkeit und Mikrointegration (IZM), Berlin, Germany

for developing the post-processing technique which is required
for wafer-wide communication and external connectivity to
the wafer.

The first two authors contributed equally to this work.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015.

[2] S. Furber, “Large-scale neuromorphic computing systems,” J Neural
Eng, vol. 13, no. 5, p. 051001, 2016.

[3] W. Maass, “Fast sigmoidal networks via spiking neurons,” Neural
Comput, vol. 9, no. 2, pp. 279–304, 1997.

[4] S. K. Esser, P. A. Merolla, J. V. Arthur et al., “Convolutional networks
for fast, energy-efficient neuromorphic computing,” Proc. Natl. Acad.
Sci. U.S.A., 2016.

[5] S. G. Hohmann, J. Fieres, K. Meier et al., “Training fast mixed-signal
neural networks for data classification,” in Proc Int Jt Conf Neural
Netw, vol. 4. IEEE Press, Jul. 2004, pp. 2647–2652.

[6] J. Fieres, J. Schemmel, and K. Meier, “A convolutional neural
network tolerant of synaptic faults for low-power analog hardware,”
in Proceedings of 2nd IAPR International Workshop on Artificial
Neural Networks in Pattern Recognition, ser. Springer Lecture Notes in
Artificial Intelligence, vol. 4087. Ulm, Germany: Springer International
Publishing, Aug. 2006, pp. 122–132.

[7] T. Pfeil, A. Grübl, S. Jeltsch et al., “Six networks on a universal
neuromorphic computing substrate,” Frontiers in Neuroscience, vol. 7,
p. 11, 2013.

0

5

10

15

20

ti
m

e
[s

]

0 10 20 30 40 50 60 70 80 90 100 105 110 115 120 125 130 131 132 133 134
input layer hidden layer hidden layer label layer

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Fig. 10. Spike raster plot of the neural activity of all layers on the neuromorphic hardware after in-the-loop training. Each horizontal dash denotes the time
at which a certain neuron spiked. Five examples per digit are presented where in the plot same digits are denoted by the same background color. Correctly
classified images are marked with a green circle.

[8] S.-C. Liu, Event-based neuromorphic systems. John Wiley & Sons,
2015.

[9] J. Schemmel, D. Brüderle, A. Grübl et al., “A wafer-scale neuromorphic
hardware system for large-scale neural modeling,” in IEEE Int Symp
Circuits Syst Proc, May 2010, pp. 1947–1950.

[10] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity,” J. Neurophysiol.,
vol. 94, no. 5, pp. 3637–3642, 2005.

[11] S. Millner, A. Grübl, K. Meier et al., “A VLSI implementation of the
adaptive exponential integrate-and-fire neuron model,” in Adv Neur In,
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor et al., Eds., vol. 23,
2010, pp. 1642–1650.

[12] R. Naud, N. Marcille, C. Clopath et al., “Firing patterns in the
adaptive exponential integrate-and-fire model,” Biological Cybernetics,
vol. 99, no. 4, pp. 335–347, Nov 2008. [Online]. Available:
http://dx.doi.org/10.1007/s00422-008-0264-7

[13] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog
neural networks,” in Proc Int Jt Conf Neural Netw, Hong Kong, Jul.
2008.

[14] V. Thanasoulis, B. Vogginger, J. Partzsch et al., “A pulse communication
flow ready for accelerated neuromorphic experiments,” in IEEE Int
Symp Circuits Syst Proc, Jun. 2014, pp. 265–268.

[15] S. Scholze, S. Schiefer, J. Partzsch et al., “VLSI implementation of
a 2.8 GEvent/s packet-based AER interface with routing and event
sorting functionality,” Front Neurosci, vol. 5, p. 117, 2011.

[16] M. A. Petrovici, B. Vogginger, P. Müller et al., “Characterization and
compensation of network-level anomalies in mixed-signal neuromorphic
modeling platforms,” PLoS ONE, vol. 9, no. 10, p. e108590, 2014.

