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Abstract— Modern deep learning methods achieve state-of-
the-art results in many computer vision tasks. While these
methods perform well when trained on large datasets, deep
learning methods suffer from overfitting and lack of gener-
alization given smaller datasets. Especially in medical image
analysis, acquisition of both imaging data and corresponding
ground-truth annotations (e.g. pixel-wise segmentation masks)
as required for supervised tasks, is time consuming and costly,
since experts are needed to manually annotate data. In this work
we study this problem by proposing a new variant of Generative
Adversarial Networks (GANs), which, in addition to synthesized
medical images, also generates segmentation masks for the use
in supervised medical image analysis applications. We evaluate
our approach on a lung segmentation task involving thorax
X-ray images, and show that GANs have the potential to be
used for synthesizing training data in this specific application.

I. INTRODUCTION
Modern machine learning methods based on deep neural

network architectures require large amounts of training data
to achieve the best possible results. For standard com-
puter vision problems, large datasets, such as MNIST [12],
CIFAR10 [10], or ImageNet [23], containing millions of
images, are publicly available. In the medical field, datasets
are typically smaller by several orders of magnitude, as the
acquisition process of medical images is costly and time
consuming. Furthermore, ethical concerns make it harder to
publicly release and share datasets.

Finding methods to improve performance when training
deep learning methods on small datasets is an area of active
research. Recent work in the medical imaging domain has
shown that it is possible to improve performance with small
datasets by putting application specific prior knowledge into
a deep neural network [17]. Another approach has been
made popular by the U-Net [21] architecture for biomedical
image segmentation, which demonstrated how strong data
augmentation can be used to deal with low amounts of
training data in deep network architectures. Even though
data augmentation is simple to implement and achieves good
results, it is only able to produce fixed variations of any given
dataset, requiring the augmentation to fit the given dataset.

Transfer learning approaches such as [19] show that
training on large datasets (e.g. ImageNet) followed by fine-
tuning on a small dataset achieves state-of-the-art results for
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datasets consisting of natural images. For medical imaging,
the learned features from large natural image datasets may
not be suitable, as the image features are very different com-
pared to natural images. Furthermore, there is no straight-
forward way of transferring 2D features to 3D features,
which poses a limitation when working with 3D medical
images. Due to the difference in features between medical
and natural images, another approach is to use unsupervised
feature extractors (e.g. Autoencoders [27]) which are trained
on medical images only. Nevertheless, transferring weights
learned by these unsupervised methods requires the target
network architecture to be close to the source architecture,
which is rarely the case.

The requirement for large amounts of training data also
popularized image generation methods in deep learning con-
texts. Recently, research has shown that Generative Adver-
sarial Networks (GANs) [4] can be used for a large variety of
applications such as image-to-image translation [6] or unsu-
pervised representation learning [18]. GANs have also been
successfully used for unsupervised domain adaptation [8]
of multi-modal medical imaging data, demonstrating their
potential for use with small medical imaging datasets.

Our goal was to use GANs in a completely different way,
by using the high quality of the generated images to augment
our small set of training data. We propose a novel modifica-
tion to GANs, which generates new, synthetic images as well
as the corresponding segmentation masks from random noise.
This allows us to use the synthetic data as training data for a
supervised segmentation task. We show that this architecture
manages to produce convincing segmentation masks for the
generated images. We evaluate the generated images in two
different scenarios on an image segmentation task and show
that training on purely generated images achieves results
comparable to training on real images for very small datasets.

II. RELATED WORK
A. Training Data Augmentation

Training data augmentation is a commonly used method to
reduce the effects of overfitting with small training datasets
as well as improve the generalization of the trained network.
Most machine learning frameworks allow for simple aug-
mentation such as rotation, translation or intensity shifts of
training data. AlexNet [11] was one of the first convolutional
neural network (CNN) architectures to implement online
data augmentation with successful results. However, data
augmentation only achieves good results if the augmentation
can actually occur in the data, and is relevant to the required
application. For medical imaging, elastic deformations [21]
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Fig. 1. Proposed GAN architecture incorporating the segmentation mask in the real and synthetic image batches

are especially useful for biomedical segmentation, as they
can provide realistic variations of the input data, similar to
natural variations.

