
Komlós-Major-Tusnády approximation
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Abstract

The celebrated results of Komlós, Major and Tusnády (1975, 1976) give

optimal Wiener approximation for the partial sums of i.i.d. random variables

and provide a powerful tool in probability and statistics. In this paper we extend

KMT approximation for a large class of dependent stationary processes, solving

a long standing open problem in probability theory. Under the framework of

stationary causal processes and functional dependence measures of Wu (2005),

we show that, under natural moment conditions, the partial sum processes can

be approximated by Wiener process with an optimal rate. Our dependence

conditions are mild and easily verifiable. The results are applied to ergodic

sums, as well as to nonlinear time series and Volterra processes, an important

class of nonlinear processes.

Keywords: Stationary processes, strong invariance principle, KMT approximation,

weak dependence, nonlinear time series, ergodic sums

MSC 2000: 60F17, 60G10, 60G17

1)Institute of Statistics, Graz University of Technology, Münzgrabenstrasse 11, 8010 Graz, Aus-

tria. Email: berkes@tugraz.at Research supported by Austrian Science Fund (FWF), Projekt

P24302-N18.
2)Department of Mathematics, Shanghai Jiao Tong University, 800 Dongchuan Road Minhang,

Shanghai, China. Email: liuweidong99@gmail.com
3)Department of Statistics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637,

USA. Email: wbwu@galton.uchicago.edu

1



1 Introduction

LetX1, X2, . . . be independent, identically distributed random variables with EX1 = 0,

EX2
1 = 1. In their seminal papers, Komlós, Major and Tusnády (1975, 1976) proved

that under E|X1|p < ∞, p > 2 there exists, after suitably enlarging the probability

space, a Wiener process {IB(t), t ≥ 0} such that, setting Sn =
∑n

k=1Xk, we have

Sn = IB(n) + o(n1/p) a.s. (1.1)

Assuming Eet|X1| < ∞ for some t > 0, they obtained the approximation

Sn = IB(n) +O(log n) a.s. (1.2)

The remainder terms in (1.1) and (1.2) are optimal. These results close a long de-

velopment in probability theory starting with the classical paper of Erdős and Kac

(1946) introducing the method of invariance principle. The ideas of Erdős and Kac

were developed further by Doob (1949), Donsker (1952), Prohorov (1956) and others

and led to the theory of weak convergence of probability measures on metric spaces,

see e.g. Billingsley (1968). In another direction, Strassen (1964) used the Skorohod

representation theorem to get an almost sure approximation of partial sums of i.i.d.

random variables by Wiener process. Csörgő and Révész (1974) showed that using

the quantile transform instead of Skorohod embedding yields better approximation

rates under higher moments and developing this idea further, Komlós et al. (1975,

1976) reached the final result in the i.i.d. case. Their results were extended to the

independent, non-identically distributed case and for random variables taking values

in Rd, d ≥ 2 by Sakhanenko, Einmahl and Zaitsev; see Götze and Zaitsev (2009) for

history and references.

Due to the powerful consequences of KMT approximation (see e.g. Csörgő and Hall

(1984) or the books of Csörgő and Révész (1981) and Shorack and Wellner (1986) for

the scope of its applications), extending these results for dependent random variables

would have a great importance, but until recently, little progress has been made in this

direction. The dyadic construction of Komlós, Major and Tusnády is highly technical

and utilizes conditional large deviation techniques, which makes it very difficult to

extend to dependent processes. Recently a new proof of the KMT result for the

simple random walk via Stein’s method was given by Chatterjee (2012). The main

motivation of this paper was, as stated by the author, to get ”a more conceptual

understanding of the problem that may allow one to go beyond sums of independent

random variables”. Using martingale approximation and Skorohod embedding, Wu
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(2007) proved the approximation

Sn = σIB(n) + o(n1/p(log n)γ) a.s. (1.3)

with some σ ≥ 0, γ > 0 for a class of stationary sequences (Xk) satisfying EX1 = 0,

E|X1|p < ∞ for some 2 < p ≤ 4. Liu and Lin (2009) removed the logarithmic term

from (1.3), reaching the KMT bound o(n1/p). Recently Merlevède and Rio (2012)

obtained nearly optimal strong approximation results for p ≤ 3. Note, however,

that all existing results in the dependent case concern the case 2 ≤ p ≤ 4 and the

applied tools (e.g. Skorohod representation) limit the accuracy of the approximation

to o(n1/4), regardless the moment assumptions on X1.

The purpose of the present paper is to develop a new approximation technique

enabling us prove the KMT approximation (1.1) for all p > 2 and for a large class

of dependent sequences. Specifically, we will deal with stationary sequences allowing

the representation

Xk = G(. . . , εk−1, εk, εk+1, . . .) k ∈ Z, (1.4)

where εi, i ∈ Z, are i.i.d. random variables and G : RZ → R is a measurable func-

tion. Sequences of this type have been studied intensively in weak dependence theory

(see e.g. Billingsley (1968) or Ibragimov and Linnik (1971)) and many important

time series models also have a representation (1.4). Processes of the type (1.4) also

play an important role in ergodic theory, as sequences generated by Bernoulli shift

transformations. The Bernoulli shift is a very important class of dynamical systems;

see Ornstein (1974) and Shields (1973) for the deep Kolmogorov-Sinai-Ornstein iso-

morphism theory. There is a substantial amount of research showing that various

dynamical systems are isomorphic to Bernoulli shifts. As a step further, Weiss (1974)

asked

”having shown that some physical system is Bernoullian, what does that

allow one to say about the system itself? To answer such questions one

must dig deeper and gain a better understanding of a Bernoulli system”.

Naturally, without additional assumptions one cannot hope to prove KMT type results

(or even the CLT) for Bernoulli systems; the representation (1.4) allows stationary

processes that can exhibit a markedly non-i.i.d. behavior. For limit theorems under

dynamic assumptions see Hofbauer and Keller (1982), Denker and Philipp (1984),

Denker (1989), Volný (1999), Merlevède and Rio (2012). The classical approach to

deal with systems (1.4) is to assume that G is approximable with finite dimensional
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functions in a certain technical sense, see Billingsley (1968) or Ibragimov and Linnik

(1971). However, this approach leads to a substantial loss of accuracy and does

not yield optimal results. In this paper we introduce a new, triadic decomposition

scheme enabling one to deduce directly, under the dependence measure (1.5) below,

the asymptotic properties of Xn in (1.4) from those of the εn. In particular, this allows

us to carry over KMT approximation from the partial sums of the εn to those of Xn.

