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ABSTRACT

Neuromorphic hardware tends to pose limits on the connigctideep networks

that one can run on them. But also generic hardware and seftweplementa-

tions of deep learning run more ef ciently on sparse networ8everal methods
exist for pruning connections of a neural network after iswained without con-
nectivity constraints. We present an algorithm, DEEP R ¢imables us to train
directly a sparsely connected neural network. DEEP R auioatly rewires the

network during supervised training so that connectiongtaeee where they are
most needed for the task, while its total number is all theetstrictly bounded.

We demonstrate that DEEP R can be used to train very spamfeard and

recurrent neural networks on standard benchmark tasksjugtta minor loss in

performance. DEEP R is based on a rigorous theoretical fationdthat views

rewiring as stochastic sampling of network con guratior@fi a posterior.

1 INTRODUCTION

Network connectivity is one of the main determinants for thiee a neural network can be ef ciently
implemented in hardware or simulated in software. For exapipis mentioned in_Jouppi et al.
(2017) that in Google's tensor processing units (TPUs)ghsi do not normally tin on-chip mem-
ory for neural network applications despite the small 8 lgitgit precision on TPUs. Memory is also
the bottleneck in terms of energy consumption in TPUs andAfPGan et al., 2017; landola etlal.,
2016). For example, for an implementation of a long shormteremory network (LSTM), mem-
ory reference consumes more than two orders of magnitude erwergy than ALU operations
(Han et al., 2017). The situation is even more critical inno@worphic hardware, where either hard
upper bounds on network connectivity are unavoidable (Bohel et al., 2010; Merolla et al., 2014)
or fast on-chip memory of local processing cores is sevéimiyed, for example th®6 MByte lo-
cal memory of cores in the SpiNNaker system (Furber et al4P0This implementation bottleneck
will become even more severe in future applications of deemling when the number of neurons
in layers will increase, causing a quadratic growth in thenbar of connections between them.

Evolution has apparently faced a similar problem when exagllarge neuronal systems such as the
human brain, given that the brain volume is dominated byaumiatter, i.e., by connections between
neurons. The solution found by evolution is quite convigciiBynaptic connectivity in the brain
is highly dynamic in the sense that new synapses are colystawired, especially during learning
(Holtmaat et all.| 2005; Stettler et al., 2006; Attardo et2015;| Chambers & Rumpel, 2017). In
other words, rewiring is an integral part of the learningoaitinms in the brain, rather than a separate
process.

We are not aware of previous methods for simultaneous trgiand rewiring in arti cial neural
networks, so that they are able to stay within a strict boumdhe total number of connections
throughout the learning process. There are however seveuaistic methods for pruning a larger
network (Han et ali, 2015b;a; Collins & Kohli, 201.4; Yang &t/2015] Srinivas & Babu, 2015), that
is, the network is rst trained to convergence, and netwarkreections and / or neurons are pruned
only subsequently. These methods are useful for downlgaalinained network on neuromorphic
hardware, but not for on-chip training. A number of methodsenbeen proposed that are capa-
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ble of reducing connectivity during training (Collins & Kith2014;Jin et al., 2016; Narang et al.,
2017). However, these algorithms usually start out withdahnectivity. Hence, besides reducing
computational demands only partially, they cannot be agdpithen computational resources (such
as memory) is bounded throughout training.

Inspired by experimental ndings on rewiring in the braingwropose in this article deep rewiring
(DEEP R), an algorithm that makes it possible to train deepai@etworks under strict connectivity
constraints. In contrastto many previous pruning appresattat were based on heuristic arguments,
DEEP R is embedded in a thorough theoretical framework. DEESconceptually different from
standard gradient descent algorithms in two respectst, Emsh connection has a prede ned sign.
Speci cally, we assign to each connectikra connection parameteg and a constant sigs, 2

f 1;1g. For non-negativey, the corresponding network weight is givenwsy = s¢ k. In standard
backprop, when the absolute value of a weight is moved thr@,dt becomes a weight with the
opposite sign. In contrast, in DEEP R a connection vanigh#ss caseWy = 0), and a randomly
drawn other connection is tried out by the algorithm. SecondEEP R, gradient descent is
combined with a random walk in parameter space. This motibceleads to important functional
differences.

In fact, our theoretical analysis relates DEEP R to a prategsamples network con gurations (i.e.,
network connectivity, weights, and biases) from the pastalistribution of con gurations, that is,
the distribution that combines the data likelihood and thenectivity prior in a Bayes optimal
manner. As a result, the algorithm continues to rewire cotioes even when the performance has
converged. We show that this feature enables DEEP R to agepietwork connectivity structure
online when the task demands are drifting.

We show on several benchmark tasks that with DEEP R, the ctinite of several deep architec-
tures — fully connected deep networks, convolutional regtgl, recurrent networks (LSTMs) — can
be constrained to be extremely sparse throughout trainittganmarginal drop in performance. In
one example, a standard feed forward network trained on tNéSW dataset, we achieved good
performance withl % of the connectivity of the fully connected counterpart. $dew that DEEP
R reaches a similar performance level as state-of-theranipg algorithms where training starts
with the full connectivity matrix. If the target connectiyiis very sparse (a few percent of the full
connectivity), DEEP R outperformed these pruning algonih

2 REWIRING IN DEEP NEURAL NETWORKS

Stochastic gradient descent (SGD) and its modern variaiingia & Ba, 12014,
Tieleman & Hinton,| 2012) implemented through the Error Barojpagation algorithm is the
dominant learning paradigm of contemporary deep learnipj@ations. For a given list of network
inputsX and target network outpu¥ , gradient descent iteratively moves the parameter vector
in the direction of the negative gradient of an error funetioc .y ( ) such that a local minimum
of Ex.y ( ) is eventually reached.

A more general view on neural network training is providedalgyrobabilistic interpretation of the
learning problem (Bishop, 2006; N2al, 1992). In this pralistic learning framework, the determin-
istic network output is interpreted as de ning a probabitlistributionpy (Y j X; ) over outputs

Y for the given inpuiX and the given network parametersThe goal of training is then to nd pa-
rameters that maximize the likelihopg (Y jX; ) ofthe training targets under this model (maxi-
mum likelihood learning). Training can again be performgdjkadient descent on an equivalent er-
ror function that is usually given by the negative log-likelodEx.y ( )= logpn (Y jX; ).

Going one step further in this reasoning, a full Bayesiaatirent adds prior beliefs about the
network parameters through a prior distributmn( ) (we term this distribution the structural prior
for reasons that will become clear below) over parameteregal and the training goal is formulated
via the posterior distribution over parametersThe training goal that we consider in this article is
to produce sample parameter vectors which have a high pititpainder the posterior distribution
p(jX;Y )/ ps() pn (Y jX; ). More generally, we are interested in a target distribution
p ( ) thatis a tempered version of the posterior, i.e., we de reetthining goal as follows:

produce sample parameter vectorwith high probabilityinp ( ) = Zip (XY )Ti

(1)
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whereZ is a normalizing constant aridis a temperature parameter. Hor 1 we recover the pos-
terior distribution, forT > 1 the peaks of the posterior are attened, andTox 1 the distribution
is sharpened, leading to higher probabilities for paransstitings with better performance.

