
Hardware Secured, Password-based
Authentication for

Smart Sensors for the Industrial Internet of
Things

Thomas W. Pieber1, Thomas Ulz1, Christian Steger1, and Rainer Matischek2

1 Graz University of Technology - Institute for Technical Informatics, Graz, Austria
{thomas.pieber, thomas.ulz ,steger}@tugraz.at
2 Infineon Technologies Austria AG, Graz, Austria

rainer.matischek@infineon.com

Abstract. Sensors are a vital component for the Internet of Things.
These sensors gather information about their environment and pass this
information to control algorithms and/or actuators. To operate as effec-
tive as possible the sensors need to be reconfigurable, which allows the
operators to optimize the sensing activities. In this work we focus on the
mechanisms of such reconfiguration possibilities. As the reconfiguration
can also be used to manipulate the sensors (and their attached systems)
in a subtle way, the security of the reconfiguration interface is of ut-
most importance. Within this work we test a lightweight authentication
method for use on a smart sensor and describe a possible implementa-
tions of the authentication mechanism on a hardware security module.

1 Introduction

In the Internet of Things (IoT) sensors are key components. They create the
bulk of the information needed to control their environment according to the
wishes of the operator. They furthermore monitor the environment and need to
make decisions if the monitored environment is changing in a way that needs
the operators’ attention. The sensors are equipped with some sort of microcon-
troller, software, energy source, communication mechanism, and most likely an
interface for configuring the software and the decision making. This interface
poses a threat to the integrity and trustworthiness of the sensor itself and, in
the long run, to the whole system. In order to become a trustworthy system
the configuration- and sensor data must be protected against all adversaries.
To accomplish this, the sensors can be equipped with tamper resistant hard-
ware security modules (hereafter HSM or security controller). This HSM on
a smart sensor can perform critical operations during the configuration of the
device and during communication of sensor data to the outside world. These
critical operations include the encryption of sensor data, establishing a secured
and authenticated channel to maintenance personnel, and the secured storage of
configuration- and authentication data and cryptographic keys.

The authentication of users that can see and manipulate the confidential
settings of the sensor is one of the core features that a secured system needs.
This process not only blocks others from accessing the confidential information
but also enforces that only trusted personnel can manipulate the settings. One
of the most convenient and widely used methods of authentication is the use of
passwords. These passwords can be remembered by the trusted operators and
take the function of a shared secret. In a conventional system the user shows the
knowledge of the shared secret by directly entering it on the used device. In the
case of remote authentication, as it is the case with smart sensors, the password
must be transmitted securely to the verifying party. In an unconstrained device
this would be accomplished by securing the channel against eavesdroppers and
then sending the password over the secured channel. For resource constrained
devices this method is impractical. Therefore, methods that perform the authen-
tication alongside the establishment of the secured channel have been developed.
This is not only faster than performing these operations sequentially, but also
more efficient in terms of energy usage, computation steps needed, and mem-
ory allocated on the constrained device. At this step an HSM with dedicated
cryptographic hardware can also perform these steps faster, more efficient, and
in a more secured fashion compared to a normal microcontroller. The HSM can
additionally store the users’ credentials in the tamper resistant memory, keeping
information leakage as low as possible.

A HSM is typically very limited in terms of general computational power
and available memory. This entails that the used protocols must be lightweight
in those parameters. This is additionally challenged by the energy constraints
on the smart sensor. As such sensors might be operated using battery power,
the cryptographic challenging (and therefore energy hungry) functions must be
reduced to a minimum to keep the sensor alive as long as possible.

In this work we examined the use of a lightweight authentication method for
smart sensors. Therefore, we used simulation techniques to design and imple-
ment a prototype application and tested the results on an Infineon type security
controller.

The remainder of this paper is structured as follows: In Section 2 the prereq-
uisites for the implementation and related works are stated. The design questions
and the approaches are elaborated in Section 3. Details on the implementation
are given in Section 4. The 5th section is dedicated to the evaluation of the
authentication protocol and answers why the used protocol and hardware is
suitable for smart sensors. Possible future work is stated in Section 6. The paper
concludes with Section 7.