To state our weak dependence assumptions on the process in (1.4), assume Xi ∈
Lp, p > 2, namely ∥Xi∥p := [E(|Xi|p)]1/p < ∞. Let (ε′j)j∈Z be an iid copy of (εj)j∈Z;

let εi,{j} = εi if j ̸= i and εi,{j} = ε′i if j = i. Define the shift process Fi = (εi−l, l ∈ Z),
Fi,{j} = (εi−l,{j}, l ∈ Z) and

δi,p = ∥Xi −Xi,{0}∥p, where Xi,{0} = G(Fi,{0}). (1.5)

The above quantity can be interpreted as the dependence of Xi on ε0 and Xi,{0}

is a coupled version of Xi with ε0 in the latter replaced by ε′0. If G(Fi) does not

functionally depend on ε0, then δi,p = 0. Throughout the paper, for a random variable

W = H(Fi), we use the notation W{j} = H(Fi,{j}) for the j-coupled version of W ,

namely it is obtained by replacing εj in Fi by the i.i.d. copy ε′j.

The functional dependence measure (1.5) is easy to work with and it is directly

related to the underlying data-generating mechanism. In our main result Theorem

2.1, we express our dependence condition in terms of

Θi,p =
∞∑

j=|i|

δj,p, (1.6)

which can be interpreted as the cumulative dependence of (Xj)j≥|i| on ε0. Throughout

the paper we assume that the short-range dependence condition

Θ0,p < ∞ (1.7)

holds. If (1.7) fails, then the process (Xi) can be long-range dependent and the partial

sum processes behave no longer like Brownian motions. Our main result is introduced

in Section 2, where we also include with some discussions on the conditions. The proof

is given in Section 3, and some useful lemmas are provided in Section 4.

2 Main Results

We introduce some notation. For u ∈ R, let ⌈u⌉ = min{i ∈ Z : i ≥ u} and ⌊u⌋ =

max{i ∈ Z : i ≤ u}. Write the L2 norm ∥ · ∥ = ∥ · ∥2. Denote by ”⇒” the

4



weak convergence. Before stating our main result, we first introduce a central limit

theorem for Sn. Assume that Xi has mean zero, E(X2
i ) < ∞, with covariance function

γi = E(X0Xi), i ∈ Z. Further assume that

∞∑
i=−∞

∥E(Xi|G0)− E(Xi|G−1)∥ < ∞, (2.8)

where Gi = (. . . , εi−1, εi). Then we have

Sn√
n
⇒ N(0, σ2), where σ2 =

∑
i∈Z

γi. (2.9)

Results of the above type have been known for several decades; see Hannan (1979),

Woodroofe (1992), Volný (1993) and Dedecker and Merlevéde (2003) among others.

Wu (2005) pointed out the inequality ∥E(Xi|G0) − E(Xi|G−1)∥ ≤ δi,2. Hence (2.8)

follows from Θ0,2 < ∞. With stronger moment and dependence conditions, the central

limit theorem (2.9) can be improved to strong invariance principles.

There is a huge literature for central limit theorems and invariance principles for

stationary processes; see for example Ibragimov and Linnik (1971), the monograph

on limit theorems under dependence edited by Eberlein and Taqqu (1986), Bradley

(2007), Dedecker et al (2007), Peligrad and Utev (2005) among others. To establish

strong invariance principles, here we shall use the framework of stationary process (1.4)

and its associated functional dependence measures (1.5). Many popular nonlinear time

series processes assume this form; see Wiener (1958), Tong (1990), Priestley (1988),

Shao and Wu (2007) and Wu (2011) among others.

Theorem 2.1 Assume that Xi ∈ Lp with mean 0, p > 2, and there exists α > p such

that

Ξα,p :=
∞∑

j=−∞

|j|1/2−1/αδ
p/α
j,p < ∞. (2.10)

Further assume that there exists a positive integer sequence (mk)
∞
k=1 such that

Mα,p :=
∞∑
k=1

3k−kα/pm
α/2−1
k < ∞, (2.11)

∞∑
k=1

3kp/2Θp
mk,p

3k
< ∞ (2.12)

and

Θmk,p +min
l≥0

(Θl,p + l3k(2/p−1)) = o

(
3k(1/p−1/2)

(log k)1/2

)
. (2.13)
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Then there exists a probability space (Ωc,Ac,Pc) on which we can define random vari-

ables Xc
i with the partial sum process Sc

n =
∑n

i=1X
c
i , and a standard Brownian motion

IBc(·), such that (Xc
i )i≥1

D
= (Xi)i≥1 and

Sc
n − σIBc(n) = oa.s.(n

1/p) in (Ωc,Ac,Pc). (2.14)

Gaussian approximation results of type (2.14) have many applications in statis-

tics. For example, Wu and Zhao (2007) dealt with simultaneous inference of trends

in time series. Eubank and Speckman (1993) considered a similar problem for inde-

pendent observations. Csörgő and Révész (1981) provided applications of Gaussian

approximations for independent random variables. For simultaneous inference under

dependence, Colin Wu, Chiang and Hoover (1998) pointed out the fundamental dif-

ficulty of not having a suitable form of Gaussian approximation with the presence of

dependence. We expect (2.14) to have substantial applications in this direction.

A crucial issue in applying Theorem 2.1 is to find the sequence mk and to ver-

ify conditions (2.10), (2.11), (2.12) and (2.13). If Θm,p decays to zero at the rate

O(m−τ (logm)−A), where τ > 0, then we have the following corollary. An explicit

form of mk can also be given. Let

τp =
p2 − 4 + (p− 2)

√
p2 + 20p+ 4

8p
. (2.15)

Corollary 2.1 Assume that either one of the following holds:

(i) p > 4 and Θm,p = O(m−τp(logm)−A), where A > 2
3
(1/p+ 1 + τp);

(ii) p = 4 and Θm,p = O(m−1(logm)−A) with A > 3/2;

(iii) 2 < p < 4 and Θm,p = O(m−1(logm)−1/p).

Then there exists α > p and an integer sequence mk such that (2.10), (2.11), (2.12)

and (2.13) are all satisfied. Hence the strong invariance principle (2.14) holds.

Proof. If Θm,p = O(m−τ (logm)−A), then

Ξα,p ≤
∞∑
l=1

2l(1/2−1/α)

2l−1∑
j=2l−1

(δ
p/α
j,p + δ

p/α
−j,p)

≤
∞∑
l=1

2l(1/2−1/α)2(l−1)(1−p/α)

 2l−1∑
j=2l−1

(δj,p + δ−j,p)

p/α

≤
∞∑
l=1

2l(3/2−1/α−p/α)Θ
p/α

2l−1,p

=
∞∑
l=1

2l(3/2−1/α−p/α)O[(2−lτ l−A)p/α],
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which is finite if 3/2 < (1 + p+ pτ)/α or 3/2 = (1 + p+ pτ)/α and Ap/α > 1.

