
Lacunary series and stable distributions

István Berkes and Robert Tichy

Abstract By well known results of probability theory, any sequence of random variables with bounded
second moments has a subsequence satisfying the central limit theorem and the law of the iterated logarithm
in a randomized form. In this paper we give criteria for a sequence (Xn) of random variables to have a
subsequence (Xnk) whose weighted partial sums, suitably normalized, converge weakly to a symmetric
stable distribution with parameter 0 < α < 2.

1 Introduction

It is known that sufficiently thin subsequences of general r.v. sequences behave like i.i.d. sequences. For
example, Chatterji [9], [10] and Gaposhkin [15], [16] proved that if a sequence (Xn) of r.v.’s satisfies
supn EX2

n < ∞, then one can find a subsequence (Xnk) and r.v.’s X and Y ≥ 0 such that

1√
N ∑

k≤N
(Xnk −X)

d−→ N(0,Y ) (1)

and
limsup

N→∞

1√
2N log logN ∑

k≤N
(Xnk −X) = Y 1/2 a.s., (2)

where N(0,Y ) denotes the distribution of the r.v. Y 1/2ζ where ζ is an N(0,1) r.v. independent of Y . Komlós
[19] proved that under supn E|Xn|< ∞ there exists a subsequence (Xnk) and an integrable r.v. X such that

lim
N→∞

1
N

N

∑
k=1

Xnk = X a.s.

and Chatterji [8] showed that under supn E|Xn|p < ∞, 0 < p < 2 the conclusion of the previous theorem can
be changed to

lim
N→∞

1
N1/p

N

∑
k=1

(Xnk −X) = 0 a.s.
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for some X with E|X |p < ∞. Note the randomization in all these examples: the role of the mean and
variance of the subsequence (Xnk) is played by random variables X , Y . On the basis of these and several
other examples, Chatterji [11] formulated the following heuristic principle:

Subsequence Principle. Let T be a probability limit theorem valid for all sequences of i.i.d. random
variables belonging to an integrability class L defined by the finiteness of a norm ∥ · ∥L. Then if (Xn)
is an arbitrary (dependent) sequence of random variables satisfying supn ∥Xn∥L < +∞ then there exists a
subsequence (Xnk) satisfying T in a mixed form.

In a profound paper, Aldous [1] proved the validity of this principle for all limit theorems concerning
the almost sure or distributional behavior of a sequence of functionals fk(X1,X2, . . .) of a sequence (Xn) of
r.v.’s. Most ”usual” limit theorems belong to this class; for precise formulations, discussion and examples
we refer to [1]. On the other hand, the theory does not cover functionals fk containing parameters (as in
weighted limit theorems) or allows limit theorems to involve other type of uniformities. Such uniformities
play an important role in analysis. For example, if from a sequence (Xn) of r.v.’s with finite p-th moments
(p ≥ 1) one can select a subsequence (Xnk) such that

K−1

(
N

∑
i=1

a2
i

)1/2

≤
∥∥ N

∑
i=1

aiXni

∥∥
p ≤ K

(
N

∑
i=1

a2
i

)1/2

for some constant 0 < K < ∞, for every N ≥ 1 and every (a1, . . . ,aN) ∈ RN , then the subspace of Lp

spanned by (Xn) contains a subspace isomorphic to Hilbert space. Such embedding arguments go back to
the classical paper of Kadec and Pelczynski [18] and play an important role in Banach space theory, see
e.g. Dacunha-Castelle and Krivine [12], Aldous [2]. In the theory of orthogonal series and in Banach space
theory we frequently need subsequences ( fnk) of a sequence ( fn) such that ∑∞

k=1 ak fnk converges a.e. or in
norm, after any permutation of its terms, for a class of coefficient sequences (ak). Here we need uniformity
both over a class of coefficient sequences (ak) and over all permutations of the terms of the series. A number
of uniform limit theorems for subsequences have been proved by ad hoc arguments. Révész [22] showed
that for any sequence (Xn) of r.v.’s satisfying supn EX2