2 Related Work

To perform a secured authentication a key agreement protocol needs to be used.
the most widely used protocol for this task is the Diffie-Hellman key exchange [1].
This protocol defines public and private keys. After the exchange of the public
keys a shared secret can be calculated. The security of that scheme is based on

the Computational Diffie-Hellman problem. However, this protocol alone is not
able to authenticate the communicating parties.

The authentication of users is a crucial part of a secured communication
as an adversary can impersonate the other communication partner and per-
form a man-in-the-middle attack. Typically, the authentication is done with a
shared secret - a password. There are many algorithms that use passwords for
authentication. One of them is proposed by M. Peyravian and N. Zunic [2]. This
protocol is especially well-suited for use in microcontrollers as the only crypto-
graphic function is a collision-resistant hash function H and therefore uses very
little computational effort. In this protocol the user sends his username (un)
and a nonce (ru) to the server which replies with another nonce (rs). The user,
knowing the password (pw), calculates the function M = H(H(un, pw), ru, rs)
and sends the resulting M to the server. The server then uses a lookup-table to
get the H(un, pw) matching to the username and can verify M. This protocol
can authenticate a user against the server but does not provide the needed se-
curity on its own. This has to be done beforehand with a key exchange. This,
on the other hand, needs more computational time as the two protocols need to
be executed. Another, newer protocol was proposed by I. Liao, C. Lee, and M.
Hwang [3]. In this protocol a message pair is exchanged during the registration
and further three messages need to be sent for the authentication. This proto-
col, when executed with ECC, requires four multiplications, two additions, five
hash-operations and one random number. Additionally to those operations, the
operations for securing the channel in the first place have to be added.

There are also protocols that perform a key agreement while authenticating
the user to the server. One of the first protocols that perform an authenticated
key exchange is the EKE protocol proposed by S. M. Bellowin and M. Merrit
proposed [4]. This protocol is the predecessor to most modern protocols. It works
by symmetrically encrypting a public key and session key with the password.
This is also the weak part of this protocol as S. Halevi and H. Krawczyk [5]. They
say that it is not wise to use a password (or any other low-entropy key) as a key
to a cryptographic function. The term “low-entropy” means that even a random
string of ASCII-characters uses only the letters from 20 to 126 (=106) of all 256
possible 8-bit characters. This means that more than half of the possibilities are
not used and therefore such strings should not be used for encryption, only for
authentication.

There are many variants of this protocol in the literature such as [6–10].
The Gennaro-Lindell PAKE protocol from [10] can be proven secure in the stan-
dard model of cryptography. A computationally less expensive protocol is the
SPAKE-protocol from [6]. This protocol was proposed by M. Abdalla and D.
Pointcheval and is proven to be secure under the random oracle model. It is also
very efficient as it only needs two messages to be exchanged. The whole protocol,
when implemented with ECC, uses only six multiplications, two additions, five
hash-operations, and one random number. Abdalla states in [11] that:

[. . .] the simple password-authenticated key exchange protocol [. . .] to
which we refer as SPAKE [. . .] is among the most efficient PAKE schemes
based on the EKE protocol.

3 Design

There are two important questions to be answered in order to design an au-
thentication mechanism for smart sensors. (I) In which situation of the sensor’s
lifecycle is this authentication going to be used? (II) What hardware can be used
in order to perform the critical steps - and what costs / benefits come with that
hardware?

The answers to these questions are intertwined. The configuration of the
sensor system should be able to be performed at any time during the sensor’s
lifecycle. That means that the configuration interface might not be connected
to any power source or even the controller storing the configuration data is not
connected at all (e.g. during the production of the system parts). This leads to
the use of Near Field Communication (NFC) as a communication mechanism
and energy source for the chip containing the (confidential) parameters. This
entails that a security controller that is capable of using an NFC antenna is
needed. One controller that is capable of such operation is used in [12]. The
use of this controller furthermore comes with the benefit that the cryptographic
functions, necessary during the communication, can be performed with the har-
vested energy and do not consume the limited energy source on board of the
sensor.

Another requirement that comes from using the same authentication method
throughout the entire lifecycle of the sensor, is the possibility of changing cryp-
tographic keys, encryption parameters, usernames and passwords. This can be
subsumed with the term Bring Your Own Key / Encryption (BYOK / BYOE)
[13]. With the use of such methods it can be assured that the device cannot
be read by anyone except the authorized persons. This rises the need for a se-
cure user authentication scheme. The authentication of the sensor itself can be
performed by only sharing the password with one only one sensor.