(i) Write τ = τp. The quantity τp satisfies the following equation

τ − (1/2− 1/p)

τ/p− 1/4 + 1/(2p)
=

2

3
(1 + p+ pτ). (2.16)

Let α = 2
3
(1 + p+ pτp). Then (2.10) requires that Ap/α > 1, or A > α/p. Let

mk = ⌊3k(α/p−1)/(α/2−1)k−1/(α/2−1)(log k)−1/(p/2−1)⌋, (2.17)

which satisfies (2.11). Then Θmk,p = O(m−τ
k k−A). If A > τ/(α/2 − 1), then (2.13)

holds. If A > τ/(α/2−1)+1/p, then (2.12) holds. Combining these three inequalities

on A, we have (i), since α/p > τ/(α/2− 1) + 1/p.

(ii) In this case we can choose α = 6 and mk = ⌊3k/4/k⌋.
(iii) Since 2 < p < 4, we can choose α such that (2+p)/(3−p/2) < α < (2+4p)/3

and mk = ⌊3k(1/2−1/p) log k⌋. ♢
Corollary 2.1 indicates that to establish Gaussian approximation for the stationary

process (1.4), one only needs to compute the functional dependence measure δi,p in

(1.5). In the following examples we shall deal with some special situations. Example

2.1 considers ergodic sums, Example 2.2 concerns some widely used nonlinear time

series, and Example 2.3 deals with Volterra processes which play an important role

in the study of nonlinear systems.

Example 2.1 Consider the measure-preserving transformation Tx = 2xmod 1 on

([0, 1],B,P), where P is the Lebesgue measure on [0, 1]. Let U0 ∼ uniform(0, 1)

have the dyadic expansion U0 =
∑∞

j=0 εj/2
1+j, where εj are i.i.d. Bernoulli random

variables with P(εj = 0) = P(εj = 1) = 1/2. Then Ui = T iU0 =
∑∞

j=i εj/2
1+j−i,

i ≥ 0; see Denker and Keller (1986) for a more detailed discussion. We now compute

the functional dependence measure for Xi = g(Ui). Assume that
∫ 1

0
g(u)du = 0 and∫ 1

0
|g(u)|pdu < ∞, p > 2. Then

δp(i)
p = E|g(U0)− g(U0,i)|p

=
1

2

2i∑
j=1

∫ 1

0

|g( j
2i

+
u

2i+1
)− g(

j − 1

2i
+

u

2i+1
)|pdu. (2.18)

If Xi = g(Ui) = K(
∑∞

j=i aj−iεj), where K is a Lipschitz continuous function and∑∞
j=0 |aj| < ∞, then δp(i) = O(|ai|). If g has the Haar wavelet expansion

g(u) =
∞∑
i=0

2i∑
j=1

ci,jϕi,j(u), (2.19)
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where ϕi,j(u) = 2i/2ϕ(2iu− j) and ϕ(u) = 10≤u<1/2 − 11/2≤u<1, then

δp(i)
p = O(2i(p/2−1))

2i∑
j=1

|ci,j|p. (2.20)

Example 2.2 (Nonlinear Time Series) Consider the iterated random function

Xi = G(Xi−1, εi), (2.21)

where εi are i.i.d. and G is a measurable function (Diaconis and Freedman, 1999).

Many nonlinear time series including ARCH, Threshold Autoregressive, Random co-

efficient Autoregressive, Bilinear Autoregressive processes, are of form (2.21). If there

exists p > 2 and x0 such that G(x0, ε0) ∈ Lp and

ℓp = sup
x ̸=x′

∥G(x, ε0)−G(x′, ε0)∥p
|x− x′|

< 1, (2.22)

then δm,p = O(ℓmp ) and also Θm,p = O(ℓmp ) (Wu and Shao, 2004). Hence conditions in

Corollary 2.1 are trivially satisfied and thus (2.14) holds.

Example 2.3 In the study of nonlinear systems Volterra processes are of fundamental

importance; see Schetzen (1980), Rugh (1981), Casti (1985), Priestley (1988) and

Bendat (1990) among others. We consider the discrete-time process

Xn =
∞∑
k=1

∑
0≤j1<...<jk

gk(j1, . . . , jk)εn−j1 . . . εn−jk , (2.23)

where εi are i.i.d. with mean 0, εi ∈ Lp, p > 2, and gk are called the kth order

Volterra kernel. Let

Qn,k =
∑

n∈{j1,...,jk}, 0≤j1<...<jk

g2k(j1, . . . , jk). (2.24)

Assume for simplicity that p is an even integer. Elementary calculations show that

there exists a constant cp, only depending on p, such that

δ2n,p ≤ cp

∞∑
k=1

∥ε0∥2kp Qn,k. (2.25)

Assume that for some τ > 0 and A,
∞∑
k=1

∥ε0∥2kp
∑

jk≥m, 0≤j1<...<jk

g2k(j1, . . . , jk) = O(m−1−2τ (logm)−2A) (2.26)

as m → ∞. Then
∞∑

n=m

δ2n,p ≤ cp

∞∑
k=1

∥ε0∥2kp
∞∑

n=m

Qn,k = O(m−1−2τ (logm)−2A), (2.27)

which implies Θm,p = O(m−τ (logm)−A) and hence Corollary 2.1 is applicable.
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3 Proof of Theorem 2.1

The proof of Theorem 2.1 is quite intricate. To simplify notation, we assume that

(Xi) is a function of one-sided Bernoulli shift:

Xi = G(Fi), where Fi = (· · · , εi−1, εi), (3.28)

where εk, k ∈ Z, are iid. As argued in Wu (2011), (3.28) itself defines a very large

class of stationary processes and many widely used linear and nonlinear processes

fall within the framework of (3.28). Our argument can be extended to the two-sided

process (1.4) in a straightforward manner since our primary tool is the m-dependence

approximation technique. In Section 3.1 we shall handle the pre-processing work of

truncation, m-dependence approximation and blocking, and in Section 3.2 we shall

apply Sakhanenko’s (2006) Gaussian approximation result to the transformed pro-

cesses, and establish conditional Gaussian approximations. Section 3.3 removes the

conditioning, and an unconditional Gaussian approximation is obtained. In Section

3.4 we refine the unconditional Gaussian approximation in Section 3.3 by linearizing

the variance function, so that one can have the readily applicable form (2.14).