[17] I. Raikov, R. Cannon, R. Clewley et al., “NineML: the network
interchange for neuroscience modeling language,” BMC Neuroscience,
vol. 12, no. 1, p. P330, 2011.

[18] P. Gleeson, S. Crook, R. C. Cannon et al., “NeuroML: A language
for describing data driven models of neurons and networks with a
high degree of biological detail,” PLoS Comput Biol, vol. 6, no. 6, p.
e1000815, Jun. 2010.

[19] A. P. Davison, D. Brüderle, J. Eppler et al., “PyNN: a common interface
for neuronal network simulators,” Front Neuroinform, vol. 2, no. 11,
2008.

[20] D. Brüderle, E. Müller, A. Davison et al., “Establishing a novel
modeling tool: A python-based interface for a neuromorphic hardware
system,” Front Neuroinform, vol. 3, no. 17, 2009.

[21] M. Djurfeldt, “The connection-set algebra—a novel formalism for the
representation of connectivity structure in neuronal network models,”
Neuroinformatics, vol. 10, no. 3, pp. 287–304, 2012.

[22] M. Denker, A. Yegenoglu, D. Holstein et al., “elephant: An open-source
tool for the analysis of electrophysiological data.” in Proceedings of
the 11th Meeting of the German Neuroscience Society, Neuroforum
2015. German Neuroscience Society, Mar 2015, pp. T27–2B.

[23] S. Garcia, D. Guarino, F. Jaillet et al., “Neo: an object model for han-
dling electrophysiology data in multiple formats,” Front Neuroinform,
vol. 8:10, February 2014.

[24] M. Jette and M. Grondona, “SLURM: Simple linux utility for resource
management,” in Proceedings of ClusterWorld Conference and Expo,
San Jose, California, 2003.

[25] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[26] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
1998. [Online]. Available: http://yann.lecun.com/exdb/mnist

[27] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” Int J Comput Vis, vol.
113, no. 1, pp. 54–66, 2015.

[28] M. Abadi, A. Agarwal, P. Barham et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” Google Research,
Whitepaper, 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[29] N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Netw., vol. 12, no. 1, pp. 145–151, 1999.

[30] P. O’Connor, D. Neil, S.-C. Liu et al., “Real-time classification and
sensor fusion with a spiking deep belief network,” Front Neurosci,
vol. 7, p. 178, 2013.

[31] M. A. Petrovici, A. Schroeder, O. Breitwieser et al., “Robustness from
structure: fast inference on a neuromorphic device with hierarchical
LIF networks,” submitted to IJCNN 2017, 2016.

[32] S. Friedmann, “The Nux processor v3.0,” Electronic Vision(s) Group,
Kirchhoff-Institute for Physics, Heidelberg University, User Guide,
2015. [Online]. Available: https://github.com/electronicvisions/nux

[33] S. Friedmann, J. Schemmel, A. Grübl et al., “Demonstrating hybrid
learning in a flexible neuromorphic hardware system,” IEEE Trans.
Biomed. Circuits Syst., vol. PP, no. 99, pp. 1–15, 2016.

[34] L. Leng, M. A. Petrovici, R. Martel et al., “Spiking neural networks
as superior generative and discriminative models,” in Cosyne Abstracts,
Salt Lake City USA, February 2016.

http://dx.doi.org/10.1007/s00422-008-0264-7
http://yann.lecun.com/exdb/mnist
http://tensorflow.org/
https://github.com/electronicvisions/nux

	I Introduction
	II The BrainScaleS Wafer-Scale System
	II-A The Wafer Module
	II-B Running Neuronal Network Experiments
	II-C Calibration

	III Training a Deep Spiking Network
	III-A Software Model
	III-A1 Input
	III-A2 Units
	III-A3 Weights
	III-A4 Training

	III-B Neuromorphic Implementation
	III-B1 Input
	III-B2 Hardware Configuration
	III-B3 Neuron parameters
	III-B4 Weights

	III-C Hardware In The Loop

	IV Results
	V Discussion
	References