n < ∞ one can find a subsequence (Xnk) and a r.v. X
such that ∑∞

k=1 ak(Xnk −X) converges a.s. provided ∑∞
k=1 a2

k < ∞. Under supn ∥Xn∥∞ <+∞, Gaposhkin [15]
showed that there exists a subsequence (Xnk) and r.v.’s X and Y ≥ 0 such that for any real sequence (ak)
satisfying the uniform asymptotic negligibility condition

max
1≤k≤N

|ak|= o(AN), AN =

(
N

∑
k=1

a2
k

)1/2

(3)

we have
1

AN
∑

k≤N
ak(Xnk −X)

d−→ N(0,Y ) (4)

and for any real sequence (ak) satisfying the Kolmogorov condition

max
1≤k≤N

|ak|= o(AN/(log logAN)
1/2) (5)

we have
1

(2AN log logAN)1/2 ∑
k≤N

ak(Xnk −X) = Y 1/2 a.s. (6)

For a fixed coefficient sequence (ak) the above results follow from Aldous’ general theorems, but the
subsequence (Xnk) provided by the proofs depends on (ak) and to find a subsequence working for all (ak)
simultaneously requires a uniformity which is, in general, not easy to establish and it can fail in important
situations. (See Guerre and Raynaud [17] for a natural problem where uniformity is not valid.) In [1],
Aldous used an equicontinuity argument to prove a permutation-invariant version of the theorem of Révész
above, implying that every orthonormal system ( fn) contains a subsequence ( fnk) which, using the standard
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terminology, is an unconditional convergence system. This had been a long standing open problem in the
theory of orthogonal series (see Uljanov [24], p. 48) and was first proved by Komlós [20]. In [3] we used
the method of Aldous to prove extensions of the Kadec-Pelczynski theorem, as well as selection theorems
for almost symmetric sequences. The purpose of the present paper is to use a similar technique to prove
a uniform limit theorem of probabilistic importance, namely the analogue of Gaposhkin’s uniform CLT
(3)–(4) in the case when the limit distribution of the normed sum is a symmetric stable law with parameter
0 < α < 2. To formulate our result, we need some definitions. Using the terminology of [6], call the
sequence (Xn) of r.v.’s determining if it has a limit distribution relative to any set A in the probability space
with P(A)> 0, i.e. for any A ⊂ Ω with P(A)> 0 there exists a distribution function FA such that

lim
n→∞

P(Xn < t | A) = FA(t)

for all continuity points t of FA. By an extension of the Helly-Bray theorem (see [6]), every tight sequence of
r.v.’s contains a determining subsequence. Hence in studying the asymptotic behavior of thin subsequences
of general tight sequences we can assume without loss of generality that our original sequence (Xn) is
determining. By [6], Proposition 2.1, for any continuity point t of the limit distribution function FΩ , the
sequence I{Xn ≤ t} converges weakly in L∞ to some r.v. Gt ; clearly Gs ≤ Gt a.s. for any s ≤ t. (A sequence
(ξn) of bounded r.v.’s is said to converge to a bounded r.v. ξ weakly in L∞ if E(ξnη) −→ E(ξ η) for
any integrable r.v. η . To avoid confusion, we will call ordinary weak convergence of probability measures
distributional convergence and denote it by d−→.) Using a standard procedure (see e.g. Révész [23], Lemma
6.1.4), by choosing a dense countable set D of continuity points of FΩ , one can construct versions of Gt ,
t ∈ D such that, for every fixed ω ∈ Ω , the function Gt(ω), t ∈ D extends to a distribution function. Letting
µ denote the corresponding measure, µ is called the limit random measure of (Xn); it was introduced
by Aldous [1]; for properties and applications see [2], [3], [5], [6]. Clearly, µ can be considered as a
measurable map from the underlying probability space (Ω ,F ,P) to the space M of probability measures
on R equipped with the Prohorov metric π . It is easily seen that for any A with P(A)> 0 and any continuity
point t of FA we have

FA(t) = EA(µ(−∞, t)), (7)

where EA denotes conditional expectation given A. Note that µ depends on the actual r.v.’s Xn, but the dis-
tribution of µ in (M ,π) depends solely on the distribution of the sequence (Xn). The situation concerning
the unweighted CLT for lacunary sequences can now be summarized by the following theorem.

