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Large Area 3D Human Pose Detection Via Stereo Reconstruction in
Panoramic Cameras

Christoph Heindl1 ,Thomas Pönitz1, Andreas Pichler1 and Josef Scharinger2

Abstract— We propose a novel 3D human pose detector using
two panoramic cameras. We show that transforming fisheye
perspectives to rectilinear views allows a direct application of
two-dimensional deep-learning pose estimation methods, with-
out the explicit need for a costly re-training step to compensate
for fisheye image distortions. By utilizing panoramic cameras,
our method is capable of accurately estimating human poses
over a large field of view. This renders our method suitable for
ergonomic analyses and other pose based assessments.

I. INTRODUCTION AND RELATED WORK

Human pose estimation, characterized as the problem of
localizing specific anatomic keypoints, has enjoyed substan-
tial attention in recent years due to the large number of
potential applications. It has been shown that keypoint based
pose descriptions provide important cues for a variety of
tasks such as activity recognition [1] and biomechanical
analysis [2].

Inferring pose from a highly articulated, potentially self-
occluding, non-rigid body is, in general, a hard and ill-posed
problem. Non-optical approaches encompass electromechan-
ical [3] or inertial sensor [4] based suits. Optical methods tra-
ditionally applied intrusive active or passive markers [5], [6]
for keypoint detection. Early marker-free methods detected
body parts in single images [7], [8], [9], [10]. 3D stereo
imaging was used to infer human poses from sparse depth-
maps [11], [12]. Real-time dense depth cameras greatly
simplified the reconstruction task [13], [14], [15], [16] by
providing additional metric constraints.

Recently, single and multi-person pose estimation in
monocular images made significant progress [17], [18],
[19]. Especially the existence of large-scale human anno-
tated datasets [20], [21] accelerated deep learning based
approaches [22], [23], [24].

Fisheye lenses have, despite their large field of view,
received little attention mostly due to their inherent image
distortions which significantly alter the appearance of objects
as they move through its line of sight. Among the methods
published, researchers have considered single person [25]
detection, safe human-robot interactions [26] and head pose
tracking [27]. As most of the optical solutions mentioned
above assume a pinhole lens model, their results cannot be
directly applied to fisheye images.

In this work we propose a 3D pose detector using two
fisheye cameras in general position. We apply a deep convo-
lutional network based 2D pose estimator to the input images
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Fig. 1: Overview. From two highly distorted 180◦ fish-
eye images coarse human location cues are inferred (1).
Regions of interest are transformed into rectilinear views
and articulated 2D human poses are then predicted via
deeply learned architectures (2). The corresponding 2D joints
are then triangulated via stereoscopic constraints to yield
accurate 3D body part locations (3) even in the outer edges
of a fisheye lens.

and reconstruct the corresponding 3D joint coordinates via
stereoscopic constraints. We show that proper rectilinear
view generation from raw fisheye input images allows us
to avoid tedious dataset generation and network training
steps. We demonstrate the usefulness of our approach in
a challenging 6×6 meter working area, and consider the
applicability to ergonomic analysis with respect to accuracy
and robustness. To our knowledge we are the first to propose
a practical large-scale 3D human pose estimation system
based on fisheye lenses.

II. NOTATION

Throughout this work we use lower-case non-bold char-
acters x to denote scalars, bold-faced lower-case characters
x represent column-vectors and upper-case bold characters
A for matrices. xi denotes the i-th element of x, Ai j the i-th
row and j-th column of A. For low dimensional vectors we
also write qx instead of q0 when it seems practical.

III. LENS MODELS AND PROJECTION
FUNCTIONS

A majority of pose estimation methods mentioned in Sec-
tion I assume that the camera model is sufficiently described
by the pinhole camera model. Significant attention has
therefore been paid in describing and correcting distortions
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that usually appear in ordinary lenses with moderate radial
distortion [28], [29]. However, these models are incompatible
with wide angle lenses as their projective properties are not
well captured.

