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The Convex-Concave Ambiguity in Perspective Shape from Shading

Michael Breuß1, Ashkan Mansouri Yarahmadi1 and Douglas Cunningham2

Abstract— Shape from Shading (SFS) is a classic problem in
computer vision. In recent years many perspective SFS models
have been studied that yield useful SFS approaches when a
photographed object is close to the camera. However, while the
ambiguities inherent to the classical, orthographic SFS models
are well-understood, there has been no discussion of possible
ambiguities in perspective SFS models. In this paper we deal
with the latter issue. Therefore we adopt a typical perspective
SFS setting. We show how to transform the corresponding
image irradiance equation into the format of the classical
orthographic setting by employing spherical coordinates. In
the latter setting we construct a convex-concave ambiguity for
perspective SFS. It is to our knowledge the first time in the
literature that this type of ambiguity is constructed and verified
for a perspective SFS model.

I. INTRODUCTION

Shape from Shading (SFS) is a fundamental problem in
computer vision [6]. Given a single greyscale input image,
the SFS process makes use of the variation of grey values
appearing by light reflectance at an objects’ surface to
reconstruct the 3D shape. In order to avoid ill-posedness in
the reconstruction process as much as possible, especially
modeling assumptions on illumination and light reflectance
in a scene are employed in SFS.

The classic SFS model assumes the camera to perform
an orthographic projection, that light falls on the scene of
interest in parallel rays from infinity and that photogra-
phed objects have a Lambertian surface yielding the light
reflectance, cf. [6], [7]. Within the last years the setting of
perspective camera projection has received much attention
in SFS, which we consider here as the perspective shape-
from-shading (PSFS) models. For some milestones in the
development of PSFS, let us mention here Lee and Kuo [10]
who formulate an image irradiance equation with Lambertian
surfaces and a nearby light source, including yet simplificati-
ons such as image formation over triangular surface patches
and a linear approximation of the reflectance map. There
are several groups who worked on more general models
formulated explicitly by partial differential equations (PDEs)
[3], [12], [16]. These models also feature Lambertian surface
reflectance and parallel lighting from infinity. Furthermore,
Prados and Faugeras considered a point light source in finite
range of the photographed scene – more specifically, putting
it at the center of projection, being roughly equivalent to
modeling a camera with flashlight – and introduced a light
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attenuation factor. The latter enables some degree of well-
posedness [1], [13], [14] but also makes the model itself
considerably more complicated.

The arguably most studied SFS model in the SFS literature
is the classic SFS described by Horn [5], see also [17]. As a
particular feature, it involves the convex-concave ambiguity
[7]. This means, given an input image of an object, the classic
SFS model itself cannot distinguish between convex and
concave versions of the objects’ surface, e.g. a photographed
mound (convex) seen from above and with lighting from
above could as well be a photographed cavity (concave) of
the analogous form. Let us note that the convex-concave
ambiguity is of interest not only in computer vision, but also
in the context of understanding models of human perception;
for example, if the silhouette edge information specifies a
convex shape, cf. [9], then human perceivers will have a
strong bias towards seeing the surface as convex regardless
of other shading factors such as specular highlights [11].

Our Contribution. In this paper, we show for the first
time in the literature that also PSFS models may exhibit
the convex-concave ambiguity. The model set-up we explore
incorporates in addition to the perspective camera projection
and Lambertian surface reflection that the light source is at
the projection center. This choice coincides with the light
source position employed by Prados and Faugeras. Similarly
to the proceeding in [4], [8], where different models as here
were considered, we propose to reformulate the arising PDE
in a spherical coordinate system. We show that the refor-
mulated PDE is in spherical coordinates of exactly the same
form as the classic PDE of orthographic SFS from Horn. By
exploring then the known mechanisms of the convex-concave
ambiguity for classic SFS, we construct the corresponding
ambiguity for PSFS. We show this construction here in detail
for input signals, but it is evident that the proceeding can
easily be extended in a straightforward way to images.

II. SHAPE FROM SHADING SET-UP

In the next paragraphs we briefly elaborate on the ortho-
graphic as well as the perspective camera projections and
SFS models.