Theorem 1. Let (Xn) be a determining sequence of r.v.’s with limit random measure µ . Then there exists a
subsequence (Xnk) satisfying, together with all of its subsequences, the CLT (1) with suitable r.v.’s X and
Y ≥ 0 if and only if ∫ ∞

−∞
x2dµ(x)< ∞ a.s. (8)

The sufficiency part of the theorem is contained in Aldous’general subsequence theorems in [1]; the
necessity was proved in our recent paper [7]. Note that the condition for the CLT for lacunary subsequences
of (Xn) is given in terms of the limit random measure of (Xn) and this condition is the exact analogue of
the condition in the i.i.d. case, only the common distribution of the i.i.d. variables is replaced by the limit
random measure. Note also that the existence of second moments of (Xn) (or the existence of any moments)
is not necessary for the conclusion of Theorem 1.

In this paper we investigate the analogous question in case of a nonnormal stable limit distribution,
i.e. the question under what conditions a sequence (Xn) of r.v.’s has a subsequence (Xnk) whose weighted
partial sums, suitably normalized, converge weakly to an α-stable distribution, 0<α < 2. Let, for c> 0 and
0<α < 2, Gα ,c denote the distribution function with characteristic function exp(−c|t|α) and let S= S(α ,c)
denote the class of symmetric distributions on R with characteristic function φ satisfying

φ(t) = 1− c|t|α +o(|t|α) as t → 0. (9)

Our main result is
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Theorem 2. Let 0<α < 2, c> 0 and let (Xn) be a determining sequence of r.v.’s with limit random measure
µ . Assume that µ ∈ S(α ,c) with probability 1. Then there exists a subsequence (Xnk) such that for any real
sequence (ak) satisfying

max
1≤k≤N

|ak|= o(AN), AN =

(
N

∑
k=1

|ak|α
)1/α

(10)

we have

A−1
N

N

∑
k=1

akXnk
d−→ Gα ,c.

Condition (9) holds provided the corresponding (symmetric) distribution function F satisfies

1−F(x) = c1x−α +β (x)x−α , x > 0

where c1 > 0 is a suitable constant, β (x) is non-increasing for x ≥ x0 and limx→∞ β (x) = 0. (See Berkes and
Dehling [4], Lemma 3.2.) Apart from the monotonicity condition, this is equivalent to the fact that F is in
the domain of normal attraction of a symmetric stable distribution. (See e.g. Feller [14], p. 581.) It is natural
to ask if the conclusion of Theorem 2 remains valid (with a suitable centering factor) assuming only that
µ ∈ S a.s. where S denotes the domain of normal attraction of a fixed stable distribution. From the theory
in [1] it follows that the answer is affirmative in the unweighted case ak = 1, but in the uniform weighted
case the question remains open. Symmetry plays no essential role in the proof of Theorem 2; it is used
only in Lemma 2 and at the cost of minor changes in the proof, (9) can be replaced by a condition covering
nonsymmetric distributions as well. But since we do not know the optimal condition, we restricted our
investigations to the case (9) where the technical details are the simplest and the idea of the proof becomes
more transparent.

Given a sequence (X∗
n ) of r.v.’s and a random measure µ defined on a probability space (Ω ,F ,P) such

that X∗
n are conditionally i.i.d. given µ with conditional distribution µ , the limit random measure of (X∗

n )
is easily seen to be µ . Thus in the case µ ∈ S(α ,c) a.s., (X∗

n ) provides a simple example for a sequence
satisfying the conditions of Theorem 2. (Since (X∗

n ) is exchangeable, in this case the conclusion of Theorem
2 holds for the whole sequence (X∗

n ) without passing to any subsequence.) Theorem 2 shows that any
deterministic sequence (Xn) with a limit random measure µ satisfying µ ∈ S(α ,c) a.s. has a subsequence
(Xnk) whose weighted partial sums behave, in a uniform sense, similarly to those of (X∗

n ).

