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ABSTRACT

Neuromorphic hardware tends to pose limits on the connectivity of deep networks
that one can run on them. But also generic hardware and software implementa-
tions of deep learning run more ef�ciently on sparse networks. Several methods
exist for pruning connections of a neural network after it was trained without con-
nectivity constraints. We present an algorithm, DEEP R, that enables us to train
directly a sparsely connected neural network. DEEP R automatically rewires the
network during supervised training so that connections arethere where they are
most needed for the task, while its total number is all the time strictly bounded.
We demonstrate that DEEP R can be used to train very sparse feedforward and
recurrent neural networks on standard benchmark tasks withjust a minor loss in
performance. DEEP R is based on a rigorous theoretical foundation that views
rewiring as stochastic sampling of network con�gurations from a posterior.

1 INTRODUCTION

Network connectivity is one of the main determinants for whether a neural network can be ef�ciently
implemented in hardware or simulated in software. For example, it is mentioned in Jouppi et al.
(2017) that in Google's tensor processing units (TPUs), weights do not normally �t in on-chip mem-
ory for neural network applications despite the small 8 bit weight precision on TPUs. Memory is also
the bottleneck in terms of energy consumption in TPUs and FPGAs (Han et al., 2017; Iandola et al.,
2016). For example, for an implementation of a long short term memory network (LSTM), mem-
ory reference consumes more than two orders of magnitude more energy than ALU operations
(Han et al., 2017). The situation is even more critical in neuromorphic hardware, where either hard
upper bounds on network connectivity are unavoidable (Schemmel et al., 2010; Merolla et al., 2014)
or fast on-chip memory of local processing cores is severelylimited, for example the96 MByte lo-
cal memory of cores in the SpiNNaker system (Furber et al., 2014). This implementation bottleneck
will become even more severe in future applications of deep learning when the number of neurons
in layers will increase, causing a quadratic growth in the number of connections between them.

Evolution has apparently faced a similar problem when evolving large neuronal systems such as the
human brain, given that the brain volume is dominated by white matter, i.e., by connections between
neurons. The solution found by evolution is quite convincing. Synaptic connectivity in the brain
is highly dynamic in the sense that new synapses are constantly rewired, especially during learning
(Holtmaat et al., 2005; Stettler et al., 2006; Attardo et al., 2015; Chambers & Rumpel, 2017). In
other words, rewiring is an integral part of the learning algorithms in the brain, rather than a separate
process.

We are not aware of previous methods for simultaneous training and rewiring in arti�cial neural
networks, so that they are able to stay within a strict bound on the total number of connections
throughout the learning process. There are however severalheuristic methods for pruning a larger
network (Han et al., 2015b;a; Collins & Kohli, 2014; Yang et al., 2015; Srinivas & Babu, 2015), that
is, the network is �rst trained to convergence, and network connections and / or neurons are pruned
only subsequently. These methods are useful for downloading a trained network on neuromorphic
hardware, but not for on-chip training. A number of methods have been proposed that are capa-
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ble of reducing connectivity during training (Collins & Kohli, 2014; Jin et al., 2016; Narang et al.,
2017). However, these algorithms usually start out with full connectivity. Hence, besides reducing
computational demands only partially, they cannot be applied when computational resources (such
as memory) is bounded throughout training.

Inspired by experimental �ndings on rewiring in the brain, we propose in this article deep rewiring
(DEEP R), an algorithm that makes it possible to train deep neural networks under strict connectivity
constraints. In contrast to many previous pruning approaches that were based on heuristic arguments,
DEEP R is embedded in a thorough theoretical framework. DEEPR is conceptually different from
standard gradient descent algorithms in two respects. First, each connection has a prede�ned sign.
Speci�cally, we assign to each connectionk a connection parameter� k and a constant signsk 2
f� 1; 1g. For non-negative� k , the corresponding network weight is given bywk = sk � k . In standard
backprop, when the absolute value of a weight is moved through 0, it becomes a weight with the
opposite sign. In contrast, in DEEP R a connection vanishes in this case (wk = 0 ), and a randomly
drawn other connection is tried out by the algorithm. Second, in DEEP R, gradient descent is
combined with a random walk in parameter space. This modi�cation leads to important functional
differences.

In fact, our theoretical analysis relates DEEP R to a processthat samples network con�gurations (i.e.,
network connectivity, weights, and biases) from the posterior distribution of con�gurations, that is,
the distribution that combines the data likelihood and the connectivity prior in a Bayes optimal
manner. As a result, the algorithm continues to rewire connections even when the performance has
converged. We show that this feature enables DEEP R to adapt the network connectivity structure
online when the task demands are drifting.

We show on several benchmark tasks that with DEEP R, the connectivity of several deep architec-
tures — fully connected deep networks, convolutional nets,and recurrent networks (LSTMs) — can
be constrained to be extremely sparse throughout training with a marginal drop in performance. In
one example, a standard feed forward network trained on the MNIST dataset, we achieved good
performance with1 % of the connectivity of the fully connected counterpart. Weshow that DEEP
R reaches a similar performance level as state-of-the-art pruning algorithms where training starts
with the full connectivity matrix. If the target connectivity is very sparse (a few percent of the full
connectivity), DEEP R outperformed these pruning algorithms.

2 REWIRING IN DEEP NEURAL NETWORKS

Stochastic gradient descent (SGD) and its modern variants (Kingma & Ba, 2014;
Tieleman & Hinton, 2012) implemented through the Error Backpropagation algorithm is the
dominant learning paradigm of contemporary deep learning applications. For a given list of network
inputsX and target network outputsY � , gradient descent iteratively moves the parameter vector�
in the direction of the negative gradient of an error function EX ;Y � (� ) such that a local minimum
of EX ;Y � (� ) is eventually reached.

A more general view on neural network training is provided bya probabilistic interpretation of the
learning problem (Bishop, 2006; Neal, 1992). In this probabilistic learning framework, the determin-
istic network output is interpreted as de�ning a probability distributionpN (Y j X ; � ) over outputs
Y for the given inputX and the given network parameters� . The goal of training is then to �nd pa-
rameters that maximize the likelihoodpN (Y � j X ; � ) of the training targets under this model (maxi-
mum likelihood learning). Training can again be performed by gradient descent on an equivalent er-
ror function that is usually given by the negative log-likelihoodEX ;Y � (� ) = � logpN (Y � j X ; � ).

Going one step further in this reasoning, a full Bayesian treatment adds prior beliefs about the
network parameters through a prior distributionpS (� ) (we term this distribution the structural prior
for reasons that will become clear below) over parameter values� and the training goal is formulated
via the posterior distribution over parameters� . The training goal that we consider in this article is
to produce sample parameter vectors which have a high probability under the posterior distribution
p� (� j X ; Y � ) / pS (� ) � pN (Y � j X ; � ). More generally, we are interested in a target distribution
p� (� ) that is a tempered version of the posterior, i.e., we de�ne the training goal as follows:

produce sample parameter vectors� with high probability in p� (� ) = 1
Z p� (� j X ; Y � )

1
T ,

(1)
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whereZ is a normalizing constant andT is a temperature parameter. ForT = 1 we recover the pos-
terior distribution, forT > 1 the peaks of the posterior are �attened, and forT < 1 the distribution
is sharpened, leading to higher probabilities for parameter settings with better performance.