A. Orthographic Shape from Shading

For the classic orthographic SFS model, in addition to the
projection itself the position of light source and the surface
normal vectors used in the Lambertian reflectance formula
are the main construction elements. Let us review them one
by one, recalling thereby the setting described in more detail
in [6], [7].
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Coordinate system. Our choice is identical to the classic
setting of a right handed coordinate system shown in Fi-
gure 1. The motivation behind this is to have the outward
normals to the surface z = f (X ,Y ) pointing always to the
positive direction of the z-axis.

Lighting. The light source is assumed to be far away
from the scene and placed at the positive side of the z axis,
uniformly illuminating the surface as parallel beams coming
from infinity. In this way, the outward normals of the surface
always point to the light source. To model this, we employ
the light vector ω = (ω1,ω2,ω3)

> as the representative of
the existing light in scene and consider its length to be unit.
About the direction of ω , it is convenient to direct it from
the surface to the light source, since in this case the outward
normal to the surface and the light vector both point to the
positive side of the z-axis and the incident angle θ among
them is of interest.

Surface normal vectors. The normal vector n =
(−p,−q,1)> describes the surface geometry. The surface
normals always point to the positive side of the z-axis. Here,
p and q are the rate of change of surface f in x and y
directions, respectively.

Lambertian reflectance. The irradiance of a Lambertian
surface depends only on the angle between the normal n at a
surface point with the light vector ω reaching to that point.
Thus a Lambertian surface looks identical from any point it
is observed. This is formalized by Lambert’s cosine law

I (x,y) = ρ (x,y)(ω ·n(x,y)) (1)

where ρ represents the albedo of the Lambertian surface,
which we set for simplicity always equal to one in this paper.

This setting allows to formulate an eikonal equation as the
constituting equation of classical, orthographic SFS:

‖∇u(x,y)‖=
√

1

I (x,y)2 −1 (2)

Here, I (x,y) is the image irradiance found at the pixel with
coordinates (x,y) in the input image.

Let us note that in the constituting equation (2), the depth
of the unknown surface u(x,y) is described in terms of first-
order derivatives within the nabla operator. Therefore one
may add an arbitrary constant α to the depth, obtaining
u(x,y)+α , and obtain the same PDE as in (2). Consequently,
the PDE (2) describes the shape of an object up to a free
additive parameter, but not the actual depth in a scene.

B. Perspective Shape from Shading

In simplest form the perspective projection could be per-
formed by a pinhole camera, see Figure 2. Let us note that
we specify the world coordinate system by capital letters,
while we write small letters for coordinates in the image
coordinate system, given in the image plane. This distinction
is of some importance in the perspective setting, and in below
paragraphs we give more details.

x

y

z

z = f (x, y)

nω

θ

Fig. 1: An orthographic setup with a surface z = f (x,y) to
be located at the negative side of the z axis. The source of
light ω is assumed to be located at infinity illuminating the
surface as parallel beams in direction of z-axis, as seen from
the surface. In such a setup, every object point (x,y,z) is
projected to the image plane (x,y). Let us note that world
coordinates (X ,Y ) are here identical to image coordinates
(x,y), so we do not distinguish these coordinate systems
explicitly in the orthographic setting.

World coordinate system. To describe any point in a
scene, three axis of X , Y and Z are used. They form a right-
handed coordinate system as shown in Figure 2.

Image plane. It is spanned by two axis, featuring x and
y as coordinates, as depicted in Figure 2 and its origin c
is called principal point. The image plane is located at the
distance Z = f from the origin C of the world coordinate
system. Here f is the focal length of the pinhole camera.

It is important to note that one may describe the perspec-
tive projection via

∆ :




X
Y
Z


 ∈ R3 7→

(
f X/Z
fY/Z

)

︸ ︷︷ ︸
(x,y)T

∈ R2 (3)

where f is again the focal length.
Let us note here that all points along the lines of projection

– i.e. with the same ratio X/Z and Y/Z, respectively, as ex-
emplified in dashed red in Figure 2 – are mapped to the same
point in the image plane. Therefore, even without making it
explicit, it is evident that in our setting of perspective SFS
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Fig. 2: A schematic view of perspective projection with an
adopted pinhole camera. Here we distinguish between world
coordinates and image coordinates.

there is a free multiplicative parameter that allows to scale
the world coordinates. It is not an additive one as in the
orthographic setting.