3.1 Truncation, m-dependence Approximation and Blocking

For a > 0, define the truncation operator Ta by

Ta(w) = max(min(w, a),−a), w ∈ R. (3.29)

Then Ta is Lipschitz continuous and the Lipschitz constant is 1. For n ≥ 2 let

hn = ⌈(log n)/(log 3)⌉, so that 3hn−1 < n ≤ 3hn . Define

Wk,l =
l+3k−1∑

i=1+3k−1

[T3k/p(Xi)− ET3k/p(Xi)] (3.30)

and the mk-dependent process

X̃k,j = E[T3k/p(Xj)|εj−mk
, . . . , εj−1, εj]− ET3k/p(Xj). (3.31)

Let

S†
n =

hn−1∑
k=1

Wk,3k−3k−1 +
n∑

i=1+3hn−1

[T3hn/p(Xi)− ET3hn/p(Xi)] (3.32)

and

S̃n =
hn−1∑
k=1

W̃k,3k−3k−1 + W̃hn,n−3hn−1 , where W̃k,l =
l+3k−1∑

i=1+3k−1

X̃k,i. (3.33)
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If n = 1, we let S†
1 = S̃1 = 0. Since Xi ∈ Lp, we have

max
1≤i≤n

|Si − S†
i | = aa.s.(n

1/p). (3.34)

Note that there exists a constant cp such that, for all k ≥ 1,∥∥∥∥ max
3k−1<l≤3k

|W̃k,l −Wk,l|
∥∥∥∥
p

≤ cp(3
k − 3k−1)1/2Θ1+mk,p. (3.35)

Hence, by the Borel-Cantelli Lemma and condition (2.12), we have

max
1≤i≤n

|S̃i − S†
i | = aa.s.(n

1/p). (3.36)

Let qk = ⌊2× 3k−2/mk⌋ − 2. By (2.11), mk = o(3k(α/p−1)/(α/2−1)). Hence limk→∞ qk =

∞. Choose K0 ∈ N such that qk ≥ 2 whenever k ≥ K0 and let N0 = 3K0 . For k ≥ K0

define

Bk,j =

3(j+1)mk+3k−1∑
i=1+3jmk+3k−1

X̃k,i, j = 1, 2, . . . , qk. (3.37)

Let Bk,j ≡ 0 if k < K0. In the sequel we assume throughout that k ≥ K0 and n ≥ N0.

By Markov’s inequality and the stationarity of the process (X̃k,i)i∈Z,

P

 max
1≤l≤2×3k−1

∣∣∣∣∣∣W̃k,l −
⌊l/(3mk)⌋∑

j=1

Bk,j

∣∣∣∣∣∣ ≥ 3k/p

 ≤ 2× 3k−1

mk

P

(
max

1≤l≤3mk

|W̃k,l| ≥ 3k/p
)

≤ 3kE(max1≤l≤3mk
|W̃k,l|α)

mk3kα/p
. (3.38)

We define the functional dependence measure for the process (T3k/p(Xi))i∈Z as

δk,j,ι = ∥T3k/p(Xi)− T3k/p(Xi,{i−j})∥ι, (3.39)

where ι ≥ 2, and similarly the functional dependence measure for (X̃k,i) as

δ̃k,j,ι = ∥X̃k,i − X̃k,i,{i−j})∥ι. (3.40)

For those dependence measures, we can easily have the following simple relation:

δ̃k,j,ι ≤ δk,j,ι, δk,j,p ≤ δj,p and δk,j,2 ≤ δj,2. (3.41)

By the above relation, a careful check of the proof of Lemma 4.3 indicates that, under

(2.10) and (2.11), there exists a constant c = cα,p such that

∞∑
k=K0

3k

mk

E(max1≤l≤3mk
|W̃k,l|α)

3kα/p
≤ c(Mα,pΘ

α
0,2 + Ξα

α,p + ∥X1∥pp). (3.42)
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The above inequality plays a critical role in our proof and it will be used again later. In

(3.38), the largest index j is ⌊2× 3k−1/(3mk)⌋ = qk+2. Note that Bk,qk is independent

of Bk+1,1. This motivates us to define the sum

S⋄
n =

hn−1∑
k=K0

qk∑
j=1

Bk,j +
τn∑
j=1

Bhn,j, where τn =

⌊
n− 3hn−1

3mhn

⌋
− 2. (3.43)

We emphasize that the sums
∑qk

j=1Bk,j, k = 1, 2, . . . , hn − 1, and
∑τn

j=1Bhn,j are

mutually independent. By (3.38), (3.42) and the Borel-Cantelli Lemma, we have

max
N0≤i≤n

|S̃i − S⋄
i | = aa.s.(n

1/p), (3.44)

where we recall N0 = 3K0 . Summarizing the truncation approximation (3.34), the

m-dependence approximation (3.36), and the block approximation (3.44), we have

max
N0≤i≤n

|Si − S⋄
i | = aa.s.(n

1/p) (3.45)

and by Lemma 4.1 it remains to show that (2.14) holds with S⋄
n.

3.2 Conditional Gaussian Approximation

For 3k−1 < i ≤ 3k, k ≥ K0, let Gk be a measurable function such that

X̃k,i = Gk(εi−mk
, . . . , εi). (3.46)

Recall qk = ⌊2× 3k−2/mk⌋ − 2. For j = 1, 2, . . . , qk define

Jk,j = {3k−1 + (3j − 1)mk + l, l = 1, 2, . . . ,mk}. (3.47)

Let a = (ak,3j, 1 ≤ j ≤ qk)
∞
k=K0

be a vector of real numbers, where ak,3j = (al, l ∈
Jk,j), j = 1, . . . , qk. Define the random functions

Fk,3j(ak,3j) =

3jmk∑
i=1+(3j−1)mk

Gk(ai+3k−1 , · · · , a3jmk+3k−1 ,

ε3jmk+1+3k−1 , · · · , εi+mk+3k−1);

Fk,1+3j =

(1+3j)mk∑
i=1+3jmk

Gk(εi+3k−1 , · · · , ε(1+3j)mk+3k−1 ,

ε(1+3j)mk+1+3k−1 , · · · , εi+mk+3k−1);

Fk,2+3j(ak,3+3j) =

(2+3j)mk∑
i=1+(1+3j)mk

Gk(εi+3k−1 , · · · , ε(2+3j)mk+3k−1 ,

a(2+3j)mk+1+3k−1 , · · · , ai+mk+3k−1).
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Let ηk,3j = (εl, l ∈ Jk,j), j = 1, . . . , qk, and η = (ηk,3j, 1 ≤ j ≤ qk)
∞
k=K0

. Then

Bk,j = Fk,3j(ηk,3j) + Fk,1+3j + Fk,2+3j(ηk,3j+3). (3.48)

Note that EFk,1+3j = 0. Define the mean functions

Λk,0(ak,3j) = EFk,3j(ak,3j), Λk,2(ak,3+3j) = EFk,2+3j(ak,3+3j).