The DEEP R algorithm: In many situations, network connectivity is strictly limad during train-
ing, for instance because of hardware memory limitationiserirthe limiting factor for a training
algorithm is the maximal connectivity ever needed duriagning. DEEP R guarantees such a hard
limit. DEEP R achieves the learning go@l (1) network con gurationsthat is, it not only sam-
ples the network weights and biases, but also the conntgctinder the given constraints. This is
achieved by introducing the following mapping from netwpdtameters to network weightsv:

A connection parameteg and a constant sigsx 2 f 1;1g are assigned to each connectlanf

k is negative, we say that the connectiois dormant and the corresponding weightug = 0.
Otherwise, the connection is consideeadive and the corresponding weightig = sk «. Hence,
each y encodes (a) whether the connection is active in the netwan#, (b) the weight of the
connection if it is active. Note that we use here a singlexridir each connection / weight instead
of the more usual double index that de nes the sending aneivieg neuron. This connection-
centric indexing is more natural for our rewiring algoritemrhere the connections are in the focus
rather than the neurons. Using this mapping, sampling floenposterior over is equivalent to
sampling from the posterior over network con gurationsttfs, the network connectivity structure
and the network weights.

for i in [1; Nierations ]dO

for all active connectionk ( ¢ 0) doIO

kK  k rExy () +02T

if x < Othen set connectiok dormant ;

end

while number of active connections lower thigndo

‘ select a dormant connecti&Awith uniform probability and activate it;

w 0
end
end
Algorithm 1: Pseudo code of the DEEP R algorithm.is sampled from a zero-mean Gaussian of
unit variance independently for each active and each umtiepe Note that the gradient of the error
Ex.y () iscomputed by backpropagation over a mini-batch in practic

DEEP R is de ned in Algorithnill. Gradient updates are perfednonly on parameters of active
connections (line 3). The derivatives of the error funct@ Ex.v () can be computed in the
usual way, most commonly with the backpropagation algoritBince we consider only classi ca-
tion problems in this article, we used the cross-entropgrdar the experiments in this article. The
thirdterminline 3(  )is an’; regularization term, but other regularizers could be usadell.

ﬁ@ceptual difference to gradient descent is introdudadhe last term in line 3. Here, noise

2T | is added to the update, where the temperature parafetentrols the amount of noise
and ¢ is sampled from a zero-mean Gaussian of unit variance imatkely for each parameter and
each update step. The last term alone would implement a namdok in parameter space. Hence,
the whole line 3 of the algorithm implements a combinatiogafdient descent on the regularized
error function with a random walk. Our theoretical analygiews that this random walk behavior
has an important functional consequence, see the paragfgstthe next for a discussion on the
theoretical properties of DEEP R.

The rewiring aspect of the algorithm is captured in lines 4 6a9 in Algorithm [1). Whenever

a parametery becomes smaller thady the connection is set dormant, i.e., it is deleted from the
network and no longer considered for updates (line 4). Foh&®nnection that was set to the
dormant state, a new connectikfis chosen randomly from the uniform distribution over donma
connectionsk®is activated and its parameter is initializedoThis rewiring strategy (a) ensures
that exactlyK connections are active at any time during training (onéailies the network with

K active connections), and (b) that dormant connections dmeed any computational demands
except for drawing connections to be activated. Note thasparse networks, it is ef cient to keep
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Figure 1: Visual pattern recognition with sparse networks during training. Sample training
images (top), test classi cation accuracy after trainingJarious connectivity levels (middle) and
example test accuracy evolution during training (bottoon pfstandard feed forward network trained
on MNIST (A) and a CNN trained on CIFAR-1®j. Accuracies are shown for various algorithms.
Green: DEEP R; red: soft-DEEP R; blue: SGD with initially atesparse connectivity; dashed
gray: SGD, fully connected. Since soft-DEEP R does not guageaa strict upper bound on the
connectivity, accuracies are plotted against the higrastectivity ever met during training (middle
panels). Iteration number refers to the number of paranugigates during training.

only a list of active connections and none for the dormannegtions. Then, one can ef ciently
draw connections from the whole set of possible connectiodgeject those that are already active.

We provide a theoretical analysis of this algorithm in Smti. Since the updates are stochastic,
one cannot predict the exact network con guration after angnber of updates. However, one can
describe the evolution of the distribution of network conrgtions. Our analysis in Sectibh 4 shows
that under some simplifying assumptions, this distributtonverges to a unique stationary distri-
bution, that is, a distribution that will no longer changedanthe updates. Further, the stationary
distribution is given by the target distribution of netwarsn gurations [1) where the prigus ( )

is given by a uniform distribution over connectivity maggcthat ful Il the connectivity constraint
of K active connections and an exponential prior on the weighttsese active connections.

3 EXPERIMENTS

Rewiring in fully connected and in convolutional networks: We rst tested the performance
of DEEP R on MNIST and CIFAR-10. For MNIST, we considered dyfabnnected feed-forward
network used in Han et al. (2015b) to benchmark pruning &lyos. It has two hidden layers of
300and100neurons respectively and a 10-fold softmax output layerth@rCIFAR-10 dataset, we
used a convolutional neural network (CNN) with two convilogl followed by two fully connected
layers. For reproducibility purposes the network architeeand all parameters of this CNN were
taken from the of cial tutorial of Tensor ow. On CIFAR-10, &vused a decreasing learning rate
and a cooling schedule to reduce the temperature parameteer iterations (see Appendix A for
details on all experiments).
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Figure 2: Rewiring in recurrent neural networks. Network performance for one example run
(A) and at various connectivity levelBY as in Fig[1 for an LSTM network trained on the TIMIT
dataset with DEEP R (green), soft-DEEP R (red) and a netwadttk wed random connectivity
(blue). Dotted line: fully connected LSTM trained withoegularization as reported|in Greff ef al.
(2017). Thick dotted line: fully connected LSTM with regularization.

For each task, we performed four training sessions. Firstirained a network with DEEP R. In
the CNN, the rst convolutional layer was kept fully connedtwhile we allowed rewiring of the
second convolutional layer. Second, we tested anotheritdgg soft-DEEP R, which is a simpli ed
version of DEEP R that does however not guarantee a stricteztivity constraint (see Sectibh 4
for a description). Third, we trained a network in the staddaanner without any rewiring or
pruning to obtain a baseline performance. Finally, we &dia network with a connectivity that
was randomly chosen before training and kept xed duringdpgmization. The connectivity was
however not completely random. Rather each layer receivadeer of connections that was the
same as the number found by soft-DEEP R. The performanceésafetwork is expected to be much
better than a network where all layers are treated equally.