2 Proof of Theorem 2

As the first step of the proof, we select a sequence n1 < n2 < .. . of integers such that, after a suitable
discretization of (Xn), we have

P(Xnk ∈ J|Xn1 , . . . ,Xnk−1)(ω)−→ µ(ω,J) a.s. (11)

for a large class of intervals J. This step follows exactly Aldous [1], see Proposition 11 of [1] for details.
Let (Yn) be a sequence of r.v.’s on (Ω ,F ,P) such that, given X and µ , the r.v.’s Y1,Y2, . . . are conditionally
i.i.d. with distribution µ , i.e.,

P(Y1 ∈ B1, . . . ,Yk ∈ Bk|X,µ) =
k

∏
i=1

P(Yi ∈ Bi|X,µ) a.s. (12)

P(Yj ∈ B|X,µ) = µ(B) a.s. (13)

for any j,k and Borel sets B,B1, . . . ,Bk on the real line. Such a sequence (Yn) always exists after redefining
(Xn) and µ on a suitable, larger probability space; for example, one can define the triple ((Xn),µ ,(Yn)) on
the product space R∞ ×M ×R∞ as done in [1], p. 72. This redefinition will not change the distribution
of the sequence (Xn) and thus by Proposition 2.1 of [6] it remains determining. Since the random measure



Lacunary series and stable distributions 5

µ depends on the variables Xn themselves and not only on the distribution of (Xn), this redefinition will
change µ , but not the joint distribution of (Xn) and µ on which our results depend. Using (11) and a
martingale argument, in [1], Lemma 12 it is shown that

Lemma 1. For every σ(X)-measurable r.v. Z and any j ≥ 1 we have

(Xnk ,Z)
d−→ (Yj,Z) as k → ∞.

We now construct a further subsequence of (Xnk) satisfying the conclusion of Theorem 2. By reindexing
our variables, we can assume that Lemma 1 holds with nk = k. For our construction we need some auxil-
iary considerations. For a (nonrandom) measure µ ∈ S(α,c), the corresponding characteristic function φ
satisfies

φ(t) = 1− c|t|α +β (t)|t|α , t ∈ R (14)

where β is a bounded continuous function on R with β (0) = 0. Given µ1,µ2 ∈ S(α ,c) with characteristic
functions φ1,φ2 and corresponding functions β1,β2 in (14), define

ρ(µ1,µ2) = sup
0≤|t|≤1

|β1(t)−β2(t)|+
∞

∑
k=0

1
2k sup

2k≤|t|≤2k+1
|β1(t)−β2(t)|. (15)

Clearly, ρ satisfies the triangle inequality and if ρ(µ1,µ2) = 0, then β1(t) = β2(t) and consequently
φ1(t) = φ2(t) for all t ∈ R and thus µ1 = µ2. Hence, ρ is a metric on S(α ,c). If µ,µ1,µ2, . . . ∈ S(α ,c)
with corresponding characteristic functions φ ,φ1,φ2, . . . and functions β ,β1,β2, . . ., then ρ(µn,µ)→ 0 im-

plies that βn(t)→ β (t) and consequently φn(t)→ φ(t) uniformly on compact intervals and thus µn
d→ µ .

Conversely, if µn
d→ µ , then φn(t) → φ(t) uniformly on compact intervals and thus βn(t) → β (t) uni-

formly on compact intervals not containing 0. Note that limt→0 βn(t) = 0 for any fixed n by the definition
of S(α,c); if this relation holds uniformly in n, then βn(t)→ β (t) will hold uniformly also on all compact
intervals containing 0 and upon observing that (14) implies |β (t)| ≤ |t|−α |φ(t)−1|+ c ≤ c+2 for |t| ≥ 1
and thus the total contribution of the terms of the sum in (15) for k ≥ M is ≤ 4(c+2)2−M , it follows that
ρ(µn,µ)→ 0. Thus if for a class H ⊂ S(α,c) we have limt→0 β (t) = 0 uniformly for all functions β corre-
sponding to measures in H, then in H convergence of elements in Prohorov metric and in the metric ρ are
equivalent.

