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Abstract— The objective of this paper is accurate 6D pose
estimation from 2.5D point clouds for object classes with a
high shape variation, such as vegetables and fruit. General
pose estimation methods usually focus on calculating rigid
transformations between known models and the target scene,
and do not explicitly consider shape variations. We employ
deep convolutional neural networks (CNN), which show robust
and state of the art performance for the 2D image domain.
In contrast, normally the performance of pose estimation from
point clouds is weak, because it is hard to prepare large enough
annotated training data. To overcome this issue, we propose an
autonomous generation process of synthetic 2.5D point clouds
covering different shape variations of the objects. The synthetic
data is used to train the deep CNN model in order to estimate
the object poses. We propose a novel loss function to guide
the estimator to have larger feature distances for different
poses, and to directly estimate the correct object pose. We
performed an evaluation using real objects, where the training
was conducted with artificial CAD models downloaded from a
public web resource. The results indicate that our approach is
suitable for real world robotic applications.

I. INTRODUCTION

Pose estimation of objects in color and depth images is es-
sential for bin-picking tasks to determine grasping points for
robotic grippers. Man-made objects are usually manufactured
using 3D CAD models having exactly the same shapes with
negligible errors. The well-constrained environment enables
the robot to identify each pose by comparing features of the
pre-created template and an input image [14]. However, it is
not possible to provide 3D CAD models for natural objects,
such as vegetables or fish, where each object has a slightly
different shape. Object pose estimation with template based
approaches would need a huge number of templates in order
to cover each individual pose and the different shape variants.
Hence, these approaches would lead to large databases and
a high processing time for matching of the templates.

Recently, CNN based approaches provide reasonable re-
sults for most computer vision tasks including image clas-
sification and object detection in 2D images [13] [15]. This
achievement is accomplished with a large number of training
examples, e.g., [4] [7]. The 2D image datasets are usually
collected from web resource and annotated by non-expert
persons with tools using a user-friendly interface. For RGB-
D images or 2.5D point clouds it is difficult to collect a
large number of examples from public web services and
it is also hard to annotate the exact poses by non-expert
persons. This results in a lack of training data and causes
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Fig. 1: Overview of the proposed framework. An artificial
3D CAD model is used to generate synthetic scenes with
varied shapes and poses in order to train the deep CNN. The
trained network can compute poses of each of segmented
clusters.

an additional complexity to train a CNN for estimating 6D
poses in the 3D space. Therefore, pre-trained CNNs are
used for extracting features from color or depth images, and
the extracted features are used to train linear regressors to
estimate the poses [16]. Although there are several datasets
which have 6D pose information for more than 15K images
[9], [10], it is still not enough to train a deep CNN and none
of them consider object classes with large shape variations.

In this paper, we propose a simple pose estimator that can
be used to estimate poses of objects with shape variations,
such as vegetables or fruit, using a CNN and a single depth
image as input. Synthetic depth images containing various
poses and shapes of a CAD model are generated to train the
proposed CNN. No more template information is required
after training. This simplicity is one of the advantages of
the proposed model for the robust estimation of object poses
with different shape variants. The experiments show that our
concept is suitable for real world robotic applications.

As a summary, our paper provides the following contribu-
tions:

• We propose a framework that is able to generate syn-
thetic training images and consists of a deep CNN pose
estimator for the estimation of poses of natural object
classes such as vegetables and fruit.

• Pairwise training is applied to train the deep CNN with
a loss function that minimizes the errors between the
estimated poses and exact ground truth poses and low-
level feature distances between similar poses.

• We show that our estimator successfully estimates poses
of real fruit using more than two hundred test images,
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which are collected with a stereo camera widely used
in industrial applications.

The remainder of the paper is organized as follows. In
Section II we provide an overview of related work. Our
proposed approach for Deep CNN based pose estimation
is introduced in Section III. In Section IV, we present
experiments with our trained pose estimator with test images
containing real bananas. We conclude the paper with final
remarks and plans for further work in Section V.