Fig.[d shows the performance of these algorithms on MNISTiépA) and on CIFAR-10 (panel
B). DEEP R reaches a classi cation accuracy9éf2 % when constrained td:3 % connectivity.
To evaluate precisely the accuracy that is reachable W86 connectivity, we did an additional
experiment where we doubled the number of training epoclEMR reached a classi cation ac-
curacy 0f96:3% (less thar % drop in comparison to the fully connected baseline). Tngiron
xed random connectivity performed surprisingly well foornectivities around0 %, possibly due
to the large redundancy in the MNIST images. Soft-DEEP R doeguarantee a strict upper bound
on the network connectivity. When considering the maximumnzctivity ever seen during train-
ing, soft-DEEP R performed consistently worse than DEEP mhé&iworks where this maximum
connectivity was low. On CIFAR-10, the classi cation acaay of DEEP R was 84.1 % at a connec-
tivity level of 5 %. The performance of DEEP R at 20 % connectivity was closkdgerformance
of the fully connected network.

To study the rewiring properties of DEEP R, we monitored thmher of newly activated connec-
tions per iteration (i.e., connections that changed thaius from dormant to active in that iteration).
We found that after an initial transient, the number of neadyivated connections converged to a
stable value and remained stable even after network pesfocenhas converged, see Apperidix B.

Rewiring in recurrent neural networks:  In order to test the generality of our rewiring approach,
we also considered the training of recurrent neural netaavith backpropagation through time
(BPTT). Recurrent networks are quite different from theed forward counterparts in terms of their
dynamics. In particular, they are potentially unstableugcurrent loops in inference and training
signals. As a test bed, we considered an LSTM network traorethe TIMIT data set. In our
rewiring algorithms, all connections were potentially itadale for rewiring, including connections
to gating units. From the TIMIT audio data, MFCC coef ciefatsd their temporal derivatives were
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computed and fed into a bi-directional LSTMs with a singleurgent layer of 200 cells followed by
a softmax to generate the phoneme likelihaod (Graves & Sdhafierl 2005), see Appendi} A.

We considered as rst baseline a fully connected LSTM widmstard BPTT without regularization
as the training algorithm. This algorithm performed simylas the one described iin Greff el al.
(2017). It turned out however that performance could beisigntly improved by including a
regularizer in the training objective. We therefore considl the same setup with regularization
(cross-validated). This setup achieved a phoneme ermef&8:3 %. We note that better results
have been reported in the literature using the CTC costilumeind deeper networks (Graves €t al.,
2013). For the sake of easy comparison however, we stickedtbéhe much simpler setup with a
medium-sized network and the standard cross-entropy fmaotion.

We found that connectivity can be reduced signi cantly iistsetup with our algorithms, see Hig. 2.
Both algorithms, DEEP R and soft-DEEP R, performed evemtlidetter than the fully connected
baseline at connectivities arouh@ %, probably due to generalizationissues. DEEP R outpeddrm
soft-DEEP R at very low connectivities and it outperformd®llB with xed random connectivity
consistently at any connectivity level considered.

Comparison to algorithms that cannot be run on very sparse nevorks: We wondered how
much performance is lost when a strict connectivity comstizas to be taken into account during
training as compared to pruning algorithms that only achsparse networks after training. To this
end, we compared the performance of DEEP R and soft-DEEP&#mtly proposed pruning algo-
rithms: " 1 -shrinkagel(Tibshirahi, 1995; Collins & Kohli, 2014) andktpruning algorithm proposed
by |Han et al. [(2015b)."; -shrinkage uses simplg -norm regularization and nds network solu-
tions with a connectivity that is comparable to the statéhefdrt (Collins & Kohli, 2014; Yu et al.,
2012). We chose this one since it is relatively close to DEERItR the difference that it does not
implement rewiring. The pruning algorithm from Han et al0o{®b) is more complex and uses a
projection of network weights on g constraint. Both algorithms prune connections startiogfr
the fully connected network. The hyper-parameters sucleaming rate, layer size, and weight
decay coef cients were kept the same in all experiments. Welated by an extensive parameter
search that these settings were good settings for the cisopalgorithms, see AppendiX A.

Results for the same setups as considered above (MNIST,RGIFA TIMIT) are shown in Fid.]3.
Despite the strict connectivity constraints, DEEP R anttB&EP R performed slightly better than
the unconstrained pruning algorithms on CIFAR-10 and Tl &ll connectivity levels considered.
On MNIST, pruning was slightly better for larger connedi®s. On MNIST and TIMIT, pruning
and’ ;-shrinkage failed completely for very low connectivitiebile rewiring with DEEP R or soft-
DEEP R still produced reasonable networks in this case.

One interesting observation can be made for the error rattutgmn of the LSTM on TIMIT
(Fig.[3D). Here, both ;-shrinkage and pruning induced large sudden increasesddrtior rate,
possibly due to instabilities induced by parameter chaimgh®e recurrent network. In contrast, we
observed only small glitches of this type in DEEP R. This @adkes that sparsi cation of network
connectivity is harder in recurrent networks due to posdtistabilities, and that DEEP R is better
suited to avoid such instabilities. The reason for this athge of DEEP R is however not clear.

Transfer learning is supported by DEEP R: If the temperature paramet@ris kept constant
during training, the proposed rewiring algorithms do natwerge to a static solution but explore
continuously the posterior distribution of network conmtions. As a consequence, rewiring is
expected to adapt to changes in the task in an on line manhtite task demands change in an
online learning setup, one may hope that a transfer of iamaespects of the tasks occurs such that
these aspects can be utilized for faster convergence artédaies (transfer learning). To verify this
hypothesis, we performed one experiment on the MNIST datasere the class to which each out-
put neuron should respond to was changed after each tragpioch (class-shuf ed MNIST task).
Fig.[4A shows the performance of a network trained with DEE® fhe class-shuf ed MNIST
task. One can observe that performance recovered aftersbating of the target classes. More
importantly, we found a clear trend of increasing classiica accuracy even across shuf es. This
indicates a form of transfer learning in the network such thformation about the previous tasks
(i.e., the previous target-shuf ed MNIST instances) wassgrved in the network and utilized in
the following instances. We hypothesized for the reasohisfttansfer that early layers developed



Submitted as a conference paper at ICLR 2018

A B
S
Z
2
3
(9]
S ]
S o ‘ ‘ P 5
0 20000 40000

Figure 3:Ef cient network solutions under strict sparsity constrai nts. Accuracy and connectiv-
ity obtained by DEEP R and Soft-DEEP R in comparison to thaséeaed by pruning (Han et al.,
2015b) and ;-shrinkagel(Tibshiranl, 1996; Collins & Kohli, 2014)A, B) Accuracy against the
connectivity for MNIST (A) and CIFAR-10 (B). For each algtimin, one network with a decent
compromise between accuracy and sparsity is chosen (sraglbgxes) and its connectivity across
training iterations is shown belowC) Performance on the TIMIT datasdd) Phoneme error rates
and connectivities across iteration number for represigetaiaining sessions.

features that were invariant to the target shuf ing and did need to be re-learned in later task
instances. To verify this hypothesis, we computed the folig two quantities. First, in order to
guantify the speed of parameter dynamics in different lsy&e computed the correlation between
the layer weight matrices of two subsequent training ep&adp [@B). Second, in order to quantify
the speed of change of network dynamics in different lay@escomputed the correlation between
the neuron outputs of a layer in subsequent epochs[(Fig W€jound that the correlation between
weights and layer outputs increased across training eyahw/ere signi cantly larger in early lay-
ers. This supports the hypothesis that early network ldgarsied features invariant to the shuf ed
coding convention of the output layer.
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Figure 4:Transfer learning with DEEP R. The target labels of the MNIST data set were shuf ed
after every epochA) Network accuracy vs. training epoch. The increase of ndtywerformance
across tasks (epochs) indicates a transfer of knowledgeebattasks. B) Correlation between
weight matrices of subsequent epochs for each network I&)y&orrelation between neural activity
vectors of subsequent epochs for each network layer. Thefenais most visible in the rst hidden
layer, since weights and outputs of this layer are corrdlatzoss tasks.