The DEEP R algorithm: In many situations, network connectivity is strictly limited during train-
ing, for instance because of hardware memory limitations. Then the limiting factor for a training
algorithm is the maximal connectivity ever needed during training. DEEP R guarantees such a hard
limit. DEEP R achieves the learning goal (1) onnetwork con�gurations, that is, it not only sam-
ples the network weights and biases, but also the connectivity under the given constraints. This is
achieved by introducing the following mapping from networkparameters� to network weightsw:

A connection parameter� k and a constant signsk 2 f� 1; 1g are assigned to each connectionk. If
� k is negative, we say that the connectionk is dormant, and the corresponding weight iswk = 0 .
Otherwise, the connection is consideredactive, and the corresponding weight iswk = sk � k . Hence,
each� k encodes (a) whether the connection is active in the network,and (b) the weight of the
connection if it is active. Note that we use here a single index k for each connection / weight instead
of the more usual double index that de�nes the sending and receiving neuron. This connection-
centric indexing is more natural for our rewiring algorithms where the connections are in the focus
rather than the neurons. Using this mapping, sampling from the posterior over� is equivalent to
sampling from the posterior over network con�gurations, that is, the network connectivity structure
and the network weights.

1 for i in [1; N iterations ] do
2 for all active connectionsk (� k � 0) do
3 � k  � k � � @

@�k
EX ;Y � (� ) � �� +

p
2�T � k ;

4 if � k < 0 then set connectionk dormant ;
5 end
6 while number of active connections lower thanK do
7 select a dormant connectionk0 with uniform probability and activate it;
8 � k 0  0
9 end

10 end
Algorithm 1: Pseudo code of the DEEP R algorithm.� k is sampled from a zero-mean Gaussian of
unit variance independently for each active and each updatestep. Note that the gradient of the error
EX ;Y � (� ) is computed by backpropagation over a mini-batch in practice.

DEEP R is de�ned in Algorithm 1. Gradient updates are performed only on parameters of active
connections (line 3). The derivatives of the error function@

@�k
EX ;Y � (� ) can be computed in the

usual way, most commonly with the backpropagation algorithm. Since we consider only classi�ca-
tion problems in this article, we used the cross-entropy error for the experiments in this article. The
third term in line 3 (� �� ) is an`1 regularization term, but other regularizers could be used as well.

A conceptual difference to gradient descent is introduced via the last term in line 3. Here, noisep
2�T � k is added to the update, where the temperature parameterT controls the amount of noise

and� k is sampled from a zero-mean Gaussian of unit variance independently for each parameter and
each update step. The last term alone would implement a random walk in parameter space. Hence,
the whole line 3 of the algorithm implements a combination ofgradient descent on the regularized
error function with a random walk. Our theoretical analysisshows that this random walk behavior
has an important functional consequence, see the paragraphafter the next for a discussion on the
theoretical properties of DEEP R.

The rewiring aspect of the algorithm is captured in lines 4 and 6–9 in Algorithm (1). Whenever
a parameter� k becomes smaller than0, the connection is set dormant, i.e., it is deleted from the
network and no longer considered for updates (line 4). For each connection that was set to the
dormant state, a new connectionk0 is chosen randomly from the uniform distribution over dormant
connections,k0 is activated and its parameter is initialized to0. This rewiring strategy (a) ensures
that exactlyK connections are active at any time during training (one initializes the network with
K active connections), and (b) that dormant connections do not need any computational demands
except for drawing connections to be activated. Note that for sparse networks, it is ef�cient to keep
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Figure 1: Visual pattern recognition with sparse networks during training. Sample training
images (top), test classi�cation accuracy after training for various connectivity levels (middle) and
example test accuracy evolution during training (bottom) for a standard feed forward network trained
on MNIST (A) and a CNN trained on CIFAR-10 (B). Accuracies are shown for various algorithms.
Green: DEEP R; red: soft-DEEP R; blue: SGD with initially �xed sparse connectivity; dashed
gray: SGD, fully connected. Since soft-DEEP R does not guarantee a strict upper bound on the
connectivity, accuracies are plotted against the highest connectivity ever met during training (middle
panels). Iteration number refers to the number of parameterupdates during training.

only a list of active connections and none for the dormant connections. Then, one can ef�ciently
draw connections from the whole set of possible connectionsand reject those that are already active.

We provide a theoretical analysis of this algorithm in Section 4. Since the updates are stochastic,
one cannot predict the exact network con�guration after anynumber of updates. However, one can
describe the evolution of the distribution of network con�gurations. Our analysis in Section 4 shows
that under some simplifying assumptions, this distribution converges to a unique stationary distri-
bution, that is, a distribution that will no longer change under the updates. Further, the stationary
distribution is given by the target distribution of networkcon�gurations (1) where the priorpS (� )
is given by a uniform distribution over connectivity matrices that ful�ll the connectivity constraint
of K active connections and an exponential prior on the weights of these active connections.

3 EXPERIMENTS

Rewiring in fully connected and in convolutional networks: We �rst tested the performance
of DEEP R on MNIST and CIFAR-10. For MNIST, we considered a fully connected feed-forward
network used in Han et al. (2015b) to benchmark pruning algorithms. It has two hidden layers of
300and100neurons respectively and a 10-fold softmax output layer. Onthe CIFAR-10 dataset, we
used a convolutional neural network (CNN) with two convolutional followed by two fully connected
layers. For reproducibility purposes the network architecture and all parameters of this CNN were
taken from the of�cial tutorial of Tensor�ow. On CIFAR-10, we used a decreasing learning rate
and a cooling schedule to reduce the temperature parameterT over iterations (see Appendix A for
details on all experiments).
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Figure 2: Rewiring in recurrent neural networks. Network performance for one example run
(A) and at various connectivity levels (B) as in Fig. 1 for an LSTM network trained on the TIMIT
dataset with DEEP R (green), soft-DEEP R (red) and a network with �xed random connectivity
(blue). Dotted line: fully connected LSTM trained without regularization as reported in Greff et al.
(2017). Thick dotted line: fully connected LSTM with`2 regularization.

For each task, we performed four training sessions. First, we trained a network with DEEP R. In
the CNN, the �rst convolutional layer was kept fully connected while we allowed rewiring of the
second convolutional layer. Second, we tested another algorithm, soft-DEEP R, which is a simpli�ed
version of DEEP R that does however not guarantee a strict connectivity constraint (see Section 4
for a description). Third, we trained a network in the standard manner without any rewiring or
pruning to obtain a baseline performance. Finally, we trained a network with a connectivity that
was randomly chosen before training and kept �xed during theoptimization. The connectivity was
however not completely random. Rather each layer received anumber of connections that was the
same as the number found by soft-DEEP R. The performance of this network is expected to be much
better than a network where all layers are treated equally.

Fig. 1 shows the performance of these algorithms on MNIST (panel A) and on CIFAR-10 (panel
B). DEEP R reaches a classi�cation accuracy of96:2 % when constrained to1:3 % connectivity.
To evaluate precisely the accuracy that is reachable with1:0 % connectivity, we did an additional
experiment where we doubled the number of training epochs. DEEP R reached a classi�cation ac-
curacy of96:3% (less than2 % drop in comparison to the fully connected baseline). Training on
�xed random connectivity performed surprisingly well for connectivities around10%, possibly due
to the large redundancy in the MNIST images. Soft-DEEP R doesnot guarantee a strict upper bound
on the network connectivity. When considering the maximum connectivity ever seen during train-
ing, soft-DEEP R performed consistently worse than DEEP R for networks where this maximum
connectivity was low. On CIFAR-10, the classi�cation accuracy of DEEP R was 84.1 % at a connec-
tivity level of 5 %. The performance of DEEP R at 20 % connectivity was close to the performance
of the fully connected network.

