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Semi-Automatic Retrieval of Toolmark Images

Manuel Keglevic1 and Robert Sablatnig1

Abstract— In order to identify and solve connected cases
forensic experts are currently comparing toolmarks from crime
scenes manually. However, especially for frequently occurring
crimes like burglaries this task is cumbersome. In order to
support the work of the forensic experts, we propose a semi-
automated system for finding similarities between toolmark
images in large databases. Our methodology uses convolutional
neural networks to compute local image similarities in these
toolmark images. This work presents the proposed approach
and the evaluation conducted on a dataset of more than 3,000
toolmark images collected from real criminal cases.

I. INTRODUCTION

A technique commonly used for break-ins by criminals all
over Europe is the so-called lock snapping. Using a tool, like
for instance a locking plier, door locks can be quietly broken
(snapped) in a short amount of time using force and leverage.
This, however, leaves unique imprints, i.e. toolmarks, of the
pliers used on the cylinder locks. As an example, Figure 1
shows multiple toolmarks of the same tool on a broken
lock cylinder. By comparing two different toolmarks using
a comparison microscope forensic experts can assess if the
marks were made by the same tool. This can either be used
to confirm that a seized tool was used to commit a crime,
or to link multiple cases together and thereby significantly
support the investigation of such offenses. Furthermore, the
toolmarks found on these locks are crucial as evidence in the
following court cases.

Yet, the manual examination and comparison of the tool-
marks found is a cumbersome task due to the number
of burglaries occurring every year. Therefore, within the
project FORMS we developed a semi-automatic system in
order to assist the forensic experts. The proposed system
consists of an application, which enables the forensic ex-
perts to catalog and search toolmark images in a central
database, and a methodology based on machine learning.
This methodology computes similarities between toolmark
images automatically in regions manually annotated by the
forensic experts. This way, the forensic experts are presented
with a list of toolmarks sorted by similarity in order to
reduce the amount of images requiring manual examination.
The project FORMS was conducted in cooperation with the
Bundeskriminalamt (Criminal Intelligence Service Austria),
the CogVis GmbH and VICESSE. It started in Fall 2015 and
concluded in February 2018 and was funded by the Austrian
Security Research Programme KIRAS.

This paper is structured as follows: firstly, the state of the
art in automatic toolmark comparison is presented. Secondly,
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Fig. 1: Snapped lock with multiple toolmarks.

Fig. 2: Leica comparision microscope used by the forensic
experts in Austria.

the dataset, which was created in cooperation with the
austrian police, is describe. Thirdly, the methodology based
on learning local images similarities using Convolutional
Neueral Networks (CNNs) and its evaluation is presented.
Finally, we conclude with the advantages and disadvantages
of our proposed system and an outlook for future work
beyond the FORMS project.

II. STATE OF THE ART

Since the validity of comparative forensic examination
of toolmarks has been challenged in court, the develop-
ment of automatic tools for the comparative examination of
toolmarks has been in focus of the forensic community to
obtain statistical support for the notion of the uniqueness
of toolmark patterns [14], i.e. the existence of ‘measur-
able feature with high degree of individuality” [1]. For the
comparison of striated toolmarks this led to a variety of
methodologies [1], [2], [4], [3], [7], [8], [12] which operate
on 1D profiles extracted from either 2D images or 3D surface
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Fig. 3: Toolmark crop under different lighting conditions.

Tools Locks Sides Images
2015 25 115 230 1,782
2016 23 82 164 1,263
total 48 197 394 3,046

TABLE I: Statistics of the captured toolmark images divided
by year.

scans. Similarity scores are commonly computed using either
global [2], [4], [3] or local [8] Cross-Correlation (CC).
Bachrach et al. [1] propose the use of locally normalized
squared distances as similarity measure. In contrast to these
approaches, Petraco et al. [12] propose an approach based
on machine learning by using dimensionality reduction and
Support Vector Machines (SVM) for the classification of
the tool. More recently it was shown that CNNs outperform
other methods by learning a similarity measure for striated
toolmarks [11], [13].

However, all those experiments were carried out on stri-
ated toolmarks created under laboratory conditions. This
includes for instance fixed angles of attack, constrained light-
ing conditions, high resolution 3D surface scans and hand-
selected tools and surface materials as shown for instance by
the only publicly available dataset; the NFI Toolmark dataset
created by Baiker et al. [2].

III. DATASET

In order to allow an evaluation of the performance un-
der real-world conditions, we created a dataset using lock
cylinders. These lock cylinders were seized by the austrian
Police in the course of break-in investigations in Vienna
during the years 2015 and 2016. All images were captured
using the Leica comparison microscope used by the forensic
experts, which is shown in Figure 2. In order to allow an
evaluation of the influence of different lighting conditions, a
variable light ring was utilized to capture the toolmarks under
11 different lighting conditions. In Figure 3 the effect of
different lighting conditions is shown on an example. In total,
197 lock cylinders from 48 linked cases were photographed
on both sides. The resulting 3,046 images were divided into
training set and test set by year, i.e. 2015 for training and
2016 for testing. In Table I the number of images and locks
for each set is listed.

To provide matching local image similarities, matching
patches in the images were annotated using a plugin devel-
oped for the image viewer nomacs. In this tool polylines are

Fig. 4: Matching toolmarks annotated using a polyline and
fitting with a transformation matrix.

used to describe the toolmark edges and matching toolmarks
are fitted using transformation matrices. By utilizing the fact
that the cylinder locks are an approximately flat surface,
the capturing angle is orthogonal to this surface and the
distance of the camera is always the same, the possible
transformations can be restricted to translations and rotations.
In this way, matching patches can simply be extracted by
moving a window along the polylines and their matching
(transformed) counterparts. Matching toolmarks can either
be found on the same lock cylinder, as shown in Figure 4,
or on different lock cylinders from the same linked case.
Since all cylinder locks photographed originate from linked
cases, it is guaranteed that for each tool multiple toolmarks
exist.