B. Transfer Learning

Transfer learning aims to improve the learning of a target
task in a target domain, given the learned knowledge of
a source task in a source domain [16]. Applied to neu-
ral networks, it describes the process of training a source
network on a source dataset, followed by transferring the
learned features to train a different target network on a target
dataset [28]. In the context of small datasets, this can be
applied in different ways. It is possible to train on a large
dataset, e.g. ImageNet, remove the final layer of the network
architecture and fine-tune to a smaller target dataset [19]. A
different approach is taken by using Autoencoders, which
compress a given image to a vector representation and
reconstruct the image from this compressed representation.
As an example, denoising Autoencoders [27] have been
used to extract robust features with great success. However,
transferring Autoencoder features typically requires a target
network architecture very similar to the source architecture,
which is rarely the case.

C. Image Generation

A novel approach to tackle the issue of small datasets
for training deep learning methods is to synthesize new
training data via image generation methods. Recent research
has shown that it is possible to render realistic images using
3D models to alleviate the problem of small datasets [22].
This has the advantage of being able to create an unlimited
amount of training data of various scenarios, as long as
the images are realistic enough. Rendered images have also
recently been used to improve the performance of anatomical
landmark detection in medical applications by learning on a
dataset of rendered 3D models and fine-tuning on medical
data [20]. The disadvantage of using rendered images is that
the virtual model and scene parameters need to be explicitly
defined and tuned towards the application, which is time
consuming.

Generative Adversarial Networks [4] represent a different
approach to image generation. A generator and a discrimi-
nator network are trained to compete against each other. The
goal of the discriminator is to decide if any given image is
real or synthetic. The generator generates synthetic images
in the hope of fooling the discriminator. Since the generator
never directly sees the training data and only receives its
gradients from the discriminator decision, GANs are also
resistant to overfitting [3]. However, the training process
of GANs is very sensitive to changes in hyperparameters.
The problem of finding the Nash Equilibrium between
the generator and the discriminator generally leads to an
unstable training process, but recent architectures such as
DCGAN [18] and WassersteinGAN [2] improved on this
substantially.

III. METHOD AND ARCHITECTURE

Standard GANs either exclusively learn to generate im-
ages [4], or learn to perform image transformations [6].
However, in order to use the generated images for other
supervised deep learning tasks, like image segmentation, it is
also necessary to have a ground-truth solution for any given
input image.

We propose a modification to the standard GAN archi-
tecture, which forces the generator to create segmentation
masks in addition to the generated images. The discriminator
then has to decide whether an observed image-segmentation-
pair is real or synthetic. This forces both the discriminator
and generator to implicitly learn about the structure of the
ground-truth, making the resulting generated data useful for
training in a supervised setup. While it is known that using
ground-truth labels in the discriminator improves the image
quality [24], this is the first time, to our knowledge, that
the ground-truth is used to directly generate new image-
segmentation-pairs. Fig. 1 illustrates this architecture.

As the foundation for our proposed architecture, we use
the DCGAN [18] architecture, which has shown to achieve
good results while having increased training stability in
many different applications, compared to the previous GAN
architectures. DCGAN uses a convolutional generator and
discriminator, makes use of batch normalization, and replaces
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all pooling layers with convolutions. The generator takes
a noise vector z as input and feeds it through multiple
fractionally strided convolutions in a fully convolutional
manner to generate synthetic images G(z). The discriminator
receives both real images x and synthetic images G(z), feeds
them through a fully convolutional classification network
which classifies any given image as either real, i.e. D = 1, or
synthetic, i.e. D= 0. The discriminator uses the cross entropy
loss function
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where the mini-batch size m describes the number of training
inputs for stochastic gradient descent [15], i denotes the
current index in the mini-batch, x(i) is the real image, z(i)

is the noise vector sample, D is the discriminator output and
G is the generator output. The generator loss
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only takes the discriminator output of the generated images
D(G(z)) into account.

By minimizing lG, the generator is trained to generate
images G(z) which look real, i.e. D(G(z)) ≈ 1, while by
minimizing lD, the discriminator is trained to correctly clas-
sify real and synthetic images, i.e. D(x)≈ 1 and D(G(z))≈ 0.
Therefore, generator and discriminator play against each
other, as the generator creates synthetic images which fool
the discriminator into believing they are real, while the
discriminator attempts to classify real and synthetic images
correctly every time.

In order to implement the additional segmentation mask
generation, the DCGAN architecture was modified to use
2-channel images, where the first channel corresponds to
the image, and the second channel corresponds to the
segmentation mask. The discriminator network then simply
classifies image-segmentation-pairs instead of images only.
The GAN therefore creates synthetic image-segmentation-
pairs, which we then further use for the supervised training
of a segmentation task. For most GAN setups, this change
is simple to implement, as no change in the training process
is necessary, making this adaptation very flexible.