To study the rewiring properties of DEEP R, we monitored the number of newly activated connec-
tions per iteration (i.e., connections that changed their status from dormant to active in that iteration).
We found that after an initial transient, the number of newlyactivated connections converged to a
stable value and remained stable even after network performance has converged, see Appendix B.

Rewiring in recurrent neural networks: In order to test the generality of our rewiring approach,
we also considered the training of recurrent neural networks with backpropagation through time
(BPTT). Recurrent networks are quite different from their feed forward counterparts in terms of their
dynamics. In particular, they are potentially unstable dueto recurrent loops in inference and training
signals. As a test bed, we considered an LSTM network trainedon the TIMIT data set. In our
rewiring algorithms, all connections were potentially available for rewiring, including connections
to gating units. From the TIMIT audio data, MFCC coef�cientsand their temporal derivatives were
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computed and fed into a bi-directional LSTMs with a single recurrent layer of 200 cells followed by
a softmax to generate the phoneme likelihood (Graves & Schmidhuber, 2005), see Appendix A.

We considered as �rst baseline a fully connected LSTM with standard BPTT without regularization
as the training algorithm. This algorithm performed similarly as the one described in Greff et al.
(2017). It turned out however that performance could be signi�cantly improved by including a
regularizer in the training objective. We therefore considered the same setup with`2 regularization
(cross-validated). This setup achieved a phoneme error rate of 28:3 %. We note that better results
have been reported in the literature using the CTC cost function and deeper networks (Graves et al.,
2013). For the sake of easy comparison however, we sticked here to the much simpler setup with a
medium-sized network and the standard cross-entropy errorfunction.

We found that connectivity can be reduced signi�cantly in this setup with our algorithms, see Fig. 2.
Both algorithms, DEEP R and soft-DEEP R, performed even slightly better than the fully connected
baseline at connectivities around10%, probably due to generalization issues. DEEP R outperformed
soft-DEEP R at very low connectivities and it outperformed BPTT with �xed random connectivity
consistently at any connectivity level considered.

Comparison to algorithms that cannot be run on very sparse networks: We wondered how
much performance is lost when a strict connectivity constraint has to be taken into account during
training as compared to pruning algorithms that only achieve sparse networks after training. To this
end, we compared the performance of DEEP R and soft-DEEP R to recently proposed pruning algo-
rithms: `1-shrinkage (Tibshirani, 1996; Collins & Kohli, 2014) and the pruning algorithm proposed
by Han et al. (2015b).`1-shrinkage uses simplè1-norm regularization and �nds network solu-
tions with a connectivity that is comparable to the state of the art (Collins & Kohli, 2014; Yu et al.,
2012). We chose this one since it is relatively close to DEEP Rwith the difference that it does not
implement rewiring. The pruning algorithm from Han et al. (2015b) is more complex and uses a
projection of network weights on à0 constraint. Both algorithms prune connections starting from
the fully connected network. The hyper-parameters such as learning rate, layer size, and weight
decay coef�cients were kept the same in all experiments. We validated by an extensive parameter
search that these settings were good settings for the comparison algorithms, see Appendix A.

Results for the same setups as considered above (MNIST, CIFAR-10, TIMIT) are shown in Fig. 3.
Despite the strict connectivity constraints, DEEP R and soft-DEEP R performed slightly better than
the unconstrained pruning algorithms on CIFAR-10 and TIMITat all connectivity levels considered.
On MNIST, pruning was slightly better for larger connectivities. On MNIST and TIMIT, pruning
and`1-shrinkage failed completely for very low connectivities while rewiring with DEEP R or soft-
DEEP R still produced reasonable networks in this case.

One interesting observation can be made for the error rate evolution of the LSTM on TIMIT
(Fig. 3D). Here, both̀ 1-shrinkage and pruning induced large sudden increases of the error rate,
possibly due to instabilities induced by parameter changesin the recurrent network. In contrast, we
observed only small glitches of this type in DEEP R. This indicates that sparsi�cation of network
connectivity is harder in recurrent networks due to potential instabilities, and that DEEP R is better
suited to avoid such instabilities. The reason for this advantage of DEEP R is however not clear.

Transfer learning is supported by DEEP R: If the temperature parameterT is kept constant
during training, the proposed rewiring algorithms do not converge to a static solution but explore
continuously the posterior distribution of network con�gurations. As a consequence, rewiring is
expected to adapt to changes in the task in an on line manner. If the task demands change in an
online learning setup, one may hope that a transfer of invariant aspects of the tasks occurs such that
these aspects can be utilized for faster convergence on later tasks (transfer learning). To verify this
hypothesis, we performed one experiment on the MNIST dataset where the class to which each out-
put neuron should respond to was changed after each trainingepoch (class-shuf�ed MNIST task).
Fig. 4A shows the performance of a network trained with DEEP Rin the class-shuf�ed MNIST
task. One can observe that performance recovered after eachshuf�ing of the target classes. More
importantly, we found a clear trend of increasing classi�cation accuracy even across shuf�es. This
indicates a form of transfer learning in the network such that information about the previous tasks
(i.e., the previous target-shuf�ed MNIST instances) was preserved in the network and utilized in
the following instances. We hypothesized for the reason of this transfer that early layers developed

6



Submitted as a conference paper at ICLR 2018

BA

C D

0 20000 40000co
nn

ec
tiv

ity
 (

%
)

0

Figure 3:Ef�cient network solutions under strict sparsity constrai nts. Accuracy and connectiv-
ity obtained by DEEP R and Soft-DEEP R in comparison to those achieved by pruning (Han et al.,
2015b) and̀ 1-shrinkage (Tibshirani, 1996; Collins & Kohli, 2014).A, B) Accuracy against the
connectivity for MNIST (A) and CIFAR-10 (B). For each algorithm, one network with a decent
compromise between accuracy and sparsity is chosen (small gray boxes) and its connectivity across
training iterations is shown below.C) Performance on the TIMIT dataset.D) Phoneme error rates
and connectivities across iteration number for representative training sessions.

features that were invariant to the target shuf�ing and did not need to be re-learned in later task
instances. To verify this hypothesis, we computed the following two quantities. First, in order to
quantify the speed of parameter dynamics in different layers, we computed the correlation between
the layer weight matrices of two subsequent training epoch (Fig. 4B). Second, in order to quantify
the speed of change of network dynamics in different layers,we computed the correlation between
the neuron outputs of a layer in subsequent epochs (Fig. 4C).We found that the correlation between
weights and layer outputs increased across training epochsand were signi�cantly larger in early lay-
ers. This supports the hypothesis that early network layerslearned features invariant to the shuf�ed
coding convention of the output layer.

7



Submitted as a conference paper at ICLR 2018

0 3 6 9

ac
cu

ra
cy

 (
%

) 9 �

��

epoch number

A B C

co
rr

el
at

io
n 

 (
%

)

70

epoch number

90

0 3 6 9

weight matrices similarity
between consecu tive tasks

epoch number
0 3 6 9

co
rr

el
at

io
n 

 (
%

) 80

40

60

neural response similarity
between consecutive tasks

Figure 4:Transfer learning with DEEP R. The target labels of the MNIST data set were shuf�ed
after every epoch.A) Network accuracy vs. training epoch. The increase of network performance
across tasks (epochs) indicates a transfer of knowledge between tasks.B) Correlation between
weight matrices of subsequent epochs for each network layer. C) Correlation between neural activity
vectors of subsequent epochs for each network layer. The transfer is most visible in the �rst hidden
layer, since weights and outputs of this layer are correlated across tasks.