The SPAKE-protocol introduced in [6] is a suitable protocol for establishing
an authenticated secure link between the trustworthy sensor and the user. This
protocol performs a Diffie-Hellman key agreement to generate the session key
for the encrypted messages. To authenticate the user a mask is calculated that
is applied to the public keys of both partners. At the remote end the mask is
removed and the key agreement finishes. If the calculated masks do not match
the resulting key will be different and the communication cannot be performed.

Because of the reduced memory consumption on the smart sensor and the
sufficient hardware acceleration of the secure element, elliptic curve cryptography
(ECC) was chosen to perform the key agreement and authentication. In Table

1 the SPAKE2 algorithm using ECC is shown. There KA
!
= KB and therefore

secret symmetric the key skA = skB .

Table 1. Design of the ECC implementation of the SPAKE2 algorithm [6]

public information: G,H(·), uA, uB

private shared information: password

User A User B

x = rand() y = rand()

X = xG; M = H(uA)G Y = yG; N = H(uB)G

X∗ = X + (password)M Y ∗ = Y + (password)N

X∗ →
← Y ∗

N = H(uB)G M = H(uA)G

KA = x(Y ∗ + Inv((password)N)) KB = y(X∗ + Inv((password)M))

skA = H(H(uA), H(uB), X∗, Y ∗, password,KA)

skB = H(H(uA), H(uB), X∗, Y ∗, password,KB)

The use of a special hardware for the authentication yields some constraints
on what operations can be used to perform the authentication. Such constraints
can come from be the available memory of the HSM, the computational speed,
the energy intake during the computation, and the hardware support of crypto-
graphic functionalities.

The selected HSM supports ECC operations up to 256 bits and SHA256.
Therefore, the final implementation only supports curves with 256-bit param-
eters and uses the SHA256 algorithm to perform the final key generation and
key expansion for the username and password. The constraints on the memory
entail a maximum of different curves and users.

3.1 Evaluation Design

The evaluation of the implementation against the reference from Googles Weave
project [14] cannot be performed, as currently fundamental differences between
that implementation and the description of the protocol in [6] exist. Most no-
tably Googles design uses fixed points for M and N and they do not use a
Key-Derivation-Function to generate the session key - this is a mistake denoted
in [6] that would render the authentication insecure. Furthermore, Google uses
224-bit parameters while this implementation of SPAKE2 uses 256-bit. There-
fore, the evaluation will concentrate on the performance of our implementation
of the SPAKE2-protocol on the HSM.

To evaluate the performance of the protocol the security controller commu-
nicates with an implementation on a laptop computer over an NFC interface.
To get a complete picture of the protocol-performance the round-trip time for
packets with different lengths is the baseline. For further testing a version of the
SPAKE2 protocol was deployed on an NFC enabled Android device. There the
whole process for authentication and writing sample configurations was moni-
tored.

Fig. 1. Prototype-hardware used for evaluating the performance

For further comparison, two variants of the protocol are implemented on the
security controller. One that is optimized for low memory usage and one that
has low computing times at the cost of increased memory consumption. These
two versions are then compared against each other to evaluate the performance
change if the cryptographic operations for authentication are reduced to a min-
imum. To demonstrate the capabilities of using different curves and users two
curves and users should be supported.

4 Implementation

To test the implementation on the HSM a command structure based on Ap-
plication Protocol Data Units (APDUs) has been defined. To be able to test
the performance of the single steps of the protocol a command for every oper-
ation was defined. The operators’ device sends the necessary commands to the
HSM, retrieves the answers from the HSM, takes timing measurements, and asks
the operator for the desired operation and, if necessary for the authentication
credentials.

Figure 1 shows the authentication interface on the NFC-enabled smartphone
asking the operator for the credentials. This test version is configured to emulate
a user and has the demo credentials entered. The implementations support the
handling of arbitrary ECC curves; it therefore has a setting to insert the curve
parameters manually. The buttons visible can generate the local public key and
generate the final key after the communication is complete. After the authenti-
cation is finished successfully the operator can view the device’s configuration,
alter the received configurations, and deploy an altered one.