Introduce the centered process

Yk,j(ak,3j, ak,3j+3) = [Fk,3j(ak,3j)− Λk,0(ak,3j)]

+Fk,3j+1 + [Fk,3j+2(ak,3j+3)− Λk,2(ak,3j+3)]. (3.49)

Then Yk,j(ak,3j, ak,3j+3), j = 1, . . . , qk, k ≥ K0, are mean zero independent random

variables with variance function

Vk(ak,3j, ak,3j+3) = ∥Yk,j(ak,3j, ak,3j+3)∥2

= ∥Fk,3j(ak,3j)− Λk,0(ak,3j)∥2 + ∥Fk,3j+1∥2

+2E{Fk,3j+1[Fk,3j(ak,3j)− Λk,0(ak,3j)]}
+∥Fk,3j+2(ak,3j+3)− Λk,2(ak,3j+3)∥2

+2E{Fk,3j+1[Fk,3j+2(ak,3j+3)− Λk,2(ak,3j+3)]}, (3.50)

since [Fk,3j(ak,3j) − Λk,0(ak,3j)] and [Fk,3j+2(ak,3j+3) − Λk,2(ak,3j+3)] are independent.

Following the definition of S⋄
n in (3.43), we let

Tn(a) =
hn−1∑
k=K0

qk∑
j=1

Yk,j(ak,3j, ak,3j+3) +
τn∑
j=1

Yhn,j(ahn,3j, ahn,3j+3). (3.51)

Define the mean function

Mn(a) =
hn−1∑
k=K0

qk∑
j=1

[Λk,0(ak,3j) + Λk,2(ak,3+3j)]

+
τn∑
j=1

[Λhn,0(ahn,3j) + Λhn,2(ahn,3+3j)],

and variance of Tn(a):

Qn(a) =
hn−1∑
k=K0

qk∑
j=1

Vk(ak,3j, ak,3+3j) +
τn∑
j=1

Vhn(ahn,3j, ahn,3+3j).

Let

V ◦
k (ak,3j) = ∥[Fk,3j(ak,3j)− Λk,0(ak,3j)]
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+Fk,3j+1 + [Fk,3j+2(ak,3j)− Λk,2(ak,3j)]∥2

= ∥Fk,3j(ak,3j)− Λk,0(ak,3j)∥2 + ∥Fk,3j+1∥2

+2E{Fk,3j+1[Fk,3j(ak,3j)− Λk,0(ak,3j)]}
+∥Fk,3j+2(ak,3j)− Λk,2(ak,3j)∥2

+2E{Fk,3j+1[Fk,3j+2(ak,3j)− Λk,2(ak,3j)]},
Lk(ak,3j) = ∥Fk,3j+1 + [Fk,3j+2(ak,3j)− Λk,2(ak,3j)]∥2

= ∥Fk,3j+1∥2 + ∥[Fk,3j+2(ak,3j)− Λk,2(ak,3j)]∥2

+2E{Fk,3j+1[Fk,3j+2(ak,3j)− Λk,2(ak,3j)]}. (3.52)

By the formulae of Vk(ak,3j, ak,3j+3) in (3.50) and V ◦
k (ak,3j) and Lk(ak,3j) in (3.52), we

have the following identity:

Lk(ak,3) +
t∑

j=1

Vk(ak,3j, ak,3j+3) =
t∑

j=1

V ◦
k (ak,3j) + Lk(ak,3+3t) (3.53)

holds for all t ≥ 1. The above identity motivates us to introduce the auxiliary process

Γn(a) =
hn−1∑
k=K0

Lk(ak,3)
1/2ζk + Lhn(ahn,3)

1/2ζhn , (3.54)

where ζl, l ∈ Z, are i.i.d. standard normal random variables which are independent of

(εi)i∈Z. Then in view of (3.53) the variance of Tn(a) + Γn(a) is given by

Q◦
n(a) =

hn−1∑
k=K0

[
qk∑
j=1

V ◦
k (ak,3j) + Lk(ak,3+3qk)

]

+
τn∑
j=1

[
V ◦
hn
(ahn,3j) + Lhn(akn,3+3τn)

]
. (3.55)

In studying Tn(a)+Γn(a), for notational convenience, for j = 0 we let Yk,0(ak,0, ak,3) =

Lk(ak,3)
1/2ζk. We shall now apply Sakhanenko’s (1991, 2006) Gaussian approximation

result. To this end, for x > 0, we define

Ψh(a, x, α) =
h∑

k=K0

qk∑
j=0

Emin{|Yk,j(ak,3j, ak,3j+3)/x|α, |Yk,j(ak,3j, ak,3j+3)/x|2}

≤
h∑

k=K0

qk∑
j=0

E|Yk,j(ak,3j, ak,3j+3)/x|α. (3.56)

By Theorem 1 in Sakhanenko (2006), there exists a probability space (Ωa,Aa,Pa) on

which we can define a standard Brownian motion IBa and random variables Ra
k,j such

that the distributional equality

(Ra
k,j)0≤j≤qk, k≥K0 =D (Yk,j(ak,3j, ak,3j+3))0≤j≤qk, k≥K0 (3.57)
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holds, and, for the partial sum processes

Υa
n =

h−1∑
k=K0

qk∑
j=1

Ra
k,j +

τn∑
j=1

Ra
hn,j and µa

n =
h−1∑
k=K0

Ra
k,0 +Ra

hn,0, (3.58)

we have for all x > 0 and α > p that

Pa

[
max

N0≤i≤3h
|(Υa

i + µa
i )− IBa(Q

◦
i (a))| ≥ c0αx

]
≤ Ψh(a, x, α). (3.59)

Here c0 is an absolute constant. By Jensen’s inequality, for both j = 0 and j > 0,

there exists a constant cα such that

E[|Yk,j(ηk,3j,ηk,3j+3)|α] ≤ cαE(|W̃k,mk
|α). (3.60)

In (3.59) we let x = 3h/p and by Lemma 4.2 (see also (3.42)),

∞∑
h=K0

E[Ψh(η, 3
h/p, α)] ≤

∞∑
h=K0

h∑
k=K0

qk + 1

3αh/p
cαE(|W̃k,mk

|α)

≤
∞∑

k=K0

∞∑
h=k

3kcα
mk3αh/p

E

(
max

1≤l≤3mk

|W̃k,l|α
)

< ∞. (3.61)

Hence, by the Borel-Cantelli Lemma, we obtain

max
i≤n

|(Υη
i + µ

η
i )− IBη(Q

◦
i (η))| = oa.s.(n

1/p). (3.62)

The probability space for the above almost sure convergence is

(Ω∗,A∗,P∗) = (Ω,A,P)×
∏
τ∈Ω

(Ωη(τ),Aη(τ),Pη(τ)), (3.63)

where (Ω,A,P) is the probability space on which the random variables (εi)i∈Z are

defined and, for a set A ⊂ Ω∗ with A ∈ A∗, the probability measure P∗ is defined as

P∗(A) =

∫
Ω

Pη(ω)(Aω)P(dω), (3.64)

where Aω is the ω-section of A. Here we recall that, for each a, (Ωa,Aa,Pa) is

the probability space carrying IBa and Ra
k,j given η = a. On the probability space