4 CONVERGENCE PROPERTIES OFDEEP RAND SOFT-DEEP R

The theoretical analysis of DEEP R is somewhat involved due to the implemented hard constraints.
We therefore �rst introduce and discuss here another algorithm, soft-DEEP R where the theoretical
treatment of convergence is more straight forward. In contrast to standard gradient-based algorithms,
this convergence is not a convergence to a particular parameter vector, but a convergence to the target
distribution over network con�gurations Eq. (1).

1 for i in [1; N iterations ] do
2 for all active connectionsk (� k � 0) do
3 � k  � k � � @

@�k
EX ;Y � (� ) � �� +

p
2�T � k ;

4 if � k < 0 then set connectionk dormant ;
5 end
6 for all dormant connectionsk (� k < 0) do
7 � k  � k +

p
2�T � k ;

8 � k  maxf � k ; � ming;
9 if � k � 0 then set connectionk active ;

10 end
11 end

Algorithm 2: Pseudo code of the soft-DEEP R algorithm.� min < 0 is a constant that de�nes a lower
boundary for negative� k s.

Convergence properties of soft-DEEP R: The soft-DEEP R algorithm is given in Algorithm 2.
Note that the updates for active connections are the same as for DEEP R (line 3). Also the mapping
from parameters� k to weightswk is the same as in DEEP R. The main conceptual difference to
DEEP R is that connection parameters continue their random walk when dormant (line 7). Due to
this random walk, connections will be re-activated at random times when they cross zero. Therefore,
soft-DEEP R does not impose a hard constraint on network connectivity but rather uses thè1 norm
regularization to impose a soft-constraint.

Since dormant connections have to be simulated, this algorithm is computationally inef�cient for
sparse networks. An approximation could be used where silent connections are re-activated at a
constant rate, leading to an algorithm very similar to DEEP R. DEEP R adds to that the additional
feature of a strict connectivity constraint.

The central result for soft-DEEP R has been proven in the context of spiking neural networks in
(Kappel et al., 2015) in order to understand rewiring in the brain from a functional perspective. The
same theory however also applies to standard deep neural networks. To be able to apply standard
mathematical tools, we consider parameter dynamics in continuous time. In particular, consider the
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following stochastic differential equation (SDE)

d� k = �
@

@�k
logp� (� jX ; Y � )

�
�
�
�
� t

dt +
p

2�T d Wk ; (2)

where� is the equivalent to the learning rate and@@�k
logp� (� jX ; Y � )

�
�
�
� t

denotes the gradient of

the log parameter posterior evaluated at the parameter vector � t at timet. The termdWk denotes
the in�nitesimal updates of a standard Wiener process. ThisSDE describes gradient ascent on the
log posterior combined with a random walk in parameter space. We show in Appendix C that the
unique stationary distribution of this parameter dynamicsis given byp� (� ) = 1

Z p� (� j X ; Y � )
1
T .

Since we considered classi�cation tasks in this article, weinterpret the network output as a multi-
nomial distribution over class labels. Then, the derivative of the log likelihood is equivalent to the
derivative of the negative cross-entropy error. Together with an`1 regularization term for the prior,
and after discretization of time, we obtain the update of line 3 in Algorithm 2 for non-negative pa-
rameters. For negative parameters, the �rst term in Eq. (2) vanishes since the network weight is
constant zero there. This leads to the update in line 7. Note that we introduced a re�ecting boundary
at � min < 0 in the practical algorithm to avoid divergence of parameters (line 8).

Convergence properties of DEEP R: A detailed analysis of the stochastic process that underlies
the algorithm is provided in Appendix D. Here we summarize the main �ndings of this analysis.
Each iteration of DEEP R in Algorithm 1 consists of two parts:In the �rst part (lines 2-5) all
connections that are currently active are advanced, while keeping the other parameters at 0. In
the second part (lines 6-9) the connections that became dormant during the �rst step are randomly
replenished.

To describe the connectivity constraint over theK connections we introduce the binary constraint
vector c 2 f 0; 1gK which represents the set of active connections, i.e., element ck of c is 1 if
connectionk is allowed to be active and zero else. In Theorem 2 of AppendixD, we link DEEP R
to a theoretical framework which realizes a sampling process that simultaneously samples from
the posterior distribution (1) under the constraintc of maintainingM active connections and the
constraint vector from a prior distributionp(c), i.e., from the stationary distribution given by the
joint probability

p� (� ; cjX ; Y � ) =
1
Z

p� (� jc; X ; Y � ) p(c) ; (3)

where p(c) is a uniform prior over all possible connectivities withM active connections and
p� (� j c; X ; Y � ) is the posterior for the given constraint vectorc. We conclude that DEEP R solves
a constraint optimization problem by sampling parameter vectors� with high learning performance
and with constrained connectivity. The algorithm will therefore spend most time in network con�g-
urations where the connectivity supports the parameter learning, such that, connections with large
support under the objective function (1) will be maintainedactive with high probability, while other
connections are randomly tested and discarded if found not useful.

5 CONCLUSIONS

We have presented a method for modifying backprop and backprop-through-timeso that not only the
weights of connections, but also the connectivity graph is simultaneously optimized during training.
This can be achieved while staying always within a given bound on the total number of connections.
When the absolute value of a weight is moved by backprop through0, it becomes a weight with the
opposite sign. In contrast, in DEEP R a connection vanishes in this case (more precisely: becomes
dormant), and a randomly drawn other connection is tried outby the algorithm. This setup requires
that, like in neurobiology, the sign of a weight does not change during learning. Another essential
ingredient of DEEP R is that it superimposes the gradient-driven dynamics of each weight with a
random walk. This feature can be viewed as another inspiration from neurobiology (Mongillo et al.,
2017). An important property of DEEP R is that — in spite of itsstochastic ingredient — its
overall learning dynamics remains theoretically tractable: Not as gradient descent in the usual sense,
but as convergence to a stationary distribution of network con�gurations which assigns the largest
probabilities to the best-performing network con�gurations. An automatic bene�t of this ongoing
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stochastic parameter dynamics is that the training processimmediately adjusts to changes in the
task, while simultaneously transferring previously gained competences of the network (see Fig. 4).

We have demonstrated in Fig. 1–3 that DEEP R endows sparse andvery sparse networks with power-
ful learning capabilities. Due to its stochastic nature, various methods from stochastic optimization
are in principle applicable to the algorithm. For example, while we kept the noise level (i.e., the
temperature T) �xed during training for MNIST and TIMIT, a cooling schedule like in simulated
annealing enhanced the learning performance for CIFAR-10.

Acknowledgements Written under partial support by the Human Brain Project of the European
Union#720270, and the Austrian Science Fund (FWF): I 3251-N33. We thank Franz Pernkopf and
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A M ETHODS

Choosing hyper-parameters for DEEP R: The learning rate� is de�ned for each task indepen-
dently (see task descriptions below). Considering that thenumber of active connections is given as
a constraint, the remaining hyper parameters are the regularization coef�cient� and the temperature
T . We found that the performance of DEEP R does not depend strongly on the temperatureT . Yet,
the choice of� has to be done more carefully. For each dataset there was an ideal value of� : one
order of magnitude higher or lower typically lead to a substantial loss of accuracy.