Let now φ(t) = φ(t,ω) denote the characteristic function of the random measure µ = µ(ω). By the
assumption µ ∈ S(α ,c) a.s. of Theorem 2, we have

φ(t,ω) = 1− c|t|α +β (t,ω)|t|α , t ∈ R, ω ∈ Ω (16)

where limt→0 β (t,ω) = 0 a.s. Let ξn(ω) = sup|t|≤1/n |β (t,ω)|, then limn→∞ ξn(ω) = 0 a.s. and thus by
Egorov’s theorem (see [13]) for any ε > 0 there exists a measurable set A ⊂ Ω with P(A)≥ 1−ε such that
limn→∞ ξn(ω) = 0 and consequently limt→0 β (t,ω) = 0 uniformly on A. Considering A as a new probability
space, we will show that there exists a subsequence (Xnk) (depending on A) satisfying the conclusion of
Theorem 2 together with all its subsequences. By a diagonal argument we can get then a subsequence (Xnk)
satisfying the conclusion of Theorem 2 on the original Ω . Thus without loss of generality we can assume
in the sequel that the function β (t,ω) in (16) satisfies limt→0 β (t,ω) = 0 uniformly in ω ∈ Ω and thus by
the remarks in the previous paragraph, in the support of the random measure µ the Prohorov metric and the
metric ρ generate the same convergence.

Lemma 2. Let µ1,µ2 ∈ S(α,c) satisfying (9), let Z1, . . . ,Zn and Z∗
1 , . . . ,Z

∗
n be i.i.d. sequences with respec-

tive distributions µ1, µ2. Let (a1, . . . ,an) ∈ Rn, An = (∑n
k=1 |ak|α)1/α , δn = max1≤k≤n |ak|/An. Then for

|t|δn ≤ 1 we have ∣∣∣∣∣E exp

(
itA−1

n

n

∑
k=1

akZk

)
−E exp

(
itA−1

n

n

∑
k=1

akZ∗
k

)∣∣∣∣∣≤ |t|α ρ(µ1,µ2) (17)

where ρ is defined by (15).
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Proof. Letting φ1, φ2 denote the characteristic function of the Zk’s resp. Z∗
k ’s and using (14), (10) and the

inequality ∣∣∣∣∣ n

∏
k=1

xk −
n

∏
k=1

yk

∣∣∣∣∣≤ n

∑
k=1

|xk − yk|,

valid for all |xk| ≤ 1, |yk| ≤ 1 we get that for |t|δn ≤ 1 the left hand side of (17) equals∣∣∣∣∣ n

∏
k=1

φ1(tak/An)−
n

∏
k=1

φ2(tak/An)

∣∣∣∣∣≤ n

∑
k=1

|φ1(tak/An)−φ2(tak/An)|

≤
n

∑
k=1

|β1(tak/An)−β2(tak/An)||tak/An|α ≤ sup
|x|≤|t|δn

|β1(x)−β2(x)|
n

∑
k=1

|tak/An|α

= |t|α sup
|x|≤|t|δn

|β1(x)−β2(x)| ≤ |t|α ρ(µ1,µ2).

Remark. The proof of Lemma 2 shows that for any t ∈ R the left hand side of (17) cannot exceed
|t|α sup|x|≤|t|δn

|β1(x)−β2(x)|, a fact that will be useful in the sequel.

Given probability measures νn,ν on the Borel sets of a separable metric space (S,d) we say, as usual,

that νn
d−→ ν if ∫

S
f (x)dνn(x)−→

∫
S

f (x)dν(x) as n → ∞ (18)

for every bounded, real valued continuous function f on S. (18) is clearly equivalent to

E f (Zn)−→ E f (Z) (19)

where Zn,Z are r.v.’s valued in (S,d) (i.e. measurable maps from some probability space to (S,d)) with
distribution νn,ν .

Lemma 3. (see [21]). Let (S,d) be a separable metric space and let ν ,ν1,ν2, . . . be probability measures

on the Borel sets of (S,d) such that νn
d−→ ν . Let G be a class of real valued functions on (S,d) such that

(a) G is locally equicontinuous, i.e. for for every ε > 0 and x ∈ S there is a δ = δ (ε,x)> 0 such that y ∈ S,
d(x,y)≤ δ imply | f (x)− f (y)| ≤ ε for every f ∈ G .

(b) There exists a continuous function g ≥ 0 on S such that | f (x)| ≤ g(x) for all f ∈ G and x ∈ S and∫
S

g(x)dνn(x)−→
∫

S
g(x)dν(x) (< ∞) as n → ∞. (20)

Then ∫
S

f (x)dνn(x)−→
∫

S
f (x)dν(x) as n → ∞ (21)

uniformly in f ∈ G .