We provide an brief overview of common lens models and
projection functions in the next subsections. For an in depth
discussion see [30], [31], [32]. We consider only rotational
symmetric lenses and assume that the principal point and the
focal length is known. Both parameters can be determined
by a number of methods [33], [34], [35].

We consider the characteristics of a lens to be captured in
functional relationship between distorted image points on the
focal plane and corresponding object points. As illustrated in
Figure 2, the radial distance rd of the optical center to the
distorted image point is a function of the object’s inclination
angle with the z-axis θ , the plane-polar angle around the
optical axis φ and the focal length f . We consider radially
symmetric lenses and therefore assume that the angle φ , in
contrast to θ , remains unchanged by the lens (see Figure 2).
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Fig. 2: Illustration of the general projection model and
its related parameters. A ray of light emitted from a 3D
object passes through the optical center and is potentially
refracted due to lens characteristics. The measures ru and rd
correspond to the ideal (rectilinear) and distorted (actual)
radial distances from the principal point. The inclination
angle θ measures the angular difference between the ray of
light and the optical axis. The angle φ denotes the plane-polar
angle around the optical axis. The focal length f represents
the distance between the optical center and the image plane.

A. Rectilinear projection

The most frequently found projection in computer vision
is the pinhole projection. Due to the property that this pro-
jection preserves straight lines it is also termed the rectilinear
projection. The projection function is given by

rd = f tan(θ). (1)

For this particular model rd = ru and for large field of views
the projected image becomes increasingly large and finally
infinite when the field of view reaches 180◦ degrees.

B. Fisheye projections

Similar to rectilinear lenses, fisheye lenses have been man-
ufactured to adhere to optical-engineered projection behavior.
The projection functions governing these designs are also
known as the classic projection functions and are listed below

Equidistant: rd = f θ (2)

Stereographic: rd = 2 f tan( θ
2 ) (3)

Equisolid: rd = 2 f sin( θ
2 ) (4)

Orthographic: rd = f sin(θ). (5)

In Figure 3 we compare radial distorted distances, rd , as a
function of the inclination angle, θ , for all projection models.
Note, the monotonicity of the functions that ensures that all
angles are mapped to different radial distances.
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Fig. 3: Plots of classical fisheye projection equations show-
ing normalized radial distorted distances rd/ f as a function
of the inclination angle θ . Note the monotonicity of the
functions that ensures that all angles are mapped to different
radial distances.

Besides the classic projection functions, various other
models have been proposed. Most notably are polynomial
models [30], a summation of sine terms model [36] and a
universal model [35]. Unlike the classical optical-engineered
models, these models try to capture a variety of different
lenses in a single formula. While the classic projection
formulas can be inverted algebraically (i.e determining the θ
from rd) this may not be as easily true for the alternatives.
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IV. RECTILINEAR VIEW GENERATION

Generating rectilinear views from fisheye images, as
shown in Figure 4, is an important technique in our approach,
as our 2D pose detectors assume upright images taken by a
pinhole camera model.

Fig. 4: Upright rectilinear view generation. Fisheye input
image on the left, rectilinear view on the right. The bounds
of the rectilinear view are shown in yellow in the left image.

Our approach to generate rectilinear views is based on
virtual pinhole cameras that share the same origin as the
fisheye cameras but are arbitrarily rotated with respect to
their physical counterpart. In order to map image points
between the artificial pinhole and physical fisheye view the
following steps are applied in order.

1) Un-project - computes object points from distorted
image points using the destination camera model.

2) Rotate - rotates object points into the source camera
space.

3) Project - computes distorted image points from object
points using the source camera model.

When applied to all pixels of a destination view, this
method leads to efficient lookup maps of corresponding
locations with sub-pixel accuracy. The destination image is
then formed by interpolating pixels via lookup coordinates.
While we are usually interested in mapping fisheye image
and rotated pinhole image coordinates, our method works
for any pair of camera models.