III. PERSPECTIVE SFS AS EIKONAL EQUATION

We proceed by parametrizing a surface of interest within
the spherical coordinate system. In the next paragraphs we
derive in detail the needed components, namely the para-
metrized surface, the gradient, the basis vectors, the normal
vectors and the light vector all in the spherical coordinate
system. Having these components in hand, we could further
derive the constituting equation of PSFS in terms of an
eikonal equation.

A. Surface parametrization

We consider the surface point (X ,Y,Z) in world coordinate
system and present it as a vector u :

u :=




X
Y
Z


 (4)

or further as

rer︸︷︷︸
u

:=




X
Y
Z


 (5)

Here,
r =

√
X2 +Y 2 +Z2 (6)

is the radial distance between a surface point of interest
(X ,Y,Z)> and the source of light located at the center of
the spherical coordinate system. Moreover, er represents the
element of the orthonormal basis vectors in a spherical coor-
dinate system and in direction of the radial depth coordinate
r. One could further write er as

er =
(X ,Y,Z)T

√
X2 +Y 2 +Z2

(7)

Let us now make explicit how to convert the Cartesian
coordinates shown in (4) using trigonometric expressions to
spherical ones, i.e.

u =




X
Y
Z


=




r sinθ cosφ
r sinθ sinφ

r cosθ


 (8)

Here, one may obtain

θ = arccos
Z√

X2 +Y 2 +Z2
(9)

and

φ =





arctan(y/x) , x > 0
arctan(y/x)+π, x < 0∧ y≥ 0
arctan(y/x)−π, x < 0∧ y < 0
+π/2, x = 0∧ y > 0
−π/2, x = 0∧ y < 0
undefined, x = 0∧ y = 0

(10)

B. Gradient in Spherical Coordinates

We observe that (6), (9) and (10) display the dependency
of r, θ and φ on the Cartesian coordinates X , Y and Z. This
allows us to employ the chain rule and write the differen-
tial operators ∂/∂ r, ∂/∂θ and ∂/∂φ based on the differential
operators ∂/∂X, ∂/∂Y and ∂/∂Z:

∂
∂ r

=
∂

∂X
∂X
∂ r

+
∂

∂Y
∂Y
∂ r

+
∂

∂Z
∂Z
∂ r

(11)

∂
∂θ

=
∂

∂X
∂X
∂θ

+
∂

∂Y
∂Y
∂θ

+
∂

∂Z
∂Z
∂θ

(12)

∂
∂φ

=
∂

∂X
∂X
∂φ

+
∂

∂Y
∂Y
∂φ

+
∂

∂Z
∂Z
∂φ

(13)

However, a more compact form of (11), (12) and (13) could
be written using matrix multiplication as




∂/∂ r
∂/∂θ
∂/∂φ


=




∂X/∂ r ∂Y/∂ r ∂Z/∂ r
∂X/∂θ ∂Y/∂θ ∂Z/∂θ
∂X/∂φ ∂Y/∂φ ∂Z/∂φ






∂/∂X
∂/∂Y
∂/∂Z


 (14)

Expanding expressions using (8) one may rewrite the right
hand side of the latter equation after a few computations as



sinθ cosφ sinθ sinφ cosθ
r cosθ cosφ r cosθ sinφ −r sinθ
−r sinθ sinφ r sinθ cosφ 0






∂/∂X
∂/∂Y
∂/∂Z


 (15)

To derive the basis vectors er, eθ and eφ and consequently
the normal vector to the surface point u, we need to invert
the appearing matrix, such that we receive an expression for
the gradient operator in terms of the spherical coordinates.
After some computations one may obtain



∂/∂X
∂/∂Y
∂/∂Z


=




sinθ cosφ cosθ cosφ
r

−sinφ
r sinθ

sinθ sinφ sinφ cosθ
r

cosφ
r sinθ

cosθ −sinθ
r 0






∂/∂ r
∂/∂θ
∂/∂φ


 (16)

as the result.
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C. Basis Vectors in Spherical Coordinates