IV. EVALUATION

A. Materials

We evaluate our proposed method using a 3-fold cross-
validation setup on the SCR Lung Database [26], which is
composed of the JSRT Lung Database [25] with correspond-
ing ground-truth segmentation masks. The cross-validation
splits are set up so that all 247 images are tested once,
using 82 test images, and randomly picking 20 validation
images and 145 training images from the remaining images.
The images are downscaled to a resolution of 128x128, on
which all evaluations are performed. In order to demonstrate
possible strengths and limitations of the GAN for even

smaller datasets, we evaluate different scenarios on the full
dataset, as well as on a reduced dataset. For the reduced
dataset, the cross-validation setup for test and validation data
is the same as for the full dataset, only the amount of training
data is reduced to 30 images by randomly picking them from
the training images of the full dataset. For the quantitative
evaluation, we chose to perform image segmentation using
the U-Net [21] fully convolutional network architecture.

B. Experimental Setup

For our proposed GAN architecture, we adapted the
DCGAN [18] TensorFlow [1] implementation tf-dcgan1.
We modified the architecture to include support for the
generation of segmentation masks and increased the image
resolution to 128x128. The higher resolution made it neces-
sary to increase the number of generator and discriminator
feature maps. We also used a random noise vector z of
higher dimension as the generator input. The noise vector
dimension was fixed at 400, using uniform noise in the
range of [−1,1]. Generator feature map sizes were set
to [512,256,128,128,128], discriminator feature map sizes
were set to [128,128,256,512,512]. As suggested in [18], the
convolutional kernel sizes were kept at 5. The weights of all
convolutional layers were initialized randomly using a nor-
mal distribution with zero mean and a standard deviation of
0.05. The input data was scaled to be in the range of [−1,1].
The used optimizer was Adam [9] with a learning rate of
0.0004 and an exponential decay rate for the first and second
moment estimates of β1 = 0.5, β2 = 0.999. The training was
done using a mini-batch size of 128. The network was trained
for 12000 mini-batches in total, as after 12000 mini-batches
the overall quality of the generated images G(z) was high
for all cross-validation folds. Samples were generated every
200 mini-batches of training. To slightly reduce the impact of
Mode Collapse [3], where the generator learns to map several
different noise vector inputs z to the same output image
G(z), the resulting GAN images were checked for similarity
by using a perceptual image hash, which removes images
that are almost identical in a batch of samples. Training the
GAN took approximately 24 hours per cross-validation fold
on an Intel i7-6700HQ CPU @ 2.60 GHz and an NVidia
GTX980M GPU with 8 GB of GPU memory.

For the quantitative segmentation results, we used a U-Net
architecture of depth 4, replacing max pooling with average
pooling for downsampling. This U-Net was implemented
using Caffe [7]. Although data augmentation is used to great
effect and is also described as a strength of the U-Net [21],
we decided not to use it in any of our experiments, in order to
specifically evaluate the impact the synthetic GAN samples
have on the training process and the resulting segmentation
masks. All convolution kernel sizes were set to 3, with
feature map sizes of 64 and weights initialized using the
MSRA [5] method. We used the Nesterov [14] optimizer at
a learning rate of 0.00001 for the segmentation task, with
a momentum of 0.99 and a weight decay of 0.0005. The

1https://github.com/sugyan/tf-dcgan

142



Fig. 2. Sample images and segmentation masks from the real training data (top) compared to synthetic data created by the GAN trained on the full
training set (bottom)

mini-batch size was set to 16. The network was trained
until the average of the validation error over the last 10
epochs started to increase. The input data was scaled to be in
the range of [−1,1]. Since the generated GAN images and
segmentation masks are in the value range of [−1,1], the
resulting segmentation image needs to be post-processed to
arrive at a binary segmentation mask, which can then be used
as an input for the U-Net. To achieve this post-processing,
a threshold, largest component and hole filling filter were
applied to the generated GAN segmentation masks before
they were fed into the U-Net. The threshold was set at the
pixel value of 150, and the hole-filling algorithm used is
based on geodesic morphology as described in Chapter 6
of [13]. We tested the segmentation performance when using
only real training data, a mix of real and synthetic data,
as well as only synthetic data. For the synthetic data, we
generated a batch of 120 images and segmentation masks
from the fully trained GAN. For evaluating the segmentation
results, we used the Dice coefficient and Hausdorff distance
metrics. Training the U-Net took approximately 3 hours per
experiment on the same machine as described above.