4 CONVERGENCE PROPERTIES OBPEEP RAND SOF-DEEP R

The theoretical analysis of DEEP R is somewhat involved dubkd implemented hard constraints.
We therefore rst introduce and discuss here another algorisoft-DEEP R where the theoretical
treatment of convergence is more straight forward. In @sttio standard gradient-based algorithms,
this convergence is not a convergence to a particular paeawector, but a convergence to the target
distribution over network con gurations Eq. (1).

for i in [1; Niterations ] dO

for all active connectionk ( ¢ 0) dop
kK  k @rExy () +02T
if ¢ < Othen set connectiok dormant ;
end
for all dormanbconnectionlrs( k < 0)do
k k+ 2T
k  maxf i, ming;
if ¢ Othen set connectiok active ;
end
end

Algorithm 2: Pseudo code of the soft-DEEP R algorithm, < 0is a constant that de nes a lower
boundary for negativexs.

Convergence properties of soft-DEEP R: The soft-DEEP R algorithm is given in Algorithm 2.
Note that the updates for active connections are the sante BEEP R (line 3). Also the mapping
from parametersy to weightswy is the same as in DEEP R. The main conceptual difference to
DEEP R is that connection parameters continue their randalk when dormant (line 7). Due to
this random walk, connections will be re-activated at randiones when they cross zero. Therefore,
soft-DEEP R does notimpose a hard constraint on networkeaiivity but rather uses thg norm
regularization to impose a soft-constraint.

Since dormant connections have to be simulated, this &hgoris computationally inef cient for
sparse networks. An approximation could be used wheretsil@mections are re-activated at a
constant rate, leading to an algorithm very similar to DEEPREP R adds to that the additional
feature of a strict connectivity constraint.

The central result for soft-DEEP R has been proven in theestrf spiking neural networks in

(Kappel et al., 2015) in order to understand rewiring in trerbfrom a functional perspective. The
same theory however also applies to standard deep neuvadnkst To be able to apply standard
mathematical tools, we consider parameter dynamics iriraomis time. In particular, consider the
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following stochastic differential equation (SDE)

dy = @ngp( XY ) dt+ IOﬁolwk; 2)
k t

where is the equivalent to the learning rate a@% logp ( jX;Y ) t denotes the gradient of

the log parameter posterior evaluated at the parametesrve'cat timet. The termdW, denotes
the in nitesimal updates of a standard Wiener process. Bi& describes gradient ascent on the
log posterior combined with a random walk in parameter sp&ée show in Appendix C that the

unique stationary distribution of this parameter dynarigaggven byp ( ) = Zip (XY )%.

Since we considered classi cation tasks in this article,imterpret the network output as a multi-
nomial distribution over class labels. Then, the deriwati¥ the log likelihood is equivalent to the
derivative of the negative cross-entropy error. Togeth#r an " ; regularization term for the prior,
and after discretization of time, we obtain the update af Bnin Algorithm 2 for non-negative pa-
rameters. For negative parameters, the rst term in Eq. éishes since the network weight is
constant zero there. This leads to the update in line 7. Nattarte introduced a re ecting boundary
at min < 0in the practical algorithm to avoid divergence of parans(éne 8).

Convergence properties of DEEP R: A detailed analysis of the stochastic process that underlie
the algorithm is provided in Appendix D. Here we summarize thain ndings of this analysis.
Each iteration of DEEP R in Algorithm 1 consists of two parts:the rst part (lines 2-5) all
connections that are currently active are advanced, wisipikg the other parameters at 0. In
the second part (lines 6-9) the connections that becameattrtuiring the rst step are randomly
replenished.

To describe the connectivity constraint over #aeconnections we introduce the binary constraint
vectorc 2 f 0;1gX which represents the set of active connections, i.e., alemeof c is 1 if
connectiork is allowed to be active and zero else. In Theorem 2 of AppeBdiwe link DEEP R

to a theoretical framework which realizes a sampling predbat simultaneously samples from
the posterior distribution (1) under the constraindf maintainingM active connections and the
constraint vector from a prior distributigu(c), i.e., from the stationary distribution given by the
joint probability

p(eXGY ) = 7 (e X;Y PO @

where p(c) is a uniform prior over all possible connectivities wi active connections and
p ( jc; X;Y ) isthe posterior for the given constraint vectolWe conclude that DEEP R solves
a constraint optimization problem by sampling parametetars  with high learning performance
and with constrained connectivity. The algorithm will tefare spend most time in network con g-
urations where the connectivity supports the parametenileg, such that, connections with large
support under the objective function (1) will be maintaimetive with high probability, while other
connections are randomly tested and discarded if foundsegtiu

5 CONCLUSIONS

We have presented a method for modifying backprop and bapkitrrough-time so that not only the
weights of connections, but also the connectivity grapimmitaneously optimized during training.
This can be achieved while staying always within a given ldbamthe total number of connections.
When the absolute value of a weight is moved by backprop tir6uit becomes a weight with the
opposite sign. In contrast, in DEEP R a connection vanighésis case (more precisely: becomes
dormant), and a randomly drawn other connection is triecbguhe algorithm. This setup requires
that, like in neurobiology, the sign of a weight does not @eduring learning. Another essential
ingredient of DEEP R is that it superimposes the gradieivedrdynamics of each weight with a
random walk. This feature can be viewed as another inspirétdom neurobiology (Mongillo et al.,
2017). An important property of DEEP R is that — in spite of stechastic ingredient — its
overall learning dynamics remains theoretically tractablot as gradient descent in the usual sense,
but as convergence to a stationary distribution of network gurations which assigns the largest
probabilities to the best-performing network con gurais An automatic bene t of this ongoing
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stochastic parameter dynamics is that the training prooessdiately adjusts to changes in the
task, while simultaneously transferring previously gdisempetences of the network (see Fig. 4).

We have demonstrated in Fig. 1-3 that DEEP R endows sparseansparse networks with power-
ful learning capabilities. Due to its stochastic naturejoues methods from stochastic optimization
are in principle applicable to the algorithm. For exampléjlerwe kept the noise level (i.e., the
temperature T) xed during training for MNIST and TIMIT, a obing schedule like in simulated
annealing enhanced the learning performance for CIFAR-10.