We proceed by rewriting (16) in a more compact way as



∂/∂X
∂/∂Y
∂/∂Z


= er (∂/∂ r)+

1
r

eθ (∂/∂θ)+
1

r sinθ
eφ (∂/∂φ) (17)

Here er, eθ and eφ are the basis vectors of the spherical
coordinate system, and at the same time represents the
orthonormal basis of R3, that are derived by normalizing
the columns of the matrix in (16) :

er =




sinθ cosφ
sinθ sinφ

cosθ


 ,eθ =




cosθ cosφ
cosθ sinφ
−sinθ


 ,eφ =



−sinφ
cosφ

0




(18)
By considering the derivatives in (17), we compile the
components related to changes observable over the unit
sphere as

∇(θ ,φ) :=

(
1

r sinθ
∂

∂φ
1
r

∂
∂θ

)
(19)

With the same approach, we may derive just the θ -part of
the normal vector as given in a polar coordinate system as

∇(θ) :=
1
r

∂
∂θ

(20)

Note that one may compute ∂
∂θ er and ∂

∂φ er as

∂
∂θ

er =
∂

∂θ




sinθ cosφ
sinθ sinφ

cosθ


= eθ (21)

and
∂

∂φ
er =

∂
∂φ




sinθ cosφ
sinθ sinφ

cosθ


= sinθ · eφ (22)

respectively. These identities will be used for deriving the
normal vector to the surface in next subsection.

D. Surface Normals in Spherical Setting

By knowing, er, eθ and eφ to establish a right-handed
coordinate system, the cross product ∂u

∂φ × ∂u
∂θ will give us a

normal vector. Below we sketch the computation:

n
(4)
=

∂u
∂φ
× ∂u

∂θ
=

∂ (rer)

∂φ
× ∂ (rer)

∂θ

= r
∂ r
∂φ

(er× eθ )+ r
∂ r
∂θ
(
sinθeφ × er

)
+ r2 (sinθeφ × eθ

)

= r
∂ r
∂φ
(
eφ
)
+ r sinθ

∂ r
∂θ
(
eφ × er

)
+ r2 sinθ

(
eφ × eθ

)

= r
∂ r
∂φ

eφ + r sinθ
∂ r
∂θ

eθ − r2 sinθer

Thus one could write the normal vector n as

n =




r ∂ r
∂φ

r sinθ ∂ r
∂θ

−r2 sinθ


 (23)

that realises itself with respect to the basis vectors(
er,eθ ,eφ

)>. The Euclidean norm of n can be computed
as

‖n‖= r

√(
∂ r
∂φ

)2

+ sin2 θ
(

∂ r
∂θ

)2

+ r2 sin2 θ (24)

E. Illumination

As we desire to put the source of light located at the center
of the spherical coordinate system, we are in a spherical
coordinate system in the position to write it in a very simple
format, namely

ω = (0,0,−1)T (25)

Such a light vector has two major properties, (i) it always
points to the center of the spherical coordinate system, and
(ii) the inward normal vectors to any surface parametrized in
the spherical coordinate system has the same direction with
ω .

F. The PDE of spherical PSFS

We now put the developments together to formulate the
brightness equation (26) of PSFS with no light attenuation
term in spherical coordinates. We have by Lambert’s law

I = ρ
(

ω · n
‖n‖

)
ρ=1⇐⇒ I‖n‖= ω ·n (26)

We recall that I and ω are the image irradiance of the
input image and the light vector, respectively. Substituting
the computed expressions (23) and (25) in (26), we obtain

ω ·n = (0,0,−1)> ·




r ∂ r
∂φ

r sinθ ∂ r
∂θ

−r2 sinθ


= r2 sinθ (27)

By substituting (19), (24) and (27) in (26), we come after
a few more steps of computation to the eikonal PDE in
spherical coordinates

∥∥∇(θ ,φ)u(φ ,θ)
∥∥=

√
1

I (φ ,θ)2 −1 (28)

In coming sections, we prefer to work with one dimension
lower than possible, i.e. inside a polar coordinate system
which can easily be extended to the spherical one. We believe
that this will help us to explain the way the in which the fast
marching [15] is adopted and also to visualise our results
more effectively. In polar system our eikonal equation (28)
shows as