In MNIST, 96.3% accuracy under the constraint of 1% connectivity was achieved with� = 10 � 4

andT chosen so thatT = �
2 10� 12. In TIMIT, � = 0 :03 andT = 0 (higher values ofT could

improve the performance slightly but it did not seem very signi�cant). In CIFAR-10 a different�
was assigned to each connectivity matrix. To reach 84.1% accuracy with 5% connectivity we used
in each layer from input to output� = [0 ; 10� 7; 10� 6; 10� 9; 0]. The temperature is initialized with
T = � � 2

18 and decays with the learning rate (see paragraph of the methods about CIFAR-10).

Choosing hyper-parameters for soft-DEEP R: The main difference between soft-DEEP R and
DEEP R is that the connectivity is not given as a global constraint. This is a considerable drawback
if one has strict constraint due to hardware limitation but it is also an advantage if one simply wants
to generate very sparse network solutions without having a clear idea on the connectivities that are
reachable for the task and architecture considered.

In any cases, the performance depends on the choice of hyper-parameters� , T and� min , but also -
unlike in DEEP R - these hyper parameters have inter-dependent relationships that one cannot ignore
(as for DEEP R, the learning rate� is de�ned for each task independently). The reason why soft-
DEEP R depends more on the temperature is that the rate of re-activation of connections is driven
by the amplitude of the noise whereas they are decoupled in DEEP R. To summarize the results of
an exhaustive parameter search, we found that

p
2T � should ideally be slightly below� . In general

high � min leads to high performance but it also de�nes an approximate lower bound on the smallest
reachable connectivity. This lower bound can be estimated by computing analytically the stationary
distribution under rough approximations and the assumption that the gradient of the likelihood is
zero. Ifpmin is the targeted lower connectivity bound, one needs� min � � T (1 � pmin )

�p min
.

For MNIST we used� = 10 � 5 andT = � � 2

18 for all data points in Fig. 1 panel A and a range
of values of� min to scope across different ranges of connectivity lower bounds. In TIMIT and
CIFAR-10 we used a simpler strategy which lead to a similar outcome, we �xed the relationships:

� = 3
q

2T
� = � 1

3 � min and we varied only� to produce the solutions shown in Fig. 1 panel B and
Fig. 2.

Re-implementing pruning and `1-shrinkage: To implement`1-shrinkage (Tibshirani, 1996;
Collins & Kohli, 2014), we applied thè1-shrinkage operator�  relu(j� j � �� ) sign(� ) after each
gradient descent iteration. The performance of the algorithm is evaluated for different� varying on
a logarithmic scale to privilege a sparse connectivity or a high accuracy. For instance for MNIST
in Figure 3.A we used� of the form10� n

2 with n going from4 to 12. The optimal parameter was
n = 9 .

We implemented the pruning described in Han et al. (2015b). This algorithm uses several phases:
training - pruning - training, or one can also add another pruning iteration: training - pruning - train-
ing - pruning - training. We went for the latter because it increased performance. Each ”training”
phase is a complete training of the neural network with`2-regularization1. At each ”pruning” phase,
the standard deviation of weights within a weight matrixwstd is computed and all active weights
with absolute values smaller thanqwstd are pruned (q is called the quality parameter). Grid search is
used to optimize thè2-regularization coef�cient and quality parameter. The results for MNIST are
reported in Figure 5.

1To be fair with other algorithms, we did not allocate three times more training time to pruning, each
”training” phase was performed for a third of the total number of epochs which was chosen much larger than
necessary.
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MNIST: We used a standard feed forward network architecture with two hidden layers with200
neurons each and recti�ed linear activation functions followed by a 10-fold softmax output. For all
algorithms we used a learning rate of 0.05 and a batch size of 10 with standard stochastic gradient
descent. Learning stopped after 10 epochs. All reported performances in this article are based on
the classi�cation error on the MNIST test set.

CIFAR-10: The of�cial tutorial for convolutional networks of tensor�ow2 is used as a reference
implementation. Its performance out-of-the-box providesthe fully connected baseline. We used the
values given in the tutorial for the hyper-parameters in allalgorithms. In particular the layer-speci�c
weight decay coef�cients that interact with our algorithmswere chosen from the tutorial for DEEP
R, soft-DEEP R, pruning, and̀1-shrinkage.

In the fully connected baseline implementation, standard stochastic gradient descent was used with
a decreasing learning rate initialized to1 and decayed by a factor0:1 every350epochs. Training
was performed for one million iterations for all algorithms. For soft-DEEP R, which includes a
temperature parameter, keeping a high temperature as the weight decays was increasing the rate
of re-activation of connections. Even if intermediate solutions were rather sparse and ef�cient the
solutions after convergence were always dense. Therefore,the weight decay was accompanied by
annealing of the temperatureT . This was done by setting the temperature to be proportionalto the
decaying� . This annealing was used for DEEP R and soft-DEEP R.

TIMIT: The TIMIT dataset was preprocessed and the LSTM architecture was chosen to reproduce
the results from Greff et al. (2017). Input time series were formed by 12 MFCC coef�cients and the
log energy computed over each time frame. The inputs were then expanded with their �rst and
second temporal derivatives. There are 61 different phonemes annotated in the TIMIT dataset, to
report an error rate that is comparable to the literature we performed a standard grouping of the
phonemes to generate 39 output classes (Lee & Hon, 1989; Graves et al., 2013; Greff et al., 2017).
As usual, the dialect speci�c sentences were excluded (SA �les). The phoneme error rate was
computed as the proportion of misclassi�ed frames.

A validation set and early stopping were necessary to train anetwork with dense connectivity matrix
on TIMIT because the performance was sometimes unstable andit suddenly dropped during training
as seen in Fig. 3D for̀1-shrinkage. Therefore a validation set was de�ned by randomly selecting
5% of the training utterances. All algorithms were trained for 40 epochs and the reported test error
rate is the one at minimal validation error.

To accelerate the training in comparison the reference fromGreff et al. (2017) we used mini-batches
of size 32 and the ADAM optimizer (Kingma & Ba (2014)). This was also an opportunity to test the
performance of DEEP R and soft-DEEP R with such a variant of gradient descent. The learning rate

2TensorFlow version 1.3: www.tensor�ow.org/tutorials/deep cnn
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was set to0:01and we kept the default momentum parameters of ADAM, yet we found that changing
the � parameter (as de�ned in Kingma & Ba (2014)) from10� 8 to 10� 4 improved the stability of
fully connected networks during training in this recurrentsetup. As we could not �nd a reference that
implemented̀ 1-shrinkage in combination with ADAM, we simply applied the shrinkage operator
after each iteration of ADAM which might not be the ideal choice in theory. It worked well in
practice as the minimal error rate was reached with this setup. The same type of̀1 regularization
in combination with ADAM was used for DEEP R and soft-DEEP R which lead to very sparse and
ef�cient network solutions.

Initialization of connectivity matrices: We found that the performance of the networks depended
strongly on the initial connectivity. Therefore, we followed the following heuristics to generate
initial connectivity for DEEP R, soft-DEEP R and the controlsetup with �xed connectivity.

First, for the connectivity matrix of each individual layer, the zero entries were chosen with uniform
probability. Second, for a given connectivity constraint we found that the learning time increased
and the performance dropped if the initial connectivity matrices were not chosen carefully. Typically
the performance dropped drastically if the output layer wasinitialized to be very sparse. Yet in most
networks the number of parameters is dominated by large connectivity matrices to hidden layers. A
basic rule of thumb that worked in our cases was to give an equal number of active connections to
the large and intermediate weight matrices, whereas smaller ones - typically output layers - should
be densely connected.