Acknowledgements Written under partial support by the Human Brain Projecthaf European
Union#720270, and the Austrian Science Fund (FWF): |1 3251-N33. We thaakEPernkopf and
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A METHODS

Choosing hyper-parameters for DEEP R: The learning rate is de ned for each task indepen-
dently (see task descriptions below). Considering thahtiraber of active connections is given as
a constraint, the remaining hyper parameters are the mégatian coef cient and the temperature
T. We found that the performance of DEEP R does not dependgiyron the temperatur€. Yet,
the choice of has to be done more carefully. For each dataset there wagalnvalue of : one
order of magnitude higher or lower typically lead to a subséd loss of accuracy.

In MNIST, 96.3% accuracy under the constraint of 1% connégtivas achieved with = 10
andT chosen so thaf = 510 2. In TIMIT, = 0:03andT = 0 (higher values ofl could
improve the performance slightly but it did not seem venynsgant). In CIFAR-10 a different
was assigned to each connectivity matrix. To reach 84.1%racg with 5% connectivity we used
in each layer from input to output = [0;10 ;10 8;10 °;0]. The temperature is initialized with

T= l—; and decays with the learning rate (see paragraph of the aetimut CIFAR-10).

Choosing hyper-parameters for soft-DEEP R: The main difference between soft-DEEP R and
DEEP R is that the connectivity is not given as a global caistr This is a considerable drawback
if one has strict constraint due to hardware limitation big also an advantage if one simply wants
to generate very sparse network solutions without havirlgar idea on the connectivities that are
reachable for the task and architecture considered.

In any cases, the performance depends on the choice of pgpameters, T and i, , but also -
unlike in DEEP R - these hyper parameters have inter-depnelationships that one cannotignore
(as for DEEP R, the learning rateis de ned for each task independently). The reason why soft-
DEEP R depends more on the temperature is that the rate cfivatéon of connections is driven
by the amplitude of the noise whereas the)bare decoupled BFDIE. To summarize the results of
an exhaustive parameter search, we foundtH&E should ideally be slightly below. In general
high nin leads to high performance but it also de nes an approximater bound on the smallest
reachable connectivity. This lower bound can be estimayazbimputing analytically the stationary
distribution under rough approximations and the assumgtiat the gradient of the likelihood is

zero. Ifpmin is the targeted lower connectivity bound, one neggs w
For MNIST we used = 10 ° andT = l—; for all data points in Fig. 1 panel A and a range

of values of iy to scope across different ranges of connectivity lower bisunin TIMIT and
CIFAI%‘-lgwe used a simpler strategy which lead to a simildacome, we xed the relationships:

=3 2L = Tl min and we varied only to produce the solutions shown in Fig. 1 panel B and
Fig. 2.

Re-implementing pruning and ";-shrinkage: To implement” ;-shrinkage (Tibshirani, 1996;
Collins & Kohli, 2014), we applied the;-shrinkage operator  relu(j j ) sign( ) after each
gradient descent iteration. The performance of the algworis evaluated for different varying on
a logarithmic scale to privilege a sparse connectivity oigdn laccuracy. For instance for MNIST
in Figure 3.A we used of the form10 z with n going from4 to 12. The optimal parameter was
n=9.

We implemented the pruning described in Han et al. (2015h)s &lgorithm uses several phases:
training - pruning - training, or one can also add anothenjmgiteration: training - pruning - train-
ing - pruning - training. We went for the latter because itr@ased performance. Each "training”
phase is a complete training of the neural network vithegularizatiod. At each "pruning” phase,
the standard deviation of weights within a weight matkigq is computed and all active weights
with absolute values smaller thgmg are pruneddis called the quality parameter). Grid search is
used to optimize th&-regularization coef cient and quality parameter. Theulesfor MNIST are
reported in Figure 5.

To be fair with other algorithms, we did not allocate thremes more training time to pruning, each
"training” phase was performed for a third of the total numbgepochs which was chosen much larger than
necessary.

12
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connectivity
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Figure 5:Hyper-parameter search for the pruning algorithm according to Han et al. (2015b).
Each point of the grid represents a weight decay coef ciequiality factor pair. The number and the
color indicate the performance in terms of accuracy (lefannectivity (right). The red rectangle
indicates the data points that were used in Fig. 3A.

MNIST: We used a standard feed forward network architecture withtigden layers witt200
neurons each and recti ed linear activation functionsdakd by a 10-fold softmax output. For all
algorithms we used a learning rate of 0.05 and a batch siz6 wifith standard stochastic gradient
descent. Learning stopped after 10 epochs. All reportefbpaances in this article are based on
the classi cation error on the MNIST test set.

CIFAR-10: The of cial tutorial for convolutional networks of tensoow? is used as a reference
implementation. Its performance out-of-the-box provittesfully connected baseline. We used the
values given in the tutorial for the hyper-parameters imkbrithms. In particular the layer-speci ¢
weight decay coef cients that interact with our algorithmsre chosen from the tutorial for DEEP
R, soft-DEEP R, pruning, and -shrinkage.

In the fully connected baseline implementation, standtvdhastic gradient descent was used with
a decreasing learning rate initialized *and decayed by a fact@rl every350epochs. Training
was performed for one million iterations for all algorithmBor soft-DEEP R, which includes a
temperature parameter, keeping a high temperature as tightveecays was increasing the rate
of re-activation of connections. Even if intermediate solus were rather sparse and ef cient the
solutions after convergence were always dense. Therdfaayeight decay was accompanied by
annealing of the temperatufe This was done by setting the temperature to be proportiorthle
decaying . This annealing was used for DEEP R and soft-DEEP R.

TIMIT:  The TIMIT dataset was preprocessed and the LSTM architeetas chosen to reproduce
the results from Greff et al. (2017). Input time series werefed by 12 MFCC coef cients and the
log energy computed over each time frame. The inputs were éipanded with their rst and
second temporal derivatives. There are 61 different ph@sesmnotated in the TIMIT dataset, to
report an error rate that is comparable to the literature aifopmed a standard grouping of the
phonemes to generate 39 output classes (Lee & Hon, 1989%¢6&edal., 2013; Greff et al., 2017).
As usual, the dialect speci ¢ sentences were excluded (5)| The phoneme error rate was
computed as the proportion of misclassi ed frames.

A validation set and early stopping were necessary to tragtaork with dense connectivity matrix
on TIMIT because the performance was sometimes unstabli¢ sudtenly dropped during training
as seen in Fig. 3D for;-shrinkage. Therefore a validation set was de ned by rangigalecting
5% of the training utterances. All algorithms were trained40 epochs and the reported test error
rate is the one at minimal validation error.

To accelerate the training in comparison the reference @oeff et al. (2017) we used mini-batches
of size 32 and the ADAM optimizer (Kingma & Ba (2014)). Thissvaso an opportunity to test the
performance of DEEP R and soft-DEEP R with such a variantadignt descent. The learning rate

2TensorFlow version 1.3: www.tensor ow.org/tutorialségecnn
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was set t®:01and we kept the default momentum parameters of ADAM, yet waddhat changing
the parameter (as de ned in Kingma & Ba (2014)) frat® & to 10 # improved the stability of
fully connected networks during training in this recurrsettup. As we could not nd a reference that
implemented ;-shrinkage in combination with ADAM, we simply applied thierimkage operator
after each iteration of ADAM which might not be the ideal atwiin theory. It worked well in
practice as the minimal error rate was reached with thispsetihe same type of; regularization
in combination with ADAM was used for DEEP R and soft-DEEP Rakhead to very sparse and
ef cient network solutions.

