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Detection of Bomb Craters in WWII Aerial Images*

Simon Brenner1, Sebastian Zambanini1 and Robert Sablatnig1

Abstract— The analysis of aerial images from World War
II surveillance flights allows a preliminary estimation of unex-
ploded ordnance risk for large scale construction projects. To
support this task, which is currently carried out manually, an
automatic approach for the detection of bomb craters in such
historical images was developed and evaluated.

I. INTRODUCTION

Unexploded Ordnance (UXO) from World War II still
poses a hazard for construction projects in Central Europe.
Specialized companies provide a preliminary risk estimation
by retrieving and interpreting aerial images from WWII
surveillance flights over areas of interest. For this, such his-
torical aerial images have to be georeferenced and searched
for certain objects that indicate increased combat activity in
the surveyed area, such as bomb craters, trenches or artillery
stations. Currently, both the georeferencing and the search
for warfare evidence are performed manually by special-
ists. Within the FFG-Bridge project DeVisOR (Detection
and Visualization of unexploded Ordnance Risks), which
was conducted from 2015 to 2017 in cooperation with the
Luftbilddatenbank Dr. Carls GmbH (LBDB) as an industrial
project partner, methods for the automation of the afore-
named tasks were developed.

This paper is concerned with the detection of warfare
evidence in WWII aerial images, where we focused on the
detection of bomb craters. First, they are the most frequent
type of warfare-related objects found in the aerial images;
second, they are the most direct evidence for the presence
of UXO, as at least 10% of all bombs that were dropped in
WWII are assumed to have not exploded [6]. We developed
a machine learning approach based on Convolutional Neural
Networks (CNNs) for the automatic detection of bomb
craters. Furtheremore, the integration of the detector into the
working environment of our industrial partner in the form of
a plugin for the GIS ArcMap will be elaborated.

II. RELATED WORK

Merler et al. [6] developed an approach to automatically
generate UXO risk maps via bomb crater detection in WWII
aerial images. They created a set of eigen-craters from a
principal component analysis of example craters and trained
a classifier based on a variant of AdaBoost. The results are
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promising, but they are aiming at detecting clusters of craters.
The dataset they were using for evaluation was not published.

More work has been done on the automatic detection of
asteroid impact craters on extraterrestrial surfaces [3][7][5],
lately also using CNNs [2]. Although the problem seems
to be similar to ours, there are some major differences.
First, asteroid impact craters exhibit a high variation in size;
second, the source images are of better quality than the
historical aerial images; and third, on other planets there are
no trees or man made objects that can easily be confused
with craters.

III. BOMB CRATER DATASET

To our knowledge, no labelled dataset for crater detection
in historical aerial images is currently publicly available.
LBDB as an industrial partner provided a selection of their
finished projects, covering both urban and rural areas. In
these projects, the historical aerial images have been geo-
referenced and the bomb craters mapped by experts. The
analysis is only performed within a defined region of interest
(ROI). Usually, several overlapping historical images from
different dates have been georeferenced in the ROI, to ease
the determination of warfare evidence by the expert.

In total the provided projects contain about 10000 craters
in world coordinates. After semi-automatically assigning the
craters to the images in which they are visible, we ended up
with roughly 20000 craters in image coordinates, along with
their diameters. Equally, the ROI is mapped to the individual
images; this is crucial for evaluation, as no ground truth data
are available outside the ROI.

The crater positions exported in this format are very flex-
ible and can be used in different ways to train and evaluate
machine learning algorithms. For our approach, a CNN was
trained for a binary classification problem on image patches
(see Section IV). We therefore prepared our training data by
extracting image patches of positive and negative examples.
As the ground resolutions of the individual aerial images are
approximately known, images patches with a fixed absolute
size are extracted. A statistical assessment of crater sizes
resulted in a mean crater diameter of 7.8m with a standard
deviation of 2.0. Assuming a normal distribution, 95% of the
crater diameters can be assumed to lie between 3.8m and
11.8m. In order to provide the classifier with some context,
we set the patch size to 20x20m. The patches are extracted
with a sliding window over the ROIs, with a stride of 1/4
the patch size. Patches containing a crater position are stored
as positive examples, patches not containing a crater are
randomly selected as negative samples or discarded, in order
to match the number of positive samples. This approach was
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(a) positive (b) negative

Fig. 1: Examples of training patches

preferred to the direct extraction of patches centered at the
crater positions, as it already mimics the planned detection
procedure and implicitly introduces translational variation
within the examples. With this approach about 85000 patches
per class were generated. Figure 1 shows some examples of
extracted patches; note that both the positive and the negative
examples are very heterogenous. The dataset was randomly
divided into training and test set with a ratio of 4:1 and scaled
to fit the CNNs input.

IV. THE CNN CLASSIFIER

First experiments with local binary patterns, Haar features
and simple neural networks could not deliver satisfying
results. We therefore employed the DenseNet CNN archi-
tecture [4], which emerged as state of the art in image
classification in 2017. Using the training data described in
Section III, we trained a 40 layer DenseNet with an input
size of 32x32 pixels on a binary classification problem. The
network was optimized using Nesterov Momentum. After
experiments with learning rates we ended up at the learning
curve depicted in Figure 2, plateauing at a mean accuracy of
0.91 on the test set after approximately 110 epochs.