We suggest two approaches to re�ne this guess: One can eitherlook at the statistics of the connec-
tivity matrices after convergence of DEEP R or soft-DEEP R, or, if possible, the second alternative
is to initialize once soft-DEEP R with a dense matrix and observe the connectivity matrix after con-
vergence. In our experiments the connectivities after convergence were coherent with the rule of
thumb described above and we did not need to pursue intensivesearch for ideal initial connectivity
matrices.

For MNIST, the number of parameters in each layer was 235k, 30k and 1k from input to output.
Using our rule of thumb, for a given global connectivityp0, the layers were respectively initialized
with connectivity0:75p0, 2:3p0 and22:8p0.

For CIFAR-10, the baseline network had two convolutional layers with �lters of shapes5� 5� 3� 64
and5� 5� 64� 64respectively, followed by two fully connected layer with weight matrices of shape
2304� 384and384� 192. The last layer was then projected into a softmax over 10 output classes.
The numbers of parameters per connectivity matrices were therefore 5k, 102k, 885k, 738k and 2k
from input to output. The connectivity matrices were initialized with connectivity1; 8p0; 0:8p0; 8p0;
and1.

For TIMIT, the connection matrix from the input to the hiddenlayer was of size39 � 800, the
recurrent matrix had size200� 800and the size of the output matrix was200� 39. Each of these
three connectivity matrices were initialized with a connectivity of 3p0; p0, and10p0 respectively.

Initialization of weight matrices: For CIFAR-10 the initialization of matrix coef�cients was
given by the reference implementation. For MNIST and TIMIT,the weight matrices were initial-
ized with� = 1p

n in
N (0; 1)c wherenin is the number of afferent neurons,N (0; 1) samples from a

centered gaussian with unit variance andc is a binary connectivity matrix.

It would not be good to initialize the parameters of all dormant connections to zero in soft-DEEP R.
After a single noisy iteration, half of them would become active which would fail to initialize the
network with a sparse connectivity matrix. To balance out this problem we initialized the parameters
of dormant connections uniformly between the clipping value � min and zero in soft-DEEP R.

Parameters for Figure 4 The experiment provided in Figure 4 is a variant of our MNIST experi-
ment where the target labels were shuf�ed after every training epoch. To make visible the general-
ization capability of DEEP R over a small number of epochs, weenhanced the noise exploration by
setting a batch to 1 so that the connectivity matrices were updated at every time step. Also we used
a larger network with 400 neurons in each hidden layer. The remaining parameters were similar to
those used previously: the connectivity was constrained to1% and the connectivity matrices were
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Figure 6:Rewiring behavior of DEEP R. A) Network performance versus training iteration (same
as green line in Fig. 1A bottom, but for a network constrainedto 1% connectivity). B) Absolute
number of newly activated connectionsK ( l )

new to layerl = 1 (brown),l = 2 (orange), and the output
layer (l = 3 , gray) per iteration. Note that these layers have quite different numbers of potential
connectionsK ( l ) . C) Same as panel B but the number of newly activated connectionsare shown
relative to the number of potential connections in the layer(values in panel C are smoothed with a
boxcar �lter overX iterations).

initialized with respective connectivities:0:01, 0:01, and0:1. The parameters of DEEP R were set
to � = 0 :05, � = 10 � 5 andT = � � 2

2 .

B REWIRING DURING TRAINING ON MNIST

Fig. 6 shows the rewiring behavior of DEEP R per network layerfor the feed-forward neural network
trained on MNIST and the training run indicated by the small gray box around the green dot in
Fig. 1A. Since it takes some iterations until the weights of connections that do not contribute to a
reduction of the error are driven to0, the number of newly established connectionsK ( l )

new in layer l
is small for all layers initially. After this initial transient, the number of newly activated connections
stabilized to a value that is proportional to the total number of potential connections in the layer
(Fig. 1B). DEEP R continued to rewire connections even late in the training process.

C DETAILS TO: CONVERGENCE PROPERTIES OF SOFT-DEEP R

Here we provide additional details on the convergence properties of the soft-DEEP R parameter
update provided in Algorithm 2. We reiterate here Eq. (2):

d� k = �
@

@�k
logp� (� jX ; Y � )

�
�
�
�
� t

dt +
p

2�T d Wk : (4)

Discrete time updates can be recovered from the set of SDEs (4) by integration over a short time
period� t

� � k = �
@

@�k
logp� (� jX ; Y � ) +

p
2�T � k ; (5)

where the learning rate� is given by� = � � t.

We prove that the stochastic parameter dynamics Eq. (4) converges to the target distributionp� (� )
given in Eq. (1). The proof is analogous to the derivation given in Kappel et al. (2015; 2017). We
reiterate the proof here for the special case of supervised learning. The fundamental property of
the synaptic sampling dynamics Eq. (4) is formalized in Theorem 1 and proven below. Before we
state the theorem, we brie�y discuss its statement in simpleterms. Consider some initial parameter
setting� 0. Over time, the parameters change according to the dynamics(4). Since the dynamics
include a noise term, the exact value of the parameters� (t) at some timet > 0 cannot be determined.
However, it is possible to describe the exact distribution of parameters for each timet. We denote this
distribution bypFP(� ; t), where the “FP” subscript stands for “Fokker-Planck” sincethe evolution
of this distribution is described by the Fokker-Planck equation (6) given below. Note that we make
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the dependence of this distribution on time explicit in thisnotation. It can be shown that for the
dynamics (6),pFP(� ; t) converges to a well-de�ned and uniquestationary distributionin the limit of
larget. To prove the convergence to the stationary distribution weshow that it is kept invariant by
the set of SDEs Eq. (4) and that it can be reached from any initial condition.

We now state Theorem 1 formally. To simplify notation we dropin the following the explicit time
dependence of the parameters� .

Theorem 1. Let p� (� j X ; Y � ) be a strictly positive, continuous probability distribution over pa-
rameters� , twice continuously differentiable with respect to� , and let � > 0. Then the set of
stochastic differential equations Eq.(4) leaves the distributionp� (� ) (1) invariant. Furthermore,
p� (� ) is the unique stationary distribution of the sampling dynamics.

Proof. The stochastic differential equation Eq. (4) translates into a Fokker-Planck equation
(Gardiner, 2004) that describes the evolution of the distribution over parameters�

@
@t

pFP(� ; t) =
X

k

�
@

@�k

�
�

@
@�k

logp� (� j X ; Y � )
�

pFP(� ; t) +
@2

@�2k
(� T p FP(� ; t)) ; (6)

wherepFP(� ; t) denotes the distribution over network parameters at timet. To show thatp� (� ) leaves
the distribution invariant, we have to show that@

@tpFP(� ; t) = 0 (i.e., pFP(� ; t) does not change) if
we setpFP(� ; t) to p� (� ). Plugging in the presumed stationary distributionp� (� ) for pFP(� ; t) on
the right hand side of Eq. (6), one obtains

@
@t

pFP(� ; t) =
X

k

�
@

@�k

�
�

@
@�k

logp� (� j X ; Y � ) p� (� )
�

+
@2

@�2k
(� T p � (� ))

=
X

k

�
@

@�k

�
� p � (� )

@
@�k

logp� (� j X ; Y � )
�

+
@

@�k

�
� T

@
@�k

p� (� )
�

=
X

k

�
@

@�k

�
� p � (� )

@
@�k

logp� (� j X ; Y � )
�

+
@

@�k

�
� T p � (� )

@
@�k

logp� (� )
�

;

which by insertingp� (� ) = 1
Z p� (� j X ; Y � )

1
T , with normalizing constantZ , becomes

@
@t

pFP(� ; t) =
1
Z

X

k

�
@

@�k

�
� p � (� )

@
@�k

logp� (� j X ; Y � )
�

+
@

@�k

�
� T p � (� )

1
T

@
@�k

logp� (� j X ; Y � )
�

=
X

k

0 = 0 :

This proves thatp� (� ) is a stationary distribution of the parameter sampling dynamics Eq. (4). Since
� is strictly positive, this stationary distribution is alsounique (see Section 3.7.2 in Gardiner (2004)).