Initialization of connectivity matrices:  We found that the performance of the networks depended
strongly on the initial connectivity. Therefore, we folled the following heuristics to generate
initial connectivity for DEEP R, soft-DEEP R and the contsetup with xed connectivity.

First, for the connectivity matrix of each individual lay#re zero entries were chosen with uniform
probability. Second, for a given connectivity constrairg feund that the learning time increased
and the performance dropped if the initial connectivity neats were not chosen carefully. Typically
the performance dropped drastically if the output layer indilized to be very sparse. Yet in most
networks the number of parameters is dominated by largeemtivity matrices to hidden layers. A
basic rule of thumb that worked in our cases was to give anlemumaber of active connections to
the large and intermediate weight matrices, whereas snmaiks - typically output layers - should
be densely connected.

We suggest two approaches to re ne this guess: One can &itleat the statistics of the connec-
tivity matrices after convergence of DEEP R or soft-DEEP Rifgossible, the second alternative
is to initialize once soft-DEEP R with a dense matrix and obs¢he connectivity matrix after con-
vergence. In our experiments the connectivities after emyence were coherent with the rule of
thumb described above and we did not need to pursue intesesareh for ideal initial connectivity
matrices.

For MNIST, the number of parameters in each layer was 235k,a8@ 1k from input to output.
Using our rule of thumb, for a given global connectiviiy, the layers were respectively initialized
with connectivity0:75pg, 2:3po and22:8pp.

For CIFAR-10, the baseline network had two convolutionggls with lters of shapes 5 3 64
and5 5 64 64respectively, followed by two fully connected layer withiglet matrices of shape
2304 384and384 192 The lastlayer was then projected into a softmax over 10uupsses.
The numbers of parameters per connectivity matrices weretbre 5k, 102k, 885k, 738k and 2k
from input to output. The connectivity matrices were idiiad with connectivityl; 8pg; 0:8pg; 8po;
andl.

For TIMIT, the connection matrix from the input to the hiddexyer was of size89 800, the
recurrent matrix had siz200 800and the size of the output matrix wae0 39. Each of these
three connectivity matrices were initialized with a continéty of 3pg; pp, and10p, respectively.

Initialization of weight matrices: For CIFAR-10 the initialization of matrix coef cients was
given by the reference implementation. For MNIST and TIMHe weight matrices were initial-
ized with = panN (0; 1)c wheren;, is the number of afferent neurori¢(0; 1) samples from a

centered gaussian with unit variance and a binary connectivity matrix.

It would not be good to initialize the parameters of all dontn@onnections to zero in soft-DEEP R.
After a single noisy iteration, half of them would becomeiageivhich would fail to initialize the
network with a sparse connectivity matrix. To balance oistphoblem we initialized the parameters
of dormant connections uniformly between the clipping ealyi, and zero in soft-DEEP R.

Parameters for Figure 4 The experiment provided in Figure 4 is a variant of our MNIperi-

ment where the target labels were shuf ed after every trajrdpoch. To make visible the general-
ization capability of DEEP R over a small number of epochseweanced the noise exploration by
setting a batch to 1 so that the connectivity matrices wedatgul at every time step. Also we used
a larger network with 400 neurons in each hidden layer. Theameing parameters were similar to
those used previously: the connectivity was constrainei®t@nd the connectivity matrices were
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Figure 6:Rewiring behavior of DEEP R. A) Network performance versus training iteration (same
as green line in Fig. 1A bottom, but for a network constraiteed% connectivity). B) Absolute

number of newly activated connectioksay to layerl = 1 (brown),l = 2 (orange), and the output
layer ( = 3, gray) per iteration. Note that these layers have quitesdifit numbers of potential
connectionK (). C) Same as panel B but the number of newly activated connecti@shown
relative to the number of potential connections in the Igyatues in panel C are smoothed with a
boxcar Iter overX iterations).

initialized with respective connectivitie§:01, 0:01, and0:1. The parameters of DEEP R were set
2

to =0:05 =10 SandT = .

B REWIRING DURING TRAINING ON MNIST

Fig. 6 shows the rewiring behavior of DEEP R per network ldgethe feed-forward neural network
trained on MNIST and the training run indicated by the smadlygbox around the green dot in
Fig. 1A. Since it takes some iterations until the weightsafmections that do not contribute to a

reduction of the error are driven & the number of newly established connecti&n%)w in layerl

is small for all layers initially. After this initial transint, the number of newly activated connections
stabilized to a value that is proportional to the total humtfepotential connections in the layer
(Fig. 1B). DEEP R continued to rewire connections even lathé training process.

C DETAILS TO: CONVERGENCE PROPERTIES OF SOFDEEP R

Here we provide additional details on the convergence ptigseof the soft-DEEP R parameter
update provided in Algorithm 2. We reiterate here Eq. (2):

dy = @ngp( X:Y ) dt+ IOﬁolwk: (4)
k t

Discrete time updates can be recovered from the set of SDHsy(#htegration over a short time
period t

: P ——
o= Ziogp (XY )+ 2T ©)
@«
where the learning rateis given by = t.

We prove that the stochastic parameter dynamics Eq. (4)ecgas to the target distributign( )
given in Eq. (1). The proof is analogous to the derivatioregiin Kappel et al. (2015; 2017). We
reiterate the proof here for the special case of supervisaching. The fundamental property of
the synaptic sampling dynamics Eq. (4) is formalized in Theol and proven below. Before we
state the theorem, we brie y discuss its statement in sirtgrims. Consider some initial parameter
setting °. Over time, the parameters change according to the dyngicsSince the dynamics
include a noise term, the exact value of the parametg@jsat some time > 0 cannot be determined.
However, itis possible to describe the exact distributijmemameters for each tinte We denote this
distribution bypep( ;t), where the “FP” subscript stands for “Fokker-Planck” sitioe evolution
of this distribution is described by the Fokker-Planck etuma(6) given below. Note that we make
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the dependence of this distribution on time explicit in thatation. It can be shown that for the
dynamics (6)pep( ;t) convergesto a well-de ned and unigstationary distributiorin the limit of
larget. To prove the convergence to the stationary distributiorsh@w that it is kept invariant by
the set of SDEs Eq. (4) and that it can be reached from anglicibindition.