II. RELATED WORKS

Object detection and its pose estimation is an essential
task for robots and industrial applications, especially for
picking and placing tasks. The exact 6D pose information
of an object is required to decide about grasp points for
picking and to define proper locations for placing. Therefore,
pose estimation in 3D space has received a lot of attention
with various approaches which dominantly include feature
matching based methods and recently convolutional neural
network based methods. State of the art methods are able to
perform classification of objects and pose estimation at the
same time [1], [18]. In the brief review below we focus on
feature based approaches with a local or global descriptor
and CNN based approaches.

A. Feature based approaches

Extracting features from training and test data, matching
correspondence and calculating single transformation from
a trained model to target scenes are typical processes of
feature based approaches. Features for the 3D domain are
designed to provide a generalized representation of the object
shape using local attributes. One popular example is SHOT
developed by Tombari et al. [17]. In [1] Aldoma et al. de-
veloped an approach which uses various features to generate
possible hypotheses and select hypotheses which minimizes
a cost function in order to remove false-positives. These
feature based pose estimation approaches generally compute
rigid transformations, which implicitly assumes that training
models and target objects have the same shape. Wohlkinger
et al. [19] uses CAD model to train global features to
recognize real objects. This method shows robustness to
shape variations, but it needs a large number of template
images.

B. CNN based approaches

To employ recent convolutional neural networks, success-
fully used in the 2D image domain, to the 3D domain,
which does not have enough training data, researchers tried
to use pre-trained CNNs as a feature descriptor and trained
additional classifiers for recognition and linear regression
for pose estimation [16]. But [16] constrains object poses
to in-plane rotation on the table, with one single degree
of freedom. Generation of synthetic data is an option for
training a CNN with depth images as input. [3] uses a 3D
CAD models in order to train the typical CNN structure and
finally gains a descriptor for a single channel depth images.
This model was used for object classification tasks. Also,

[3] considers object classification tasks, but this approach
generates depth images from CAD models containing both,
varied view points and randomly morphed shapes. CNN
based 6D pose estimation is also described in [18], [5]. Both
use pair-wise training to guide intermediate features to have
larger distances for larger pose deviations. They design a
small CNN network, which has only two convolution layers
in order to train the CNN using a small number of training
examples. In contrast to these approaches, we use a deep
CNN which has five convolutional layers and pre-trained
weights computed by a large number of 2D images. However,
we refer to their pairwise training approaches to get a robust
pose estimation performance.

III. METHOD

In the following paragraph we provide a detailed de-
scription of the proposed pose estimation approach, which
consists of a deep CNN, generation of synthetic images and
a pose refinement step for the final result, shown in Fig.1.

To be able to exploit the structure and pre-trained weights
of well-established and tested CNNs taking three channels
of a 2D color image as input, we transform single-channel
depth images to three-channel color images. Finally, the pose
estimation procedure at test time is described, including the
refinement step to minimize the translational error.

A. Deep CNN for pose estimation with depth images

We employ Alexnet, which has proven results for 2D
image classification tasks. The only different part is the last
fully connected layer, which in our case has only four out-
put channels for estimating the rotational transformation in
quaternions, instead of a thousand channels for classification.
Also, the final output is filtered by tanh function to provide
normalized results between -1 and 1. The reason why we
use a quaternion representation instead of Euler angles with
three parameter is, the non-linearity and periodicity of Euler
angles. For example, the numerical difference between 0 and
359 degrees is large, although the difference of the angles
is small. However, the quaternion representation allows to
calculate the pose difference as distance of each component
of the quaternion values [12]. Most of the state of the art
CNN models including Alexnet uses a 2D color image as
input. State of the art for CNNs applied to depth images is to
convert the depth image in the one channel to a color coded
image in the three channels [6]. Among the possible color
coding methods, directly matching each axis component of
a surface normal to separate image channels has shown a
superior performance [6]. Optionally, we use the depth value
to scale the values of each pixel as described in (1) and (2).

ID = 1.0− Pz−minz +δ
maxz−minz +2δ

(1)

Pdata = ID[Nx Ny Nz] (2)

where Pdata describes a single data point represented in the
three channels. ID is the scaled depth value and the remaining
three values Nx, Ny and Nz are the individual axis of the
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surface normal. The depth value ID is normalized using the
maximum and the minimum value of the point cloud with a
margin δ to avoid zero values. Furthermore, the normalized
depth value is subtracted from one to get higher values for
closer points. Finally, every point is projected to a pixel in
the 2D image.