To allow for training and evaluation of different local
image similarity approaches, 41,030 and 25,014 images
patches were extracted from the training set and the test
set, respectively. Additionally, 50,000 matching and 50,000
non-matching image pairs were created to enable comparable
evaluations.

IV. METHODOLOGY

In this section, both parts of the proposed methodology are
decribed. Firstly, the neural network used to compute local
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images similarities is shown. Secondly, our two approaches
to combine the local image similarities for the retrieval of
similar toolmark images are presented.

A. Local Image Similarities

Our proposed neural network with triplet loss is based on
the work of Balntas et al. [5]. Similar to siamese networks [6]
the network architecture consists of multiple branches with
shared weights as shown in Figure 5.

p1 p2n

shared shared

loss function

Fig. 5: Triplet architecture

The training is performed by forwarding three input sam-
ples, i.e. a triplet, through these equal CNN branches. Each
triplet consists of an anchor xp1 , a positive (matching) sample
xp2 and a negative (non-matching) sample xn. The loss
function then combines the three outputs f (xi) and the error
is back-propagated. In contrast to other triplet loss functions,
like the SoftMax Ratio proposed by Hoffer et al. [9] which
only takes one negative distance into account, all three
distances between the samples are used:
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Instead of forcing the distance ∆+ to be just smaller than
∆−

1 , it is forced to be smaller than ∆∗ = min(∆−
1 ,∆

−
2 ). In this

way negative mining is performed implicitly as illustrated in
Figure 6.

The loss function is then defined as:
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In contrast to the network proposed by Balntas et al.,
we employ a DenseNet CNN architecture for each of the
branches [10].
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Fig. 6: SoftMax Ratio (a) compared to SoftPN (b) [5].

B. Toolmark Retrieval

In order to retrieve toolmark images, the local image sim-
ilarities have to be combined to form a similarity measure.
For this we use two different approaches.

Firstly, local patches are extracted along the annotated
toolmark edges in fixed steps and their features are com-
puted using the neural network described in the previous
section. The features are then pairwisely compared using
the euclidean distance for each step. The resulting distance
between two toolmarks is then computed by summing up
these distances and normalizing by length. For toolmarks
with different length, the alignment is shifted until a minimal
distance is found. The advantage of this approach is, that it is
simple and computationally inexpensive. However, it requires
an exact annotations since otherwise patches on different
parts of the toolmark may be compared against each other.
Small variations can lead to accumulated length differences
which cannot be compensated by this approach as shown in
Figure 7.

Fig. 7: Matching in fixed step sizes compared to a distance
computation using dynamic time warping (DTW).

Secondly, to relax the requirement of a fixed step size,
dynamic time warping (DTW) is proposed to allow for a
more flexible matching of the local images patches. This
way small inaccuracies in the annoation process and the
resulting changes in the length of the toolmark segments can
be compensated. In Figures 7 on the right the advantage of
the DTW approach is visualized.

V. EVALUATION

For computing the local image similarities the neural
network is trained using the extracted image patches of the
training set and evaluated on the test set. Two different
approaches were evaluated for the selection of the positive
samples.

The first strategy was to define positive samples as
matching patches from different locks and different lighting
conditions in order to train the network to the high variability
of materials and lighting conditions. However, using this
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strategy a false positive rate at 95% recall (FPR95) of only
about 80% percent is achieved on 100,000 evenly distributed
matching and non-matching pairs of patches. This can be
explained by the high variability of the presented image
patches and human errors in the annoation process.

In order remove the influence of human errors in the
annoation process and restrict the variability of the matching
patches, as a second strategy, positive samples were defined
as patches from just different lighting directions on exactly
the same position. This way, an FPR of under 30% is
achieved on 100,000 matching and non-matching images
pairs which were selected using the same strategy. One
interpretation for the remaining false positives is that many
patches, mainly from locks made out of shiny materials, are
indistinguishable due to the limited dynamic range of the
images.

Using this trained network to compute the local image
similarities, a cumulative match score of about 70% at a
retrieval rate of 20% can be achieved for the toolmark
images. In Figure 8 the cumulative match characteristic is
depicted for both the approach using a fixed step size and
the DTW method. It can be seen, that the fixed approach
performs slightly better since in this case the annotations
were done precisely. Yet, the DTW approach provides com-
parable results with the advantage of an added flexibility in
the annotation process.

Fig. 8: Cumulative match characteristic on the test set using
either a fixed step size or dynamic time warping. The data
is retrieved ranked by similarity.

VI. CONCLUSION

In this paper a two step approach for computing toolmark
similarities was presented. Firstly, a neural network using
a triplet architecture was proposed to compute local image
similarities. Secondly, two approaches for combining local
image similarities to form distance scores for toolmark
images were shown. The proposed system was evaluated on
a toolmark dataset created by photographing cylinder locks
from real criminal cases. It was shown that with a probability
of more than 70% a matching toolmark is found in case 20%
of the images in a database are retrieved. Even though this

leaves room for improvement, these results are promising
and show that an automated retrieval systems can valuably
support the work of forensic experts. For future work, the
proposed approaches will be extended to other areas of
forensic images; as for instance footwear impressions.
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