(Ω∗,A∗,P∗), the random variable R
η
k,j is defined as R

η
k,j(ω, θ(·)) = R

η(ω)
k,j (θ(ω)), where

(ω, θ(·)) ∈ Ω∗, θ(·) is an element in
∏

τ∈Ω Ωη(τ) and θ(τ) ∈ Ωη(τ), τ ∈ Ω. The other

random processes µ
η
i and IBη(Q

◦
i (η)) can be similarly defined.
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3.3 Unconditional Gaussian Approximation

In this subsection we shall work with the processes Υ
η
i , µ

η
i and IBη(Q

◦
i (η)). Write

IBa(Q
◦
n(a)) = ϖn(a) + φn(a), (3.65)

where, since Brownian motions have independent increments,

ϖn(a) =
hn−1∑
k=K0

qk∑
j=1

V ◦
k (ak,3j)

1/2Za
k,j +

τn∑
j=1

V ◦
hn
(ahn,3j)

1/2Za
hn,j,

φn(a) =
hn−1∑
k=K0

Lk(ak,3+3qk)
1/2Za

k,1+qk
+ Lhn(akn,3+3τn)

1/2Za
hn,1+τn .

Here Za
i,l, i, l ∈ Z, are iid standard normal random variables. Let Z⋆

i,l, i, l ∈ Z, inde-
pendent of (εj)j∈Z, be also iid standard normal random variables and define

Φn =
hn−1∑
k=K0

qk∑
j=1

V ◦
k (ηk,3j)

1/2Z⋆
k,j +

τn∑
j=1

V ◦
hn
(ηhn,3j)

1/2Z⋆
hn,j,

χn =
hn−1∑
k=K0

Lk(ηk,3+3qk
)1/2Z⋆

k,1+qk
+ Lhn(ηhn,3+3τn)

1/2Z⋆
hn,1+τn .

Since Za
i,l, are iid standard normal, the conditional distribution [ϖn(η)|η = a], namely

the distribution of ϖn(a), is same as that of Φn. Hence

(Φi, χi)i≥N0 =D (ϖi(η), φi(η))i≥N0 . (3.66)

By Jensen’s equality, E[|Lk(ηk,3+3j)
1/2|α] ≤ 3αE(|W̃k,mk

|α). By (3.42),

∞∑
k=K0

P

(
max
1≤j≤qk

|Lk(ηk,3+3j)
1/2Z⋆

k,1+j| ≥ 3k/p
)

≤
∞∑

k=K0

qk
E[|Lk(ηk,3)

1/2Z⋆
k,1|α]

3kα/p

≤
∞∑

k=K0

qk
cαE(|W̃k,mk

|α)
3kα/p

< ∞, (3.67)

which by the Borel-Cantelli Lemma implies

max
i≤n

|χi| = oa.s.(n
1/p). (3.68)

The same argument also implies that maxi≤n |Γi(η)| = oa.s.(n
1/p) and consequently

max
i≤n

|µηi | = oa.s.(n
1/p) (3.69)
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in view of (3.57) with j = 0. Hence, by (3.62) and (3.65), we have maxi≤n |Υ
η
i −

ϖi(η)| = oa.s.(n
1/p). Observe that, by (3.57), (3.58), (3.48) and (3.49), we have the

distributional equality,

(Υ
η
i +Mi(η))i≥N0 =D (S⋄

i )i≥N0 , (3.70)

where we recall (3.43) for the definition of S⋄
n. Then it remains to establish a strong

invariance principle for Φn +Mn(η). To this end, let

Ak,j = V ◦
k (ηk,3j)

1/2Z⋆
k,j + Λk,0(ηk,3j) + Λk,2(ηk,3j), (3.71)

which are independent random variables for j = 1, . . . , qk and k ≥ K0, and let

S♮
n =

hn−1∑
k=K0

qk∑
j=1

Ak,j +
τn∑
j=1

Ahn,j (3.72)

and R♮
n = Φn +Mn(η)− S♮

n. Note that

R♮
n =

hn−1∑
k=K0

[Λk,2(ηk,3+3qk
)− Λk,2(ηk,3)] + [Λhn,2(ηkn,3+3τn)− Λhn,2(ηkn,3)].

Then using the same argument as in (3.67), we have

max
i≤n

|R♮
i | = max

i≤n
|Φi +Mi(η)− S♮

i | = oa.s.(n
1/p). (3.73)

The variance of S♮
n equals to

σ2
n =

hn−1∑
k=K0

qk∑
j=1

∥Ak,j∥2 +
τn∑
j=1

∥Ahn,j∥2 =
hn−1∑
k=K0

qk∥Ak,1∥2 + τn∥Ahn,1∥2. (3.74)

Again by Theorem 1 in Sakhanenko (2006), on the same probability space that defines

(Ak,j)1≤j≤qk, k≥K0 , by the argument in (3.59)–(3.62), there exists a standard Brownian

motion IB such that

max
i≤n

|S♮
i − IB(σ2

i )| = oa.s.(n
1/p). (3.75)

3.4 Regularizing the Gaussian Approximation

In this section we shall regularize the Gaussian approximation (3.75) by replacing the

variance function σ2
i by the asymptotic linear form ϕi or the linear

form iσ2 and the latter is more easily usable. By (3.52), we obtain

V ◦
k (ak,3j) = ∥Fk,3j(ak,3j)∥2 − Λk,0(ak,3j)

2 + ∥Fk,3j+1∥2
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+2E{Fk,3j+1Fk,3j(ak,3j)}
+∥Fk,3j+2(ak,3j)∥2 − Λk,2(ak,3j)

2

+2E{Fk,3j+1Fk,3j+2(ak,3j)}, (3.76)

which, by the expression of Ak,j, implies that

∥Ak,j∥2 = E[V ◦
k (ηk,3j)] + E[Λk,0(ηk,3j) + Λk,2(ηk,3j)]

2

= 3E[W̃ 2
k,mk

+ 2W̃k,mk
(W̃k,2mk

− W̃k,mk
)]. (3.77)

Let γ̃k,i = E(X̃k,0X̃k,i). Then νk := ∥Ak,j∥2/(3mk) has the expression

νk =
1

mk

E[W̃ 2
k,mk

+ 2W̃k,mk
(W̃k,2mk

− W̃k,mk
)]

=

mk∑
i=−mk

γ̃k,i + 2

mk∑
i=1

(1− i/mk)γ̃k,mk+i. (3.78)

We now prove that

νk − σ2 = O

[
Θmk,p +min

l≥0
(Θl,p + l3k(2/p−1))

]
, (3.79)

which converges to 0 if k → ∞. Let X̂k,i = T3k/p(Xi) and γ̂k,i = cov(X̂k,0, X̂k,i) =