Assume now that (Xn) satisfies the assumptions of Theorem 2, fix t ∈R and for any n ≥ 1, (a1, . . . ,an)∈
Rn let

ψ(a1, . . . ,an) = E exp

(
itA−1

n

n

∑
k=1

akYk

)
, (22)

where An = (∑n
k=1 |ak|α)1/α and (Yk) is the sequence of r.v.’s defined before Lemma 1. We show that for

any ε > 0 there exists a sequence n1 < n2 < · · · of integers such that

(1− ε)ψ(a1, . . . ,ak)≤ E exp

(
itA−1

k

k

∑
i=1

aiXni

)
≤ (1+ ε)ψ(a1, . . . ,ak) (23)
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for all k ≥ 1 and all (ak) satisfying (10); moreover, (23) remains valid for every further subsequence of
(Xnk) as well. To construct n1 we set

Q(a,n, ℓ) = exp
(
itA−1

ℓ (a1Xn +a2Y2 + · · ·+aℓYℓ)
)

R(a, ℓ) = exp
(
itA−1

ℓ (a1Y1 +a2Y2 + · · ·+aℓYℓ)
)

for every n ≥ 1, ℓ≥ 2 and a = (a1, . . . ,aℓ) ∈ Rℓ. We show that

E
{

Q(a,n, ℓ)
ψ(a)

}
−→ E

{
R(a, ℓ)
ψ(a)

}
as n → ∞ uniformly in a, ℓ. (24)

(The right side of (24) equals 1.) To this end we recall that, given X and µ , the r.v.’s Y1,Y2, . . . are condi-
tionally i.i.d. with common conditional distribution µ and thus, given X,µ and Y1, the r.v.’s Y2,Y3, . . . are
conditionally i.i.d. with distribution µ . Thus

E
(
Q(a,n, ℓ)|X,µ

)
= ga,ℓ(Xn,µ) (25)

and
E
(
R(a, ℓ)|X,µ,Y1

)
= ga,ℓ(Y1,µ), (26)

where

ga,ℓ(u,ν) = E exp

(
itA−1

ℓ

(
a1u+

ℓ

∑
i=2

aiξ
(ν)
i

))
(u ∈ R1 , ν ∈ S)

and (ξ (ν)
n ) is an i.i.d. sequence with distribution ν . Integrating (25) and (26), we get

E
(
Q(a,n, ℓ)

)
= Ega,ℓ(Xn,µ) (27)

E
(
R(a, ℓ)

)
= Ega,ℓ(Y1,µ) (28)

and thus (24) is equivalent to

E
ga,ℓ(Xn,µ)

ψ(a)
−→ E

ga,ℓ(Y1,µ)
ψ(a)

as n → ∞, uniformly in a, ℓ. (29)

We shall derive (29) from Lemmas 1– 3. Recall that ρ is a metric on S = S(α,c); the remarks at the
beginning of this section show that on the support of µ the metric ρ and the Prohorov metric π induce the
same convergence and thus the same Borel σ -field; thus the limit random measure µ , which is a random
variable taking values in (S,π), can be also regarded as a random variable taking values in (S,ρ). Also, µ
is clearly σ(X) measurable and thus (Xn,µ)

d−→ (Y1,µ) by Lemma 1. (Recall that by reindexing, Lemma
1 can be assumed to hold for nk = k.) Hence, (29) will follow from Lemma 3 (note the equivalence of (18)
and (19)) if we show that the class of functions{

ga,ℓ(t,ν)
ψ(a)

}
(30)

defined on the product metric space (R× S , λ × ρ) (λ denotes the ordinary distance on R) satisfies
conditions (a),(b) of Lemma 3. To see the validity of (a) let us note that by (12), (13), Yn are conditionally
i.i.d. with respect to µ with conditional distribution µ , moreover, we assumed without loss of generality
that the characteristic function φ(t,ω) of µ(ω) satisfies (16) with limt→0 β (t,ω) = 0 uniformly in ω and
thus applying Lemma 2 with φ1(t) = φ(t,ω) and φ2(t) = exp(−c|t|α) and using (10) and the remark after
the proof of Lemma 2 it follows that there exists an integer n0 and a positive constant c0 such that ψ(a)≥ c0
for n ≥ n0 and all (ak). Thus the validity of (a) follows from Lemma 2; the validity of (b) is immediate
from |ga,ℓ(u,ν)| ≤ 1. We thus proved relation (29) and thus also (24), whence it follows (note again that
the right side of (24) equals 1) that
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ψ(a)−1E exp
(
itA−1