B. Generation of synthetic training data

To train a CNN a large number of training examples
is required, which cover each possible viewpoint of the
object. We developed a fully autonomous data generation
framework, which is able to cover all possible poses and
shape variations. A 3D CAD model, e.g. from a public web
resource or a reconstructed 3D scanned model, can be used
as a reference model for this framework. The first step is
to convert the CAD model to a point cloud format and to
transform the reference coordinate system to the centroid of
the model. After that, rotations for each axis are defined with
5 degree increments, which results in about 373K possible
poses. In addition to the pose transformation, the shape
transformation, i.e., scaling and shear is also defined for
each pose. Scale and shear factors for each axis is randomly
selected between a specified range in order to cover possible
variations of the object. The reference model is transformed
with the defined transformation matrix. Then it is placed to
a location with a proper distance – usually found in the pose
estimation scenario – to the camera. Self-occluded points
are removed using a standard ray tracing of a camera view.
Additionally, a randomly placed 2D rectangle is used to
remove small parts of the object, in order to simulate partial
occlusions and segmentation errors. Finally, the remaining
points are used to render a depth image and non-object
points or background points are filled with mean values
(e.g. Pdata = [0.5 0.5 0.5] in case the normalized values are
within [0..1]). The finally generated image is stored including
the pose transformation using quaternions, i.e. in the same
format the deep CNN provides.

C. Pairwise training for robust pose estimation

As proposed in [18], [5] our network is trained with
input pairs to minimize feature distances of similar poses
and maximize feature distances of different poses. The pose
difference of a training pair is defined as the Euclidean
distance between each quaternion component. Hence, a pair
of training examples with a pose distance less than ρs is
regarded as as positive pair and if the distance is larger than
ρd it is regarded as a negative example (cf. 3).

ω =

{
1, if ||qanchor−qpair||2 < ρs ,

0, if ||qanchor−qpair||2 > ρd .
(3)

ω is given to the loss function to determine whether the
current pair of images is positive or not, as described in (6).
qanchor,qpair denote four-dimensional vectors of each pose
transformation serialized from quaternion representation.

The whole input batch for each iteration is filled with
positive and negative pairs. As described in Fig. 2, a data

Fig. 2: Streamlines for pairwise training using shared weights
for the CNNs. Output from both streamlines, i.e. the 7th
layers and the last layers are used to compute the loss for
the annotated training pairs.

pair is fed into the CNNs with the same weights and
computed separately. To calculate the loss in each iteration,
we use the output of the seventh fully connected layer with
4096 dimensions and the last fully connected layer with 4
dimensions, which is furthermore used to predict the rotation
information in quaternion.

The loss function L for training can be separated into two
part as described in (4).

L = lr + l f (4)

For N batch images per each iteration, lr represents a re-
gression error between the annotated pose and the estimated
pose which is defined as Euclidean distance (cf. 5), while l f
of 6 represents contrastive loss to guide features to have a
smaller distance for similar poses and a larger distance for
different poses.

lr =
1

2N

N

∑
n=1
||qest −qexact ||22 (5)

l f =
1

2N

N

∑
n=1

(ω)d2 +2(1−ω)max(1−d,0)2 (6)

d = || fachor− fpair||2 denotes the Euclidean distance between
features computed from the seventh fully connected layer.
ω , the parameter to classify training pairs as positive or
negative examples, with similar or different poses is set in the
data generation process. This contrastive loss has generally
been used to train Siamese networks, which compare pairs
of images [8]. In each iteration weights of the CNNs are
updated to minimize the loss function using a stochastic
gradient descent (SGD) solver. For this lr is used to update
all weights of the CNN, while l f effects all weights except
those of the last fully connected layer.