E(X̂k,0X̂k,i)− [E(X̂k,0)]
2. Note that if |Xi| ≤ 3k/p, then Xi = X̂k,i. Since Xi ∈ Lp,

|E(X0Xi)− E(X̂k,0X̂k,i)| = |E(X0Xi1|X0|≤3k/p, |Xi|≤3k/p)− E(X̂k,0X̂k,i)

+E(X0Xi1max(|X0|, |Xi|)>3k/p)|
≤ |E(X̂k,0X̂k,i1max(|X0|, |Xi|)>3k/p)|

+|E(X0Xi1max(|X0|, |Xi|)>3k/p)|
≤ 2E[(|X0|+ |Xi|)21|X0|+|Xi|>3k/p ]

= o(3k(2−p)/p). (3.80)

Clearly, we also have E(X̂k,0) = o(3k(2−p)/p). Hence

sup
i

|γ̂k,i − γi| = o(3k(2−p)/p). (3.81)

For all j ≥ 1, we have ∥Wk,j − W̃k,j∥ ≤ j1/2Θmk,2 ≤ j1/2Θmk,p. Then

|EW 2
k,j − EW̃ 2

k,j| ≤ ∥Wk,j − W̃k,j∥∥Wk,j + W̃k,j∥ ≤ 2jΘmk,pΘ0,p. (3.82)

Since limj→∞ j−1EW̃ 2
k,j =

∑mk

i=−mk
γ̃k,i and limj→∞ j−1EW 2

k,j =
∑

i∈Z γ̂k,i, (3.82) im-

plies that ∣∣∣∣∣
mk∑

i=−mk

γ̃k,i −
∑
i∈Z

γ̂k,i

∣∣∣∣∣ ≤ 2Θmk,pΘ0,p. (3.83)
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Let the projection operator Pl· = E(·|Fl) − E(·|Fl−1). Then X̂k,i =
∑

l∈Z PlX̂k,i. By

the orthogonality of Pl, l ∈ Z, and inequality (3.41),

|γ̂k,i| =

∣∣∣∣∣∑
l∈Z

∑
l′∈Z

E[(PlX̂k,0)(Pl′X̂k,i)]

∣∣∣∣∣
≤

∑
l∈Z

∥PlX̂k,0∥∥PlX̂k,i∥ ≤
∞∑
j=0

δj,pδj+i,p. (3.84)

The same inequality also holds for |γi| and |γ̃k,i|. For any 0 ≤ l ≤ mk, we have by

(3.84) that

∞∑
i=l

(|γ̂k,i|+ |γ̃k,i|+ |γi|) ≤ 3
∞∑
i=l

∞∑
j=0

δj,pδj+i,p ≤ 3Θ0,pΘl,p, (3.85)

which entails (3.79) in view of (3.81), (3.83) and (3.78).

Recall (3.74) and (3.75) for σ2
n. Now we shall compare σ2

n with

ϕn =
hn−1∑
k=1

(3k − 3k−1)νk + (n− 3hn−1)νhn . (3.86)

Then ϕn is a piecewise linear function. Observe that, by (2.11),

max
i≤n

|ϕi − σ2
i | ≤ 3max

k≤hn

(mkνk) = o(n(α/p−1)/(α/2−1)). (3.87)

By increment properties of Brownian motions, we obtain

max
i≤n

|IB(ϕi)− IB(σ2
i )| = oa.s.(n

(α/p−1)/(α−2) log n) = oa.s.(n
1/p). (3.88)

Note that by (3.79), ϕi is asymptotically linear with slope σ2. Here we emphasize

that, under (2.10), (2.11), (2.12), a strong invariance principle with the Brownian

motion IB(ϕi) holds in view of (3.45), (3.70), (3.73), (3.75), (3.88) and Lemma 4.1.

However, the approximation IB(ϕi) is not convenient for use since ϕi is not genuinely

linear.

Next, under condition (2.13), we shall linearize the variance function ϕi, so that

one can have the readily applicable form (2.14). Based on the form of ϕi, we write

IB(ϕn) =
hn−1∑
k=1

3k−3k−1∑
j=1

ν
1/2
k Zk,j +

n−3hn−1∑
j=1

ν
1/2
hn

Zhn,j, (3.89)

where Zk,j are i.i.d. standard normal random variables. Define

IB‡(n) =
hn−1∑
k=1

3k−3k−1∑
j=1

Zk,j +
n−3hn−1∑

j=1

Zhn,j, (3.90)
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which is a standard Brownian motion with values at positive integers. Then we can

write

IB(ϕn)− σIB‡(n) =
n∑

i=2

biZi, (3.91)

where (Z2, Z3, Z4, . . .) = (Z1,1, Z1,2, Z2,1, Z2,2, . . . , Z2,6, . . . , Zk,1, . . . , Zk,3k−3k−1 , . . .) is a

lexicographic re-arrangement of Zk,j,

and the coefficients bn = ν
1/2
hn

− σ. Then

ς2n = ∥IB(ϕn)− σIB‡(n)∥2 =
n∑

i=2

b2i

=
hn−1∑
k=1

(3k − 3k−1)(ν
1/2
k − σ)2 + (n− 3hn−1)(ν

1/2
hn

− σ)2 (3.92)

and ς2n is nondecreasing. If limn→∞ ς2n < ∞, then trivially we have

IB(ϕn)− σIB‡(n) = oa.s.(n
1/p). (3.93)

We shall now prove (3.93) under the assumption that limn→∞ ς2n = ∞. Under the

latter condition, note that we can represent IB(ϕn) − σIB‡(n) as another Brownian

motion IB0(ς
2
n), by the Law of the Iterated Logarithm for Brownian motion, we have

limn→∞
IB(ϕn)− σIB‡(n)√

2ς2n log log ς
2
n

= ±1 almost surely. (3.94)

Then (3.93) follows if we can show that

ς2n log log n = o(n2/p). (3.95)

Note that (3.79) and (2.13) imply that 3k(ν
1/2
k − σ)2 = o(32k/p/ log k), which entails

(3.95) in view of (3.92). ♢

4 Some Useful Lemmas

In this section we shall provide some lemmas that are used in Section 3. Lemma

4.1 is a ”gluing” lemma and it concerns how to combine almost sure convergences in

different probability spaces. Lemma 4.2 relates truncated and original moments, and

Lemma 4.3 gives an inequality for moments of maximum sums.