Fig. 2. Communication structure for fine granular evaluation

5 Performance Evaluation

The measurement of the bare communication with different sized payloads is
performed with the echo command. If the user is authenticated this command
returns the payload, otherwise an empty packet with an error number is returned.
As expected, the time used for communication increases linearly with the payload
length. Also the time for communication approximately doubles if the payload is
also sent back. When the corresponding time is subtracted of the communication
time of other commands, it can be evaluated how long the operations on the
secure element take to perform.

As expected, the timing of the authenticated echo request is slightly more
than double of the unauthenticated one. This is because the data has to be sent
back again and some more internal computation has to be done.

In Figure 2 the communication structure for evaluation purposes is shown.
It comprises of the calculations on the two sides of the communication and the
communication itself.
The average timing of generating the public key on the HSM is about 218800 µs.
Considering that the communication of one empty packet and one packet with
64 bytes payload takes on average 8000 µs, one can conclude that the necessary
calculations can be performed in 210800 µs or about 210 ms. The key deriva-
tion (KA and KB) also takes about 200 ms. The calculation of the key from
the users credentials and the shared secret uses approximately 37 ms. All those
measurements were made 1000 times. The distribution of the values is gaussian.
The gaussian parameters for the operations can be found in Table 2. With those
numbers we can estimate that the whole authenticated key exchange can be
performed in about 426 ms. The time to initialize the users is negligible as only
the credentials need to be saved. Other methods like combining ECDH and the
protocol proposed in [3] take approximately an equal amount of operations on
every run but require additional messages to be sent and perform cryptographic

Table 2. Timings of the different operations

Operation (low-mem) Mean [µs] Sigma [µs]

unauthSend(64b) 8023 45

sendKey 8295 61

generatePubKey 218813 205

calculateSharedSecret 203548 142

calculateKey 42381 68

Operation (low-comp) Mean [µs] Sigma [µs]

generatePubKey 74077 67

calculateSharedSecret 67858 125

calculateKey 39554 49

initUser 91002 28

initMachine 12453 + 18
43542/User

changeMachine 273919 170

functions on initializations of new users. A comparison of the necessary opera-
tions is shown in Table 3.
If the operations are altered in a way such that more computations are done
when initializing a new user (or altering the user-credentials) it would take more
memory space but the computation time on every run can be cut down to about
145 ms on every run and 91 ms upon initializing the user. Changing the creden-
tials of the security controller requires that some credentials of the users need to
be recalculated. This requires about 110 ms per user. These numbers are shown
combined in Table 2 in the low-comp section.

Table 3. Comparison between different authentication schemes.

ECDH [3] SPAKE-low-mem SPAKE-low-comp

Crypto-operations 2; 0; 1; 1 3; 2; 6; 1 6; 2; 5; 1 2; 2; 1; 1
(∗; +;H(. . .); rand())

initialization 0; 0; 0; 0 3; 2; 0; 0 0; 0; 0; 0 4; 0; 2; 0
crypto-operations

Time authentication [ms] 120 279 + ECDH 426 145

Time initialization [ms] 0 203 0 ∼100

Permanent Memory / User 0 credentials credentials 2 Hashes +
2 Points

Permanent Memory SE 0 credentials credentials 1 Hash

Table 3 compares two possible SPAKE implementations (one designed for
low memory usage, one for low computation time) with operations needed when
using ECDH and the authentication scheme proposed by [3]. It furthermore
shows approximated timings for the operations when executed on the chosen
HSM. The protocol from [3] uses a previously secured communication channel

to transmit data. Therefore, an algorithm like ECDH needs to be executed before
the authentication is performed. The table shows the required cryptographic op-
erations for every authentication and the operations necessary when initializing
a new user. Furthermore, the timings for initializing and authentication on the
HSM, and the memory usage for the different algorithms per user and for the
HSM are shown. The comparison indicates that the SPAKE protocol is at least
as efficient as the protocol proposed by I. Liao, C. Lee and M. Hwang [3]. If the
hardware allows for more memory usage, the shown SPAKE2 implementation
performs the authentication on top of the ECDH with little overhead.