A. Projection from object space

To compute distorted homogeneous image coordinates i =
[ ix,iy,1 ]T for a Cartesian point o = [ox,oy,oz ]T in object space,
we first compute its spherical coordinates with respect to the
camera intrinsic frame




r
θ
φ


=




‖o‖
arccos

(
oz
/
‖o‖

)

arctan2(oy,ox)


 . (6)

Next, we compute rd from θ according to the lens projection
model (see III-B). The vector [ rd φ ]T then denotes the polar
coordinates of the distorted image point. The Cartesian
coordinates are given by




ix
iy
1


=




rd cosφ
rd sinφ

0


+




cx
cy
1


 (7)

where [ cx cy 1 ]T denotes the camera principal point.
Henceforth, we denote the projection operation
project(o;M) : R3 → R3 as a functional mapping that
takes three-dimensional object points, o, to homogeneous
two-dimensional image points [ ix,iy,1 ]T using the lens model
M.

B. Reverse projection from image space

Reversing the process outlined in Section IV-A is ambigu-
ous, as depth is lost during projection and all locations along
a ray project to the same image coordinates. For our purposes
it suffices to un-project image coordinates to points on the
unit sphere, as our consideration mainly involves purely
rotated cameras. First, we compute the polar coordinate
representation for the image point i

n = i− c (8)[
rd
φ

]
=

[
‖n‖

arctan2(ny,nx)

]
. (9)

We then apply the reverse projection function to obtain θ
from rd according to the lens model. The vector [ r θ φ ]T

describes a ray from the origin into object space through i
in spherical coordinates. Setting r = 1, constrains the point
to the unit sphere. Converting back to Cartesian coordinates
gives




ox
oy
oz


=




r sin(θ)cosφ
r sin(θ)sinφ

r cos(θ)


 . (10)

We define the reverse projection operation
unproject(o;M) : R3→ R3 to be a functional mapping from
homogeneous image points [ ix,iy,1 ]T , to three-dimensional
object points o using the lens model M.

The general mapping of image points between two purely
rotated cameras can now be written as

o = unproject([ ix iy 1 ]T ;M) (11)

o′ = R′T Ro (12)
i′ = project(o′;M′) (13)

where M, M′ are the respective camera lens models and
R, R′ are camera orientations. The mapping is simplified
when both lens models are rectilinear, in which case the
mapping can be conveniently described by a homography of
the following form

i′ = K′R′T RK−1 [ ix,iy,1 ]T (14)

where K and K′ contain camera intrinsics.

V. HUMAN POSE ESTIMATION

Human body part estimation consists of two steps. First,
two-dimensional human poses are estimated in rectilinear
views formed from both fisheye cameras. Then, a three-
dimensional reconstruction is computed based on stereo-
graphic constraints. Both steps are detailed below.
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A. 2D Human Pose Estimation

Our 2D pose detection is based on the method of Cao
et al. [24], which takes as input a rectilinear image view
and outputs anatomic keypoint locations. A neural network
is used to predict body joint confidence maps and a set of
two dimensional vector fields that encode so called body limb
affinities. The basic building block of neural network is a set
of convolutional filters that are iteratively applied to previous
results in order to refine confidence and affinity maps. In the
predicted confidence maps, peak localization is performed to
identify potential joint candidates. Then, a graph algorithm
guided by affinity maps is used to determine the connectivity.
Figure 5 illustrates various stages of the algorithm.

(a) Rectilinear input image. (b) Computed body joints and
limbs.

(c) Joint confidences and part
affinities between neck and
right shoulder.

(d) Joint confidences and part
affinities between right shoul-
der and right elbow.

Fig. 5: Various stages of the 2D pose estimation algorithm.
From a rectilinear view (top-left) a convolutional neural
network predicts for every joint and limb a confidence and
affinity vector field (bottom-right and-bottom left). A graph
based algorithm the constructs a skeleton body model based
on these inputs (top-right).