We now state Theorem 1 formally. To simplify notation we dmophe following the explicit time
dependence of the parameters

Theorem 1. Letp ( jX;Y ) be a strictly positive, continuous probability distribomi over pa-
rameters , twice continuously differentiable with respect tpand let > 0. Then the set of
stochastic differential equations E() leaves the distributiop ( ) (1) invariant. Furthermore,
p ( ) is the unique stationary distribution of the sampling dyiem

Proof. The stochastic differential equation Eq. (4) translate® ia Fokker-Planck equation
(Gardiner, 2004) that describes the evolution of the digtion over parameters

@ X @ @ , @

— )= — — lo XY N+ == (T 1) (6

@PFP( ) @ @ gp (] ) per( ;1) @ﬁ( Per( ;1)) (6)
wherepep( ;t) denotes the distribution over network parameters attiriie show thap ( ) leaves
the distribution invariant, we have to show tl"gppp( ;1) =0 (i.e.,prp( ;t) does not change) if

we setpep( ;t) top ( ). Plugging in the presumed stationary distributrf ) for pep( ;t) on
the right hand side of Eq. (6), one obtains

%w( ;t)=Xk @—@i @—@ilogp(jx;v)p() +@%(Tp(»
=Xk 2 pOelgp (iXiY) + =2 T Zp()
:xk @_(% p()@—@klogp(jX;Y) +@—@k Tp()@—@ilogp()
which by insertingp (1) = Zp ( jX;Y )T, with normalizing constar , becomes
gPFp( )= lek @—@i p ( )@—@ilogp( PIX:Y )
+ = TP ()Farlogp (XiY) = “o-0:

k

This provesthap ( ) is a stationary distribution of the parameter sampling dyica Eq. (4). Since
is strictly positive, this stationary distribution is alsnique (see Section 3.7.2 in Gardiner (2004)).

The unique stationary distribution of Eq. (6) is giveny ) = le ( jX3Y )TL, i.e,,p ()isthe
only solution for WhiCh@@thp( ;1) become®, which completes the proof. O

The updates of the soft-DEEP R algorithm (Algorithm 2) camiiéten as

_ P 2T « o if x < 0(dormant connection) @
k= @_@kEX v () + 2T « otherwise.
Eq. (7) is a special case of the general discrete parameatanags (5). To see this we apply Bayes'
rule to expand the derivative of the log posterior into thenf the derivatives of the prior and the
likelihood:

@ oo ( Xy )= @ @ ey
@—klogp(JX,Y ) = O logps () + o logpn (Y jX5 ) ;
such that we can rewrite Eq. (5)
. P —
= Siogps ( )+ o logp (Y jXi )+ 2T i ®)
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To include automatic network rewiring in our deep learningd®l we adopt the approach described
in Kappel et al. (2015). Instead of using the network paransetdirectly to determine the synaptic
weights of networlN , we apply a nonlinear transformation = f ( ) to each connectiok, given

by the function

we = F(i) = Llog(L+exp( sy i) ; ©)

wheresy 2 f 1; 1gis a parameter that determines the sign of the connectioghivand > O0is
a constant parameter that determines the smoothness oftygmg. In the limit of large Eq. (9)
converges to the recti ed linear function

0 if «k < 0 (dormantconnection

wg = f = . . ; 10
k () sk k else (active connection (10)
such that all connections with < 0 are not functional.

Using this, the gradient of the log-likelihood functi%@k logpn (Y jX; )inEqg.(8) can be writ-
ten asg2 logpn (Y jX; )= g&f («)gZEx;v () which for our choice of ( «), Egs. (9),
becomes

@ . @

— o Y jX; )= s sk —Ex. ; 11

o gpn (Y JX5 ) ( kk)k@k x;y () (11)
where (x) = ﬁ denotes the sigmoid function. The error gradig@k{Ex;y ( ) can be com-

puted using standard Error Backpropagation Neal (1992nd&toart et al. (1985).

Theorem 1 requires that Eq. (11) is twice differentiablejollis true for any nite value for .
In our simulations we used the limiting case of largeuch that dormant connections are actually
mapped to zero weight. In this limit, one approaches the leirgpression

if « O

@ :
— o Y jX; ) =
gpN( J ) Sk @_@?(EX;Y ( ) else

@«

Thus, the gradient (12) vanishes for dormant connections( 0). Therefor changes of dormant
connections are independent of the error gradient.

his leads to the parameter updates of the soft-DEEP R #igorgiven by Eq. (7). The term

2T results from the diffusion terrdVy integrated over t, where i is a Gaussian random
variable with zero mean and unit variance. The term results from the exponential prior dis-
tribution ps ( ) (the “;-regularization). Note that this prior is not differentiatat 0. In (7) we
approximate the gradient by assuming it to be zerqcat 0 and below. Thus, parameters on the
negative axis are only driven by a random walk and parametieles might therefore diverge to
1 . To x this problem we introduced a re ecting boundary atin (parameters were clipped at
this value). Another potential solution would be to use &edént prior distribution that also effects
the negative axis, however we found that Eq. (7) producesg@od results in practice.

(12)

D ANALYSIS OF CONVERGENCE OF THEDEEP RALGORITHM

Here we provide additional details to the convergence pi@seof the DEEP R algorithm. To do
so we formulate the algorithm in terms of a Markov chain thathees the parameters and the
connectivity constraints (listed in Algorithm 3). Each &pgtion of the Markov transition operators
corresponds to one iteration of the DEEP R algorithm. We sthavthe distribution of parameters
and network connectivities over the iterations of DEEP Rveoges to the stationary distribution
Eq. (3).

Each iteration of DEEP R corresponds to two update steps;hwilae formally describe in Algo-
rithm 3 using the Markov transition operatdrsandT, and the binary constraint vecto2 f 0; 1gX

with elementsy, whereck = 1 represents an active connectionc is a constraint on the dynam-
ics, i.e., all connectionk for whichc, = 0 have to be dormant in the evolution of the parameters.
The transition operators are conditional probability rilisttions from which in each iteration new
samples for andc are drawn for given values from the previous time stebapdc?).
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given: initial values ° c®with jc§ = M ;

for i in [1; Nierations ] dO
T (j%cH;
C T c(cj ) ;
0 ,c%  c;
end

Algorithm 3: A reformulation of Algorithm 1 that is used for the proof in @drem 2. Markov
transition operators ( j %c% andTc(cj ) are applied for parameter updates in each iteration. The
transition operatof ( j %c9 updates and correspondsto line B;(cj ) updates the connectivity
constraint vectoc and corresponds to lines 4,7 and 8 of Algorithm Yandc®denote the parameter
vector and connectivity constraint of the previous tim@stespectively.

1. Parameter updateThe transition operatdf ( j %c9 updates all parameterg for which
¢ =1 (that are active). The operator is realized by advancin@i (2) for a small time
step t (line 3 of Algorithm 3).

2. Connectivity updatefor all parametersy that are dormant, set = 0 and randomly select
an element; which is currently 0 and set it to 1. This corresponds to lireé Algorithm 3
and is realized by drawing a nemMrom T¢(cj ).

The constraint imposed lyon is formalized through the deterministic binary functich ;c) 2
f0; 1g which is 1 if the parameters are compatible with the constraint vectoand0 otherwise.
This is expressed as (wi)h denoting the Boolean implication):

1 ifforallk;1 k K:c=0) k<0
0 else '

C ;c¢) = (13)

The constrain€( ;c) is ful lled if all connectionsk with ¢ = 0 are dormant (x < 0).