With these statistics the strength of the implemented SPAKE2 protocol gets
visible. While other protocols initially perform a key exchange followed by the
authentication, these two steps get done in a single operation. Not only the time
used to communicate, but also the time needed to protect the authentication data
during transport can be reduced. With this the transmission of data can stop
earlier, resulting in decreased energy consumption. Additionally, the amount
of required cryptographic operations is reduced. A protocol using an ECDH
scheme and an authentication protocol afterwards uses more random numbers,
more hash-operations, and more ECC-related functionalities. Furthermore, the
memory usage per user can be just a few bytes (the credentials and additional
information for authorization and cryptography details). The term credentials
means that the password and username are stored in plain text inside the tamper
resistant memory. In the low-comp section, the credentials are stored in their key-
expanded form (Hash) as they will be used like this during the computation.
Additionally the ECC points M and N are calculated beforehand and stored in
the memory to reduce computation time.

6 Future Work

As previously described, the authorization and establishing of the secured chan-
nel can be performed with two messages. This can reduce the communication
overhead, which is especially useful for low-powered sensors where the use of the
communication devices consumes most of the available energy. This protocol can
be changed to also enable authentication between machines. This is especially
useful for an industrial setting where robots need to communicate with other ma-
chinery to fulfil their tasks. It can also be combined with other communication
techniques to enhance current sensor configuration possibilities.

7 Conclusion

In this paper an implementation of the SPAKE2-algorithm [6] has been shown.
The evaluation shows that the protocol can be implemented efficiently on an
HSM. It also shows that the use of an authenticated key agreement protocol is
advantageous compared to a standard solution where key agreement and authen-
tication are performed separately. These features naturally reduce the commu-
nication overhead and can be implemented with little overhead in computation

or memory size. Combined, this leads to the conclusion that an authenticated
key agreement like SPAKE2 is useful for the use on a smart sensor.

Acknowledgment

This project has received funding from the Electronic Component Systems for
European Leadership Joint Undertaking under grant agreement No 692480. This
Joint Undertaking receives support from the European Unions Horizon 2020
research and innovation programme and Germany, Netherlands, Spain, Austria,
Belgium, Slovakia.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE transactions on
Information Theory 22(6) (1976) 644–654

2. Peyravian, M., Zunic, N.: Methods for protecting password transmission. Com-
puters & Security 19(5) (2000) 466–469

3. Liao, I.E., Lee, C.C., Hwang, M.S.: A password authentication scheme over insecure
networks. Journal of Computer and System Sciences 72(4) (2006) 727–740

4. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols
secure against dictionary attacks. In: Research in Security and Privacy, 1992.
Proceedings., 1992 IEEE Computer Society Symposium on, IEEE (1992) 72–84

5. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Transactions on Information and System Security (TISSEC) 2(3) (1999) 230–268

6. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Cryptographers Track at the RSA Conference, Springer (2005) 191–208

7. Bellare, M., Rogaway, P.: The autha protocol for password-based authenticated
key exchange. Technical report, Technical report, IEEE (2000)

8. Kobara, K., Imai, H.: Pretty-simple password-authenticated key-exchange under
standard assumptions. iacr eprint archieve, 2003

9. Krawczyk, H.: Sigma: The sign-and-macapproach to authenticated diffie-hellman
and its use in the ike protocols. In: Annual International Cryptology Conference,
Springer (2003) 400–425

10. Gennaro, R., Lindell, Y.: A framework for password-based authenticated key ex-
change. In: International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer (2003) 524–543

11. Abdalla, M.: Password-based authenticated key exchange: An overview. In: Inter-
national Conference on Provable Security, Springer (2014) 1–9

12. Druml, N., Menghin, M., Kuleta, A., Steger, C., Weiss, R., Bock, H., Haid, J.: A
flexible and lightweight ecc-based authentication solution for resource constrained
systems. In: Digital System Design (DSD), 2014 17th Euromicro Conference on,
IEEE (2014) 372–378

13. Ulz, T., Pieber, T., Steger, C., Haas, S., Bock, H., Matischek, R.: Bring your own
key for the industrial internet of things. In: Industrial Technology (ICIT), 2017
IEEE International Conference on, IEEE (2017) 1430–1435

14. Google: Google Weave - uWeave. https://weave.googlesource.com/weave/
libuweave/+/HEAD (2016)