The unique stationary distribution of Eq. (6) is given byp� (� ) = 1
Z p� (� jX ; Y � )

1
T , i.e.,p� (� ) is the

only solution for which @
@tpFP(� ; t) becomes0, which completes the proof.

The updates of the soft-DEEP R algorithm (Algorithm 2) can bewritten as

� � k =

( p
2T � � k if � k < 0 (dormant connection)

� � @
@�k

EX ;Y � (� ) � �� +
p

2T � � k otherwise.
(7)

Eq. (7) is a special case of the general discrete parameter dynamics (5). To see this we apply Bayes'
rule to expand the derivative of the log posterior into the sum of the derivatives of the prior and the
likelihood:

@
@�k

logp� (� jX ; Y � ) =
@

@�k
logpS (� ) +

@
@�k

logpN (Y � j X ; � ) ;

such that we can rewrite Eq. (5)

� � k = �
�

@
@�k

logpS (� ) +
@

@�k
logpN (Y � j X ; � )

�
+

p
2�T � k ; (8)
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To include automatic network rewiring in our deep learning model we adopt the approach described
in Kappel et al. (2015). Instead of using the network parameters� directly to determine the synaptic
weights of networkN , we apply a nonlinear transformationwk = f (� k ) to each connectionk, given
by the function

wk = f (� k ) =
1



log (1 + exp(
 s k � k )) ; (9)

wheresk 2 f 1; � 1g is a parameter that determines the sign of the connection weight and
 > 0 is
a constant parameter that determines the smoothness of the mapping. In the limit of large
 Eq. (9)
converges to the recti�ed linear function

wk = f (� k ) =
�

0 if � k < 0 (dormant connection)
sk � k else (active connection)

; (10)

such that all connections with� k < 0 are not functional.

Using this, the gradient of the log-likelihood function@@�k
logpN (Y � j X ; � ) in Eq. (8) can be writ-

ten as @
@�k

logpN (Y � j X ; � ) = @
@�k

f (� k ) @
@�k

EX ;Y � (� ) which for our choice off (� k ), Eqs. (9),
becomes

@
@�k

logpN (Y � j X ; � ) = � (
 s k � k ) sk
@

@�k
EX ;Y � (� ) ; (11)

where� (x) = 1
1+ e� x denotes the sigmoid function. The error gradient@

@�k
EX ;Y � (� ) can be com-

puted using standard Error Backpropagation Neal (1992); Rumelhart et al. (1985).

Theorem 1 requires that Eq. (11) is twice differentiable, which is true for any �nite value for
 .
In our simulations we used the limiting case of large
 such that dormant connections are actually
mapped to zero weight. In this limit, one approaches the simple expression

@
@�k

logpN (Y � j X ; � ) =

(
0 if � k � 0
sk

@
@�k

EX ;Y � (� ) else
: (12)

Thus, the gradient (12) vanishes for dormant connections (� k < 0). Therefor changes of dormant
connections are independent of the error gradient.

This leads to the parameter updates of the soft-DEEP R algorithm given by Eq. (7). The termp
2T � � k results from the diffusion termWk integrated over� t, where� k is a Gaussian random

variable with zero mean and unit variance. The term� �� results from the exponential prior dis-
tribution pS (� ) (the `1-regularization). Note that this prior is not differentiable at 0. In (7) we
approximate the gradient by assuming it to be zero at� k = 0 and below. Thus, parameters on the
negative axis are only driven by a random walk and parameter values might therefore diverge to
�1 . To �x this problem we introduced a re�ecting boundary at� min (parameters were clipped at
this value). Another potential solution would be to use a different prior distribution that also effects
the negative axis, however we found that Eq. (7) produces very good results in practice.

D ANALYSIS OF CONVERGENCE OF THEDEEP RALGORITHM

Here we provide additional details to the convergence properties of the DEEP R algorithm. To do
so we formulate the algorithm in terms of a Markov chain that evolves the parameters� and the
connectivity constraints (listed in Algorithm 3). Each application of the Markov transition operators
corresponds to one iteration of the DEEP R algorithm. We showthat the distribution of parameters
and network connectivities over the iterations of DEEP R converges to the stationary distribution
Eq. (3).

Each iteration of DEEP R corresponds to two update steps, which we formally describe in Algo-
rithm 3 using the Markov transition operatorsT� andTc and the binary constraint vectorc 2 f 0; 1gK

with elementsck , whereck = 1 represents an active connectionk. c is a constraint on the dynam-
ics, i.e., all connectionsk for which ck = 0 have to be dormant in the evolution of the parameters.
The transition operators are conditional probability distributions from which in each iteration new
samples for� andc are drawn for given values from the previous time step (� 0 andc0).
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1 given: initial values� 0, c0 with jc0j = M ;
2 for i in [1; N iterations ] do
3 � � T � (� j� 0; c0) ;
4 c � T c (cj� ) ;
5 � 0  � , c0  c ;
6 end

Algorithm 3: A reformulation of Algorithm 1 that is used for the proof in Theorem 2. Markov
transition operatorsT� (� j� 0; c0) andTc (cj� ) are applied for parameter updates in each iteration. The
transition operatorT� (� j� 0; c0) updates� and corresponds to line 3,Tc (cj� ) updates the connectivity
constraint vectorc and corresponds to lines 4,7 and 8 of Algorithm 1.� 0andc0denote the parameter
vector and connectivity constraint of the previous time step, respectively.

1. Parameter update: The transition operatorT� (� j� 0; c0) updates all parameters� k for which
ck = 1 (that are active). The operator is realized by advancing theSDE (2) for a small time
step� t (line 3 of Algorithm 3).

2. Connectivity update: for all parameters� k that are dormant, setck = 0 and randomly select
an elementcl which is currently 0 and set it to 1. This corresponds to line 3of Algorithm 3
and is realized by drawing a newc from Tc (cj� ).

The constraint imposed byc on � is formalized through the deterministic binary functionC(� ; c) 2
f 0; 1g which is1 if the parameters� are compatible with the constraint vectorc and0 otherwise.
This is expressed as (with) denoting the Boolean implication):

C(� ; c) =
�

1 if for all k; 1 � k � K : ck = 0 ) � k < 0
0 else

: (13)

The constraintC(� ; c) is ful�lled if all connectionsk with ck = 0 are dormant (� k < 0).

Note that the transition operatorTc (cj� ) depends only on the parameter vector� . It samples a new
c with uniform probability among the constraint vectors thatare compatible with the current set of
parameters� . We write the number of possible vectorsc that are compatible with� as� (� ), given
by the binomial coef�cient (the number of possible selections that ful�ll the constraint of new active
connections)

� (� ) =
X

c2 �

C(� ; c) =
�

K � j � � 0j
M � j � � 0j

�
; with � =

�
� 2 f 0; 1gK

�
� j� j = M

	
; (14)

wherejcj denotes the number of non-zero elements inc and� is the set of all binary vectors with
exactlyM elements of value1. Using this we can de�ne the operatorTc(cj� ) as:

Tc (cj� ) =
1

� (� )

X

� 2 �

� (c � � ) C(� ; c) (15)

where� denotes the vectorized Kronecker delta function, with� (0) = 1 and 0 else. Note that
Eq. (15) assigns non-zero probability only to vectorsc that are zero for elementsk for which� k < 0
is true (assured by the second term). In addition vectorsc have to ful�ll jcj = M . Therefore,
sampling from this operator introduces randomly new connection for the number of missing ones in
� . This process models theconnectivity updateof Algorithm 3.