Detection is performed by moving a sliding window of
fixed ground size of 20x20m over the ROI, with a stride
of 1/4 the window size, similarly to the generation of the
training data. The sub-images covered by the sliding window
are then scaled to the correct input size and processed by the
CNN, which returns a confidence for that window containing
a crater.

As craters only make up an average of 0.4% of the
observed areas, classification by simply applying a threshold
to the confidences leads to an unfeasible number of false
positives; the precision of the raw approach on realistically
distributed data was at 0.04. Raising the threshold does
not solve the problem; it only lowers the recall without
significantly improving the precision. The following section
describes a post-processing approach that exploits spatial
information to tackle the problem.

V. POSTPROCESSING

To alleviate the precision problems described in the pre-
vious section, spatial information and a-priori assumptions
about bomb crater distributions are exploited to filter the
CNN output. Specifically, the following ideas are employed:

Fig. 2: Training of the CNN. Mean accuracy on the training
set (red) and test set (blue) over training epochs.

1) Spatial proximity prior: Bombs are typically dropped
in clusters; ’lonely’ detections are therefore more likely
to be false positives.

2) Non-cluster suppression: As every individual crater
is hit by the sliding window more than once, it is
unlikely that a real crater is only detected in one of
those window positions; therefore detections that are
not part of a cluster are considered outliers.

3) Non-maximum suppression: This is a standard opera-
tion in object detection that reduces multiple detections
of the same object to the one with the maximum
confidence.

To practically apply the above named ideas, first the con-
fidences computed for sliding window positions are stored
in a 2-dimensional confidence map. Figure 3a visualizes an
example of such a map. To introduce the spatial proximity
prior, the map is convoluted with a gaussian kernel with σ =
0.5 (Figure 3b). This penalizes isolated areas of high con-
fidences. The resulting filtered confidence map is thereafter
thresholded to produce a binary detection map (Figure 3c).
The threshold was set to 0.88, which maximizes the F1-score
of the detector. For the non-cluster suppression, 8-connected
components with less than 6 elements are removed from the
detection image (Figure 3d). Finally, all detections which are
not local maxima in the filtered confidence map are removed
from the detection map, resulting in the final set of detections
(Figure 3e). Figure 3f shows those detections superimposed
on the original image.

The described procedure converts the CNN outputs to
individual crater positions for single images. However, as
described in Section III, typically several overlapping aerial
images are available for a given ROI. Therefore, detections
from different images have to be merged to receive the
complete set of craters for a ROI. In this stage, double
detections from different images are eliminated. For that
purpose, all craters are transformed to world coordinates and
a neighborhood-based clustering is applied, where neighbor-
hood is defined by a maximum euclidean distance, which
was determined empirically. The clusters are then replaced
by their centroids.

VI. RESULTS

The CNN was evaluated on the test set of image patches
as described in Section III. At the maximum accuracy of
0.91 at a decision threshold of 0.5 and a 1:1 ratio of positive
and negative examples, patches with craters were detected

95



D
ra

ft

(a) confidence map (b) gauss filtered confidence map

(c) detection map (d) non cluster suppression

(e) non maximum suppression (f) final detections

Fig. 3: Visualization of postprocessing steps (example)

with precision of 0.907 and a recall of 0.913. In a realistic
scenario with a ratio of approximately 250 negative examples
on 1 positive example the precision drops to 0.04.

The end-to-end detection solution including the postpro-
cessing steps described in Section V was evaluated on 14
full example projects provided by LBDB with approximately
2500 ground truth craters in total. A detection was regarded
a true positive if its euclidean distance to the closest ground
truth crater is smaller than the diameter of that crater.
Figure 4 shows the precision and recall of the detector for the
individual test projects. As shown in this figure, the results
vary significantly from project to project. The average results,
weighted by the number of ground truth craters present in a
project, are a precision of 0.74 and a recall of 0.6.

VII. IMPLEMENTATION

As this work was developed in the course of an industry-
oriented project, the described detector was implemented in
a form that could easily be adapted into the worlflow of the
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Fig. 4: Precision and recall for the different test projects

Fig. 5: A detetion result created by the ArcMap plugin.
Green: our detected craters. Red: ground truth craters. Blue:
ROI.

company partner. To this end we extended the ArcMap plugin
for the registration of historical aerial images, which was
developed earlier in the project [1], with our crater detection
approach. The plugin enables the user to automatically detect
craters in the source images linked to an ArcMap project.
These images are first processed by the dense CNN using the
TensorFlow framework. The resulting confidences are then
post-processed in the plugin code and the resulting detections
transformed to the world coordinate system of the project.
Finally, the craters from different images are merged. The
detected craters are then present as features in the ArcMap
project and can be refined and edited by the user. Figure 5
shows an example of our detection results.

VIII. CONCLUSIONS

In this project, an approach for the automatic detection
of bomb craters in WWII aerial images was developed and
implemented. While the performance of our solution does
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not allow an application as a fully automated system, it can
assist the human specialist in a semi-automated fashion, thus
saving time and effort. Additionally, the automated detection
can provide a second instance of inspection, in the sense that
it may draw the specialist’s attention to ambiguous points,
thus reducing the chance of overlooking important evidence
in large regions of interest.

As a further use case, our approach would allow to
automatically generate risk estimations for large areas, using
the intermediate confidence maps. This would allow the
company to quickly provide potential customers with a first
rough estimate of the UXO risk of a certain area, before
performing a more detailed analysis.
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