Lemma 4.1 Let (T1,n)n≥1 and (U1,n)n≥1 be two sequences of random variables defined

on the probability space (Ω1,A1,P1) such that T1,n − U1,n → 0 almost surely; let
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(T2,n)n≥1 and (U2,n)n≥1 be another two sequences of random variables defined on the

probability space (Ω2,A2,P2) such that T2,n−U2,n → 0 almost surely. Assume that the

distributional equality (U1,n)n≥1
D
= (T2,n)n≥1 holds. Then we can construct a probability

space (Ω†,A†,P†) on which we can define (T ′
1,n)n≥1 and (U ′

2,n)n≥1 such that (T ′
1,n)n≥1

D
=

(T1,n)n≥1, (U
′
2,n)n≥1

D
= (U2,n)n≥1 and T ′

1,n − U ′
2,n → 0 almost surely in (Ω†,A†,P†).

Proof. LetT1 = (T1,n)n≥1,U1 = (U1,n)n≥1, T2 = (T2,n)n≥1,U2 = (U2,n)n≥1; let µT1|U1

and µU2|T2 denote the conditional distribution of T1 given U1, resp. the conditional

distribution of U2 given T2. Let (Ω†,F †, P †) be a probability space on which there

exists a vector U′
1 distributed as U1. By enlarging (Ω†,F †, P †) if necessary, there

exist random vectors T′
1 and U′

2 on this probability space such that the conditional

distribution of T′
1 givenU′

1 equals µT1|U1 and the conditional distribution ofU′
2 given

U′
1 equals µU2|T2 . Then by U1

D
= T2 we have (T′

1,U
′
1)

D
= (T1,U1) and (U′

1,U
′
2)

D
=

(T2,U2), so that for the components we have T ′
1,n−U ′

1,n → 0 a.s. and U ′
1,n−U ′

2,n → 0

a.s., so that T ′
1,n − U ′

2,n → 0 a.s. ♢

Lemma 4.2 Let X ∈ Lp, 2 < p < α. Then there exists a constant c = cα,p such that

∞∑
i=1

3iP(|X| ≥ 3i/p) +
∞∑
i=1

3iEmin(|X/3i/p|α, |X/3i/p|2) ≤ cE(|X|p). (4.96)

Proof. That the first sum is finite follows from

∞∑
i=1

3iP(|X| ≥ 3i/p) ≤ 3
∞∑
i=1

∫ 3i

3i−1

P(|X|p > u)du ≤ 3E(|X|p). (4.97)

For the second one, let qi = P(3i−1 ≤ |X|p < 3i). Then

∞∑
i=1

3iE(|X/3i/p|21|X|p≥3i) ≤
∞∑
i=1

3i
∞∑

j=1+i

3(j−i)2/pqj

=
∞∑
j=2

j−1∑
i=1

3i3(j−i)2/pqj

= c1

∞∑
j=2

3jqj ≤ c1E(|X|p). (4.98)

for some constant c1 only depending on p and α. Similarly, there exists c2 such that

∞∑
i=1

3iE(|X/3i/p|α1|X|p<3i) ≤
∞∑
i=1

3i
i∑

j=−∞

3(j−i)α/pqj

=
∞∑

j=−∞

∞∑
i=max(1,j)

3i(1−α/p)3jα/pqj ≤ c2E(|X|p).
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For the last relation, we consider two cases
∑0

j=−∞ and
∑∞

j=1 separately. The lemma

then follows from (4.97) and (4.98). It is easily seen that (4.96) also holds with the

factor 3 therein replaced by any θ > 1. In this case the constant c depends on p, α

and θ. ♢

Lemma 4.3 Recall (2.10) and (2.11) for Ξα,p and Mα,p, respectively, and (3.30) for

Wk,l. Then there exists a constant c, only depending of α and p, such that

∞∑
k=1

3k

mk

E(max1≤l≤mk
|Wk,l|α)

3kα/p
≤ cMα,pΘ

α
0,2 + cΞα

α,p + c∥X1∥pp. (4.99)

Proof of Lemma 4.3. Recall (3.39) for the functional dependence measure δk,j,ι.

Since Ta has Lipschitz constant 1, we have

διk,j,ι ≤ E[min(2× 3k/p, |Xi −Xi,{i−j}|)ι]
≤ 2ιE[min(3k/p, |Xj −Xj,{0}|)ι]. (4.100)

We shall apply the Rosenthal-type inequality in Liu, Xiao and Wu (2011): there exists

a constant c, only depending on α, such that∥∥∥∥ max
1≤l≤mk

|Wk,l|
∥∥∥∥
α

≤ cm
1/2
k

[
mk∑
j=1

δk,j,2 +
∞∑

j=1+mk

δk,j,α + ∥T3k/p(X1)∥2

]

+cm
1/α
k

[
mk∑
j=1

j1/2−1/αδk,j,α + ∥T3k/p(X1)∥α

]
≤ c(Ik + IIk + IIIk), (4.101)

where

Ik = m
1/2
k

∞∑
j=1

δj,2 +m
1/2
k ∥X1∥2,

IIk = m
1/α
k

∞∑
j=1

j1/2−1/αδk,j,α,

IIIk = m
1/α
k ∥T3k/p(X1)∥α. (4.102)

Here we have applied the inequality δk,j,2 ≤ δj,2, since Ta has Lipschitz constant 1.

Since
∑∞

j=1 δj,2 + ∥X1∥2 ≤ 2Θ0,2, by (2.11), we obtain the upper bound cMα,pΘ
α
0,2 in

(4.99), which corresponds to the first term Ik in (4.101). For the third term IIIk, we

obtain the bound c∥X1∥pp in (4.101) in view of Lemma 4.2 by noting that |T3k/p(X1)| ≤
min(3k/p, |X1|) and min(|v|α, v2) ≥ min(|v|α, 1).

We shall now deal with IIk. Let β = α/(α − 1), so that β−1 + α−1 = 1; let

λj = (j1/2−1/αδ
p/α
j,p )−1/β. Recall (2.10) for Ξα,p. By Hölder’s inequality,(

∞∑
j=1

j1/2−1/αδk,j,α

)α

≤ Ξα/β
α,p

∞∑
j=1

λα
j (j

1/2−1/αδk,j,α)
α. (4.103)
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Hence, by (4.100) and Lemma 4.2, we complete the proof of (4.99) in view of

∞∑
k=1

3k

mk

IIαk
3αk/p

≤
∞∑
k=1

3k−kα/pΞα/β
α,p

∞∑
j=1

λα
j (j

1/2−1/αδk,j,α)
α

= Ξα/β
α,p

∞∑
j=1

λα
j j

α/2−1

∞∑
k=1

3k−kα/pδαk,j,α

≤ Ξα/β
α,p

∞∑
j=1

λα
j j

α/2−1cα,pδ
p
j,p = cα,pΞ

α
α,p. (4.104)

♢
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Eberlein, E. (1986). On strong invariance principles under dependence assump-

tions. Ann. Probab. 14 260–270.

Eberlein, E. and Taqqu, M. S. (eds.) (1986). Dependence in probability and

statistics: A survey of recent results. Birkhauser, Boston.
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