The transition operatorT� (� j� 0; c0) in Eq. (17) evolves the parameter vector� under the constraint
c, i.e., it produces parameters con�ned to the connectivity constraint. We �rst consider a general
operator that leaves some constrained distribution� (� j c) invariant and we will later discuss the
special case of using a constrained version of the posteriordistributionp� (� j c; X ; Y � ). We assume
that we can write the stationary distribution of the operator T� as

� (� j c) =
1
Z

� (� ) C(� ; c) ; (16)

with normalizerZ and where� (� ) is some distribution over� that may not obey the constraint
C(� ; c).
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The Markov transition operators are performed one after theother so that the total update can be
written in terms of the compound operatorT

T (� ; cj� 0; c0) = Tc (cj� )T� (� j� 0; c0) : (17)

Applying the compound operatorT given by Eq. (17) corresponds to advancing the parameters for
a single iteration of Algorithm 3.

Using these de�nitions a general theorem can be enunciated for arbitrary distributions� (� j c) of
the form (16). The following theorem states that the distribution of variable pairsc and� that is left
stationary by the operatorT is the product of Eq. (16) and a uniform priorpC(c) over the constraint
vectors which haveM active connections. This prior is formally de�ned as

pC(c) =
1

j� j

X

� 2 �

� (c � � ) ; (18)

with � as de�ned in (14).

The main theorem to analyze the dynamics of Algorithm 3 can now be written as

Theorem 2. Let T� (� j� 0; c) be the transition operator of a Markov chain over� with stationary
distribution � (� jc) of the form(16). Let Tc (cj� ) be de�ned by Eq.(15). Then the Markov chain
over� andc with transition operator

T (� ; cj� 0; c0) = Tc (cj� )T� (� j� 0; c0) (19)

leaves the stationary distribution

p� (� ; c) = � (� jc)pC(c) (20)

invariant. Under the assumption thatT� (� j� 0; c) maintains for each parameter� k a non-zero prob-
ability of reaching negative values, the stationary distribution is also unique.

Proof. Theorem 2 holds forTc in combination with any operatorT� that updates� that can be
written in the form (16). We prove Theorem 2 by proving the following equality to show thatT
leaves (20) invariant:

X

c0

Z
T (� ; cj� 0; c0) p� (� 0; c0) d� 0 = p� (� ; c) : (21)

We expand the left-hand term using Eq. (19) and Eq. (20)
X

c0

Z
T (� ; cj� 0; c0) p� (� 0; c0) d� 0 =

X

c0

Z
Tc (cj� )T� (� j� 0; c0) � (� 0jc0)pC(c0) d� 0 : (22)

SinceTc does not depend on� 0, one can pull it out of the integral and then marginalize over� 0 by
observing that� (� jc0) is by de�nition the stationary distribution ofT� (� j� 0; c0):

X

c0

Z
T (� ; cj� 0; c0) p� (� 0; c0) d� 0 = Tc (cj� )

X

c0

Z
T� (� j� 0; c0) � (� 0jc0)pC(c0) d� 0 (23)

= Tc (cj� )
X

c0

� (� jc0)pC(c0) : (24)

What remains to be done is to marginalize overc0and to relate the result to the stationary distribution
p� (� ; c) = � (� jc)pC(c). First we replaceTc with its de�nition Eq. (15):

Tc (cj� )
X

c0

� (� jc0)pC(c0) =

0

@ 1
� (� )

X

� 2 �

� (c � � )

1

A C(� ; c)
X

c0

� (� jc0)pC(c0)

We can now replace the sum over� using Eq. (15)

Tc (cj� )
X

c0

� (� jc0)pC(c0) =
j� j

� (� )
pC(c) C(� ; c)

X

c0

� (� jc0)pC(c0) :
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From Eq. (14), Eq. (16) and Eq. (18) we �nd the equalities
P

c0 � (� jc0)pC(c0) =
1
Z � (� )

P
c0 C(� ; c0)pC(c0) = 1

Z
� ( � )
j � j � (� ). Using this we get

Tc (cj� )
X

c0

� (� jc0)pC(c0) =
j� j

� (� )
pC(c) C(� ; c)

1
Z

� (� )
j� j

� (� )

Finally using again Eq. (16), i.e.1Z � (� ) C(� ; c) = � (� jc)

Tc (cj� )
X

c0

� (� jc0)pC(c0) = � (� jc)pC(c) = p� (� ; c) :

This shows that the stationary distribution Eq. (20) is invariant under the compound operator (19).
Under the assumption thatT� (� j� 0; c0) allows each parameter� k to become negative with non-zero
probability, the stationary distribution is also unique. This can be seen by noting that under this
assumption each connection will become dormant sooner or later and thus each state inc can be
reached from any statec0. The Markov chain is therefore irreducible and the stationary distribution
is unique.

What remains to be shown is that the transition operatorT� (� j� 0; c0) with stationary distribution
� (� jc0) of the form Eq. (16) can be constructed for our case of supervised learning� (� jc0) =
p� (� jc0; X ; Y � ) and that it corresponds to the implementation of DEEP R.

A transition operatorT� (� j� 0) without the constraint, with stationary distributionp� (� jX ; Y � ) can
be constructed by letting the parameters� advance according to (5) for a short time� t. Therefore
the transition operatorT� (� j� 0) for this process is given by the Fokker-Planck equation (6) evaluated
at � t with parameters set initially to� 0. This corresponds to the updates for the soft-DEEP R
algorithm.

For the constrained transition operatorT� (� j� 0; c0) in Eq. (17) we use that by construction the dy-
namics of dormant connections is independent from the errorgradient in DEEP R for small� t, and
in fact all dormant connections are independent from each other. This can be seen by noting that the
error gradient disappears in the update equations for dormant connections in (7), which is a result
of our choice of mapping function from� to w given in Eq. (10). Therefore, under the constraint
C(� ; c) it is suf�cient to compute the updates only for� k with ck = 1 and simply redraw parameter
values for connections withck = 0 from the support of the stationary distributionp� (� jX ; Y � )
on the negative axis once they become active again. The stationary distribution of this transition
operator is given by the constrained posterior distribution

p� (� jc; X ; Y � ) =
1
Z

p� (� jX ; Y � ) C(� ; c) : (25)

The constraintC(� ; c) for this process is ful�lled since connections become dormant only if they go
below 0 and the process keeps them at this value.

For negative parameters values, the stationary distribution depends only on the choice of the prior
distributionpS (� ) and can be constructed in a way that is easily computable. In Algorithm (1) we
implement this by instantaneously setting connections to 0as soon as they become active. We found
that this process works very well in practice since it makes most effective use of the connections and
for a strong enough̀1 regularization, connections that are not useful will disappear soon after their
introduction.

Furthermore, it is also not necessary to memorize the valuesof dormant parameters for the DEEP R
algorithm. This also follows from our choice of mapping function from� to w given in Eq. (10). All
parameters� k � 0 are mapped towk = 0 and they only become active once� k randomly crosses to
the positive side. Since, by construction parameter updates for dormant synapses are independent of
the error gradient, it is suf�cient to randomly introduce these connections according to the stationary
distribution over parameter values on the negative axis.
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