Note that the transition operatdg(cj ) depends only on the parameter vectoit samples a new
¢ with uniform probability among the constraint vectors theg compatible with the current set of
parameters. We write the number of possible vectarshat are compatible with as ( ), given
by the binomial coef cient (the number of possible seleatidhat ful Il the constraint of new active
connections)
x . .
()= a;9= ST % win = 2t01¢ ji=m ;s
M ] 0j
c2
wherejcj denotes the number of non-zero elements and is the set of all binary vectors with
exactlyM elements of valué. Using this we can de ne the operafds(cj ) as:

X
Te(cj ) = O (c )X ;0 (15)
2

where denotes the vectorized Kronecker delta function, wifB) = 1 and O else. Note that

Eq. (15) assigns non-zero probability only to veciotkat are zero for elemenksfor which < 0

is true (assured by the second term). In addition veatongve to fulll jcj = M. Therefore,

sampling from this operator introduces randomly new cotioedor the number of missing ones in
. This process models tlm®nnectivity updatef Algorithm 3.

The transition operatof ( j %c9 in Eq. (17) evolves the parameter vectounder the constraint
c, i.e., it produces parameters con ned to the connectivitystraint. We rst consider a general
operator that leaves some constrained distributibnj c) invariant and we will later discuss the
special case of using a constrained version of the postigtibutionp ( jc;X;Y ). We assume

that we can write the stationary distribution of the operdtoas

(i9= 5 ()0 (16)

with normalizerZ and where ( ) is some distribution over that may not obey the constraint

C( ;c).
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The Markov transition operators are performed one afteiother so that the total update can be
written in terms of the compound operafor

T( 6 %9 = Telcj )T (j %cH: (17)

Applying the compound operatdr given by Eq. (17) corresponds to advancing the parameters fo
a single iteration of Algorithm 3.

Using these de nitions a general theorem can be enunciatedrbitrary distributions ( jc) of
the form (16). The following theorem states that the distiidn of variable pairg and thatis left
stationary by the operatdr is the product of Eq. (16) and a uniform priag(c) over the constraint
vectors which hav®/ active connections. This prior is formally de ned as

X

pe©) = = (¢ ) (18)
i,

with as de nedin (14).

The main theorem to analyze the dynamics of Algorithm 3 cam e written as
Theorem 2. LetT ( j %c) be the transition operator of a Markov chain ovemwith stationary
distribution ( jc) of the form(16). LetT.(cj ) be de ned by Eq(15). Then the Markov chain
over andc with transition operator

T( ¢ %)= Te(ci )T (j %¢cH (19)
leaves the stationary distribution

p(ic)= (jc)pc(c) (20)

invariant. Under the assumption th#it( j ©c) maintains for each paramete a non-zero prob-
ability of reaching negative values, the stationary diatition is also unique.

Proof. Theorem 2 holds fofl, in combination with any operatdf that updates that can be
written in the form (16). We prove Theorem 2 by proving thddwling equality to show that
leaves (20) invariant:

T(;6 %cYp (%chd %= p ( ;0): (21)

We expand the left-hand term using Eq. (19) and Eq. (20)
z Z

X
T(:c %cYp ( %cHd °= Te(ci )T (1§ %Y ( 9Ypc(cOHd °:  (22)

c0 c0

SinceT. does not depend or’, one can pull it out of the integral and then marginalize o\ny
observing that ( jc9 is by de nition the stationary distribution of ( j %c9:

X
T( ;6 5¢9p ( %ehd %= Te(c ) T(j%9Y (9hpe(chd ©  (23)

Te(c ) (ic9pe(c? : (24)

co

What remains to be done is to marginalize csfand to relate the result to the stationary distribution
p(;c)= ( jo)pc(c). First we replacd, with its de nition Eq. (15):
0 1

X
(c A ;o ( ic%pc(c?)

cO

X
Te(cj ) ( jcYhpe(c) = @

cO

1 X
),
We can now replace the sum oveusing Eq. (15)

o X . i X .
Te(cj ) ( ic9pc(c? = ﬁpc(C)C( ;C) ( ic%pc(c? :
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P
From I§q. (14), Eq. (16) and Eg. (18) we nd the equalities ., ( jc9pc(c) =
F () C :;c9pc(c) = zi% ( ). Using this we get

O

i | 1
Zj]

X
T ) (i9pe(c? = %DC(C)C( c)

Finally using again Eq. (16), i.%— ()C ;¢)= ( jo)
X
Te(cj ) (ieYpc(c) = (ic)pe(e) = p (;0):

cO

This shows that the stationary distribution Eq. (20) is iasat under the compound operator (19).
Under the assumption th@it ( j ©c9 allows each parametex to become negative with non-zero
probability, the stationary distribution is also uniquehi§ can be seen by noting that under this
assumption each connection will become dormant soonettenr dad thus each state incan be
reached from any stat®. The Markov chain is therefore irreducible and the statigulistribution

is unique. O

What remains to be shown is that the transition operd@itgrj %c9 with stationary distribution
( jc9 of the form Eq. (16) can be constructed for our case of supedviearning ( jc% =
p ( jc%X;Y ) andthatit corresponds to the implementation of DEEP R.

A transition operatof ( j % without the constraint, with stationary distributipn( jX;Y ) can

be constructed by letting the parameteradvance according to (5) for a short time. Therefore
the transition operatdf ( j 9 for this process is given by the Fokker-Planck equation\&)uated

at t with parameters set initially to®. This corresponds to the updates for the soft-DEEP R
algorithm.

For the constrained transition operafor j %c9 in Eq. (17) we use that by construction the dy-
namics of dormant connections is independent from the graatient in DEEP R for small t, and

in fact all dormant connections are independent from eduoéroT his can be seen by noting that the
error gradient disappears in the update equations for duromnections in (7), which is a result
of our choice of mapping function from to w given in Eq. (10). Therefore, under the constraint
C( ;c)itis suf cient to compute the updates only for with ¢x = 1 and simply redraw parameter
values for connections witby = O from the support of the stationary distributipn( jX;Y )

on the negative axis once they become active again. Therssayi distribution of this transition
operator is given by the constrained posterior distrilsutio

p(ieXiY ) = Zp (PGY )X 50) (25)

The constrain€( ; c) for this process is ful lled since connections become damtraanly if they go
below 0 and the process keeps them at this value.

For negative parameters values, the stationary distabutepends only on the choice of the prior
distributionps ( ) and can be constructed in a way that is easily computableldarithm (1) we
implement this by instantaneously setting connectionsas €oon as they become active. We found
that this process works very well in practice since it makesteffective use of the connections and
for a strong enoughy, regularization, connections that are not useful will dsegr soon after their
introduction.

Furthermore, it is also not necessary to memorize the valigsrmant parameters for the DEEP R
algorithm. This also follows from our choice of mapping ftino from tow givenin Eq. (10). All
parametersy 0 are mapped tayy = 0 and they only become active ongerandomly crosses to
the positive side. Since, by construction parameter ugdatalormant synapses are independent of
the error gradient, it is suf cient to randomly introduce#e connections according to the stationary
distribution over parameter values on the negative axis.
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