∥∥∇(θ)u(θ)
∥∥=

√
1

I (θ)2 −1 (29)

with ∇(θ) defined as (20).
Let us briefly comment on the role of free parameters

concerning the depth. As we head for drawing a parallel
to the classic orthographic setting in orthographic SFS, one
may think that it should be possible to have a free additive
parameter w.r.t. the depth as in the orthographic SFS setting.
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This may be realised by adding here a constant value η to
the depth r in a polar system as

r̂ = r+η (30)

However, as (20) shows, the depth parameter is part of the
differential operators in a polar or spherical system. Writing

∇(θ) :=
β

r+η
∂

∂θ
(31)

setting

β := (r+η)/r (32)

we see that a multiplicative parameter β can be chosen to
compensate a shift η occurred for a curve as the result of its
r coordinate change inside a polar system. A simple, additive
shift in the r coordinate is not an invariant in this formulation.

IV. SOLVING SPHERICAL EIKONAL PDE

To solve the eikonal equation (29) we adopt a solution
vector U such that

U j := j ·hθ (33)

having
• j ∈ N acting as an index,
• hθ is a fixed step size, representing the distance among

any pair of adjacent cells in our vector U .
We start by taking the operator in (20) and replace its 1/r

term by 1/u, so that

∇(θ)u(θ) :=
1

u(θ)
∂u(θ)

∂θ
(34)

Now, we replace ∇(θ)u appeared in (29) with its discreti-
sed backward/forward approximations as

√(
1

U j−1
·U j−1−U j

hθ

)2

=

√
1

I2 (θ j)
−1 (35)

respectively
√(

1
U j+1

·U j+1−U j

hθ

)2

=

√
1

I2 (θ j)
−1 (36)

We will make use of these discrete forms in the fast marching
method.

Here, hθ , I (θ j) and U j are all known, whereas both
U j−1 and U j+1 are unknowns. Here onward, we take steps
towards rewriting (35) and (36) so that they are numerically
solveable in form of a fixed point iteration approach. We
briefly demonstrate the procedure at hand of (35). To start,
we introduce the new and the old instances of U j−1

1
Uold

j−1
·
Unew

j−1−U j

hθ
=

√
1

I2 (θ j)
−1 (37)

One may notice that in the context of the fast marching
method we employ, in (37) we always have

Unew
j−1−U j

hθ
≥ 0 (38)

and the data Uold
j−1 is known.

For initialization of the above iteration, we set the un-
known term Uold

j−1 inside (37) using its already known neigh-
bor U j.

Now, we take the only unknowns in (37), namely Unew
j−1 to

one side that leads to

Unew
j−1 =U j +hθ ·Uold

j−1

√
1

I2 (θ j)
−1 (39)

To solve the eikonal PDE (29), we find the fixed point at each
point j iteratively. More precisely, we start by taking (39)
and keep on recursively updating Unew

j−1 based on U j and Uold
j−1

until
∣∣∣Unew

j−1−Uold
j−1

∣∣∣< ε . At that point we adopt U j−1 :=Unew
j−1

and proceed at node j−2.
The analogous procedure can be performed for the forward

discretization in the other direction.

V. EXAMPLE FOR CONVEX-CONCAVE
AMBIGUITY

We start the discussion by taking the irradiance signal
shown in Figure 3 which is produced based on the black
curve shown in Figure 4, which we denote here as concave
curve in analogy to the orthographic setting. Let us stress that
the concave curve takes on the role of the given geometry.
Note that, the irradiance signal at the point (1, 3π/2) is drawn
as a bullet. The reason behind is our original concave curve
visualised as black inside the Figure 4 does not have a
well defined gradient at the point (6.5, 3π/2). Such bullet is
observed in all coming irradiance signals created based on
the concave curve.

0

/6

/3
/2

2 /3

5 /6

7 /6

4 /3
3 /2

5 /3

11 /6

0

0.2

0.4

0.6

0.8

1

Fig. 3: The input irradiance signal corresponding to the
concave curve – with the shape of a hat function – shown
in Figure 4, depicted there in black. The bullet mentions
that our original concave curve visualised as black inside
the Figure 4 does not have a well defined gradient at the
point (6.5, 3π/2).

