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Abstract— As a major component of the cytoskeleton, keratin
filaments form a branched network, which plays a significant
role in the mechanical response, motion and dynamics of the
cell. They undergo a complex dynamic lifecycle, which we aim
to investigate by tracking individual filaments. In this paper
we introduce an active contour-based tracking algorithm to
analyze the motion of individual keratin filaments in sequences
of confocal images. The algorithm combines parametric active
contours (snakes) with Lukas-Kanade’s algorithm for optical
flow calculation. We define an image preprocessing workflow
to compute robustly the external energy of the snake and we
impose an additional structural constraint for controlling the
length of the contour.

I. INTRODUCTION

The cytoskeleton plays a main role in cellular motility
and dynamics, which in turn is of high relevance for vital
and also for pathological processes, such as wound healing
and tumor metastasis [5]. As a major component of the
cytoskeleton, keratin filaments form a branched network
and are essential for the mechanical response to external
forces. Biophysical investigation and analysis of different
types of keratin filaments requires their localization and
the extraction of their motion in the time-sequences of
consecutive confocal images. As it was shown previously
[7], [3], [4], this problem can be successfully approached for
separated individual actin filaments. However, applying this
approach to tracking of keratin filaments within a branched
network may lead to additional complications and errors, as
for example, uncontrolled growth of the snake. In this paper
we introduce a tracking algorithm based on stretching open
active contours [3] to analyze the global motion features of
individual keratin filaments within their network. We define
an image preprocessing workflow to calculate robustly the
“external energy” of the snake and impose an additional
structural constraint for controlling the length of the contour.

II. TRACKING ALGORITHM

In this section, we first define our active contour model
as a minimization problem. Then, we introduce an “external
energy” based on the image and impose a contour length
constraint to control snake growth. Finally, we combine all
steps together and present an overall tracking procedure.
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A. Parametric snakes: active contour models

We define a filament as a parametric curve x(s) =
[x(s),y(s)],s ∈ [0,1]. According to [2], the position of the
filament within a frame in a time-sequence is obtained by
minimizing the following so-called “energy” functional:
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∫ 1
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where α and β are parameters which control the stretching
and bending resistance of the curve, correspondingly. This
problem is solved by reducing (1) to a differential equation
and applying an iterative scheme with an artificial time
variable t:

xt(s, t) = αxss(s, t)+βxssss(s, t)−∇Eext(x(s, t)) (2)

The impact of the “external energy” Eext or the gradient of
“external energy” ∇Eext is crucial in this problem, because
the convergence of a snake considerably depends on this
term.

B. External energy and structural constraints

In Xu et al. [6] the gradient of the “external energy” ∇Eext
is replaced by the vector field v(x,y)= [u(x,y),v(x,y)], which
minimizes the functional:
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∫ ∫
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+ |∇ f |2|v−∇ f |2dxdy (3)

where f (x,y) is the intensity of the pixel at the position
(x,y), | • | is the Euclidean norm and µ is the regularization
(smoothness) parameter. The vector field v(x,y) is called
gradient vector flow (GVF). In this case the evolution of
the snake on a single frame is defined as follows:

xt(s, t) = αxss(s, t)+βxssss(s, t)−v(x(s, t)) (4)

It is shown in [6] that GVF has a larger capture range,
compared to the vector field given by ∇Eext defined in [2].
It also improves the snake convergence in case of high
concavities. However, the intensity variation along a filament
may be high, which leads to additional errors during snake
convergence. Therefore, we preprocess images applying the
following pipeline of filters: Gaussian smoothing; Hessian
ridge enhancement; gamma contrast correction.

The drawback of the snake algorithm itself as defined in
[2] is that the open-ended contour (Fig. 1C) tends to shrink
over time (Fig. 1D). To overcome this, we use a stretching
term for open ends as defined in [7]. However, it may lead to
overgrowth of the contour (Fig. 1E). We it this by processing
endpoints separately. We define an additional distance-based
“energy” potential for the branching and end points of the
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Fig. 1. Life cell imaging of SW13 cells expressing fluorescent HK8-CFP and HK18-YFP proteins (frames were recorded every 30 sec). (A) Snake evolution
on a single frame; (B) Tracking result for an individual filament on a time-sequence of 40 frames; (C) Initial position of the snake on the first frame
and (D-F) after 15 frames: (D) without stretching term and length constraint; (E) with stretching term only; (F) with stretching term and distance-based
potential;

network and allow snake endpoints to be captured by the
force field induced by the potential (Fig. 1F).

C. Overall tracking procedure
In our setting, the tracking of individual filaments consists

of two main routines: refinement of the position of the
filament on the current frame and transition of the filament
from the current to the next frame in the sequence. For
the second step, we apply pyramidal Lucas-Kanade optical
flow computation [1]. It allows to obtain a reasonable fit
in case of large deformations of the filament. Incorrect
mappings obtained by the optical flow algorithm require the
repetition of the refinement step using active contours. Thus,
we propose the following tracking procedure (see Fig. 2):

Fig. 2. Block-diagram of the overall tracking algorithm

(A) Initialization: The filament is initialized on the first
analyzed frame. This can be done manually by user or
additional (semi-)automatic segmentation procedures.

(B) Image preprocessing: Gaussian smoothing; Hessian
ridge detector; gamma contrast correction.

(C) Calculate the GVF on the preprocessed image.
(D) Optimize the position of the snake on the current image

based on the GVF obtained in (C) and take into account
a stretching term for open ends [3] and potential for the
endpoints.

(E) If the current image isn’t the last one in the analyzed
sequence, go to the next step. Otherwise, exit the
procedure here.

(F) Calculate the pyramidal optical flow of the current
image with respect to the next image in the time-
sequence as described in [1].

(G) Transfer the snake to the next image in the sequence
based on the calculated optical flow field.

(H) Select the next image and repeat starting from step (B).
A result obtained by this procedure is depicted in Fig 1.

Fig. 1A shows the convergence of the snake on a single frame
with an “external energy” as defined above. Fig. 1B shows
a filament being tracked in an image sequence of 40 frames.
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