As the detector is directly applied to upright rectilinear
views we can use pre-trained network weights and avoid time
consuming manual annotation of fisheye images. In order to
bootstrap the rectilinear view generation an initial guess of
people positions in fisheye images is needed. This can be
solved in a number of ways, such as using a people detector
[37] or performing foreground segmentation [38]. Once
an initial view orientation is known, subsequent rectilinear
views can be computed automatically by re-focusing the view
on detected 2D human poses.

B. 3D Human Pose Reconstruction

Computing 3D joint coordinates requires at least 2 fisheye
images with projections of the same world space joint. Given

a rigid transformation between two capture devices, the 3D
location can be obtained via triangulation. For static camera
setups the rigid transformation can be estimated [39] in a
preprocessing step. For non-rigid setups, camera position and
scene geometry needs to be inferred simultaneously. This is
considered a bundle adjustment problem for which numerous
iterative non-linear solutions have been proposed [40], [41].

In either case, the usual linear epipolar constraints for
stereo setups do not hold, because fisheye cameras exhibit
non-linear projection functions. Therefore, we perform tri-
angulation directly in rectilinear views instead of fisheye
images, for which the constraints hold. Without loss of
generality, let P ∈ R3×4 be the camera projection matrix of
the first rectilinear camera given by

P = K
[
I 0

][RT 0
0 1

]
W−1 (15)

where K ∈ R3×3 is the rectilinear projection matrix, R ∈
R3×3 the orientation of rectilinear view with respect to
the parental fisheye camera, W ∈ R4×4 is the position and
orientation of the fisheye camera in world space and I ∈
R3×3 is the identity matrix. Similarily we define P′ for the
second rectilinear view. The simultaneous projection of a
homogeneous world point x in either camera focal plane is
given by

w [ ix,iy,1 ]T = Px (16)

w′ [ i′x,i′y,1 ]
T = P′x. (17)

Rewriting Equation 16 line by line and denoting by pi the
i-th row of P we get

wix = p0x (18)
wiy = p1x (19)

w = p2x. (20)

Then, the Direct Linear Transform (DLT)[42] algorithm is
given by eliminating w from Equations 18, 19 via substitution
using Equation 20. Rewriting leads to two linear equations
in four unknowns of x = [ x y z w ]T

(x′p2−p0)x = 0 (21)
(y′p2−p1)x = 0. (22)

Two views then yield the four equations. The system of
equations may be written in matrix form as Ax = 0 and
solved for x in multiple ways [43]. The DLT algorithm
allows us to compute 3D point coordinates for corresponding
image coordinates in two rectilinear views. Applying it
to two-dimensional joint correspondences leads to three-
dimensional reconstruction of body parts. Figure 6 shows
several successful reconstructions.

VI. EVALUATION AND RESULTS

The setup we use for evaluation covers a 6×6 meter
working area with two fisheye cameras of type Axis M3007-
PV mounted to the ceiling at height of 3 meters. The
baseline between the cameras is roughly 1.5 meters. The
simulated working area consists of several shelves that often
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Fig. 6: Examples of 3D stereo reconstruction of human body joints in fisheye images. Left/middle: input images and
superimposed detected two dimensional body joints. Right: Three dimensional metric body model.

cause partial body occlusions. We captured raw RGB video
from both cameras at rate of 12 FPS at a resolution of
2592×1944 over a period 4 weeks producing a total of 20
hours material. The video data contains 4 different people
performing common assembly tasks.

The fisheye cameras have been intrinsically calibrated
using the method described in [33]. We obtained the extrinsic
calibration for each camera separately by using an external
tracking device1, whose tracking targets can be automatically

1HTC Vive https://www.vive.com/eu/

detected in images. By capturing a set of 3D and correspond-
ing distorted 2D image correspondences in rectilinear views,
we solve for the unknown pose W using a iterative scheme
[44].