ℓ (a1Xn +a2Y2 + · · ·+aℓYℓ)
)
−→ 1 (31)

as n → ∞, uniformly in ℓ,a. Hence given ε > 0, we can choose n1 so large that

|E exp
(
itA−1

ℓ (a1Xn +a2Y2 + · · ·+aℓYℓ)
)
−E exp(itA−1

ℓ (a1Y1 +a2Y2 + · · ·+aℓYℓ))|

≤ ε
2

ψ(a1, . . . ,aℓ) (32)

for every ℓ,a and n ≥ n1. This completes the first induction step.
Assume now that n1, . . . ,nk−1 have already been chosen. Exactly in the same way as we proved (31), it

follows that for ℓ > k

ψ(a)−1E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ak−1Xnk−1 +akXn +ak+1Yk+1 + · · ·+aℓYℓ)
)

−→ ψ(a)−1E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ak−1Xnk−1 +akYk + · · ·+aℓYℓ)
)

as n → ∞

uniformly in a and ℓ. Hence we can choose nk > nk−1 so large that

E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ak−1Xnk−1 +akXn +ak+1Yk+1 + · · ·+aℓYℓ)
)

−E exp
(
itA−1

ℓ (a1Xn1 + · · ·+ak−1Xnk−1 +akYk + · · ·+aℓYℓ)
)

(33)

≤ ε
2k ψ(a1, . . . ,aℓ)

for every (a1, . . . ,aℓ) ∈ Rℓ, ℓ > k and n ≥ nk. This completes the k-th induction step; the so constructed
sequence (nk) obviously satisfies

E exp
(
itA−1

ℓ (a1Xn1 + · · ·+aℓXnℓ)
)
−E exp

(
itA−1

ℓ (a1Y1 + · · ·+aℓYℓ)
)

≤ εψ(a1, . . . ,aℓ)

for every ℓ ≥ 1 and (a1, . . . ,aℓ) ∈ Rℓ, i.e. (23) is valid. Since in the k-th induction step nk was chosen in
such a way that the corresponding inequalities (32) (for k = 1) and (33) (for k > 1) hold not only for n = nk,
but for all n ≥ nk as well, relation (23) remains valid for any further subsequence of (Xnk).

We can now easily complete the proof of Theorem 2. Letting ψ(a1, . . . ,an, t) denote the function de-
fined by (22), the validity of (23) for (Xnk) and its further subsequences and a diagonal argument yield a
subsequence (Xnk) such that for all rational t and all rational ε > 0 we have

(1− ε)ψ(a1, . . . ,ak, t)≤ E exp

(
itA−1

k

k

∑
i=1

aiXni

)
≤ (1+ ε)ψ(a1, . . . ,ak, t) (34)

for k ≥ k0(t,ε) and all (an). Recall now that without loss of generality we assumed that the characteristic
function φ(t,ω) of µ(ω) satisfies (16) where limt→0 β (t,ω) = 0 uniformly for ω ∈ Ω . Applying Lemma 2
with φ1(t) = φ(t,ω), φ2(t) = exp(−c|t|α), using the Remark after the proof of the lemma and integrating
with respect to ω we get

|φ(a1, . . . ,ak, t)− exp(−c|t|α)| ≤ |t|α β ∗(|t|δk) (35)

for all k ≥ 1, t ∈ R and all (ak), where β ∗(t) is a function satisfying limt→0 β ∗(t) = 0 and δk =
max1≤ j≤k |a j|/Ak. Since δk → 0 by (10), relations (34) and (35) imply

E exp

(
itA−1

k

k

∑
i=1

aiXni

)
−→ exp(−c|t|α) as k → ∞

for any rational t and any (ak) satisfying (10), and consequently

A−1
k

k

∑
i=1

aiXmi
d−→ Gα,c.
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This completes the proof of Theorem 2.
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