We now solve the eikonal equation (29) by providing it
the given irradiance signal. This produces a convex curve
depicted in red in Figure 4.

Let us note that we obtain here computationally a convex
curve as we enforce this by the construction of the fast
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4 /3
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11 /6

0

2

4

6

Fig. 4: A pair of concave and convex curves shown as
black and red colors, respectively. The former one is the
original curve and the latter one is produced by adopting
the irradiance signal, shown as Figure 3, and the eikonal
equation shown as (29).

marching method, as explained in the previous paragraph.
The point in the numerical construction is, that in setting
the sign within the square in (35) of the backward/forward
differences, we force here the computed solution to have a
higher depth value than of one point that must be given to
the algorithm for starting. Here, we gave the depth of the
top point of the convex curve to the method, leaving the
construction of the actual shape to the method.

In order to see that our proceeding has indeed given
the sought ambiguity, we now employ another means to
verify this by asking if both curves shown in Figure 4 have
the same irradiance signals. To perform this test, we adopt
(26) in order to compute the irradiance signals taking into
account the normal vectors that can be computed for both
curves, the result of which is displayed in Figure 5. We
observe the desired result, namely that both convex/concave
curves shown inside the Figure 4 have effectively the same
irradiance signals.

0

/6

/3
/2

2 /3

5 /6

7 /6

4 /3
3 /2

5 /3

11 /6

0

0.5

1

Fig. 5: A nearly indistinguishable pair of irradiance signals
shown in solid black and dashed, respectively. The former
belongs to the concave curve and the latter corresponds to
the convex curve shown in Figure 4.

Finally, let us clarify the impact of the possible free
parameters in the new model. We explore this by showing
that the convex curve shown in red in Figure 6 can be
transformed by keeping the same irradiance signal.

The originally computed solution itself is shown as the red
curve in Figure 4, and we see that the top point has the depth

r = 1. Thus, adding η =−1 uniformly to the r coordinates
plus using the multiplicative change as we elaborated, we
produce the transformed convex curve shown in Figure (6).

To make clear that the elaborated combination of additive
and multiplicative changes enables to produce an invariant
irradiance signal, we perform now exactly this clarificati-
on. Once again we produce the irradiance signals of both
curves under question and show them as Figure 7. As one
observes, both irradiance signals overlap each other with
an inaccuracy represented with a hallow bullet around the
point (I = 1,θ = 3π/2). The reason behind the hollow bullet
is again that the gradient in polar system (20) is not defined
if r = 0, that makes the irradiance signal corresponding to
the transformed curve undefined. Moreover, the irradiance
signal of the concave curve is not also well defined at the
mentioned point.
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2 /3

5 /6

7 /6

4 /3
3 /2

5 /3

11 /6
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0.5

1

1.5

2

Fig. 6: Our transformed convex curve, produced by adding
the value of η = −1 to the r coordinate of the computed
convex curve shown in Figure 4, and adopting the corre-
sponding multiplicative parameter to compensate the effect
of the transformation. One could observe that the irradiance
signal of the transformed convex curve coincides with the
one corresponding to the computed convex curve shown
inside the Figure 7.
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Fig. 7: Comparison of irradiance signals shown as solid
black and dashed yellow. The former belongs to the convex
curve shown in Figure 4 and the latter corresponds to the
transformed curve shown inside the Figure 6. The hollow
bullet represents the fact that the irradiance values of the
curve shown in Figure 6 around the point (I = 1,θ = 3π/2)
is not defined. The curves coincide to a large degree.

VI. CONCLUSION
We have verified the existence of the convex/concave am-

biguity in a perspective SFS model. In our presented example
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we have assured that every step is validated with respect to
this goal. Our assumption about the light position as well
as the decision not to take into account an attenuation term
allowed our constituting equation of PSFS to be represented
as an eikonal equation of the identical form as in classic,
orthographic SFS. The main point in our proceeding was
thereby the use of the spherical coordinate system. It is
evident that the described proceeding for the construction of
the ambiguity can easily be performed in the full spherical
system i.e. for images instead of signals. In future work we
will extend the considerations about ambiguities and work
on ways to resolve them.
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