We assess the accuracy of the calibration and rectilinear
view generation by measuring lengths of known objects in
reconstructed stereo scenes. For better readability we split
the field of view of the fisheye camera into disjoint rings
corresponding to increasing radial distortions. The results are
shown in Table I.

We trained the 2D pose estimation algorithm on the
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Target length (m) Measured length (m)

Central area 1.5 1.49 ±0.01
Outer area 1.5 1.52 ±0.018
Lens edge area 1.5 1.56 ±0.035

TABLE I: Measurement errors incurred by the stereo setup
inaccuracies. For better comprehensibility we split the fish-
eye field of view into three concentric rings that mark central
(low-error), outer area (mid-error) and edge area (high-error).
Shown are target lengths as well as upper/lower limits over
multiple measurements.

COCO[21] dataset, which defines 18 body joints and 17
limbs (see Figure 7). Since the accuracy of the 2D pose
estimation has already been studied elsewhere[24], [45], we
concentrate on evaluating the quality of the 3D reconstruc-
tion. We validate the 3D reconstruction by accumulating
3D limb lengths over video segments grouped by individual
persons. Ideally, limb lengths are stationary. However, due to
stereo setup imprecision and fluctuations in 2D detection we
observe varying limb lengths as shown in Figure 8. Bear in
mind that the errors are mostly introduced when people move
around in the lens edge area. Figure 9 shows the relative
reconstruction frequencies of each limb.
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Fig. 7: Joint names and limb indices for the COCO[21]
model.

We ran the evaluation on a workstation with an Intel
i7-7700 3.6 GHz, 16 GB RAM, and a NVIDIA GeForce
GTX1060 graphics card with 6 GB memory. Relevant per-
formance metrics for key stages in our algorithm are given
in Table II.
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Fig. 8: Metric limb length statistics for two different people
over sequence of 10800 frames (15 minutes). Note, the
second person has longer legs - he is roughly 5-8 cm taller.
The area covered is 6×6 meter and includes serval obstacles
that lead to occlusions. Refer to Figure 7 for limb number
lookup.
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Fig. 9: Reconstruction frequencies of individual limbs over
the entire video testing set. Refer to Figure 7 for limb number
lookup. Facial features are reconstructed less frequently
compared to larger body parts due to visibility constraints.
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View View 2D 3D
Resolution Generation (s) Detection (s) Reconstruction (s)

320×320 0.02 ±0.001 0.60 ±0.02 0.01 ±0.001
640×640 0.10 ±0.01 1.80 ±0.05 0.01 ±0.001

TABLE II: Performance timings of key stages in our algo-
rithm. We compare two different resolutions of rectilinear
views and note how they affect each stage of the reconstruc-
tion pipeline.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel human pose detector
that predicts three-dimensional body part locations from
two highly distorted fisheye cameras in general position.
We demonstrated that the highly enlarged field of view
of a fisheye lens is a compelling advantage in reducing
hardware complexity. Especially the number of cameras
needed to capture the scene can ne reduced and thus many
related calibration efforts can be avoided. With regard to
pose evaluations, we find that analyses are possible with an
accuracy of 2-3 cm over a range of 6x6 meters.

We utilized recent deep-learning based approaches to
2D pose estimation in images and showed that generating
artificial rectilinear views avoids the re-training of the neural
network. To our knowledge we are the first to consider
deep-learning based human pose reconstruction using stereo
fisheye lenses. As a matter of fact we observe increasing
inaccuracies in 3D reconstruction in the limit of the lens.

In future work we will therefore reconsider the current tri-
angulation method and verify whether additional smoothness
constraints can help to reduce the errors. Another point of
interest is reduction of runtime complexity, by improving the
runtime of the 2D pose detector, in order to achieve real-time
performance.
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