D. Estimation procedure

In contrast to the training, for pose estimation only a
single stream line with one deep CNN is used. The last
fully connected layer directly predicts the pose represented in
quaternion. Given a depth image or a point cloud we classify
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TABLE I: Pose estimation results with the proposed CNN

Proposed CNN Proposed CNN ICP from
with ICP without ICP Random Pose

Precision 0.956 0.822 0.265
Time (ms) 140±32 129±32 155±33

segmented objects. For the sake of simplicity in this paper
we use a simple dominant plane segmentation and a nearest
neighbour clustering of 3D points. The pre-processing to
provide the input to the CNN is identical as for training (cf.
III-B). The trained CNN directly estimates the rotation for
the input segment. The corresponding tentative translation
is computed from the centroid of the reference model and
the segmented point cloud. Finally, a pose refinement step
is performed. Basically, the translational error is dominantly
caused by the difference between centroids of the reference
model and the test image. This is because the centroid of the
reference model is derived by the whole object shape, while
the test image lack of occluded parts. To minimize this error,
self-occluded parts of the reference model are removed after
initial alignment, and the centroid of the reference model is
recalculated. As a final step, we apply an iterative closest
point (ICP) algorithm.

IV. EXPERIMENTS

We perform experiments to prove our concept with real
bananas. An artificial 3D CAD model of a banana is selected
and converted into a point cloud, further used to generate
training images and store the ground truth pose. Scaling
and shear transformations are randomly varied from 0.8 to
1.2 for each of three directions of views generated every 5
degree along each axis. The margin δ to calculate the depth
to color conversion is set to 0.5. The CNN is implemented
with the Caffe framework [11]. We set the initial weights
using the pre-trained network, trained with Imagenet data
[4]. To decide about positive and negative examples for
pairs training examples, we set the threshold ρs = 0.2 for
positive and to ρd = 1.0 for negative examples. Positive
and negative pairs are randomly selected during the first
epoch of cycles. The set of pairs is then fixed for further
iterations to reduce training time. Every input image is
re-sized to 64x64 pixel, while keeping the ratio between
heights and widths of the rendered view. Test images are
captured with an Ensenso N35, an industrial stereo sensor
that provides only depth information with a resolution of
640x512. We assume robust segmentation results for the test
scenes. Therefore, we placed the bananas on the table with
enough distance to each other, in order to robustly extract
segments, after detecting the dominant plane. We prepare five
test scenes consisting of multiple bananas and approximately
278 scenes containing single banana per image using four
different bananas. Estimated poses are evaluated manually.
The criterion for the evaluation is based on the graspablity
of the detected object, i.e. if the estimated pose is accurate
enough to successfully grasp the object it is counted as

Fig. 3: Visualization of the estimated poses of multiple ba-
nanas. Red: real bananas in the test scene, yellow: estimation
results

Fig. 4: Example of a bad alignment after ICP. This example
is converged to match with an edge part of the banana

positive. All experiments are performed with an Intel i7-
6700K and a NVIDIA GTX1080 train the CNN.

A. Results for bananas

Fig. 3 briefly shows the results for the test scenes con-
taining multiple bananas. As shown in Table 1, the overall
accuracy after pose refinement is about 95.6% and the
computational time for each segment is about 0.14 second
for each object, which is highly acceptable for robot grasping
tasks.

B. Side effect of refinement steps using ICP

ICP generally improves the results. However, it sometimes
causes worse alignment as shown in Fig. 4. This is because
of the shape difference between the reference model and
target scenes. The general ICP, which we use assumes
a rigid transformation between the reference model and
target model. Hence, depending on the inlier threshold ICP
converges to partially fit to the scene, while the remaining
point cloud does not contribute.

V. CONCLUSIONS

In this paper, we proved the concept of estimating poses
of objects with a high shape variance using a deep CNN
estimator. Furthermore, the proposed framework is able to
use any kind of artificial or real scanned 3D model in order
to generate enough data for training the deep CNN. This on
going research will further be improved with the following
ideas:
• The general rigid transformation ICP is not enough to

refine the pose because the shape difference between the
reference model and the individual objects. We refer to
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non-rigid ICP [2] as an option to further improve the
pose estimation.

• The preparation of an extensive annotated dataset will
lead to an objective evaluation of our approach with
various parameters and settings and a comparison to
state of the art methods.

• Here, we assumed a correct segmentation result. In
future we need to investigate optimal segmentation
methods for real world experiments.
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