TABLE I
QUANTITATIVE RESULTS OF SEGMENTATION USING THE FULL

TRAINING SET

U-Net training data Evaluation metrics
# Real # Synthetic Dice

(mean)
Dice
(stddev)

Hausdorff
(mean)

Hausdorff
(stddev)

145 0 0.9608 0.0101 6.1229 5.0183
145 120 0.9537 0.0121 6.3147 4.8708
0 120 0.9172 0.0283 9.3564 6.0651

C. Results

For the full dataset, Fig. 2 illustrates generated images and
segmentation masks from the fully trained GAN, compared
to real images and segmentation masks. The quantitative
evaluation results for the full dataset can be seen in Table I.

For the reduced dataset, the quantitative evaluation results
are shown in Table II.

V. DISCUSSION AND CONCLUSION

Small datasets pose large issues for deep learning methods,
leading to overfitting and lack of generalization. We propose
an adaptation of Generative Adversarial Networks, where the
generator network is trained to generate artificial images in
addition to their corresponding segmentation masks. While
the qualitative results shown look very promising, they
also heavily depend on the amount of training the GAN
receives. Fig. 2 shows that using a fully trained GAN to
create segmentation data in addition to image data still
leads to high quality images. The segmentation also matches
the generated images very well, suggesting that both the
generator and discriminator are forced to learn the structure
of the segmentation as well. However, it can also be seen
that small noise artefacts appear in the region of the left
lung of the image. These artefacts do not appear if the GAN

TABLE II
QUANTITATIVE RESULTS OF SEGMENTATION USING THE REDUCED

TRAINING SET

U-Net training data Evaluation metrics
# Real # Synthetic Dice

(mean)
Dice
(stddev)

Hausdorff
(mean)

Hausdorff
(stddev)

30 0 0.9464 0.0158 7.6384 6.0395
30 120 0.9394 0.0133 7.2885 5.1007
0 120 0.9312 0.0199 7.6091 5.5654
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Fig. 3. Sample images and segmentation masks generated by the GAN
trained on the full dataset if the training is stopped too early

is trained without generating segmentation masks. We also
experience a mild form of Mode Collapse [3], as some of
the generated images look very similar. While the images
obtained by the fully trained GAN shown in Fig. 2 have a
high quality, Fig. 3 illustrates that, if the training time for
the GAN is too short, generated images are unusable for
later supervised training, as the image quality is too low.
Finding a suitable stopping point for GAN training is still a
hot topic of current research, as a lower GAN loss during
training typically does not indicate higher image quality of
the generated images. However, recent modifications to the
GAN learning process show that it is possible to correlate
the GAN loss with image quality [2], which enables the
possibility of stopping the GAN training once the loss is
under a certain threshold.

The results of the quantitative evaluation on the full dataset
shown in Table I indicate that the GAN images are not
sufficient to replace the real images in this case. Using
a combination of real and synthetic images to train our
segmentation network, the Dice score and Hausdorff distance
results are comparable to the results obtained by training on
real images only. When only synthetic images obtained by
the GAN are used to train the segmentation network, the
performance is worse. For the reduced dataset evaluation,
the results shown in Table II are not as conclusive. The
network with the best Dice score was trained exclusively
on real images, while the network with the lowest Hausdorff
distance was trained on a combination of real and synthetic
images. A very interesting point, however, is that for the
reduced dataset, the network trained exclusively on generated
GAN images performed almost as well as the network trained
on real images, showing significant potential of GANs for
training data generation. It is also worth mentioning that the
U-Net trained exclusively on generated GAN images from
the reduced dataset performed better than the U-Net trained
exclusively on generated GAN images from the full dataset.
We suspect that this is because the GAN has an easier time
to converge to generating high quality images for the reduced
dataset compared to the full dataset, leading to better image
quality of the generated images.

The quantitative results still have room for improvement.
As a further outlook, it would be interesting to incorporate
data augmentation in the GAN by using elastic deformations
to induce variance in the GAN’s training data, which may

potentially lead to a greater variety of generated GAN
images. Overall, we demonstrated that GANs have significant
potential for synthesis of medical training data for supervised
tasks by learning to generate segmentation masks in addition
to artificial image data.
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